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Abstract: We introduce a task that we call partial decoupling, in which a bipartite
quantum state is transformed by a unitary operation on one of the two subsystems
and then is subject to the action of a quantum channel. We assume that the subsystem
is decomposed into a direct-sum-product form, which often appears in the context of
quantum information theory. The unitary is chosen at random from the set of unitaries
having a simple form under the decomposition. The goal of the task is to make the final
state, for typical choices of the unitary, close to the averaged final state over the unitaries.
We consider a one-shot scenario, and derive upper and lower bounds on the average
distance between the two states. The bounds are represented simply in terms of smooth
conditional entropies of quantum states involving the initial state, the channel and the
decomposition. Therebywe provide generalizations of the one-shot decoupling theorem.
The obtained result would lead to further development of the decoupling approaches in
quantum information theory and fundamental physics.

1. Introduction

Decoupling refers to the fact that we may destroy correlation between two quantum
systems by applying an operation on one of the two subsystems. It has played signifi-
cant roles in the development of quantum Shannon theory for a decade, particularly in
proving the quantum capacity theorem [1], unifying various quantum coding theorems
[2], analyzing a multipartite quantum communication task [3,4] and in quantifying cor-
relations in quantum states [5,6]. It has also been applied to various fields of physics,
such as the black hole information paradox [7], quantum many-body systems [8] and
quantum thermodynamics [9,10]. Dupuis et al. [11] provided one of the most general
formulations of decoupling, which is often referred to as the decoupling theorem. The
decoupling approach simplifies many problems of our interest, mostly due to the fact
that any purification of a mixed quantum state is convertible to another reversibly [12].
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All the above studies rely on the notion of random unitary, i.e., unitaries drawn
at random from the set of all unitaries acting on the system, which leads to the full
randomization over the whole Hilbert space. In various situations, however, the full
randomization is a too strong demand. In the context of communication theory, for
example, the full randomization leads to reliable transmission of quantum information,
while we may be interested in sending classical information at the same time [13], for
which the full randomization is more than necessary. In the context of quantum many-
body physics, the random process caused by the complexity of dynamics is in general
restricted by symmetry, and thus no randomization occurs among different values of
conserved quantities. Hence, in order that the random-unitary-based method fits into
broader context in quantum information theory and fundamental physics, it would be
desirable to generalize the previous studies using the full-random unitary, to those based
on random unitaries that are not fully random but with a proper structure.

As the first step toward this goal, we consider a scenario in which the unitaries take a
simple form under the following direct-sum-product (DSP) decomposition of the Hilbert
space:

H =
J⊕

j=1

Hl
j ⊗ Hr

j . (1)

Here, the superscripts l and r stand for “left” and “right”, respectively, and j is the index
of the diagonal subspaces. This decomposition often appears in the context of quantum
information theory, such as information-preserving structure [14,15], the Koashi-Imoto
decomposition [16], data compression of quantum mixed-state source [17], quantum
Markov chains [18,19] and simultaneous transmission of classical and quantum infor-
mation [13]. Also, quantum systemswith symmetry are represented by theHilbert spaces
decomposed into this form (see e.g. [20]), in which case j is the label of irreducible
representations of a compact group G, Hl

j is the representation space and Hr
j is the

multiplicity space for each j .
In this paper, we introduce and analyze a task that we call partial decoupling. We

consider a scenario in which a bipartite quantum state � on system AR is subject to
a unitary operation U on A, followed by the action of a quantum channel (CP map)
T : A → E . The unitary is assumed to be chosen at random, not from the set of all
unitaries on A, but from the subset of unitaries that take a simple form under the DSP
decomposition. Thus, partial decoupling is a generalization of the decoupling theorem
[11] that incorporates the DSP decomposition. Along the similar line as [11], we analyze
how close the final state T A→E (U A� ARU †A) is, on average over the unitaries, to the
averaged final state EU [T A→E (U A(� AR)U †A)].

The main result in this paper is that we derive upper and lower bounds on the average
distance between the final state and the averaged one. The bounds are represented in
terms of the smooth conditional entropies of quantum states involving the initial state,
the channel and the decomposition. For a particular case where J = 1 and dimHAl

j = 1,
the obtained formulae are equivalent to those given by the decoupling theorem [11].

The result in this paper is applicable for generalizing any problems within the scope
of the decoupling theorem by incorporating the DSP structure. Some of the applications
are investigated in our papers [21–24].

In Refs. [21–23], we investigate communication tasks between two parties in which
the information to be transmitted has both classical and quantum components. In this
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case, the Hilbert space Hl
j in (1) is assumed to be a one-dimensional space C, and Hl

j
to be the spaces with the same dimension for all j :

H =
J⊕

j=1

Hr
j , dimHr

j = dimHr
j ′ (∀ j, j ′). (2)

Here, j ∈ [1, J ] and Hr
j correspond to the degrees of freedom related to classical and

quantum components of the information to be transmitted, respectively. We investi-
gate the tasks of channel coding in [21,22] and source coding in [23] in the one-shot
regime. Based on the result in this paper, we obtain general trade-off relations among
the resources of classical communication, quantum communication and entanglement
for those tasks.

In Ref. [24], we apply the result of partial decoupling to investigate the information
paradox of quantum black holes with symmetry. Our analysis is based on the framework
of Hayden–Preskill model [7], where a decoupling technique is used under the postulate
that the internal dynamics of the system is given by a fully random unitary. This postulate
should be modified when the system has symmetry since the dynamics cannot be fully
randomdue to a conserved quantity. By letting j be the labeling of the conserved quantity,
the internal dynamics randomizes only the multiplicity spaces {Hr

j } and should be in
the form of

U =
J⊕

j=1

I l
j ⊗ Ur

j , (3)

where I l
j is the identity onHl

j andUr
j is a random unitary onHr

j . Hence, this case is also
in the scope of partial decoupling with a DSP decomposition given by the symmetry.
Similarly, all physical phenomena investigated based on decoupling [7–11] can be lifted
up by partial decoupling to the situation with symmetry. We think that further significant
implications on various topics will be obtained beyond these examples.

This paper is organized as follows. In Sect. 2, we introduce notations and definitions.
In Sect. 3, we present formulations of the problem and the main results. Before we
prove our main results, we provide discussions about implementations of our protocols
by quantum circuits in Sect. 4. Section 5 describes the structure of the proofs of the
main results, and provides lemmas that will be used in the proofs. The detailed proofs
of the main theorems are provided in Sects. 6–8. Conclusions are given in Sect. 9. Some
technical lemmas and proofs are provided in Appendices.

2. Preliminaries

We summarize notations and definitions that will be used throughout this paper. See also
Appendix H for the list of notations.

2.1. Notations. We denote the set of linear operators and that of Hermitian operators on
aHilbert spaceH byL(H) andHer(H), respectively. For positive semidefinite operators,
density operators and sub-normalized density operators, we use the following notations,
respectively:

P(H) = {ρ ∈ Her(H) : ρ ≥ 0}, (4)
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S=(H) = {ρ ∈ P(H) : Tr[ρ] = 1}, (5)

S≤(H) = {ρ ∈ P(H) : Tr[ρ] ≤ 1}. (6)

AHilbert space associatedwith a quantum system A is denoted byHA , and its dimension
is denoted by dA. A system composed of two subsystems A and B is denoted by AB.
When M and N are linear operators on HA and HB , respectively, we denote M ⊗ N
as M A ⊗ N B for clarity. In the case of pure states, we often abbreviate |ψ〉A ⊗ |φ〉B as
|ψ〉A|φ〉B . For ρAB ∈ L(HAB), ρA represents TrB[ρAB]. We denote |ψ〉〈ψ | simply by
ψ . The maximally entangled state between A and A′, where HA ∼= HA′

, is denoted by
|�〉AA′

or�AA′
. The identity operator is denoted by I . We denote (M A ⊗ I B)|ψ〉AB as

M A|ψ〉AB , and (M A ⊗ I B)ρAB(M A ⊗ I B)† as M AρAB M A†.
When E is a supermap fromL(HA) toL(HB), we denote it by E A→B . When A = B,

we use E A for short. We also denote (E A→B ⊗ idC )(ρAC ) by E A→B(ρAC ). The set of
linear completely-positive (CP) supermaps from A to B is denoted by CP(A → B),
and the subset of trace non-increasing (resp. trace preserving) ones by CP≤(A → B)
(resp. CP=(A → B)). When a supermap is given by a conjugation of a unitary U A or
an isometry W A→B , we especially denote it by its calligraphic font such as

U A(X A) := (U A)X A(U A)†, W A→B(X A) := (W A→B)X A(W A→B)†. (7)

Let A be a quantum system such that the associated Hilbert spaceHA is decomposed
into the DSP form as

HA =
J⊕

j=1

HAl
j ⊗ HAr

j . (8)

For the dimension of each subspace, we introduce the following notation:

l j := dimHAl
j , r j := dimHAr

j . (9)

We denote by�A
j the projection onto a subspaceHAl

j ⊗HAr
j ⊆ HA for each j . For any

quantum system R and any X ∈ L(HA ⊗ HR), we introduce a notation

X AR
jk := �A

j X AR�A
k , (10)

which leads to X AR =∑J
j,k=1 X AR

jk .

2.2. Norms and distances. For a linear operator X , the trace norm is defined as
||X ||1 = Tr[√X†X ], and the Hilbert-Schmidt norm as ||X ||2 = √

Tr[X†X ]. The trace
distance between two unnormalized states ρ, ρ′ ∈ P(H) is defined by ‖ρ − ρ′‖1. For
subnormalized states ρ, ρ′ ∈ S≤(H), the generalized fidelity and the purified distance
are defined by

F̄(ρ, ρ′) := ‖√ρ√ρ′‖1 +
√
(1 − Tr[ρ])(1 − Tr[ρ′]), P(ρ, ρ′) :=

√
1 − F̄(ρ, ρ′)2,

(11)

respectively [25]. The epsilon ball of a subnormalized state ρ ∈ S≤(H) is defined by

Bε(ρ) := {ρ′ ∈ S≤(H)| P(ρ, ρ′) ≤ ε}. (12)
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For a linear superoperator E A→B , we define the DSP norm by

‖E A→B‖DSP := sup
C, ξ

‖E A→B(ξ AC )‖1, (13)

where the supremum is taken over all finite dimensional quantum systems C and all
subnormalized states ξ ∈ S≤(HAC ) such that the reduced state on A is decomposed in
the form of

ξ A =
J⊕

j=1

q j

Al
j ⊗ π

Ar
j . (14)

Here, {q j }J
j=1 is a probability distribution, {
 j }J

j=1 is a set of subnormalized states on

HAl
j and π Ar

j is the maximally mixed state on HAr
j . The epsilon ball of linear CP maps

with respect to the DSP norm is defined by

BεDSP(E) := {E ′ ∈ CP≤(A → B) | ‖E ′ − E‖DSP ≤ ε}. (15)

For quantum systems V , W , a linear operator X ∈ L(HV W ) and a subnormalized
state ς ∈ S≤(HW ), we introduce the following notation:

||X V W ||2,ςW := ||(ςW )−1/4X V W (ςW )−1/4||2. (16)

This includes the case where V is a trivial (one-dimensional) system, in which case
X V W = X W . We omit the superscript W for ς when there is no fear of confusion.

