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Abstract: Multiple object tracking (MOT) in unmanned aerial vehicle (UAV) videos is a fundamental
task and can be applied in many fields. MOT consists of two critical procedures, i.e., object detection
and re-identification (ReID). One-shot MOT, which incorporates detection and ReID in a unified
network, has gained attention due to its fast inference speed. It significantly reduces the computa-
tional overhead by making two subtasks share features. However, most existing one-shot trackers
struggle to achieve robust tracking in UAV videos. We observe that the essential difference between
detection and ReID leads to an optimization contradiction within one-shot networks. To alleviate
this contradiction, we propose a novel feature decoupling network (FDN) to convert shared features
into detection-specific and ReID-specific representations. The FDN searches for characteristics and
commonalities between the two tasks to synergize detection and ReID. In addition, existing one-shot
trackers struggle to locate small targets in UAV videos. Therefore, we design a pyramid transformer
encoder (PTE) to enrich the semantic information of the resulting detection-specific representations.
By learning scale-aware fine-grained features, the PTE empowers our tracker to locate targets in UAV
videos accurately. Extensive experiments on VisDrone2021 and UAVDT benchmarks demonstrate
that our tracker achieves state-of-the-art tracking performance.

Keywords: multiple object tracking; unmanned aerial vehicle video; optimization contradiction;
task-specific representation; transformer encoder; fine-grained feature

1. Introduction

Multiple object tracking (MOT) aims to predict the trajectories of all targets from a
given video. With the development of computer vision, MOT is widely applied in many
fields, such as intelligent video surveillance [1], human-computer interaction [2], and
autonomous driving [3]. In addition, MOT is the foundation for advanced computer vision
tasks such as video understanding [4], behavior recognition [5], and behavior analysis [6].
In recent years, due to the strong flexibility and high safety of unmanned aerial vehicles
(UAVs), MOT from the UAV view has attracted the attention of many scholars. However,
there exist various challenges for MOT based on airborne platforms, including occlusions,
low resolution, and small targets.

Recently, benefiting from the rapid development of object detection techniques, the
tracking-by-detection (TBD) paradigm has become the mainstream MOT framework. The
TBD paradigm decomposes the MOT task into three main steps [7], i.e., object detection,
feature extraction, and data association. In the tracking process, TBD-based trackers
associate detected targets in different frames into complete trajectories based on their
appearance, motion, and other features. To distinguish different targets under complex
scenarios, most trackers consider re-identification (ReID) as a vital component and extract
the identity embedding of targets through a ReID network. Based on the relationship
between detection and ReID networks, TBD-based trackers can be classified into two-stage
and one-shot approaches. As shown in Figure 1a, the two-stage trackers treat detection
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and ReID as two completely independent subtasks. Two-stage methods first locate targets
through a detector and then predict the identity embedding of targets using a ReID network.
Although effective and robust, two-stage trackers suffer from the drawbacks of large
computational overhead and high complexity. Since the two-stage approaches inferred two
deep networks successively. This disadvantage of slow tracking speed makes it difficult
to deploy in real applications. Therefore, one-shot trackers integrate detection and ReID
into a unified network, as shown in Figure 1b. By making the two tasks share features,
one-shot trackers predict the location and embedding of targets in a single network. One-
shot trackers have a significant speed advantage because they avoid a lot of repeated
calculations. However, in contrast, most existing one-shot methods struggle to achieve
robust tracking in UAV videos.

(c) The proposed FPUAV

detections embedding

(a) Two-stage MOT framework (b) Classic one-shot MOT framework

PTE

CNN FDN

ReID
Head

Detection ReID 

Detection 
head

ReID 
head

CNN

shared feature task-specific features

Figure 1. Comparison of the MOT frameworks.

We argue that the main reason for the sub-optimal tracking performance of one-shot
trackers is the neglect of the conflicts within the network. Previous one-shot trackers
mostly incorporate a ReID head directly into an off-the-shelf detector [8–10]. Then, the
detection and ReID make predictions based on the shared feature map. This scheme of
sharing features seems reasonable but ignores the essential difference between the detection
and ReID tasks. Specifically, detection aims to find common information between targets
of the same category, while ReID searches for differences between individual targets.
Due to this contradiction, the shared features cannot simultaneously satisfy the required
representations for both tasks. Therefore, sharing features directly leads to difficulties
in optimizing the network. Optimization of either of the two tasks is likely to lead to
significant performance decay of the other, while the performance degradation of detection
or ReID results in many tracking failures, such as bounding box drift and missed targets.
Moreover, existing trackers mainly focus on tracking regular-sized and slow-moving targets.
In contrast, a large number of small targets and blurred targets caused by bidirectional
motion in UAV videos exist. Therefore, previous trackers struggle to locate all targets in
UAV videos.

