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Abstract

Low-shot learning methods for image classification support learning from sparse

data. We extend these techniques to support dense semantic image segmentation. Specifi-

cally, we train a network that, given a small set of annotated images, produces parameters

for a Fully Convolutional Network (FCN). We use this FCN to perform dense pixel-level

prediction on a test image for the new semantic class. Our architecture shows a 25%

relative meanIoU improvement compared to the best baseline methods for one-shot seg-

mentation on unseen classes in the PASCAL VOC 2012 dataset and is at least 3× faster.

1 Introduction

Deep Neural Networks are powerful at solving classification problems in computer vision.

However, learning classifiers with these models requires a large amount of labeled training

data, and recent approaches have struggled to adapt to new classes in a data-efficient manner.

There is interest in quickly learning new concepts from limited data using one-shot learning

methods [21, 37]. One-shot image classification is the problem of classifying images given

only a single training example for each category [22, 39].

We propose to undertake One-Shot Semantic Image Segmentation. Our goal is to predict

a pixel-level segmentation mask for a semantic class (like horse, bus, etc.) given only a single

image and its corresponding pixel-level annotation. We refer to the image-label pair for the

new class as the support set here, but more generally for k-shot learning, support set refers

to the k images and labels.

A simple approach to performing one-shot semantic image segmentation is to fine-tune a

pre-trained segmentation network on the labeled image [3]. This approach is prone to over-

fitting due to the millions of parameters being updated. It also introduces complications in

optimization, where parameters like step size, momentum, number of iterations, etc. may be

c© 2017. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.



2 SHABAN, BANSAL, LIU, ESSA, BOOTS: ONE-SHOT SEMANTIC SEGMENTATION

Support Set !

Query Image "#

GENERATE PARAMETERS 

$(. )

SEGMENTATION MODEL

Segmentation Branch

Conditioning Branch

(

Segmentation Mask

Figure 1: Overview. S is an annotated image from a new semantic class. In our approach,

we input S to a function g that outputs a set of parameters θ . We use θ to parameterize part

of a learned segmentation model which produces a segmentation mask given Iq.

difficult to determine. Recent one-shot image categorization methods [22, 39] in contrast,

meta-learn a classifier that, when conditioned on a few training examples, can perform well

on new classes. Since Fully Convolutional Neural Networks (FCNs) [26] perform segmenta-

tion as pixel-wise classification, we could extend these one-shot methods directly to classify

at the pixel level. However, thousands of dense features are computed from a single image

and one-shot methods do not scale well to this many features. We illustrate this issue by

implementing an extension to the Siamese Network from [22] as a baseline in Section 6.

We take inspiration from few-shot learning and propose a novel two-branched approach

to one-shot semantic image segmentation. The first branch takes the labeled image as input

and produces a vector of parameters as output. The second branch takes these parameters as

well as a new image as input and produces a segmentation mask of the image for the new

class as output. This is illustrated in Figure 1. Unlike the fine tuning approach to one-shot

learning, which may require many iterations of SGD to learn parameters for the segmentation

network, the first branch of our network computes parameters in a single forward pass. This

has several advantages: the single forward pass makes our method fast; our approach for

one-shot learning is fully differentiable, allowing the branch to be jointly trained with the

segmentation branch of our network; finally, the number of parameters θ is independent of

the size of the image, so our method does not have problems in scaling.

To measure the performance for one-shot semantic segmentation we define a new bench-

mark on the PASCAL VOC 2012 dataset [11] (Section 5). The training set contains labeled

images from a subset of the PASCAL classes and the testing set has annotations of classes

that were not present in training. We show significant improvements over the baselines on

this benchmark in terms of the standard meanIoU (mean Intersection over Union) metric as

described in Section 7.

We extend to k-shot learning by applying our one-shot approach for each of the k im-

ages independently to produce k segmentation masks. We then aggregate these masks by

performing a logical-OR operation at the pixel level. This approach, apart from being easy

to implement and fast, requires no retraining to generalize to any number of images in the

support set. We show its effectiveness in terms of increasing meanIOU accuracy per added

image to the support set in section 7.