2.3. One-shot entropies. For any subnormalized state ρ ∈ S≤(HAB) and normalized
state ς ∈ S=(HB), define

Hmin(A|B)ρ|ς := sup{λ ∈ R|2−λ I A ⊗ ς B ≥ ρAB}, (17)

Hmax(A|B)ρ|ς := log ‖
√
ρAB

√
I A ⊗ ς B‖21, (18)

H2(A|B)ρ|ς := − log Tr
[(
(ς B)−1/4ρAB(ς B)−1/4)2]. (19)

The conditional min-, max- and collision entropies (see e.g. [26]) are defined by

Hmin(A|B)ρ := sup
ς B∈S=(HB )

Hmin(A|B)ρ|ς , (20)

Hmax(A|B)ρ := sup
ς B∈S=(HB )

Hmax(A|B)ρ|ς , (21)

H2(A|B)ρ := sup
ς B∈S=(HB )

H2(A|B)ρ|ς , (22)

respectively. The smoothed versions are of the key importance when we are interested
in the one-shot scenario. We particularly use the smooth conditional min- and max-
entropies:

H ε
min(A|B)ρ := sup

ρ̂AB∈Bε (ρ)
Hmin(A|B)ρ̂ , (23)

H ε
max(A|B)ρ := inf

ρ̂AB∈Bε (ρ)
Hmax(A|B)ρ̂ (24)

for ε ≥ 0. Note that Expressions (17)–(22) can be generalized to the case where ρ ∈
P(H).
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2.4. Choi–Jamiołkowski representation. Let T A→B be a linear supermap from L(HA)

to L(HB), and let �AA′
be the maximally entangled state between A and A′. A linear

operator J(T A→B) ∈ L(HAB) defined by J(T A→B) := T A′→B(�AA′
) is called the

Choi–Jamiołkowski representation of T [27,28]. The representation is an isomorphism.
The inverse map is given by, for an operator X AB ∈ L(HAB),

J−1(X AB)(ς A) = dATrA
[
(ς AT ⊗ I B)X AB], (25)

where AT denotes the transposition of A with respect to the Schmidt basis of �AA′
.

When T is completely positive, then J(T A→B) is an unnormalized state on AB and is
called the Choi–Jamiołkowski state of T .

Note that the Choi–Jamiołkowski representation depends on the choice of the max-
imally entangled state �AA′

, i.e., the Schmidt basis thereof. When HA is decomposed
into theDSP form as (8), the isomorphic spaceHA′

is decomposed into the same form. In
the rest of this paper, we fix the maximally entangled state �AA′

, which is decomposed
as

|�〉AA′ =
J⊕

j=1

√
l j r j

dA
|�l

j 〉Al A′
l |�r

j 〉Ar A′
r , (26)

where�l
j and�

r
j are fixed maximally entangled states onHAl

j ⊗HA′
l

j andHAr
j ⊗HA′

r
j ,

respectively.

2.5. Random unitaries. Random unitaries play a crucial role in the analyses of one-
shot decoupling. By using them, it can be shown that there exists at least one unitary
that achieves the desired task. In particular, the Haar measure on the unitary group is
often used. The Haar measure H on the unitary group is the unique unitarily invariant
provability measure, often called uniform distribution of the unitary group. When a
random unitary U is chosen uniformly at random with respect to the Haar measure, it is
referred to as a Haar random unitary and is denoted by U ∼ H.

The most important property of the Haar measure is the left- and right-unitary invari-
ance: for a Haar random unitary U ∼ H and any unitary V , the random unitaries V U
and U V are both distributed uniformly with respect to the Haar measure. This prop-
erty combined with the Schur–Weyl duality enables us to explicitly study the averages
of many functions on the unitary group over the Haar measure. In the following, the
average of a function f (U ) on the unitary group over the Haar measure is denoted by
EU∼H[ f ].

In this paper, however, we are interested in the case where the Hilbert space is
decomposed into the DSP form: HA = ⊕J

j=1H
Al
j ⊗ HAr

j , and mainly consider the

unitaries that act non-trivially only on {HAr
j }J

j=1 such as the untiary in the form of
⊕J

j=1 I Al
j ⊗U Ar

j , whereU Ar
j is a unitary onHAr

j . In this case, we can naturally introduce
a product H× of the Haar measures by

H× = H1 × · · · × HJ , (27)

where H j is the Haar measure on the unitary group onHAr
j for any j . Hence, when we

writeU ∼ H× below, it means thatU is in the form of
⊕J

j=1 I Al
j ⊗U Ar

j andU Ar
j ∼ H j .
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3. Main Results

We consider two scenarios in which a bipartite quantum state � AR is transformed by a
unitary operation on A and then is subject to the action of a quantum channel (linear CP
map) T A→E . The unitary is chosen at uniformly random from the set of unitaries that
take a simple form under the DSP decomposition (1).

In the first scenario, which we call non-randomized partial decoupling, the unitaries
are such that they completely randomize the space HAr

j for each j , while having no

effect on j or the spaceHAl
j . This scenariomay find applicationswhen complex quantum

many-body systems are investigated based on the decoupling approach, in which case
the DSP decomposition is, for instance, induced by the symmetry the system has. In
the second scenario, which we refer to as randomized partial decoupling, we assume
that dimHAl

j = 1 and that dimHAr
j does not depend on j . The unitaries do not only

completely randomize the spaceHAr , but also randomly permute j . This scenario may
fit to the communication problems. For instance, one of the applicationsmay be classical-
quantum hybrid communicational tasks, where the division of the classical and quantum
information leads to the DSP decomposition.

For both scenarios, our concern is how close the final state is, after the action of the
unitary and the quantum channel, to the averaged final state over all unitaries. It should
be noted that the averaged final state is in the form of a block-wise decoupled state in
general. This is in contrast to the decoupling theorem, in which the averaged final state
is a fully decoupled state.

3.1. Non-randomized partial decoupling. Let us consider the situation where U has the
DSP form: U :=⊕J

j=1 I Al
j ⊗U Ar

j . For any state� AR , the averaged state obtained after
the action of the random unitary U ∼ H× is given by

� AR
av := EU∼H×[U A(� AR)U †A] =

J⊕

j=1

�
Al R
j j ⊗ π

Ar
j . (28)

Here, π Ar
j is the maximally mixed state onHAr

j , and � Al R
j j is an unnormalized state on

HAl
j ⊗ HR defined by

�
Al R
j j := TrAr [� AR

j j ] = TrAr [�A
j �

AR�A
j ]. (29)

Our interest is on the average distance between the state T A→E (U A� ARU †A) and the
averaged state T A→E (� AR

av ) over all U ∼ H×.
For expressing the upper bound on the average distance, we introduce a quantum

system A∗ represented by a Hilbert space

HA∗ :=
J⊕

j=1

HAr
j ⊗ H Ār

j , (30)

and a linear operator F AĀ→A∗ : HA ⊗ H Ā → HA∗
defined by

F AĀ→A∗ :=
J⊕

j=1

√
dAl j

r j
〈�l

j |Al Āl (�A
j ⊗� Ā

j ), (31)
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where H Āl
j

∼= HAl
j , H Ār

j
∼= HAr

j and H Ā ∼= HA.
The following is our first main theorem about the upper bound:

Theorem 1. (Main result 1: One-shot non-randomized partial decoupling.) For any
ε, μ ≥ 0, any subnormalized state � AR ∈ S≤(HAR) and any linear CP map T A→E , it
holds that

EU∼H×

[∥∥∥T A→E ◦ U A(� AR)− T A→E (� AR
av )

∥∥∥
1

]

≤ 2− 1
2 H ε,μ

min (A
∗|RE)�(�,T ) + 2(ε‖T ‖DSP + μ + εμ). (32)

Here, H ε,μ
min (A

∗|RE)�(�,T ) is the smooth conditional min-entropy for an unnormalized

state �(�, T ), defined by F(� AR ⊗ τ ĀE )F† with τ AE = J(T A→E ) being the Choi–
Jamiołkowski representation of T A→E . It is explicitly given by

H ε,μ
min (A

∗|RE)�(�,T ) := sup
� ′∈Bε (�)

sup
T ′∈BμDSP(T )

Hmin(A
∗|RE)�(� ′,T ′), (33)

where BμDSP(T ) is the set of μ-neighbourhoods of T , defined by (15).

In the literature of chaotic quantum many-body systems, it is often assumed that the
dynamics is approximated well by a random unitary channel, which is sometimes called
scrambling [7,29,30]. Despite the fact that a number of novel research topics have been
openedbasedon the idea of scrambling, someofwhich are using the decoupling approach
[7,9,10], symmetry of the physical systems has rarely been taken into account properly.
When the system has symmetry, the associated Hilbert space is naturally decomposed
into a DSP form as

HA =
J⊕

j=1

HAl
j ⊗ HAr

j , (34)

where j is the label of irreducible representations of a compact group of the symmetry,
HAl

j is the irreducible representation andHAr
j corresponds to the multiplicity for each j .

Due to the conservation law, the scrambling dynamics in the system should be compatible
with this decomposition and should be in the form of U A = ⊕J

j=1 I Al
j ⊗ U Ar

j . Hence,
Theorem 1 is applicable to the study of complex physics in chaotic quantum many-body
systems with symmetry.

Theorem 1 reduces to a simpler form when the symmetry is abelian. In this case, all
the irreducible representation one-dimensional, i.e., dimHAl

j = 1. The averaged output
state is explicitly calculated to be

T A→E (� AR
av ) =

J⊕

j=1

dA

r j
(TrA[�A

j �
AR])⊗ (Tr Ā[� Ā

j τ
ĀE ]). (35)

The operator F AĀ→A∗
in (31) reduces to a direct sum of operators that are proportional

to projectors, and the operator �(�, T ) ∈ S≤(HA∗ RE ) in Theorem 1 reduces to

�(�, T ) =
J⊕

j, j ′=1

dA√
r j r j ′

(�A
j �

AR�A
j ′)⊗ (� Ā

j τ
ĀE� Ā

j ′). (36)

Theorem 1 implies that, if the smooth conditional min-entropy of the unnormalized state
�(�, T ) is sufficiently large, the final state T A→E ◦U A(� AR) is close to T A→E (� AR

av ).
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3.2. Randomized partial decoupling. Next we assume that

dimHl
j = 1, dimHr

j = r ( j = 1, . . . , J ). (37)

The Hilbert spaceHA = ⊕J
j=1H

Ar
j is then isomorphic to a tensor product Hilbert space

HAc ⊗ HAr , i.e., A ∼= Ac Ar . Here, HAc is a J -dimensional Hilbert space with a fixed
orthonormal basis {| j〉}J

j=1, and HAr is an r -dimensional Hilbert space. We consider a
random unitary U on system A of the form

U :=
J∑

j=1

| j〉〈 j |Ac ⊗ U Ar
j , (38)

which we also denote by U ∼ H×. In addition, let P be the permutation group on
[1, . . . , J ], and P be the uniform distribution on P. We define a unitary Gσ for any
σ ∈ P by

Gσ :=
J∑

j=1

|σ( j)〉〈 j |Ac ⊗ I Ar . (39)

We denote the supermap given by conjugation of Gσ by the calligraphic font as Gσ (·) =
Gσ (·)G†

σ . For the initial state, we use the notion of classically coherent states, defined
as follows:

Definition 2. (classically coherent states [31])Let K1 and K2 bed-dimensional quantum
systems with fixed orthonormal bases {|k1〉}d

k1=1 and {|k2〉}d
k2=1, respectively, and let W

be a quantum system. An unnormalized state � ∈ P(HK1K2W ) is said to be classically
coherent in K1K2 if it satisfies �|k〉K1 |k′〉K2 = 0 for any k �= k′, or equivalently, if � is
in the form of

�K1K2W =
d∑

k,k′=1

|k〉〈k′|K1 ⊗ |k〉〈k′|K2 ⊗ �W
kk′, (40)

where �kk′ ∈ L(HW ) for each k and k′.
We now provide our second main result:

Theorem 3. (Main result 2: One-shot randomized partial decoupling.) Let ε, μ ≥ 0,
R ∼= Rc Rr , �

AR be a subnormalized state that is classically coherent in Ac Rc, and
T A→E be a linear CP map such that the Choi–Jamiołkowski representation τ AE =
J(T A→E ) satisfies Tr[τ ] ≤ 1. It holds that

EU∼H×,σ∼P

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR)− T A→E ◦ GA

σ (�
AR
av )

∥∥∥
1

]

≤ √α(J ) · 2− 1
2 HI + β(Ar ) · 2− 1

2 HII + 4(ε + μ + εμ), (41)

where � AR
av := EU∼H×[U A(� AR)]. The function α(J ) is 0 for J = 1 and 1

J−1 for

J ≥ 2, and β(Ar ) is 0 for dimHAr = 1 and 1 for dimHAr ≥ 2. The exponents HI and
HII are given by

HI = H ε
min(A|R)� − Hμ

max(A|B)C(τ ), HII = H ε
min(A|R)C(�) − Hμ

max(Ar |B Ac)C(τ ).
(42)
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Here, C is the completely dephasing channel on Ac with respect to the basis {| j〉}J
j=1,

and τ AB = J(T A→B) is the Choi–Jamiołkowski representation of the complementary
channel T A→B of T A→E .

Note that, since the subnormalized state � AR is classically coherent in Ac Rc, the aver-
aged state � AR

av is explicitly given by

� AR
av =

J∑

j=1

| j〉〈 j |Ac ⊗ π Ar ⊗�
Rr
j j ⊗ | j〉〈 j |Rc . (43)

Small error for one-shot randomized partial decoupling implies that the third party
having the purifying system of the final state may recover both classical and quantum
parts of correlation in� AR . Thus, it will be applicable, e.g., for analyzing simultaneous
transmission of classical and quantum information in the presence of quantum side
information. In this context, HI in the above expression quantifies how well the total
correlation in � AR can be transmitted by the channel T A→B , whereas HII for only
quantum part thereof (see [21–23]).

3.3. A converse bound. So far, we have presented achievabilities of non-randomized
and randomized partial decoupling. At this point, we do not know whether the obtained
bounds are “sufficiently tight”. To address this question, we prove a converse bound for
partial decoupling. We assume the following two conditions for the converse:

Converse Condition 1 dimHl
j = 1, dimHr

j = r ( j = 1, . . . , J ).

Converse Condition 2 The initial (normalized) state � AR is classically coherent in
Ac Rc,where R ∼= Rc Rr .

Throughout the paper, we refer to the conditions as CC1 and CC2, respectively. The
two conditions are always satisfied in the case of randomized partial decoupling, but
not necessarily satisfied in the case of non-randomize one. Consequently, the converse
bound we prove below is directly applicable to randomized partial decoupling, but is
not applicable to non-randomized partial decoupling in general.

The converse bound is stated by the following theorem.

Theorem 4. (Main result 3: Converse for partial decoupling.) Suppose that CC1 and
CC2 are satisfied. Let |�〉AR D be a purification of a normalized state� AR ∈ S=(HAR),
which is classically coherent in Ac Rc due to CC2, and T A→E be a trace preserving
CP map with the complementary channel T A→B. Suppose that, for δ > 0, there exists
a normalized state�E R :=∑J

j=1 ς
E
j ⊗�

Rr
j j ⊗ | j〉〈 j |Rc , where {ς j }J

j=1 are normalized
states on E, such that

∥∥∥T A→E (� AR)−�E R
∥∥∥
1

≤ δ. (44)

Then, for any υ ∈ [0, 1/2) and ι ∈ (0, 1], it holds that

Hλ
min(A|R)� − Hυ

min(RD|B)T ◦C(�) + log J ≥ log ι, (45)

Hλ′
min(A|R)C(�) − Hυ

min(Rr D|B Rc)T ◦C(�) ≥ log ι + log (1 − 2υ), (46)
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where C is the completely dephasing channel on Ac, and the smoothing parameters λ
and λ′ are defined by

λ := 2

√
ι + 4

√
20υ + 2δ +

√
2
√
20υ + 2δ + 2

√
2δ + 2

√
20υ + 2δ + 3υ, (47)

λ′ := υ +
√
4
√
ι + 2x + 2

√
x + (4

√
ι + 8 + 24)x (48)

and x := √
2 4
√
24υ + 2δ.

Note that, when a quantum channel T A→E achieves partial decoupling for a state � AR

within a small error, it follows from the decomposition of �av (see (43)) that

T A→E (� AR) ≈ T A→E (� AR
av ) =

J∑

j=1

τ̂ E
j ⊗�

Rr
j j ⊗ | j〉〈 j |Rc , (49)

where τ̂ E
j := T A→E (| j〉〈 j |Ac ⊗ π Ar ) ∈ S=(HE ). This is in the same form as the

assumption of Theorem 4.
Let us compare the direct part of randomized partial decoupling (Theorem 3) and the

converse bound presented above. In the case of J ≥ 2, the first term in the R.H.S. of the
achievability bound (41) is calculated to be

−2 log
(√

α(J ) · 2− 1
2 HI
)

= H ε
min(A|R)� − Hμ

max(A|B)C(τ ) + log (J − 1). (50)

On the other hand, the converse bound (45) yields

Hλ
min(A|R)� − Hμ

min(A|B)C(ψ) + log J ≥ log ι, (51)

whereψ AB := T A′→B(� AA′
p ), with |�p〉AA′

being a purification of� A andHA ∼= HA′
.

Note that there exists a linear isometry from A′ to RD that maps |�p〉 to |�〉 [12], and
that the conditionalmax entropy is invariant under local isometry (see Lemma 21 below).
A similar argument also applies to the second term in (41) and (46). Thus, when � A is
the maximally mixed state, in which case |�p〉AA′ = |�〉AA′

and thus ψ = τ , the gap
between the two bounds is only due to the difference in values of smoothing parame-
ters and types of conditional entropies. By the fully quantum asymptotic equipartition
property [32], this gap vanishes in the limit of infinitely many copies. From this view-
point, we conclude that the achievability bound of randomized partial decoupling and
the converse bound are sufficiently tight.

3.4. Reduction to the existing results. We briefly show that the existing results on one-
shot decoupling [11] and dequantization [31] are obtained from Theorems 1, 3 and
4 as corollaries, up to changes in smoothing parameters. Thus, our results are indeed
generalizations of these two tasks.

First, by letting J = 1 in Theorem 3, we obtain the achievability of one-shot decou-
pling:
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Corollary 5. (Achievability for one-shot decoupling: Theorem 3.1 in [11]) Let ε, μ ≥ 0,
� AR be a subnormalized state, and T A→E be a linear CP map such that the Choi–
Jamiołkowski representation τ AE = J(T A→E ) satisfies Tr[τ ] ≤ 1. Let U ∼ H be the
Haar random unitary on HA. Then, it holds that

EU∼H

[∥∥∥T A→E ◦ U A(� AR)− τ E ⊗�R
∥∥∥
1

]

≤ 2− 1
2 [H ε

min(A|R)�+Hμ
min(A|E)τ ] + 4(ε + μ + εμ). (52)

Note that the duality of the conditional min and max entropies ([25]: see also Lemma 24
in Sect. 5.2.2) implies Hμ

min(A|E)τ = −Hμ
max(A|B)τ , with τ AB = J(T A→B) being the

Choi–Jamiołkowski representation of the complementary channel T A→B of T A→E . A
similar bound is also obtained by letting J = 1 and dimHAl

j = 1 in Theorem 1. A
converse bound for one-shot decoupling is obtained by letting J = 1 in Theorem 4, and
by using the duality of the conditional entropies, as follows:

Corollary 6. (Converse for one-shot decoupling: Theorem 4.1 in [11] ) Consider a
normalized state � AR ∈ S=(HAR) and a trace preserving CP map T A→E . Suppose
that, for δ > 0, there exists a normalized state ς ∈ S=(HE ), such that ‖T A→E (� AR)−
ς E ⊗�R‖1 ≤ δ. Then, for any υ ∈ [0, 1/2) and ι ∈ (0, 1], it holds that

Hλ
min(A|R)� + Hυ

max(A|E)T A′→E (� AA′
p )

≥ log ι, (53)

where |�p〉AA′
is a purification of � A, HA ∼= HA′

, and the smoothing parameter λ is
defined by (47).

Next, we consider the opposite extreme for Theorem 3, i.e., we consider the case
where dimHAr = 1. This case yields the dequantizing theorem:

Corollary 7. (Achievability for dequantization:Theorem3.1 in [31])Let A be a quantum
system with a fixed basis {| j〉}dA

j=1, HR ∼= HA and ε, μ ≥ 0. Consider a subnormalized

state � AR that is classically coherent in AR, and a linear CP map T A→E such that the
Choi–Jamiołkowski representation τ AE = J(T A→E ) satisfies Tr[τ ] ≤ 1. Let σ be the
random permutation on [1, . . . , dA] with the associated unitary Gσ :=∑dA

j=1 |σ( j)〉〈 j |.
Then, it holds that

Eσ∼P

[∥∥∥T A→E ◦ GA
σ (�

AR)− T A→E ◦ GA
σ ◦ CA(� AR)

∥∥∥
1

]

≤ 1√
dA − 1

· 2− 1
2 [H ε

min(A|R)�−Hμ
max(A|B)C(τ )] + 4(ε + μ + εμ), (54)

where C is the completely dephasing channel on A with respect to the basis {| j〉}J
j=1,

and τ AB = J(T A→B) is the Choi–Jamiołkowski representation of the complementary
channel T A→B of T A→E .

In the same extreme, Theorem 4 provides a converse bound for dequantization, which
has not been known so far:
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Corollary 8. (Converse for dequantization.)Consider the same setting as in Corollary 7,
and assume that � AR is normalized, and that T A→E is trace preserving. Let |�〉AR D

be a purification of � AR. Suppose that, for δ > 0, there exists a normalized state
�E R :=∑J

j=1 p jς
E
j ⊗ | j〉〈 j |R, where {p j , ς j }J

j=1 is an ensemble of normalized states

on E, such that ‖T A→E (� AR)−�E R‖1 ≤ δ. Then, for any υ ∈ [0, 1/2) and ι ∈ (0, 1],
it holds that

Hλ
min(A|R)� − Hυ

min(RD|B)T ◦C(�) + log J ≥ log ι, (55)

where the smoothing parameter λ is defined by (47).