To improve the tracking performance of one-shot trackers in UAV videos, we propose
two modules to alleviate the above issues. As shown in Figure 1c, we first propose a
feature decoupling network (FDN) to mitigate the contradiction between the two tasks.
The FDN converts the extracted shared features into detection-specific and ReID-specific
representations. To achieve this, we learn the commonalities and characteristics between
the tasks through self-attention and cross-attention. Then, we design a pyramid transformer
encoder (PTE) to enrich the semantic information of the detection-specific representations.
Given the detection-specific features obtained by the FDN, the PTE performs multi-scale
learning on them and captures fine-grained features. The PTE enables our tracker to locate
targets of different sizes under complex scenarios accurately.
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The main contributions of this paper are summarized as follows:

• We observe that the contradiction between detection and ReID constrains the tracking
performance of one-shot trackers. To alleviate this contradiction, we propose a feature
decoupling network (FDN) to convert shared features into detection-specific and
ReID-specific representations.

• We design a pyramid transformer encoder (PTE) to transform the detection-specific
features generated by the FDN into scare-aware fine-grained representations. The PTE
enables the one-shot network to locate targets in UAV videos accurately.

2. Related Work

In this section, we first review the tracking-by-detection paradigm. Then, we divide
the recent trackers into two-stage and one-shot methods and briefly describe each tracker.

2.1. Tracking-by-Detection

The tracking-by-detection (TBD) paradigm splits the MOT task into three phases:
object detection, feature extraction, and data association [11]. Specifically, the TBD-based
trackers associate detected targets in different video frames into complete tracklets based
on their similarities.

Most early works focus attention on improving the data association performance.
Milan et al. [12] considered data association as a global optimization problem and inte-
grated data association and tracklets into energy functions. Finally, they constrain the
tracklets by constructing a motion model. Many studies defined the MOT task as a graph
model [13–16] in which each vertex denoted a detected target, and the edges represented the
similarity among targets. Then, the matching relationship of each vertex was determined
by the Hungarian algorithm [17] or the greedy algorithm [18]. Ren et al. [13] formulated
MOT as a network flow, where a flow was defined as an indicator connecting two nodes,
and a tracklet corresponded to a flow path in the graph. The network flow-based trackers
can obtain the optimal global solution in polynomial time and improve tracking accuracy
by simultaneously considering information from multiple frames. However, these methods
have difficulty taking into account multidimensional information in the tracking process.
Xiang et al. [14] defined MOT as a conditional random field (CRF). Given the tracklets
as input, the CRF predicted the probabilistic relationship among the detections and each
tracklet. CRF-based methods can effectively model the interaction among targets but are
prone to fall into local optimality. Peng et al. [15] modeled MOT as a graph clustering
problem based on the minimum cost subgraph multicut (MCSM). The MCSM measured the
similarity among targets by edge-related costs and then united multiple high-confidence
targets in temporal and spatial dimensions. The resulting cluster represented a tracked
tracklet. Brendel et al. [16] formulated MOT as a maximum-weight independent set, which
was the heaviest subset of non-adjacent nodes in the attribute graph. The nodes in the
attribute graph denoted the track pairs in consecutive video frames, and the weights in-
dicated the affinity of the pairs. If multiple tracklets share the same detection, the nodes
are connected so that the global association results can be obtained through the attribute
map. These methods utilize information from multiple frames in the tracking process and
therefore usually achieve favorable tracking accuracy and robustness. However, due to the
large computational overhead, these methods are not suitable for practical applications.

With the rapid development of deep learning, research on the TBD paradigm in
recent years has focused mainly on object detection and feature extraction. Current TBD-
based trackers typically utilize or design high-performance detectors to localize targets
precisely. In addition, benefiting from the powerful feature extraction capability of neural
networks, identity embedding-based trackers have attracted extensive research interest and
achieved remarkable progress. According to the manner of locating targets and extracting
the appearance features, existing TBD-based trackers can be classified into two-stage
approaches and one-shot approaches. We review the representative two-stage and one-shot
trackers of recent years below.
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2.2. Two-Stage Trackers

Two-stage trackers treat object detection and identity embedding extraction as two
separate tasks. Specifically, two-stage trackers first use a detection network to locate targets
and then predict the identity embedding of targets through an independent ReID network.

Benefiting from the strong feature extraction of convolutional neural networks (CNN),
many trackers obtain the identity embedding of targets through deep networks. In 2016,
Yu et al. [19] localized targets by Faster R-CNN [20] and designed a ReID network based
on GoogLeNet [21] to predict discriminative appearance features. Son et al. [22] learned
multiple images containing different targets simultaneously to predict more discriminative
features. Meanwhile, they proposed a quadruplet loss to strengthen the time constraint
so that there is a greater affinity among targets with shorter time intervals. Lee et al. [23]
designed a ReID network integrated with a feature pyramid network (FPN) to enrich the
resulting information by fusing features at different levels. Subsequently, Sun et al. [24]
proposed a deep affinity network for estimating the embedding of targets and predicting
inter-target affinity. These trackers perform well in crowded scenes and are robust to scale
transformation of targets. However, trackers that rely only on appearance features often
suffer from errors such as bounding box drift in scenarios with similar target interference.