PASCAL VOC contains only 20 classes, which is small when compared to standard



SHABAN, BANSAL, LIU, ESSA, BOOTS: ONE-SHOT SEMANTIC SEGMENTATION 3

datasets used for training one-shot classification methods like Omniglot (1623) [24] and

ImageNet (1000) ([10]). Simulating the one-shot task during training, even with such a

limited number of classes performs well. This is in contrast to the common notion that

training models for few-shot learning requires a large number of classes. We hypothesize

that part of our algorithm’s ability to generalize well to unseen classes comes from the pre-

training performed on ImageNet, which contains weak image-level annotations for a large

number of classes. We perform experiments on the pretraining in section 7.1.

This paper makes the following contributions: (1) we propose a novel technique for one-

shot segmentation which outperforms baselines while remaining significantly faster; (2) we

show that our technique can do this without weak labels for the new classes; (3) we show

that meta-learning can be effectively performed even with only a few classes having strong

annotations available; and (4) we set up a benchmark for the challenging k-shot semantic

segmentation task on PASCAL.

2 Related Work

Semantic Image Segmentation is the task of classifying every pixel in an image into a

predefined set of categories. Convolutional Neural Network (CNN) based methods have

driven recent success in the field. Some of these classify super-pixels [13, 15, 27], others

classify pixels directly [6, 16, 26, 28]. We base our approach on the Fully Convolutional

Network (FCN) for Semantic Segmentation [26] which showed the efficiency of pixel-wise

classification. However, unlike FCN and the other approaches above, we do not assume a

large set of annotated training data for the test classes.

Weak Supervision. Weak and semi-supervised methods for Semantic Segmentation reduce

the requirement on expensive pixel-level annotations, thus attracting recent interest. Weak

supervision refers to training from coarse annotations like bounding boxes [9] or image la-

bels [30, 31, 33]. A notable example is co-segmentation, where the goal is to find and

segment co-occurring objects in images from the same semantic class [12, 35]. Many co-

segmentation algorithms [8, 17, 34] assume object visual appearances in a batch are similar

and either rely on hand-tuned low-level features or high-level CNN features trained for dif-

ferent tasks or objects [34]. In contrast, we meta-learn a network to produce a high-level

representation of a new semantic class given a single labeled example. Semi-supervised

approaches [18, 19, 30] combine weak labels with a small set of pixel-level annotations.

However, they assume a large set of weak labels for each of the desired objects. For instance,

Pathak et al. [32] use image-level annotations for all classes and images in the PASCAL 2012

training set [11], while we exclude all annotations of the testing classes from the PASCAL

training set.

Few-Shot Learning algorithms seek to generalize knowledge acquired through classes seen

during training to new classes with only a few training examples [25, 36, 39]. Discrimina-

tive methods in which the parameters of the base classifier (learned on training classes) are

adapted to the new class [1, 2, 14, 40] are closely related to our work. The main challenge

is that the adapted classifier is prone to over-fit to the newly presented training examples.

Wang and Herbert [40] address this challenge by learning to predict classifiers which remain

close to the base classifier. Bertinetto et al. [2] trained a two-branch network, in which one

branch receives an example and predicts a set of dynamic parameters. The second branch

classifies the query image using the dynamic parameters along with a set of learned static

parameters. A similar approach was used by Noh et al. in [29] for question answering. We
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draw several ideas from these papers and adapt them for the task of dense classification to

design our model. Metric learning is another approach to low-shot learning [22, 39]. It aims

to learn an embedding space that pulls objects from the same categories close, while push-

ing those from different categories apart. Koch et al. [22] show that a Siamese architecture

trained for a binary verification task can beat several classification baselines in k-shot image

classification. We adapt their approach for image segmentation as one of our baselines.

3 Problem Setup

Let the support set S = {(Ii
s,Y

i
s (l))}

k
i=1 be a small set of k image-binary mask pairs where

Y i
s ∈ LH×W

test is the segmentation annotation for image Ii
s and Y i

s (l) is the mask of the ith image

for the semantic class l ∈ Ltest . The goal is to learn a model f (Iq,S) that, when given a

support set S and query image Iq, predicts a binary mask M̂q for the semantic class l. An

illustration of the problem for k = 1 is given Figure 1.