4. Implementing the Random Unitary with the DSP Form

Before we proceed to the proofs, we here briefly discuss how the random unitaries
U ∼ H× that respect the DSP form can be implemented by quantum circuits. Since
Haar random unitaries are in general hard to implement, unitary t-designs, mimicking
the t-th statistical moments of the Haarmeasure on average [33–35], have been exploited
inmany cases. Since the decouplingmethodmakes use of the second statistical moments
of the Haar measure, we could use the unitary 2-designs instead of the Haar measure
for our tasks. Although a number of efficient implementations of unitary 2-designs have
been discovered [33–41], and it is also shown that decoupling can be achieved using
unitaries less random than unitary 2-designs [42,43], we here need unitary designs in a
given DSP form, which we refer to as the DSP unitary designs. Thus, we cannot directly
use the existing constructions, posing a new problem about efficient implementations of
DSP unitary designs. Although this problem is out of the scope in this paper, we will
briefly discuss possible directions toward the solution.

One possible way is to simply modify the constructions of unitary designs known
so far. This could be done by regarding each Hilbert space HAr

j , on which each ran-

dom unitary U Ar
j ∼ H j acts, as the Hilbert space of “virtual” qubits. The complexity

of the implementation, i.e. the number of quantum gates, is then determined by how
complicated the unitary is that transforms the basis in each HAr

j into the standard basis
of the virtual qubits. Another way is to use the implementation of designs on one qudit
[44], where it was shown that alternate applications of random diagonal unitaries in two
complementary bases achieves unitary designs. This implementation would be suited
in quantum many-body systems because we can choose two natural bases, position and
momentum bases, and just repeat switching random potentials in those bases under the
condition that the potentials satisfy the DSP form. Finally, when the symmetry-induced
DSP form is our concern, unitary designswith symmetrymay possibly be implementable
by applying random quantum gates that respects the symmetry.

In any case, the implementations of DSP unitary designs, or the symmetric unitary
designs, and their efficiency are left fully open. Further analyses are desired.

5. Structure of the Proof

In the rest of the paper, we prove the three main theorems, Theorems 1, 3 and 4 in
Sects. 6, 7 and 8, respectively. For the sake of clarity, we sketch the outline of the proofs
in Sect. 5.1 (see also Fig. 1).We then list useful lemmas in Sect. 5.2. See alsoAppendixH
for the list of notations used in the proofs.
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Fig. 1. Outline of our proofs. The PD stands for the partial decoupling. For the smoothed randomized partial
decoupling and the converse bound, we first assume two conditions, WA 1 and WA 2, but will remove them
later to complete the proof. The details of the conditions are given in the main text

5.1. Key lemmas and the structure of the proofs. For the achievability statements (The-
orems 1 and 3), the key technical lemma is the twisted twirling, which can be seen as
a generalization of the twirling method often used in quantum information science. See
Appendix A for the proof.

Lemma 9. (Twisted Twirling) Let HAr
j be a r j -dimensional subspace of HAr , and �Ar

j

be the projector onto HAr
j ⊂ HAr for each of j = 1, . . . , J . Let IAr A′

r be I Ar ⊗ I A′
r , and

F
Ar A′

r ∈ L(HAr A′
r ) be the swap operator defined by

∑
a,b |a〉〈b|Ar ⊗ |b〉〈a|A′

r for any

orthonormal basis {|a〉} inHAr andHA′
r . In addition, let I

Ar A′
r

jk andF
Ar A′

r
jk be�Ar

j ⊗�A′
r

k

and (�Ar
j ⊗�

A′
r

k )FAr A′
r , respectively. For any M Ar A′

r B B′ ∈ L(HAr A′
r B B′

), define

M B B′
I, jk := TrAr A′

r
[IAr A′

r
jk M Ar A′

r B B′ ], M B B′
F,k j := TrAr A′

r
[FAr A′

r
k j M Ar A′

r B B′ ]. (56)

Then, it holds that, for j �= k,

EU j ∼H j ,Uk∼Hk

[
(U Ar

j ⊗ U
A′

r
k )M Ar A′

r B B′
(U Ar

j ⊗ U
A′

r
k )†

] = I
Ar A′

r
jk

r j rk
⊗ M B B′

I, jk , (57)

EU j ∼H j ,Uk∼Hk

[
(U Ar

j ⊗ U
A′

r
k )M Ar A′

r B B′
(U Ar

k ⊗ U
A′

r
j )†

] = F
Ar A′

r
jk

r j rk
⊗ M B B′

F,k j . (58)

Moreover,

EU j ∼H j

[
(U Ar

j ⊗ U
A′

r
j )M Ar A′

r B B′
(U Ar

j ⊗ U
A′

r
j )†

]

= 1

r j (r2j − 1)

[
(r j I

Ar A′
r

j j − F
Ar A′

r
j j )⊗ M B B′

I, j j + (r jF
Ar A′

r
j j − I

Ar A′
r

j j )⊗ M B B′
F, j j

]
.

(59)
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Otherwise, EU j ,Uk ,Um ,Un

[
(U Ar

j ⊗ U
A′

r
k )M Ar A′

r B B′
(U Ar

m ⊗ U
A′

r
n )†

] = 0.

The twisted twirling enables us to show the following lemma (see Appendix B).

Lemma 10. For any ς E R ∈ S=(HE R) and any X ∈ Her(HAR) such that X Al R
j j = 0,

the following inequality holds for any possible permutation σ ∈ P:

EU∼H×

[∥∥∥T A→E ◦ GA
σ−1 ◦ U A(X AR)

∥∥∥
2

2,ς E R

]

≤
J∑

j,k=1

d2
A

r jrk

∥∥∥∥TrAl

[
X

AT
l Ar R

σ( j)σ (k)τ
Al Ār E
jk

]∥∥∥∥
2

2,ς E R
. (60)

Here, AT
l denotes the transposition of Al with respect to the Schmidt basis of the maxi-

mally entangled state |�l
j 〉Al A′

l in (26), and the norm in the R.H.S. is defined by (16).

Based on this lemma, we can prove the non-smoothed versions of Theorems 1 and 3 in
Sects. 6.1 and 7.1, respectively.

To complete the proofs of Theorems 1 and 3, smoothing the statements is needed,
which is done in Sects. 6.2 and 7.2 based on the following lemma proven in Appendix C.

Lemma 11. Consider arbitrary unnormalized states � AR, �̂ AR ∈ P(HAR) and arbi-
trary CP maps T , T̂ : A → E. Let DA→E

+ and DA→E− be arbitrary CP maps such that

T − T̂ = D+ − D−. Let δAR
+ and δAR− be linear operators on HA ⊗ HR, such that

δAR
+ ≥ 0, δAR− ≥ 0, supp[δAR

+ ] ⊥ supp[δAR− ] (61)

and that

�̂ AR −� AR = δAR
+ − δAR− . (62)

The following inequality holds for any possible permutation σ ∈ P and for both �∗ =
�av and �∗ = CA(�):

EU∼H×

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR −� AR∗ )

∥∥∥
1

]

≤ EU∼H×

[∥∥∥T̂ A→E ◦ GA
σ ◦ U A(�̂ AR − �̂ AR∗ )

∥∥∥
1

]

+2 Tr[(DA→E
+ +DA→E− ) ◦ GA

σ (�
AR
av )]

+2 EU∼H×Tr[T̂ A→E ◦ GA
σ ◦ U A(δAR

+ + δAR− )]. (63)

Here, �̂∗ = EU∼H×[U A(�̂ AR)] for �∗ = �av and �̂∗ = CA(�̂) for �∗ = CA(�).

The converse statements are proved independently in Sect. 8.
When we prove the one-shot randomized decoupling theorem (Theorem 3) and the

converse (Theorem 4), we first put the following two working assumptions:

WA 1 E ∼= Ec Er , where Ec is a quantum system of dimension J .
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WA 2 The CP map T A→E is decomposed into

T A→E (X) =
J∑

j,k=1

| j〉〈k|Ec ⊗ T Ar →Er
jk (X jk), (64)

in which T jk is a linear supermap from L(HAr ) to L(HEr ) defined by
T jk(ζ ) = T (| j〉〈k| ⊗ ζ ) for each j, k.

These assumptions are finally dropped in Sects. 7.3 and 8.3 using the following lemma
(see Appendix D for a proof).

Lemma 12. Let T A→E be a linear CP map that does not necessarily satisfies WA 1
and WA 2. By introducing a quantum system Ec with dimension J , define an isometry
Y Ac→Ac Ec := ∑

j | j j〉Ac Ec 〈 j |Ac , and a linear map Ť A→E Ec by T A→E ◦ Y Ac→Ac Ec .

Then, Ť A→E Ec is a linear CP map and, for any � AR that is classically coherent in
Ac Rc, the following equalities hold:

∥∥∥Ť A→E Ec(� AR −� AR
av )

∥∥∥
1

=
∥∥∥T A→E (� AR −� AR

av )

∥∥∥
1
, (65)

∥∥∥Ť A→E Ec ◦ GA
σ ◦ U A(� AR −� AR

av )

∥∥∥
1

=
∥∥∥T A→E ◦ GA

σ ◦ U A(� AR −� AR
av )

∥∥∥
1
.

(66)

5.2. List of useful lemmas. We here provide several useful lemmas, some of which are
in common with those in the proof of the one-shot decoupling theorem [11]. Proofs of
Lemmas 16–20 and 29 –35 will be provided in Appendix E.

5.2.1. Properties of norms and distances

Lemma 13. (Lemma 3.6 in [11]) For any ξ AB ∈ Her(HAB), ||ξ AB ||2 ≤ √
dA||ξ B ||2.

Lemma 14. (Lemma 3.7 in [11]) For any X ∈ Her(H) and γ ∈ P(H), it holds that

‖X‖1 ≤ √Tr[γ ] ‖X‖2,γ =
√
Tr[γ ] · Tr[(γ−1/4Xγ−1/4)2]. (67)

Lemma 15. (Sec. II in [25]) The purified distance defined by (11) satisfies the following
properties:

1. triangle inequality: For any ρ, ς, τ ∈ S≤(H), it holds that P(ρ, ς) ≤ P(ρ, τ ) +
P(τ, ς).

2. monotonicity: For any ρ, ς ∈ S≤(H) and trace-nonincreasing CP map E , it holds
that P(ρ, ς) ≥ P(E(ρ), E(ς)).

3. Uhlmann’s theorem: For any ρ, ς ∈ S≤(H) and any purification |ϕρ〉 ∈ H ⊗ H′
of ρ, where H′ ∼= H, there exists a purification |ϕς 〉 ∈ H ⊗ H′ of ς such that
P(ρ, ς) = P(ϕρ, ϕς ).

Lemma 16. The purified distance defined by (11) satisfies the following properties:

1. pure states: For any subnormalized pure state |ψ〉 ∈ H and any normalized pure
state |φ〉 ∈ H, P(ψ, φ) = √1 − |〈ψ |φ〉|2.
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2. relation to the trace distance: For any ρ, ς ∈ S≤(H), 1
2‖ρ − ς‖1 ≤ P(ρ, ς) ≤√

2‖ρ − ς‖1.
3. inequality for subnormalized pure states: For any subnormalized pure states

|ψ〉, |φ〉 ∈ H, P(ψ, φ) ≤ √1 − |〈ψ |φ〉|2 + √
1 − 〈φ|φ〉.