There are frequently a large number of similar targets in real tracking scenarios.
Therefore, most recent two-stage methods combine the motion and appearance features
of targets for robust tracking. Wojke et al. [25] predicted the location of targets at the
next moment by a Kalman filter [26] and designed a deep CNN to extract the identity
embedding of targets. To alleviate the misleading data association by noisy detections
and redundant trajectories, Chen et al. [27] proposed a scoring mechanism to remove
unreliable detections and candidate trajectories. Zhou et al. [28] used CNN to model the
motion patterns and inter-target interactions of targets. Subsequently, Shan et al. [29] and
Girbau et al. [30] predicted the motion state of targets based on a graph neural network
and recurrent neural network, respectively. Li et al. [31] designed an auto-tuning Kalman
filter to predict the location accurately and evaluate the inter-target similarity by a recurrent
neural network.

Two-stage trackers achieve high tracking accuracy and are robust to various challenges
under complex scenarios. However, these methods have high network complexity and high
computational overhead. Since two deep networks are inferred successively, the two-stage
approaches have a slow tracking speed, which makes it difficult to satisfy the needs of
real applications. Therefore, the one-shot trackers with smaller computational efforts have
attracted more research attention in recent years.

2.3. One-Shot Trackers

To make the MOT technique better suited for practical applications, one-shot trackers
predict the location and identity embedding of targets in a unified network. By sharing
features between the two tasks, one-shot trackers avoid a lot of repeated calculations and
thus effectively improve the tracking speed.

Voigtlaender et al. [32] integrated a parallel ReID head in Mask R-CNN [8] and pro-
posed TrackR-CNN. This ReID branch predicted the identity embedding of each candidate
region through the fully connected layer. Wang et al. [33] incorporated a ReID head in
YOLOv3 [34] and proposed a joint detection and embedding model (JDE). The proposed
JDE treated network training as a multi-task learning problem and applied an automatic
balance loss [35] to balance the importance of classification, regression, and ReID within
the network. JDE is the first real-time MOT tracker. However, compared with the previous
two-stage methods, the tracking accuracy of JDE does not show a significant advantage.
Zhang et al. [36] designed an anchor-free network , which reduced the risk of overfit-
ting by learning the low-dimensional identity embedding. Meng et al. [37] presented a
spatio-temporal attention for updating the weights of identity embedding at each moment.
Liu et al. [38] designed a deformable convolution-based region transformation module to
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reduce the focus on irrelevant regions in the ReID branch. Yan et al. [39] employed FPN to
aggregate multi-level features to enrich the information of targets.

Although previous one-shot trackers have achieved remarkable performance, we
argue current one-shot trackers still have shortcomings. Firstly, most existing one-shot
methods directly integrate a parallel ReID head in an off-the-shelf detection network.
However, these approaches ignore the essential difference between detection and ReID.
Specifically, object detection aims to find common information among targets of the same
category, while ReID focuses on finding the differences among individual targets. This
contradiction makes it difficult for the extracted features to satisfy the demands of both
tasks, thus making the network hard to optimize. In addition, these trackers mainly focus
on tracking regular-size targets. However, UAV videos include a large number of small
targets. Therefore, most existing one-shot trackers struggle to accurately locate multi-size
targets in UAV videos, resulting in a large number of lost targets. To robustly track multiple
targets in UAV videos, this paper proposes the FDN and the PTE. Specifically, the FDN
converts the shared features into task-specific representations.The PTE further enhances
the effectiveness of detection-specific features, thus enabling our tracker to locate targets of
different sizes more accurately.

3. Methodology

Our one-shot tracker, namely the FPUAV, mainly consists of two components, i.e., the
feature decoupling network designed in Section 3.2 and the pyramid transformer encoder
described in Section 3.3. Before describing these two crucial modules in detail, we first
introduce the overall framework of the FPUAV in Section 3.1. Finally, we describe the
inference and training details of the FPUAV in Sections 3.4 and 3.5, respectively.

3.1. Overall Framework

We follow the principle of a one-shot MOT, i.e., locating the targets and predicting
their identity embedding in a unified network. The overall framework of the FPUAV is
shown in Figure 2. Firstly, we transform the input image into a feature map through the
backbone network. Then, unlike previous methods that directly feed the resulting feature
map into the prediction head, we propose a feature decoupling network (FDN) to convert
the obtained feature map into two task-specific representations. Subsequently, we design a
pyramid transformer encoder (PTE) to generate fine-grained detection-specific features to
localize targets under complex scenes accurately. Finally, based on the identity embedding
predicted by the ReID head, the FPUAV associates the detections of different frames as
complete tracklets.

Backbone

Input

Feature selection
Prediction

DetectionsDe

...