During training, the algorithm has access to a large set of image-mask pairs D= {(I j,Y j)}N
j=1

where Y j ∈ LH×W
train is the semantic segmentation mask for training image I j. At testing, the

query images are only annotated for new semantic classes i.e. Ltrain ∩Ltest =∅ . This is the

key difference from typical image segmentation where training and testing classes are the

same. While the problem is similar to k-shot learning, which has been extensively studied

for image classification [36, 39], applying it to segmentation requires some modification.

In this problem, unlike image classification, examples from Ltest might appear in training

images. This is handled naturally when an annotator unaware of some object class, labels it

as background. Annotations of Ltest objects are excluded from the training set, while the im-

ages are included as long as there is an object from Ltrain present. State-of-the-art algorithms

for image segmentation [4, 5] use networks pre-trained on large-scale image classification

datasets like [10]. Although these weights give the models a better starting point, they still

require many segmented images and thousands of weight updates to learn a good model for

pixel classification. This is true even for the classes that directly overlap. We allow similar

access to weak annotations for our problem by initializing VGG with weights pre-trained

on ImageNet [10]. In section 7.1 however, we show that even excluding all the overlapping

classes from pre-training does not degrade the performance of our approach.

4 Proposed Method

We propose an approach where the first branch receives as input a labeled image from the

support set S and the second branch receives the query image Iq. In the first branch, we input

the image-label pair S = (Is,Ys(l)) to produce a set of parameters,

w,b = gη(S). (1)

In the other branch, we extract a dense feature volume from Iq using a parametric embedding

function φ . Let Fq = φζ (Iq) be that feature volume extracted from Iq, then Fmn
q is the feature

vector at the spatial location (m,n). Pixel level logistic regression is then performed on the

features using the parameters from the first layer to get the final mask,

M̂mn
q = σ(w⊤Fmn

q +b). (2)
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Figure 2: Model Architecture. The conditioning branch receives an image-label pair and

produces a set of parameters {w,b} for the logistic regression layer c(·,w,b). The segmen-

tation branch is an FCN that receives a query image as input and outputs strided features of

conv-fc7. The predicted mask is generated by classifying the pixel-level features through

c(·,w,b), which is then upsampled to the original size.

Here, σ(.) is the sigmoid function and M̂mn
q is the (m,n) location of the predicted mask for

the query. This can be understood as a convolutional layer with parameters {w,b} followed

by a sigmoid activation function, where the parameters are not fixed after training and get

computed through the first branch for each image in the support set. The predicted mask is

then upsampled back to the original image size using standard bilinear interpolation. The

final binary mask is produced by using a threshold of 0.5 on M̂q. The overall architecture is

illustrated in Figure 2. We explain each part of the architecture in more detail in the following

subsections.

4.1 Producing Parameters from Labeled Image

We modify the VGG-16 architecture from [38] to model the function gη(·).

Masking. We chose to mask the image with its corresponding label so it contains

only the target object instead of modifying the first layer to receive the four channel image-

mask pair as input. We do this for the following two empirical reasons. (1) Even in the

presence of the mask the network response tends to be biased towards the largest object

in the image which may not be the object we would like to segment. (2) Including the

background information in the input increased the variance of the output parameters {w,b}
which prevented the network from converging.

Weight Hashing. Inspired by Noh et al. [29], we employed the weight hashing layer

from [7] to map the 1000-dimensional vector output from the last layer of VGG to the 4097

dimensions of {w,b}. This mapping avoids the overfitting which would occur due to the

massive number of extra parameters that a fully connected layer will introduce if used in-

stead. We implemented it efficiently as a fully connected layer with fixed weights. This is

explained in more detail in the supplementary material.
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4.2 Dense Feature Extraction

We model the embedding function Fq = φζ (Iq) by the FCN-32s fully convolutional architec-

ture [26] excluding the final prediction layer. The 4096 channel feature volume at conv-fc7

is then fed to the logistic pixel classifier described above. In section 7 we also evaluate

performance of the high resolution dilated-FCN [41] with stride 8.