Lemma 17. Let {pk}k be a normalized probability distribution, {ρk}k be a set of
normalized states on AB, and {ρ̂k}k be that of subnormalized ones. For ρABK :=∑

k pkρ
AB
k ⊗|k〉〈k|K and ρ̂ABK :=∑k pk ρ̂

AB
k ⊗|k〉〈k|K , the purified distance satisfies

P(ρABK , ρ̂ABK ) ≤
√
2
∑

k

pk P(ρAB
k , ρ̂AB

k ). (68)

Lemma 18. Let {pk}k and {qk}k be subnormalized probability distributions, and {ρk}k
and {ςk}k be sets of normalized states on A. For ρAK := ∑

k pkρ
A
k ⊗ |k〉〈k|K and

ς AK :=∑k qkς
A
k ⊗ |k〉〈k|K , it holds that

∣∣∣∣∣
∑

k

pk ‖ρk − ςk‖1 −
∥∥∥ρAK − ς AK

∥∥∥
1

∣∣∣∣∣ ≤
∑

k

|pk − qk | ≤
∥∥∥ρAK − ς AK

∥∥∥
1
. (69)

Lemma 19. The DSP norm defined by (13) satisfies the triangle inequality, i.e., for any
superoperators E and F from L(HA) to L(HB), ‖E + F‖DSP ≤ ‖E‖DSP + ‖F‖DSP.

Lemma 20. Let {� j } j be a set of orthogonal projectors on H such that
∑

j � j = I .

For any � ∈ P(H), ‖�‖22 =∑ j,k

∥∥� j��k
∥∥2
2.

5.2.2. Properties of conditional entropies

Lemma 21. (Corollary of Lemma 13 in [25]) For any ε ≥ 0, ρAB ∈ S≤(HAB) and any
linear isometry V : A → C, H ε

min(A|B)ρ = H ε
min(C |B)V(ρ).

Lemma 22. (Corollary of Lemma 15 in [25]) For any ε ≥ 0, ρAB ∈ S≤(HAB) and any
linear isometry W : B → D, H ε

max(A|B)ρ = H ε
max(A|D)W(ρ).

Lemma 23. (LemmaA.1 in [11])For any ρAB ∈ S≤(HAB) and ς B ∈ S=(HB), it holds
that

H2(A|B)ρ|ς ≥ Hmin(A|B)ρ|ς , H2(A|B)ρ ≥ Hmin(A|B)ρ. (70)

Lemma 24. (Definition 14, Equality (6) and Lemma 16 in [25]) For any subnormalized
pure state |ψ〉 on system ABC, and for any ε > 0, H ε

max(A|B)ψ = −H ε
min(A|C)ψ .

Lemma 25. (Lemma B.2 in [11]) Let ψ ABC ∈ S≤(HABC ) be a subnormalized pure
state. For any full-rank state ς B ∈ S=(HB), it holds that ψ ABC ≤ Z AB ⊗ I C , where

Z AB := 2
1
2 Hmax(A|B)ψ |ς · (ς B)−

1
2

√
(ς B)

1
2ψ AB(ς B)

1
2 (ς B)−

1
2 . (71)
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Lemma 26. (Lemma A.5 in [11]) For any state ρABK ∈ S=(HABK ) in the form of

ρABK =
∑

k

pkρ
AB
k ⊗ |k〉〈k|K , (72)

where ρk ∈ S=(HAB), 〈k|k′〉 = δk,k′ and {pk}k is a normalized probability distribution,
it holds that

Hmin(A|BK )ρ = − log

(
∑

k

pk · 2−Hmin(A|B)ρk

)
, (73)

Hmax(A|BK )ρ = log

(
∑

k

pk · 2Hmax(A|B)ρk

)
. (74)

(It is straightforward to show that the above equalities also hold for ρABK ∈ S≤(HABK )

and ρk ∈ S≤(HAB), by noting that Hmin(A|BK )ρ = Hmin(A|BK )ρ/Tr[ρ] − log Tr[ρ]
and that Hmax(A|BK )ρ = Hmax(A|BK )ρ/Tr[ρ] + log Tr[ρ].)
Lemma 27. (Lemma A.7 in [11]) For any state ρABK1K2 ∈ S≤(HABK1K2) in the form
of

ρABK1K2 =
∑

k

pkρ
AB
k ⊗ |k〉〈k|K1 ⊗ |k〉〈k|K2 , (75)

where the notations are the same as in Lemma 26, and for any ε ≥ 0 it holds that

H ε
min(AK1|BK2)ρ = H ε

min(A|BK2)ρ. (76)

(Note that, although Lemma A.7 in [11] assumes that ρABK1K2 is normalized, the con-
dition is not used in the proof thereof.)

Lemma 28. (Lemma A.1 in [31]) Let ρ ∈ S≤(HK1K2 AB) be a subnormalized state that
is classically coherent in K1K2. For any ε ≥ 0, there exists ρ̂ ∈ Bε(ρ) that is classically
coherent in K1K2, and ς ∈ S=(HK2B) that is decomposed as ς = ∑

k |k〉〈k|K2 ⊗ ς B
k ,

such that

H ε
min(K1A|K2B)ρ = Hmin(K1A|K2B)ρ̂ = Hmin(K1A|K2B)ρ̂|ς . (77)

Lemma 29. In the same setting as in Lemma 27, it holds that

H ε
max(AK1|BK2)ρ = H ε

max(A|BK2)ρ. (78)

Lemma 30. Let ρ ∈ S≤(HK1K2 AB) be a subnormalized state that is classically coherent
in K1K2. For any ε ≥ 0, there exists ρ̂ ∈ Bε(ρ) that is classically coherent in K1K2,
such that

H ε
max(K1A|K2B)ρ = Hmax(K1A|K2B)ρ̂ . (79)

If ρ is also diagonal in K1K2 (i.e., if ρ is in the form of (75)), there exists ρ̂, satisfying
the above conditions, that is diagonal in K1K2.

Lemma 31. Consider the same setting as in Lemma 26. For any {εk}k such that εk ≥ 0,
it holds that

H
√
2ε

min (A|BK )ρ ≥ − log

(
∑

k

pk · 2−H
εk
min(A|B)ρk

)
, (80)

where ε :=∑k pkεk .
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5.2.3. Other technical lemmas

Lemma 32. Consider two linear operators X,Y : HA → HB and assume that A ∼= A′,
B ∼= B ′. Let |�〉AA′

and |�〉B B′
be maximally entangled states between A and A′,

and B and B ′, respectively. Then, Tr[X T Y ] = √
dAdB〈�|B B′

(X ⊗ Y )|�〉AA′
, where

dA := dimHA, dB := dimHB and the transposition is taken with respect to the Schmidt
bases of |�〉AA′

and |�〉B B′
.

Lemma 33. If �2 is classically coherent in XY for a positive semidefinite operator
� ∈ P(HAXY ), so is �.

Lemma 34. Let π be the maximally mixed state on system A, and let C be the completely
dephasing operation on A with respect to a fixed basis {|i〉}dA

i=1. For any ρ ∈ P(HAB),
it holds that

∥∥∥ρAR − π A ⊗ ρR
∥∥∥
2

2
≤
∥∥∥ρAR

∥∥∥
2

2
, (81)

∥∥∥ρAR − CA(ρAR)

∥∥∥
2

2
≤
∥∥∥ρAR

∥∥∥
2

2
. (82)

Lemma 35. For subnormalized pure states |ψ〉, |φ〉 ∈ H and a real number c > 0,
suppose that there exists a normalized pure state |e〉 ∈ H that satisfies 〈e|ψ〉 ≥ c and
〈e|φ〉 ≥ c. Then, |〈ψ |φ〉| ≥ 2c2 − 1.

Lemma 36. (Lemma 35 in [45]) Let c ∈ (0,∞) be a constant, f : [0, c] → R be
a monotonically nondecreasing function that satisfies f (c) < ∞, and {pk}k∈K be a
probability distribution on a countable set K. Suppose εk (k ∈ K) satisfies εk ∈ [0, c],
and

∑
k∈K pkεk ≤ ε for a given ε ∈ (0, c2]. Then we have

∑

k∈K
pk f (εk) ≤ f (

√
ε) + f (c) · √

ε. (83)

6. Proof of the Non-randomized Partial Decoupling (Theorem 1)

We now prove the non-randomized partial decoupling (Theorem 1). As sketched in
Sect. 5.1, we proceed the proof in two steps: showing the non-smoothed version in
Sect. 6.1, and then smoothing it in Sect. 6.2.

6.1. Proof of the non-smoothed non-randomized partial decoupling. The non-smoothed
version of Theorem 1 is given by

EU∼H×

[∥∥∥T A→E ◦ U A(� AR)− T A→E (� AR
av )

∥∥∥
1

]
≤ 2− 1

2 Hmin(A∗|RE)�(�,T ) , (84)

where� AR
av =⊕J

j=1�
Al R
j j ⊗π

Ar
j . Note that, due to the definition of the conditional col-

lision entropy (19), (22) and its relation to the conditional min-entropy (see Lemma 23),
we have

‖�(�, T )‖22,ς E R = 2− 1
2 H2(A∗|RE)�(�,T ) ≤ 2− 1

2 Hmin(A∗|RE)�(�,T ) (85)
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for a proper choice of ς E R ∈ S=(HE R). In addition, it holds that

‖�(�, T )‖22,ς E R =
J∑

j,k=1

d2
A

r jrk

∥∥∥∥TrAl

[
�

AT
l Ar R

jk τ
Al Ār E
jk

]∥∥∥∥
2

2,ς
. (86)

We first show this relation.
Let �A∗

j be the projection onto a subspace HAr
j ⊗ H Ār

j ⊂ HA∗
for each j . Due to

the definition of F AĀ→A∗
given by (31), it holds that

�A∗
j F AĀ→A∗ =

√
dAl j

r j
〈�l

j |Al Āl
(
�A

j ⊗� Ā
j

)
. (87)

Using the property of the Hilbert–Schmidt norm (Lemma 20), we have

‖�(�, T )‖22,ς =
∥∥∥(ς E R)−1/4�(�, T )(ς E R)−1/4

∥∥∥
2

2

=
J∑

j,k=1

∥∥∥
(
�A∗

j ⊗ (ς E R)−1/4
)
�ς(�, T )

(
�A∗

k ⊗ (ς E R)−1/4
)∥∥∥

2

2

=
J∑

j,k=1

∥∥∥�A∗
j �(�, T )�A∗

k

∥∥∥
2

2,ς
. (88)

Using Eq. (87) and the explicit form of �(�, T ), i.e. �(�, T ) := F(� AR ⊗ τ ĀE )F†,
each term in the summand is given by

�A∗
j �(�, T )�A∗

k = (�A∗
j F AĀ→A∗

)(� AR ⊗ τ ĀE )(�A∗
k F AĀ→A∗

)†

= dA√
r jrk

·√l j lk〈�l
j |Al Āl (�A

j �
AR�A

k ⊗� Ā
j τ

ĀE� Ā
k )|�l

k〉Al Āl

= dA√
r jrk

·√l j lk〈�l
j |Al Āl (�

Al Ar R
jk ⊗ τ

Āl Ār E
jk )|�l

k〉Al Āl

= dA√
r jrk

TrAl

[
�

AT
l Ar R

jk τ
Al Ār E
jk

]
, (89)

where the last line follows from Lemma 32. Thus, we obtain (86).
From Eqs. (85) and (86), it suffices to prove that