PTE

Embedding

Detection head

ReID head

Affinity 
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Figure 2. The architecture diagram of the FPUAV.
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3.2. Feature Decoupling Network

The proposed FDN aims to decouple the shared features into two task-specific repre-
sentations. The FDN utilizes self-attention to enhance the feature representations of each
task and exchanges semantic information of different tasks by cross-attention. The network
structure of the FDN is shown in Figure 3.
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avgpool
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Figure 3. The architecture of the FDN. Given the original shared feature map F, the FDN decouples F
into two task-specific representations Fd and Fr.

Given the shared feature F ∈ RC×H×W , we first capture the statistical information
F′ ∈ RC×H′×W ′ through an average pooling layer. Then, we pass F′ through two parallel
1× 1 convolution layers and reshape the resulting tensors into M1, M2 ∈ RC×N′ , where
N′ = H′ ×W ′. We multiply M1 with its corresponding transpose matrix. Meanwhile,
we perform the same operation for M2. Then, we compute the self-relation weight maps
WT1 , WT2 ∈ RC×C for each branch through the row softmax as follows:

W ij
Tk

=
exp(mi

k ·m
j
k)

C
∑

j=1
exp(mi

k ·m
j
k)

, k ∈ {1, 2} (1)

where · denotes dot product and mi
k and mj

k indicate the i-th and j-th rows of M1 or M2,

respectively. W ij
Tk

denotes the element of WTk in the location (i, j), which represents the
relationship between the i-th and j-th channels in the tensor. Then, we perform matrix
multiplication on Mk and WTk to obtain S1, S2 ∈ RC×N′ . Afterward, we seek to learn the
relationship between the two tasks. To achieve this, we multiply S1 with the transpose of
S2, while multiplying S2 with the transpose of S1 in the other branch. Then, we compute
the cross-relation weight maps WS1 , WS2 ∈ RC×C through the row softmax as follows:

W ij
Sk

=
exp(si

k · s
j
h)

C
∑

j=1
exp(si

k · s
j
h)

, (k, h) ∈ {(1, 2), (2, 1)} (2)

where si
k and sj

h represent the i-th and j-th channel of S1 or S2, respectively. W ij
Sk

denotes
the element of WSk in the location (i, j), which expresses the effect of the i-th channel of
Sk on the j-th channel of Sh. We pass the input feature map F through two parallel 1× 1
convolution layers and reshape them to RC×N , where N = H ×W. The resulting feature
maps are multiplied by WS1 and WS2 , respectively. Then, we recover the dimensionality
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of the resulting tensors to obtain F1, F2 ∈ RC×H×W . Finally, we fuse F1 and F2 with the
original feature F as follows:

Fd = λd × F1 + (1− λd)× F (3)

Fr = λr × F2 + (1− λr)× F (4)

where Fd and Fr are the obtained detection-specific and ReID-specific representations,
respectively. λd and λr are trainable parameters.

After receiving the task-specific independent features, the FPUAV predicts the embed-
ding of targets based on Fr. Meanwhile, Fd is fed into the pyramid transformer encoder to
learn fine-grained representations, allowing the tracker to predict the targets accurately.

3.3. Pyramid Transformer Encoder

In this section, we present the proposed PTE, which is shown in Figure 4. The PTE
takes the detection-specific representation Fd obtained by the FDN as input. We first reshape
Fd to Q ∈ RC×N . Meanwhile, we design a pyramid aggregation module (PAM) to obtain
K, V ∈ RC×N with rich scale information.

Add & Norm

FFN

Pyramid 
aggregation

Multi-Head 
Attention

d
F

Add & Norm

d
T

q
1/2/3

k
1/2/3

v

Figure 4. The pyramid transformer encoder.

As shown in Figure 5, PAM captures richer multi-scale information by making full use
of both high-level and low-level information. PAM combines different convolutions and
dilated convolutions (DConv) in three parallel branches to capture multi-scale features and
aggregate features through a residual connection. Specifically, each branch consists of a
convolution layer and a DConv layer, which can be expressed as follows:

M1 = Conv1
3×3(Conv1×1(Fd)) (5)

M2 = Conv2
3×3(Conv3×3(Fd)) (6)

M3 = Conv3
3×3(Conv5×5(Fd)) (7)

where M1, M2, and M3 denote the output features of the three branches. Convi
3×3 is the

3× 3 DConv with dilation rate i. DConv can expand the receptive field of the feature while
maintaining the resolution, as shown in Figure 6. Then, we obtain the fused feature through
a residual connection as follows:

Fs = Conv1×1(Fd) + M1 ×M2 ×M3 (8)
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d
F

Dilation rate=1

Conv1×1

Conv3×3

Conv5×5

Conv1×1

Dilation rate=2

Dilation rate=3

s
F

Figure 5. Illustration of the pyramid aggregation module.

Dilation rate=1 Dilation rate=2 Dilation rate=3

Figure 6. Illustration of the DConv layers.