4.3 Training Procedure

We simulate the one shot task during training by sampling a support set S, a query image

Iq and its corresponding binary mask Mq from the training set Dtrain at each iteration. First,

an image-label pair (Iq,Yq) is sampled uniformly at random from Dtrain, then we sample

a class l ∈ Ltrain uniformly from the classes present in the semantic mask and use it to

produce the binary mask Yq(l). S is formed by picking one image-mask pair at random from

Dtrain −{(Iq,Yq)} with class l present. We can then predict the mask M̂q with a forward pass

through our network. We maximize the log likelihood of the ground-truth mask

L(η ,ζ ) = E
S,Iq,Mq∼Dtrain

[

∑
m,n

log pη ,ζ (M
mn
q |Iq,S)

]

. (3)

Here η and ζ are the network parameters, pη ,ζ is the probability of the mask given the neural

network output, and S, Iq, and Mq are sampled by the sampling strategy described above.

We use Stochastic Gradient Descent with a fixed learning rate of 10−10, momentum 0.99

and batch size of 1. The VGG network overfits faster than the fully-convolutional branch;

therefore, we set the learning rate multiplier to 0.1 for learning the parameter η . We stop

training after 60k iterations.

4.4 Extension to k-shot

In the case of k-shot segmentation the support set contains k labeled images, S= {Ii
s,Y

i
s (l)}

k
i=1.

We use these images to produce k sets of the parameters {wi,bi}k
i=1. Each of them can be

understood to be an independent classifier of an ensemble. These classifiers we noticed have

high precision but low recall. We believe this is because each is produced by one example

from the support set and a single image can only contain a small subset of the possible ap-

pearances of the object. So, we combine the decision of these classifiers by including a pixel

in the final mask if it was considered an object by any of these classifiers. This is imple-

mented as a logical OR operation between the k binary masks. This approach has the benefit

that it does not require any retraining and can be generalized to any k. It is also much faster

than the baselines as shown in section 7.

5 Dataset and Metric

Dataset: We create a new dataset, PASCAL-5i, for the problem of k-shot Image Segmenta-

tion using images and annotations from PASCALVOC 2012 [11] and extended annotations

from SDS1 [15]. From L, the set of twenty semantic classes in PASCALVOC, we sample

five and consider them as the test label-set Ltest = {4i+1, . . . ,4i+5}, with i being the fold

1For creating the training set, we only include images that do not overlap with the PASCALVOC 2012 validation

set.
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i = 0 i = 1 i = 2 i = 3

aeroplane, bicycle, bird, boat, bottle bus, car, cat, chair, cow diningtable, dog, horse, motorbike, person potted plant, sheep, sofa, train, tv/monitor

Methods (1-shot) PASCAL-50 PASCAL-51 PASCAL-52 PASCAL-53 Mean

1-NN 25.3 44.9 41.7 18.4 32.6
LogReg 26.9 42.9 37.1 18.4 31.4
Finetuning 24.9 38.8 36.5 30.1 32.6
Siamese 28.1 39.9 31.8 25.8 31.4
Ours 33.6 55.3 40.9 33.5 40.8

Methods (5-shot) PASCAL-50 PASCAL-51 PASCAL-52 PASCAL-53 Mean

Co-segmentation 25.1 28.9 27.7 26.3 27.1
1-NN 34.5 53.0 46.9 25.6 40.0
LogReg 35.9 51.6 44.5 25.6 39.3
Ours 35.9 58.1 42.7 39.1 43.9

Table 1: Mean IoU results on PASCAL-5i. Top: test classes for each fold of PASCAL-5i.