EU∼H×

[∥∥∥T A→E ◦ U A(� AR)− T A→E (� AR
av )

∥∥∥
1

]

≤
J∑

j,k=1

d2
A

r jrk

∥∥∥∥TrAl

[
�

AT
l Ar R

jk τ
Al Ār E
jk

]∥∥∥∥
2

2,ς
(90)

for any ς E R ∈ S=(HE R). In the following, we denote the L.H.S. of Ineq. (90) by κ .
Due to Lemma 14, for any ς ∈ S=(HE R), we have

∥∥∥T A→E ◦ U A(� AR −� AR
av )

∥∥∥
1

≤
∥∥∥T A→E ◦ U A(� AR −� AR

av )

∥∥∥
2,ς E R

. (91)
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Using this and Jensen’s inequality, we obtain

κ2 ≤ EU∼H×

[
||T A→E ◦ U A(� AR)− T A→E (� AR

av )||22,ς
]
. (92)

Noting that � Al R
j j = TrAr [� Al Ar R

j j ] = TrAr [� Al R
av, j j ⊗ π

Ar
j ] = �

Al R
av, j j , we can apply

Lemma 10 for X AR = � AR −� AR
av and σ = id. This yields

κ2 ≤
J∑

j,k=1

d2
A

r jrk

∥∥∥∥TrAl

[(
�

AT
l Ar R

jk −�
AT

l Ar R
av, jk

)
τ

Al Ār E
jk

]∥∥∥∥
2

2,ς

=
J∑

j=1

d2
A

r2j

∥∥∥∥TrAl

[(
�

AT
l Ar R

j j −�
AT

l R
j j ⊗ π

Ar
j j

)
τ

Al Ār E
j j

]∥∥∥∥
2

2,ς

+
∑

j �=k

d2
A

r jrk

∥∥∥∥TrAl

[
�

AT
l Ar R

jk τ
Al Ār E
jk

]∥∥∥∥
2

2,ς
, (93)

where the second line follows from the fact that� Al Ar R
av, jk = 0 for j �= k. To calculate the

first term in (93), note that

TrAl [� AT
l Ar R

j j τ
Al Ār E
j j ] ∈ P(HAr Ār RE ) (94)

and that

TrAl

[(
�

AT
l R

j j ⊗ π
Ar
j j

)
τ

Al Ār E
j j

]
= TrAl Ar [� AT

l Ar R
j j τ

Al Ār E
j j ] ⊗ π

Ar
j j . (95)

Thus, we simply apply Lemma 34 to obtain

∥∥∥∥TrAl

[(
�

AT
l Ar R

j j −�
AT

l R
j j ⊗ π

Ar
j j

)
τ

Al Ār E
j j

]∥∥∥∥
2

2,ς
≤
∥∥∥∥TrAl

[
�

AT
l Ar R

j j τ
Al Ār E
j j

]∥∥∥∥
2

2,ς
(96)

for each j . Substituting this to (93), we arrive at Ineq. (90). ��

6.2. Proof of the smoothed non-randomized partial decoupling. We now smoothen the
conditional min-entropy to complete the proof of Theorem 1. To this end, fix �̂ ∈ Bε(�)
and T̂ ∈ BμDSP(T ) so that

H ε,μ
min (A

∗|RE)�(�,T ) = Hmin(A
∗|RE)

�(�̂,T̂ ). (97)

Let |�p,av〉AA′
be a purification of � A

av. Noting that �av is decomposed in the form of
(28), by properly choosing a DSP decomposition for A′, it holds that

(�A
j ⊗�A′

k )|�p,av〉AA′ = δ jk
√

q j |
 j 〉Al A′
l |�r

j 〉Ar A′
r , (98)
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where q j := Tr� j j and 
 j is a purification of � Al
j j /q j for each j . Let �A′ E

+ and �A′ E−
be linear operators on HE ⊗ HA′

such that �A′ E
+ ≥ 0, �A′ E− ≥ 0, supp[�A′ E

+ ] ⊥
supp[�A′ E− ] and that

T A→E (� AA′
p,av)− T̂ A→E (� AA′

p,av) = �A′ E
+ −�A′ E− . (99)

In addition, let DA→E
+ and DA→E− be superoperators such that

DA→E
+ (� AA′

p,av) = �A′ E
+ , DA→E− (� AA′

p,av) = �A′ E− , (100)

which yields T − T̂ = D+ − D−. Note that, in general, it does not necessarily imply
that D+ = T and D− = T̂ .

We now apply Lemma 11 for the case where σ = id. To obtain the explicit forms,
we compute

Tr[(DA→E
+ +DA→E− )(� AR

av )] = Tr[(DA→E
+ +DA→E− )(� A

av)]
= Tr[(DA→E

+ +DA→E− )(� AA′
p,av)]

= Tr[�A′ E
+ +�A′ E− ]

=
∥∥∥�A′ E

+ −�A′ E−
∥∥∥
1

=
∥∥∥T A→E (� AA′

p,av)− T̂ A→E (� AA′
p,av)

∥∥∥
1

≤
∥∥∥T A→E − T̂ A→E

∥∥∥
DSP

≤ μ, (101)

where we have used the properties of� AA′
p,av,�

A′ E± , andDA→E± described above. The last
line follows from the definition of the DSP norm. Furthermore, introducing a notation
Ū(·) := EU∼H×[U(·)], we also have (see Lemma 11 for the definition and properties of
δAR± )

Tr[T̂ A→E ◦ Ū A(δAR
+ + δAR− )]

=
∥∥∥T̂ A→E ◦ Ū A(δAR

+ )

∥∥∥
1
+
∥∥∥T̂ A→E ◦ Ū A(δAR− )

∥∥∥
1

= Tr[δAR
+ ] ·

∥∥∥T̂ A→E ◦ Ū A(δAR
+ /Tr[δAR

+ ])
∥∥∥
1

+ Tr[δAR− ] ·
∥∥∥T̂ A→E ◦ Ū A(δAR− /Tr[δAR− ])

∥∥∥
1

≤ (Tr[δAR
+ ] + Tr[δAR− ]) ·

∥∥∥T̂ A→E
∥∥∥
DSP

=
∥∥∥δAR

+ − δAR−
∥∥∥
1
·
∥∥∥T̂ A→E

∥∥∥
DSP

=
∥∥∥�̂ AR −� AR

∥∥∥
1
·
∥∥∥T̂ A→E

∥∥∥
DSP

≤
∥∥∥�̂ AR −� AR

∥∥∥
1
·
(∥∥∥T A→E

∥∥∥
DSP

+
∥∥∥T̂ A→E −T A→E

∥∥∥
DSP

)

≤ ε

∥∥∥T A→E
∥∥∥
DSP

+ εμ, (102)
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where the fourth line follows from the definition of the DSP norm (13), and the seventh
line from the triangle inequality for the DSP norm (Lemma 19). Applying the non-
smoothed version of the non-randomized partial decoupling (Ineq. (84)) to a state �̂ and
a CP map T̂ , we have

EU∼H×
[∣∣∣∣T̂ A→E ◦ U A(�̂ AR)− T A→E (�̂ AR

av )
∣∣∣∣
1

] ≤ 2− 1
2 Hmin(A∗|RE)

�(�̂,T̂ ) . (103)

All together, Ineq. (63) in Lemma 11 leads to

EU∼H×
[∥∥T A→E ◦ U A(� AR)− T A→E (� AR

av )
∥∥
1

]

≤ 2− 1
2 Hmin(A∗|RE)

�(�̂,T̂ ) + 2
(
μ + ε

∥∥T A→E
∥∥
DSP + εμ

)
, (104)

which, together with (97), concludes the proof of Theorem 1. ��

7. Proof of the Randomized Partial Decoupling (Theorem 3)

We here show Theorem 3. We first put the following two assumptions, which simplify
the proof:

WA 1 E ∼= Ec Er , where Ec is a quantum system of dimension J with a fixed
orthonormal basis {| j〉}J

j=1.

WA 2 The CP map T A→E is decomposed into

T A→E (X) =
J∑

j,k=1

| j〉〈k|Ec ⊗ T Ar →Er
jk (X jk), (105)

in which T jk is a linear supermap from L(HAr ) to L(HEr ) defined by
T jk(ζ ) = T (| j〉〈k| ⊗ ζ ) for each j, k.

We show the non-smoothed version in Sect. 7.1 and the smoothed version in Sect. 7.2.
The above assumptions are then dropped in Sect. 7.3.

7.1. Proof of the non-smoothed randomized partial decoupling under WA 1 and WA 2.
Under the assumptions WA 1 and WA 2, the non-smoothed version of the randomized
partial decoupling is given by

EU∼H×,σ∼P

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR)− T A→E ◦ GA

σ (�
AR
av )

∥∥∥
1

]

≤ √α(J ) · 2− 1
2 Hmin(A|R)�− 1

2 Hmin(A|E)τ + β(Ar ) · 2− 1
2 Hmin(A|R)C(�)− 1

2 Hmin(A|E)C(τ ) .
(106)

Note that, as we will describe in Sect. 7.3 for general cases, the min entropies
Hmin(A|E)τ and Hmin(A|E)C(τ ) are equal to the max entropies −Hmax(A|B)C(τ ) and
−Hmax(Ar |B Ac)C(τ ), respectively, due to the duality of the conditional entropies for
pure states (Lemma 24). The proof of this inequality will be divided into three steps.
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7.1.1. Upper bound on the average trace norm To prove Ineq. (106), we first introduce
the following lemma that relates the average trace norm of an operator T A→E ◦ GA

σ ◦
U A(X AR) to the average Hilbert–Schmidt norm.

Lemma 37. Let X AR be an arbitrary Hermitian operator such that
X AR =∑J

j,k=1 | j〉〈k|Ac ⊗ X Ar Rr
jk ⊗ | j〉〈k|Rc , and let ζ ∈ S=(HE ) and ξ ∈ S=(HR) be

arbitrary states that are decomposed as ζ E =∑ j | j〉〈 j |Ec⊗ζ Er
j , ξ R =∑ j | j〉〈 j |Rc⊗ξ Rr

j ,
respectively. Then it holds that

Eσ,U
[∣∣∣∣T A→E ◦ GA

σ ◦ U A(X AR)
∣∣∣∣
1

] ≤ 1√
J

·
√
Eσ,U

∥∥T A→E ◦ GA
σ ◦ U A(X AR)

∥∥2
2, ζ E ⊗ξ R ,

(107)

where the norm in the R.H.S. is defined by (16).

It should be noted that Lemma 37 provides a stronger inequality than that obtained
simply using Lemma 14.