All convolutions in PAM are followed by batch normalization (BN) and a ReLU
activation function. Then, Fs is reshaped to K, V ∈ RC×N . Next, the PTE calculates the
attention map as follows:

O = Softmax(
QKT
√

dk
)V (9)

where dk is the dimension of K. In this way, the PTE effectively captures the visual
dependence of the feature map from spatial information. Subsequently, we capture the
dependence information between multi-scale receptive field regions. The enhanced features
Tpte ∈ RC×N can be obtained as follows:

Tpte = MultiHead(Q, K, V)

= Norm(Concat(O1, O2, . . . , On)Wo + Q)
(10)

where Norm(·) denotes layer normalization, and Wo is a trainable weight matrix. We
recover the dimensionality of Tpte to obtain T ∈ RC×H×W and pass T through a feed-
forward network (FFN) represented by 3× 3 Conv-BN-ReLU. Finally, we obtain the fine-
grained feature Td ∈ RC×H×W through a residual connection and layer normalization.

By using the PTE, our tracker suppresses irrelevant information in the feature map,
thus enabling the network to focus on multi-scale targets. The FPUAV accurately locates
targets based on the fine-grained features Td obtained by the PTE.

3.4. Online Tracking

In this section, we describe our online inference in detail. We first design a network
similar to YOLOv5 for predicting the location and identity embedding of targets. Notably,
the network contains the proposed FDN and PTE. After obtaining the position and em-
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bedding of targets, we perform data association to associate targets at different frames. As
shown in Figure 7, we employ the same cascade matching strategy as the representative
one-shot tracker JDE [33]. Specifically, we first compute the affinity in identity embedding
among the detections and existing tracklets by cosine distance. Then, we utilize the Kalman
filter to provide positional constraints to reduce the ambiguity caused by multiple similar
targets. Subsequently, we obtain the matching results of detections and tracklets through
the Hungarian algorithm. In the second stage, unmatched tracklets and unmatched detec-
tions are second matched by the IOU and Hungarian algorithm. Afterward, we integrate
the matching results of the two stages. We update the identity embedding of successfully
matched tracklets to cope with the variations in appearance as follows:

at
i = εat−1

i + (1− ε)et
i (11)

where et
i is the embedding of the detected target, and i is the ID index. Here, at

i and
at−1

i denote the identity embedding of tracklets; ε is a hyperparameter and is set to 0.9
in our experiments. The unmatched detections are initialized as new tracklets and their
embedding would be used as the initial embedding of the new tracklets. The unmatched
tracklets would be set to inactive status. Tracklets that are inactive for 30 consecutive
frames would be removed from candidate tracklets. Subsequently, matched tracklets, new
tracklets, and inactive tracklets are used together as candidate tracklets for future moments.

Detections and 
embeddings

Previous
tracklets

Embedding 
matching

IOU
matching

Tracklet
inactive

Unmatched
Tracklets and 

detection

Kalman Filter

Matched
Tracklets

Tracklet
init

Tracklet
update

Matched Tracklets

Output

Inactive 
Tracklets

Deleted 
Tracklets

Figure 7. The details of our data association process.

3.5. Optimization Objectives

In this section, we introduce the optimization objectives of the FPUAV. Since the FPUAV
contains multiple subtasks, we apply multiple training losses to optimize our network.

For the detection branch, we utilize binary cross-entropy as the classification loss Lcls
and employ GIOU loss as the regression loss Lreg as follows:

Lreg = 1− IOU +
ρ2(b, bgt)

c2 + αv (12)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)2 (13)

α =
v

(1− IOU) + v
(14)

where b and bgt are the centers of the predicted bounding box (PBbox) and ground truth
bounding box (GBbox), ρ(·) denotes the Euclidean distance, c is the diagonal length of
the smallest outer rectangle of the PBbox and GBbox, and w, h, wgt, and hgt represent the
width and height of PBbox and GBbox, respectively. Then, the loss function of the detection
branch can be described as:

Ldet = Lcls + βLreg (15)
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where β is a hyperparameter, which is set to 0.05 in our experiments. For the ReID
branch, we first transform the predicted identity embedding into a class distribution vector
p = {pi}K

i=1. K is the total number of targets. We express the one-hot representation of the
ReID task as q =

{
qj
}K

j=1. The ReID loss Lid can be formulated as:

Lid = −
K

∑
j=1

K

∑
i=1

qjlog(pi) (16)

Finally, we join Ldet and Lid to optimize our network. The overall loss function can be
described as:

Ltotal =
1
2
(

1
ew1

Ldet +
1

ew2
Lid + w1 + w2) (17)

where w1 and w2 are trainable parameters used to balance the importance of tasks within
the network dynamically.

4. Experiments

To demonstrate the superiority of the FPUAV, we compare the FPUAV with other
state-of-the-art (SOTA) trackers in Section 4.4. Then, we visualize the qualitative results of
the FPUAV in Section 4.5. Finally, we construct ablation experiments in Section 4.6 to verify
the effectiveness of the FDN and the PTE.