The middle and bottom tables contain the semantic segmentation meanIoU on all folds for

the 1-shot and 5-shot tasks respectively.

number, and the remaining fifteen forming the training label-set Ltrain. Test and training class

names are shown in Table 5. We form the training set Dtrain by including all image-mask

pairs from PASCALVOC and SDS training sets that contain at least one pixel in the seman-

tic mask from the label-set Ltrain. The masks in Dtrain are modified so that any pixel with a

semantic class 6= Ltrain is set as the background class l∅. We follow a similar procedure to

form the test set Dtest , but here the image-label pairs are taken from PASCALVOC valida-

tion set and the corresponding label-set is Ltest . Thus, apart from a few exclusions, the set of

images is similar to those used in Image Segmentation papers, like FCN [26]. However, the

annotations are different. Given the test set Dtest , we use the same procedure that is described

in Section 4.3 to sample each test example {S,(Iq,Yq(l))}. We sample N = 1000 examples

and use it as the benchmark for testing each of the models described in the next section.

Metric: Given a set of predicted binary segmentation masks {M̂q}
N
i=1 and the ground truth

annotated mask {Mq}
N
i=1 for a semantic class l we define the per-class Intersection over

Union (IoUl) as
tpl

tpl+fpl+fnl
. Here, tpl is the number of true positives, fpl is the number of

false positives and fnl is the number of false negatives over the set of masks. The meanIoU

is just its average over the set of classes, i.e. (1/nl)∑l IoUl . This is the standard metric

of meanIU defined in Image Segmentation literature adapted for our binary classification

problem.

6 Baselines

We evaluate the performance of our method with different baselines. Since one-shot image

segmentation is a new problem, we adapt previous work for dense pixel prediction to serve

as baselines to compare against.

• Base Classifiers: CNNs learn deep representations of images, so these models are

an intuitive starting point for classification. Specifically, we first fine-tune FCN-32s

pretrained on ILSVRC2014 data to perform 16-way (15 training foreground classes +

1 background class) pixel-wise predictions on the PASCAL-5i dataset. During testing,

we extract dense pixel-level features from both images in the support set and the query

image. We then train classifiers to map dense fc-7 features from the support set to their
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corresponding labels and use it to generate the predicted mask M̂q. We experimented

with various classifiers including 1-NN and logistic regression2

• Fine-tuning: As suggested by [3], for each test iteration we fine-tune the trained

segmentation network on examples in the support set and test on the query image.

We only fine-tune the fully connected layers (fc6, fc7, fc8) to avoid overfitting and

reducing the inference time per query. We also found that the fine-tuned network

converges faster if we normalize the fc-7 features by a batch normalization layer.

• Co-segmentation by Composition: To compare with the these techniques, we include

the results of the publicly available implementation3 of [12] on PASCAL-5i.

• Siamese Network for One-shot Dense Matching: Siamese Networks trained for

image verification, i.e. predicting whether two inputs belong to the same class, have

shown good performance on one-shot image classification [22]. We adapt them by

using two FCNs to extract dense features and then train it for pixel verification. A

similarity metric from each pixel in the query image to every pixel in the support set

is also learned and pixels are then labeled according to their nearest neighbors in the

support set. Implementation details are provided in the supplementary document.

7 Experiments

We conduct several experiments to evaluate the performance our approach on the task of k-

shot Image segmentation by comparing it to other methods. Table 1 reports the performance

of our method in 1-shot and 5-shot settings and compares them with the baseline methods.

To fit a 5-shot Siamese network into memory we sampled from features in the support set

with a rate of 0.3. However, sub-sampling considerably degraded the performance of the

method and 5-shot results were worse than the 1-shot version so we exclude those results.

Our method shows better generalization performance to new classes. The difference is

very noticeable in 1-shot learning as other methods overfit to only the image in the support

set. Specifically, our method outperforms 1-NN and fine-tuning in one-shot image segmen-

tation by 25% relative meanIoU. We also provide some qualitative result from our method in

Figure 4. Surprisingly, the results for 1-NN are almost as good as the fine-tuning baseline,

which overfits quickly to the data in the support set.

In Table 1, we also compare Co-segmentation by Composition [35] for 5-shot segmen-

tation to our approach. As expected, using the strong pixel-level annotations enables our

method to outperform the unsupervised co-segmentation approach, by 16%. In fact, we can

outperform co-segmentation results that require 5 weakly annotated images with just a single

strongly annotated image.