Proof. We exploit techniques developed in [31]. Recall that U is in the form of∑J
j=1 | j〉〈 j |Ac ⊗ U Ar

j , and Gσ is defined by Gσ := ∑J
j=1 |σ( j)〉〈 j |Ac ⊗ I Ar for any

σ ∈ P.
We define a subnormalized state γσ ∈ S≤(HE R) for each σ by γ E R

σ :=∑J
j=1 |σ( j)〉〈σ( j)|Ec ⊗ζ Er

σ( j)⊗ξ Rr
j ⊗| j〉〈 j |Rc . Further, by letting P be a quantum system

with an orthonormal basis {|σ 〉}σ∈P, we define a subnromalized state γ ∈ S≤(HP E R)

by

γ P E R := 1

|P|
∑

σ∈P
|σ 〉〈σ |P ⊗ γ E R

σ . (108)

Using Lemma 14 and Jensen’s inequality, we obtain

Eσ

[∣∣∣∣T A→E ◦ GA
σ ◦ U A(X AR)

∣∣∣∣
1

]

=
∥∥∥Eσ

[|σ 〉〈σ |P ⊗ T A→E ◦ GA
σ ◦ U A(X AR)

]∥∥∥
1

≤ √Tr[γ ] ·
∥∥∥Eσ

[|σ 〉〈σ |P ⊗ T A→E ◦ GA
σ ◦ U A(X AR)

]∥∥∥
2,γ P E R

= √Tr[γ ] · Eσ
∥∥∥T A→E ◦ GA

σ ◦ U A(X AR)

∥∥∥
2,γ E R

σ

= √Tr[γ ] · Eσ
∥∥∥T A→E ◦ GA

σ ◦ U A(X AR)

∥∥∥
2,ζ E ⊗ξ R

. (109)

In the last line, we used the following relation:

(γ E R
σ )−1/4[T A→E ◦ GA

σ ◦ U A(X AR)
]
(γ E R
σ )−1/4

= (ζ E ⊗ ξ R)−1/4[T A→E ◦ GA
σ ◦ U A(X AR)

]
(ζ E ⊗ ξ R)−1/4, (110)

which can be observed from the fact that, due to the decomposition of T A→E fromWA
2,

T A→E ◦ GA
σ ◦ U A(X AR)
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=
J∑

j,k=1

|σ( j)〉〈σ(k)|Ec ⊗ T Ar →Er
σ( j)σ (k)(U

Ar
j X Ar Rr

jk U †Ar
k )⊗ | j〉〈k|Rc . (111)

Due to the fact that

1

|P|
∑

σ∈P
Tr[ζ Er

σ( j)] = 1

J

J∑

j ′=1

Tr[ζ Er
j ′ ] (112)

for all j , we obtain

Tr[γ ] = 1

|P|
∑

σ∈P

J∑

j=1

Tr[ζ Er
σ( j)]Tr[ξ Rr

j ]

=
J∑

j=1

(
1

|P|
∑

σ∈P
Tr[ζ Er

σ( j)]
)
Tr[ξ Rr

j ]

= 1

J

J∑

j ′=1

Tr[ζ Er
j ′ ] ·

J∑

j=1

Tr[ξ Rr
j ]

= 1

J
Tr[ζ E ] · Tr[ξ R] = 1

J
. (113)

Substituting this to (109), and by using Jensen’s inequality, we arrive at the desired
result. ��

7.1.2. Generalization of the dequantizing theorem Our second step to prove the non-
smoothed randomized partial decoupling is to generalize the non-smoothed version of
the dequantizing theorem (Proposition 3.5 in [31]).

Lemma 38. In the same setting as in Theorem 3, it holds that

Eσ,U
[∣∣∣∣T A→E ◦ GA

σ ◦ U A(� AR −� AR
dp )

∣∣∣∣
1

] ≤ √α(J ) · 2− 1
2 Hmin(A|R)�− 1

2 Hmin(A|E)τ ,
(114)

where we have defined � AR
dp := CA(� AR) =∑J

j=1 | j〉〈 j |Ac ⊗�
Ar R
j j .

Note that α(J ) is 0 for J = 1 and 1
J−1 for J ≥ 2.

Proof. Since � AR and � AR
av are classically coherent in Ac Rc by assumption, we can

apply Lemma 37 for X AR = � AR −� AR
dp to obtain

Eσ,U

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR −� AR

dp )

∥∥∥
1

]

≤ 1√
J

·
√
Eσ,U

∥∥∥T A→E ◦ GA
σ ◦ U A(� AR −� AR

dp )

∥∥∥
2

2, ζ E ⊗ξ R
. (115)
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Noting that� AR
j j −� AR

dp, j j = 0, we can also apply Lemma 10 under the assumption that

Al is a one-dimensional system, r j = r and ς E R = ζ E ⊗ ξ R . Then, we obtain, for any
σ ∈ P,

EU

[∥∥∥T A→E ◦ GA
σ−1 ◦ U A(� AR −� AR

dp )

∥∥∥
2

2, ζ E ⊗ξ R

]

≤ d2
A

r2
∑

j �=k

∣∣∣∣� Ar R
σ( j)σ (k) ⊗ τ

Ār E
jk

∣∣∣∣2
2, ζ E ⊗ξ R

= J 2
∑

j �=k

∣∣∣∣� Ar R
σ( j)σ (k)

∣∣∣∣2
2, ξ R · ∣∣∣∣τ Ar E

jk

∣∣∣∣2
2, ζ E , (116)

where we have used dA = r J in the last line. Taking the case of J = 1 into account,
and noting that Eσ [g(σ )] = Eσ [g(σ−1)] for any function g, it follows that

Eσ,U

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR −� AR

dp )

∥∥∥
2

2, ζ E ⊗ξ R

]

= Eσ,U

[∥∥∥T A→E ◦ GA
σ−1 ◦ U A(� AR −� AR

dp )

∥∥∥
2

2, ζ E ⊗ξ R

]

≤ J 2
∑

j �=k

Eσ

[∣∣∣∣� Ar R
σ( j)σ (k)

∣∣∣∣2
2,ξ R

]
· ∣∣∣∣τ Ar E

jk

∣∣∣∣2
2,ζ E

= Jα(J )
∑

j ′ �=k′

∣∣∣∣� Ar R
j ′k′
∣∣∣∣2
2,ξ R ·

∑

j �=k

∣∣∣∣τ Ar E
jk

∣∣∣∣2
2,ζ E

= Jα(J )

∥∥∥∥∥∥

∑

j ′ �=k′
| j ′〉〈k′|Ac ⊗�

Ar R
j ′k′

∥∥∥∥∥∥

2

2,ξ R

·
∥∥∥∥∥∥

∑

j �=k

| j〉〈k|Ac ⊗ τ
Ar E
jk

∥∥∥∥∥∥

2

2,ζ E

= Jα(J )
∥∥∥� AR −� AR

dp

∥∥∥
2

2,ξ R
·
∥∥∥τ AE − τ AE

dp

∥∥∥
2

2,ζ E

≤ Jα(J )
∥∥∥� AR

∥∥∥
2

2,ξ R
·
∥∥∥τ AE

∥∥∥
2

2,ζ E

= Jα(J ) · 2−H2(A|R)�|ξ−H2(A|E)τ |ζ . (117)

Here, we have used the definitions � AR
dp := CA(� AR) and τ AE

dp := CA(τ AE ) in the
sixth line, and Lemma 34 in the seventh line. Due the relation between the conditional
collision entropy and the conditional min-entropy (Lemma 23), it is further bounded
from above by 2−Hmin(A|R)�|ξ−Hmin(A|E)τ |ζ .

Finally, we use the property of the the conditional min-entropy (Lemma 28). There
exist normalized states ξ and ζ in the form of

ξ R =
∑

j

| j〉〈 j |Rc ⊗ ξ
Rr
j , ζ E =

∑

j

| j〉〈 j |Ec ⊗ ζ
Er
j , (118)

such that Hmin(A|R)�|ξ = Hmin(A|R)� and Hmin(A|E)τ |ζ = Hmin(A|E)τ . Thus, we
obtain

Eσ,U

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR −� AR

dp )

∥∥∥
2

2, ζ E ⊗ξ R

]
≤ Jα(J ) · 2−Hmin(A|R)�−Hmin(A|E)τ ,

(119)
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which, together with Ineq. (115), complete the proof of Lemma 38. ��

7.1.3. Proof of the non-smoothed randomized partial decoupling We now prove the
non-smoothed randomized partial decoupling, i.e.,

EU∼H×,σ∼P

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR)− T A→E ◦ GA

σ (�
AR
av )

∥∥∥
1

]

≤ √α(J ) · 2− 1
2 Hmin(A|R)�− 1

2 Hmin(A|E)τ + β(Ar ) · 2− 1
2 Hmin(A|R)C(�)− 1

2 Hmin(A|E)C(τ ) ,
(120)

under the assumptionsWA 1 andWA 2. Note that β(Ar ) is 0 for dimHAr = 1 and 1 for
dimHAr ≥ 2. By the triangle inequality, we have

Eσ,U
[∣∣∣∣T A→E ◦ GA

σ ◦ U A(� AR)− T A→E ◦ GA
σ (�

AR
av )

∣∣∣∣
1

]

≤ Eσ,U
[∣∣∣∣T A→E ◦ GA

σ ◦ U A(� AR −� AR
dp )

∣∣∣∣
1

]

+Eσ,U
[∣∣∣∣T A→E ◦ GA

σ ◦ U A(� AR
dp −� AR

av )
∣∣∣∣
1

]
, (121)

where we have used the fact that the unitary invariance of the Haar measure implies
U A(� AR

av ) = � AR
av for any unitary U . The first term is bounded by simply using

Lemma 38.
To bound the second term in (121), we use Lemma 37, leading to

Eσ,U
[∣∣∣∣T A→E ◦ GA

σ ◦ U A(� AR
dp −� AR

av )
∣∣∣∣
1

]

≤ 1√
J

·
√
Eσ,U

∥∥∥T A→E ◦GA
σ ◦U A(� AR

dp −� AR
av )

∥∥∥
2

2, ζ E ⊗ξ R
. (122)

Since�R
dp, j j = �R

av, j j by definition, we can apply Lemma 10 for X AR = � AR
dp −� AR

av .

Noting that � Ar R
dp, jk = �

Ar R
av, jk = 0 for j �= k, this yields

EU

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR

dp −� AR
av )

∥∥∥
2

2,ζ E ⊗ξ R

]

≤ d2
A

r2

J∑

j=1

∥∥∥� Ar R
σ( j)σ ( j) ⊗ τ

Ār E
j j

∥∥∥
2

2,ζ E ⊗ξ R

= J 2
J∑

j=1

∣∣∣∣� Ar R
σ( j)σ ( j)

∣∣∣∣2
2,ξ R · ∣∣∣∣τ Ar E

j j

∣∣∣∣2
2,ζ E . (123)

Thus, similarly to the derivation around Eq. (117), we obtain

Eσ,U

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR

dp −� AR
av )

∥∥∥
2

2, ζ E ⊗ξ R

]

≤ J · 2−Hmin(A|R)�dp−Hmin(A|E)τdp . (124)

Substituting this into Ineq. (122), and noting that � AR
dp −� AR

av = 0 if dimHAr = 1, we
obtain an upper bound on the second term of the R.H.S. in Ineq. (121).