4.1. Dataset

We train and evaluate the FPUAV on VisDrone2021 [40] and UAVDT [41] benchmarks.
VisDrone2021 and UAVDT are challenging large-scale datasets captured by drones. Vis-
Drone2021 contains 56 training videos, 7 validation videos, and 33 test videos. These
videos include various scenes from sports fields, neighborhoods, city roads, highways, and
suburbs. UAVDT consists of 100 videos containing a total of 80k images. These videos are
mainly shot in squares, highways, intersections, etc.

VisDrone2021 and UAVDT have numerous issues arising from UAVs flying under
complex scenarios. Compared to other MOT benchmarks [42–44], VisDrone2021 and
UAVDT have a significantly higher percentage of small targets. an extensive number of
targets in the UAV video occupy less than 32 × 32 pixels, as shown in Figure 8a. Due to
the bidirectional motion of the UAV and targets, the videos have extensive motion blur,
as shown in Figure 8b. In addition, VisDrone2021 and UAVDT contain heavily crowded
scenes with occlusions, as shown in Figure 8c,d. Each of these challenges may lead to
undesirable tracking failures.

4.2. Evaluation Metrics

To comprehensively compare the FPUAV with other SOTA methods, we apply multiple
metrics [45–47] to measure the tracking performance of our tracker. Multiple object tracking
accuracy (MOTA↑) is considered the most important metric. MOTA takes various errors in
the tracking process into account and is defined as follows:

MOTA = 1− FN + FP + IDS
GT

(18)

where FN↓, FP↓, and IDS↓ indicate false negatives, false positives, and ID switches, re-
spectively. GT is the total number of ground truth bounding boxes. Identification F1 score
(IDF1↑) is a critical metric for tracking robustness and is defined as follows:

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
(19)
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where IDTP↑, IDFP↓, and IDFN↓ indicate ID true positives, ID false positives and ID false
negatives, respectively. Different from MOTA, IDF1 focuses on the correctness of the ID of
each trajectory, as shown in Figure 9.

(a) (b)

(c) (d)

Figure 8. Hard cases of tracking in UAV videos: (a) small targets; (b) motion blur; (c) crowded
scenarios; (d) occlusion.

Ground truth 

Tracklet 1 

Tracklet 2

MOTA=70%, IDF1=30%

MOTA=70%, IDF1=80%

Figure 9. The importance of joint MOTA and IDF1. Different colors indicate different IDs. The MOTA
is the same for both tracklets, but tracklet 2 with a higher IDF1 is obviously the superior result.

Multiple object tracking precision (MOTP↑) mainly considers the overlap degree
of the tracking and ground truth boxes. Mostly tracked targets (MT↑) indicates targets
with more than 80% of their ground truth boxes successfully tracked. Mostly lost targets
(ML↓) indicates targets with less than 20% of their ground truth boxes successfully tracked.
Fragmentation (Frag↓) represents the number of interruptions for all tracklets. In addition,
we utilize overall parameters (Params↓), calculations (number of multi-adds↓), and frames
per second (FPS↑) to evaluate the efficiency of our tracker. In the above metrics, ↑means
the higher score is better, while ↓ is the opposite.

4.3. Implementation Details

To further improve the robustness of the FPUAV under complex scenarios, we employ
various data augmentations, such as photometric distortions, color jittering, cropping, and
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random scale. We use the YOLOv5L backbone pre-trained on COCO [48] as the feature
extraction network. We train the FPUAV for 30 epochs on training sets of VisDrone2021
and UAVDT using the standard SGD optimizer. The batch size is set to 10. The initial
learning rate is set to 5× 10−4 and decays to 5× 10−5 at the 20th epoch. The resolution of
each input image is resized to 1088× 608. Our code is implemented using Python 3.7 and
PyTorch 1.7. We train the network on 2 NVIDIA GTX1080Ti GPUs and evaluate the FPUAV
on a single GPU.

4.4. Comparison with Preceding SOTAs

We compare the FPUAV with preceding state-of-the-art trackers on VisDrone2021 and
UAVDT benchmarks. The experimental results are reported in Tables 1 and 2, with the
best and the second-best marked. The experimental results show that the FPUAV achieves
state-of-the-art tracking performance.

Table 1. Comparison with state-of-the-art methods on VisDrone2021.

Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ IDS↓ Frag↓
MOTDT [27] −0.8 21.6 68.5 87 1196 1437 3609

SORT [25] 14.0 38.0 73.2 506 545 3629 4838
IOUT [49] 28.1 38.9 74.7 467 670 2393 3829
GOG [50] 28.7 36.4 76.1 346 836 1387 2237
DAN [51] 28.9 37.7 74.8 535 602 1952 5634
JDE [33] 26.6 34.9 74.1 516 751 3200 3176

FairMOT [36] 30.8 41.9 74.3 577 697 3007 2996
MOTR [52] 22.8 41.4 72.8 272 825 959 3980

TrackFormer [53] 25.0 30.5 73.9 385 770 4840 4855
FPUAV 34.3 45.0 74.2 585 688 2138 2577

Table 2. Comparison with state-of-the-art methods on UAVDT.

Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ IDS↓ Frag↓
CEM [54] −6.8 10.1 70.4 94 1062 1530 2835

SMOT [55] 33.9 45.0 72.2 524 367 1752 9577
GOG [50] 35.7 0.3 72 627 374 3104 5130
IOUT [49] 36.6 23.7 72.1 534 357 9938 10463

CMOT [56] 36.9 57.5 74.7 664 351 1111 3656
SORT [25] 39.0 43.7 74.3 484 400 2350 5787

DSORT [57] 40.7 58.2 73.2 595 358 2061 6432
DAN [51] 41.6 29.7 72.5 648 367 12902 13610
JDE [33] 39.5 55.3 73.6 624 442 3124 8536

FairMOT [36] 44.9 60.9 73.8 672 365 2279 7163
MDP [58] 43.0 61.5 73.5 647 324 541 4299
FPUAV 48.6 66.2 73.7 692 349 1999 5387

As shown in Table 1, the FPUAV achieves the highest scores on MOTA, IDF1, and
MT. The FPUAV obtains 34.3% on MOTA and 45.0% on IDF1. It outperforms the recently
proposed two-stage tracker DAN [51] by 5.4% (34.3–28.9%) and 7.3% (45.0–37.7%), respec-
tively. The FPUAV surpasses the representative one-shot tracker FairMOT [36] by 3.5%
(34.3–30.8%) on MOTA and 3.1% (45.0–41.9%) on IDF1. Compared to TrackFormer [53],
which also uses transformer, our tracker outperforms it by 9.3% (34.3–25.0%) on MOTA and
14.5% (45.0–30.5%) on IDF1. Meanwhile, the FPUAV surpasses other comparison trackers
on MT, indicating the high integrity of our output trajectories. In addition, the FPUAV
achieves second place on Frag, showing that the FPUAV is not prone to lose targets.

To further measure our tracker, we evaluate the FPUAV on UAVDT. On the UAVDT
benchmark, the FPUAV obtains 48.6% on MOTA and 66.2% on IDF1. the FPUAV exceeds
DAN [51] by 7.9% (48.6–41.6%) on MOTA and 36.5% (66.2–29.7%) on IDF1. DSORT [57]
extracts the identity embedding of targets through a deep network. However, the FPUAV
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still surpasses DSORT by 8.0% (66.2–58.2%) on IDF1. This is the advantage that the
proposed FDN provides by learning ReID-specific representations. Meanwhile, the FPUAV
outperforms recently released one-shot tracker FairMOT [36] by 3.7% (48.6–44.9%) on
MOTA and 5.3% (66.2–60.9%) on IDF1. Furthermore, the FPUAV achieves first and second
place on MT and ML, respectively.

The superiority of the FPUAV on MOTA and MT mainly comes from the proposed
FDN and PTE. Specifically, the FDN enables our tracker to learn detection-specific represen-
tations, while the PTE further enhances the effectiveness of the detection-specific features.
The synergy of the FDN and the PTE improves the accuracy of the FPUAV in locating
targets, thus reducing failure cases such as false positives and false negatives. The lead of
the FPUAV on IDF1 benefits from the FDN, which enables our tracker to learn ReID-specific
representations to predict more discriminative identity embedding.

To verify the efficiency of the proposed network, we test the number of parameters
and computations and the tracking speed of the FPUAV on Visdrone2021. Moreover,
we measure the efficiency of two-stage trackers DSORT and DAN and one-shot trackers
JDE and FairMOT. The comparison results are reported in Table 3. Since two deep net-
works are inferred successively, the computational overhead of DSORT and DAN is much
higher than that of one-shot trackers. Likewise, the tracking speed of DSORT and DAN
is difficult to satisfy the needs of practical applications. By making detection and ReID
share features, one-shot trackers have considerable computational overhead and tracking
speed. Compared to FairMOT and JDE, there is a slight increase in the calculations of
the FPUAV. Although the tracking speed of our tracker decreases slightly, the speed of
17.6 FPS is still competitive. In summary, the FPUAV is an accurate and efficient tracker for
real applications.

Table 3. Comparison with state-of-the-art methods on UAVDT.

Method Params (×106)↓ Multi-Adds (×109)↓ FPS ↑

DSORT [57] 96.2 153.2 5.3
DAN [51] 103.9 164.7 4.9
JDE [33] 67.2 67.7 17.8

FairMOT [36] 19.8 72.7 18.0
FPUAV 69.3 73.6 17.6

4.5. Visualization

In this section, we visualize the tracking results of the FPUAV and analyze the qualita-
tive results. We present some tracking results for the FPUAV and representative one-shot
trackers JDE [33] and FairMOT [36] in Figure 10. As shown in Figure 10a, both JDE and
FairMOT miss many targets in a scene with poor lighting conditions and a cluttered back-
ground. In this challenging scenario, the FPUAV successfully tracks multiple targets that
are lost by JDE and FairMOT. There are a large number of extremely small targets that are
difficult to locate in Figure 10c,d. In these videos, JDE has difficulty tracking most targets.
Although FairMOT outperforms JDE, it still loses many distant targets. In these challenging
scenarios, the FPUAV locates most small targets successfully. The tracking robustness for
multi-scale targets benefits from the the FDN and the PTE. Specifically, the the FDN enables
the network to learn representations suitable for efficient detection. The PTE enhances the
robustness of the FPUAV for targets of different sizes by capturing fine-grained features.
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Figure 10. Qualitative analysis of the FPUAV compared with JDE and FairMOT. Red arrows mark
missing targets, and red boxes are areas where many targets are lost.