Dilated-FCN: In addition to the low-resolution version of our method, we also trained the

dilated-FCN with higher resolution on PASCAL- 50 and achieved 37.0% and 37.43% mean-

IoU for 1-shot and 5-shot respectively. We notice a 3.4% improvement over low-resolution

for one-shot, however, the gap between 1-shot and 5-shot is small at this resolution. We

believe this is due to our training being specific to the 1-shot problem. We do not use

dilated-FCN architecture for other methods due to the impracticality caused by their high

computational cost or memory footprint.

2We also trained linear SVM, but could not get a comparable results to logistic regression.
3http://www.wisdom.weizmann.ac.il/~vision/CoSegmentationByComposition.html

http://www.wisdom.weizmann.ac.il/~vision/CoSegmentationByComposition.html
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Figure 3: Pretraining Effect on AlexNet.

Methods 1-shot 5-shot

1-NN 1.10 4.55

Logistic Reg 0.66 3.50

Finetune 5.56 -

Siamese 5.65 -

Ours-32s 0.19 0.21

Table 2: Inference Time (in s).

Running Time: In Table 2 we include the running time of each algorithm. All the experi-

ments were executed on a machine with a 4GHz Intel Core-i7 CPU, 32GB RAM, and a Titan

X GPU. In one-shot setting our method is ∼3× faster the than second fastest method logistic

regression. For 5-shot our method is ∼10× faster than logistic regression.

7.1 Pretraining Effect

The models compared above have two sources of information, the image-level labels for the

classes in ImageNet [10] through the pretraining and the pixel-level annotation of classes in

Ltrain. Although the test classes Ltest do not overlap with Ltrain, they have partial overlap with

some ImageNet classes. To understand this effect, we use a dataset which excludes all the

classes in ImageNet with any overlap with PASCAL categories called PASCAL-removed-

ImageNet as in [20]. This dataset contains only 771 classes as compared to 1000 origi-

nally since each class in PASCAL usually overlaps with multiple ImageNet classes. We use

AlexNet [23] trained on ImageNet and PASCAL-removed-ImageNet (from Huh et al. [20])

with the suffices 1000 and 771 respectively. We replaced the VGG and FCN from both

branches of our approach with AlexNet to give us AlexNet-1000 and AlexNet-771. We also

have a baseline in the form of Logistic Regression performed on convolutional AlexNet fea-

tures finetuned on PASCAL, similar to the Base Classifiers described in section 6. We refer

to these as LogReg-1000 and LogReg-771. Figure 3 contains the results for these models

on the first fold, i.e. PASCAL-50. Note that the results for the two baselines are constant

because we evaluate the networks only once they converge.

In Figure 3 we observe that AlexNet-1000 is better initially and shows faster conver-

gence. However, after convergence AlexNet-771 performs on par with AlexNet-1000. The

initial gap could be understood by the fact that even the Ltrain classes were not presented dur-

ing the pre-training. AlexNet being a simpler model performs worse than VGG, meanIOU

was 33.6% in Table 5. However, AlexNet-771 outperforms even our best VGG baseline,

which was Siamese at 28.1% for PASCAL-50. This result shows that we can generalize

to new categories without any weak supervision for them. In contrast, LogReg-1000 out-

performing LogReg-771 shows its incapacity to learn a good representation without seeing

weak labels for test categories. This highlights the importance of meta-learning for this task.

8 Conclusion

Deep learning approaches have achieved top performance in many computer vision prob-

lems. However, learning a new concept given few examples is still a very challenging task.
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Figure 4: Some qualitative results of our method for 1-shot. Inside each tile, we have the

support set at the top and the query image at the bottom. The support is overlaid with the

ground truth in yellow and the query is overlaid with our predicted mask in red.

In this paper we developed a new architecture to address this problem for image segmen-

tation. Our architecture learns to learn an ensemble classier and use it to classify pixels in

the query image. Through comprehensive experiments we show the clear superiority of our

algorithm. The proposed method is considerably faster than the other baselines and has a

smaller memory footprint.
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