To illustrate that the FDN enables the FPUAV to predict more discriminative identity
embedding, we visualize the embedding predicted by the FPUAV and JDE in Figure 11.
Figure 11a shows the detections. The identity embeddings of the detections and existing
tracklets are shown in Figure 11b,c. Figure 11d shows the predicted similarity among the
detections. Figure 11e presents the similarity among existing tracklets. Figure 11f shows the
similarity among the detections and the candidate tracklets. These similarities are obtained
by calculating the cosine distances among the feature vectors. In Figure 11d–f, the red
color indicates high similarity, while blue is the opposite. We observe many ambiguous
matches in JDE. The high similarity among different targets misleads the subsequent data
association. Compared to JDE, our tracker suppresses more ambiguous matches, which
indicates that the FPUAV predicts more discriminative embedding.
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Figure 11. Identity embedding visualization for the FPUAV and JDE (a–f).

We visualize some tracking results of the FPUAV on VisDrone2021 and UAVDT bench-
marks in Figures 12 and 13, respectively. These videos include various challenges in real
applications, including crowded scenes, nighttime, viewpoint changes, distance changes,
and multi-size targets. The FPUAV outputs the tracklets accurately under these challeng-
ing conditions. The tracking accuracy and robustness of the FPUAV satisfy the needs of
real applications.

4.6. Ablation Study

In this section, we further verify the superiority of the FDN and the PTE by performing
ablation experiments. For a fair comparison, all experiments are trained on VisDrone2021
training sets and tested on test sets. We consider the FPUAV with the FDN and the PTE
removed as the baseline tracker. The experimental results are summarized in Table 4.

Table 4. Ablation analysis of the FPUAV on VisDrone2021.

Num Baseline FDN PTE MOTA ↑ IDF1 ↑ IDS ↓
¬

√
27.6 39.4 3029


√ √

31.5 43.9 2370
®

√ √
32.4 41.8 2435

¯
√ √ √

34.3 45.0 2138

The FDN aims to improve the ability to locate and identify targets by learning task-
specific representations. When the baseline tracker is equipped with the FDN ( vs. ¬),
MOTA and IDF1 increase by 3.9% (31.5–27.6%) and 4.5% (43.9–39.4%), respectively. Mean-
while, IDS drops from 3029 to 2370. The tracker with the FDN removed (® vs. ¯) has a
1.9% (32.4–34.3%) decrease on MOTA and a 3.2% (41.8–45.0%) decline on IDF1.
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Figure 12. Tracking results of the FPUAV on VisDrone2021.
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Figure 13. Tracking results of the FPUAV on UAVDT.

PTE is designed to capture fine-grained features for accurate localization. The PTE
brings gains of 4.8% (32.4–27.6%) on MOTA and 2.4% (41.8–39.4%) on IDF1 for the baseline
tracker (® vs. ¬). Meanwhile, IDS drops from 3029 to 2435. After removing the PTE from
FPUAV (¯ vs. ), MOTA and IDF1 decrease by 2.8% (31.5–34.3%) and 1.1% (43.9–45.0%).
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When we combine both the FDN and the PTE into the baseline tracker (¯ vs. ¬), FPUAV
outperforms the baseline tracker by 6.7% (34.3–27.6%) on MOTA and 5.6% (45.0–39.4%) on
IDF1. Above extensive ablation experiments demonstrate the effectiveness of the FDN and
the PTE.

5. Conclusions

In this paper, we propose a novel FPUAV network for multiple object tracking in
UAV videos. We observe that the optimization contradiction between detection and ReID
limits the tracking performance of one-shot trackers. Therefore, we propose a feature
decoupling network (FDN) to convert the original features into detection-specific and
ReID-specific representations. The FDN effectively alleviates the conflict of multiple tasks
within the network. In addition, existing one-shot trackers struggle to locate small targets
in UAV videos accurately. Therefore, we propose a pyramid transformer encoder (PTE)
to enrich the semantic information of detection-specific features. By learning scale-aware
fine-grained features, the PTE enables the FPUAV to locate targets in UAV videos accurately.
Extensive experiments on VisDrone2021 and UAVDT demonstrate that the FPUAV achieves
state-of-the-art performance. In addition, we believe that the proposed FDN and PTE can
be easily integrated into other one-shot trackers.
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