All together, we obtain Ineq. (120) as desired. ��
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7.2. Proof of the randomized partial decoupling under the conditions WA 1 and WA 2.
Wenow show, under the conditionsWA1 andWA2, the randomized partial decoupling:

EU∼H×,σ∼P

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR)− T A→E ◦ GA

σ (�
AR
av )

∥∥∥
1

]

≤ √α(J ) · 2− 1
2 H̃I + β(Ar ) · 2− 1

2 H̃II + 4(ε · Tr[τ ] + μ + εμ), (125)

where � AR
av := EU∼H×[U A(� AR)]. The function α(J ) is 0 for J = 1 and 1

J−1 for

J ≥ 2, and β(Ar ) is 0 for dimHAr = 1 and 1 for dimHAr ≥ 2. The exponents H̃I and
H̃II are given by

H̃I = H ε
min(A|R)� + Hμ

min(A|E)τ , H̃II = H ε
min(A|R)C(�) + Hμ

min(A|E)C(τ ).
(126)

Note that, the duality of the conditional smooth entropies for pure states (Lemma 24)
implies Hμ

min(A|E)τ = −Hμ
max(A|B)C(τ ) and Hμ

min(A|E)C(τ ) = −Hμ
max(Ar |B Ac)C(τ )

(see Sect. 7.3 for the detail).
To prove the statement, we again start with the triangle inequaltiy: By the triangle

inequality, we have

Eσ,U
[∣∣∣∣T A→E ◦ GA

σ ◦ U A(� AR)− T A→E ◦ GA
σ (�

AR
av )

∣∣∣∣
1

]

≤ Eσ,U
[∣∣∣∣T A→E ◦ GA

σ ◦ U A(� AR −� AR
dp )

∣∣∣∣
1

]

+Eσ,U
[∣∣∣∣T A→E ◦ GA

σ ◦ U A(� AR
dp −� AR

av )
∣∣∣∣
1

]
. (127)

Below, we derive upper bounds on the two terms in the R.H.S. separately.
For an upper bound on the first term, fix �̂ ∈ Bε(�) and τ̂ ∈ Bμ(τ) so that we have

Hmin(A|R)
�̂

= H ε
min(A|R)� and Hmin(A|E)τ̂ = H ε

min(A|E)τ . Let �A′ E
+ and �A′ E− be

linear operators on HA′ ⊗ HE such that

�A′ E
+ ≥ 0, �A′ E− ≥ 0, supp[�A′ E

+ ] ⊥ supp[�A′ E− ] (128)

and that

τ A′ E − τ̂ A′ E = �A′ E
+ −�A′ E− . (129)

Let DA→E
+ and DA→E− be superoperators such that

DA→E
+ (�AA′

) = �A′ E
+ , DA→E− (�AA′

) = �A′ E− , (130)

which yields T − T̂ = D+ − D−. From Lemma 11, the CP map T̂ A→E having the
Choi–Jamiołkowski state τ̂ AE satisfies

Eσ,U

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR −� AR

dp )

∥∥∥
1

]

≤ Eσ,U

[∥∥∥T̂ A→E ◦ GA
σ ◦ U A(�̂ AR − �̂ AR

dp )

∥∥∥
1

]

+2 Eσ
[
Tr[(DA→E

+ +DA→E− ) ◦ GA
σ (�

AR
av )]

]

+2 Eσ,U
[
Tr[T̂ A→E ◦ GA

σ ◦ U A(δAR
+ + δAR− )]

]
. (131)
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Due to Lemma 38, the first term in the R.H.S. of the above inequality is bounded as

Eσ,U

[∥∥∥T̂ A→E ◦ GA
σ ◦ U A(�̂ AR − �̂ AR

dp )

∥∥∥
1

]
≤ √α(J ) · 2− 1

2 Hmin(A|R)
�̂

− 1
2 Hmin(A|E)τ̂ .

(132)

Similarly to (101) and (102), using (128) and (129), it turns out that the second and the
third terms are bounded from above by

Eσ

[
Tr[(DA→E

+ +DA→E− ) ◦ GA
σ (�

AR
av )]

]
≤ μ (133)

and

Eσ,U

[
Tr[T̂ A→E ◦ GA

σ ◦ U A(δAR
+ + δAR− )]

]
≤ ε · Tr[τ ] + εμ, (134)

respectively. Hence, we obtain

Eσ,U

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR −� AR

dp )

∥∥∥
1

]

≤ √α(J ) · 2− 1
2 H ε

min(A|R)�− 1
2 Hμ

min(A|E)τ + 2(ε · Tr[τ ] + μ + εμ). (135)

In the same way, we also have

Eσ,U

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR

dp −� AR
av )

∥∥∥
1

]

≤ β(Ar ) · 2− 1
2 H ε

min(A|R)�dp− 1
2 Hμ

min(A|E)τdp + 2(ε · Tr[τ ] + μ + εμ).

Substituting these inequalities into Eq. (127), we obtain the desired result (Ineq. (125)).
��

7.3. Dropping working assumptions WA 1 and WA 2. We now drop the working
assumptionsWA 1 andWA 2, and show that Theorem 3 holds in general. To remind the
working assumptions, we write them down here again:

WA 1 E ∼= Ec Er , where Ec is a quantum system of dimension J
WA 2 The CP map T A→E is decomposed into

T A→E (X) =
J∑

j,k=1

| j〉〈k|Ec ⊗ T Ar →Er
jk (X jk), (136)

in which T jk is a linear supermap from L(HAr ) to L(HEr ) defined by
T jk(ζ ) = T (| j〉〈k| ⊗ ζ ) for each j, k,

To drop these assumptions, we use Lemma 12. Using the linear isometry Y Ac→Ac Ec ,
given by Y = ∑

j | j j〉Ac Ec 〈 j |Ac , we define a new CP map Ť A→E Ec by T A→E ◦
Y Ac→Ac Ec . Lemma 12 states that
∥∥∥Ť A→E Ec ◦ GA

σ ◦ U A(� AR −� AR
av )

∥∥∥
1

=
∥∥∥T A→E ◦ GA

σ ◦ U A(� AR −� AR
av )

∥∥∥
1
.

(137)
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Let τ̌ AE Ec be the Choi–Jamiołkowski state of Ť A→E Ec , i.e., τ̌ AE Ec := J(Ť A→E Ec).
We denote by |τ 〉AB E a purification of τ AE such that the reduced state τ AB is equal
to J(T A→B), where T A→B is the complementary map of T A→E . Then, it is clear that
τ̌ AE Ec = Y(τ AE ), which implies that a purification |τ̌ 〉AB E Ec of τ̌ AE Ec is given by
|τ̌ 〉AB E Ec = Y |τ 〉AB E . It is also straightforward to verify that τ̌ AB = C(τ AB).

The new CP map Ť A→E Ec clearly satisfies WA 1 and WA 2. Hence, using
Eq. (137) and achievability of the randomized partial decoupling under those assump-
tions (Ineq. (125)), we obtain

Eσ,U

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR −� AR

av )

∥∥∥
1

]

= Eσ,U

[∥∥∥Ť A→E Ec ◦ GA
σ ◦ U A(� AR −� AR

av )

∥∥∥
1

]

≤ √α(J ) · 2− 1
2 H ε

min(A|R)�− 1
2 Hμ

min(A|E Ec)τ̌

+ β(Ar ) · 2− 1
2 H ε

min(A|R)C(�)− 1
2 Hμ

min(A|E Ec)C(τ̌ ) + 4(ε · Tr[τ̌ ] + μ + εμ). (138)

Due to the duality of conditional smooth entropies (Lemma 24), we have

Hμ
min(A|E Ec)τ̌ = −Hμ

max(A|B)τ̌ = −Hμ
max(A|B)C(τ ). (139)

Using the property of the conditional smooth entropy for classical-quantum states
(Lemma 27), and noting that τ̌ AE Ec is classically coherent in Ac Ec, we also have

Hμ
min(A|E Ec)C(τ̌ ) = Hμ

min(Ar |E Ec)τ̌ = −Hμ
max(Ar |B Ac)τ̌ = −Hμ

max(Ar |B Ac)C(τ ).
(140)

Substituting these into (138), and noting that Tr[τ̌ ] = Tr[τ ] ≤ 1 by assumption, we
obtain Theorem 3. ��

8. Proof of the Converse

We provide the proof of Theorem 4 under Converse Conditions 1 and 2, which are

CC 1 dimHl
j = 1, dimHr

j = r ( j = 1, . . . , J ).

CC 2 The initial (normalized) state � AR is classically coherent in Ac Rc.

The proof proceeds along the similar line as the proof of the converse part of the one-
shot decoupling theorem (see Section 4 in [11]). Suppose that there exists a normalized
state �E R := ∑J

j=1 ς
E
j ⊗ �

Rr
j j ⊗ | j〉〈 j |Rc , where {ς j }J

j=1 are normalized states on E ,
such that, for δ > 0,

∥∥∥T A→E (� AR)−�E R
∥∥∥
1

≤ δ. (141)

We separately prove that, in this case, the following inequalities hold for anyυ ∈ [0, 1/2)
and ι ∈ (0, 1]:

Hλ
min(A|R)� + Hυ

max(RD|E)T (�) + log J ≥ log ι, (142)

Hλ′
min(A|R)C(�) + Hυ

max(RD|E)T ◦C(�) ≥ log ι + log (1 − 2υ). (143)
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Here, λ and λ′ are given by

λ := 2

√
ι + 4

√
20υ + 2δ +

√
2
√
20υ + 2δ + 2

√
2δ + 2

√
20υ + 2δ + 3υ, (144)

λ′ := υ +
√
4
√
ι + 2x + 2

√
x + (4

√
ι + 8 + 24)x (145)

and x := √
2 4
√
24υ + 2δ.

First, we prove these relations based on the working assumptionsWA 1 andWA 2 in
Sects. 8.1 and 8.2. We complete the proof of Theorem 4 by dropping these assumptions
in Sect. 8.3.

8.1. Proof of Ineq. (142) under WA 1 and WA 2. To prove Ineq. (142), we introduce
the following notations:

• |�〉AR D: A purification of � AR .
• V A→B E : A Stinespring dilation of T A→E .
• |�〉B E R D: A pure state on B E RD defined by |�〉 := V |�〉.
• |θ〉B E R D: A subnormalized pure state on B E RD such that

Hmax(RD|E)θ = Hυ
max(RD|E)�, P(θ B E R D,�B E R D) ≤ υ, (146)

which is classically coherent in Ec Rc.

Note that the existence of |θ〉 satisfying the above condition follows from Lemma 30
about the property of the conditional max-entropy for classically coherent states. From
the definition of the conditional max-entropy, and from the definitions of θ and �, we
have

Hmax(RD|E)θ |θ ≤ Hmax(RD|E)θ = Hυ
max(RD|E)� = Hυ

max(RD|E)T (�). (147)

The proof of Ineq. (142) proceeds as follows. First, we prove that for any X ∈
P(HE R), we can construct a subnormalized pure state |θX 〉B E R D from θ and X such
that

θ B E R
X ≤ 2Hmax(R D|E)θ |θ

ι
· I B ⊗ X E R . (148)

Second, we prove that if X E R satisfies certain conditions, the θX satisfies

Hmin(B E |R)θX ≤ Hλ
min(A|R)�. (149)

Third, we prove that for a proper choice of X E R satisfying the conditions for (149),
Ineq. (148) implies

Hmin(B E |R)θX + Hmax(RD|E)θ |θ + log J ≥ log ι. (150)

Combining (147), (149) and (150), we arrive at (142).
Before we start, we remark that the partial decoupling condition (141) is used in the

proof of (149), particularly when we evaluate the smoothing parameter λ.
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8.1.1. Proof of Ineq. (148) Define Y E R D := 2− 1
2 Hmax(R D|E)θ |θ · (θ E )− 1

2√
(θ E )

1
2 θ E R D(θ E )

1
2 (θ E )− 1

2 . Due to Lemma 25, it holds that θ B E R D ≤ 2Hmax(R D|E)θ |θ ·
I B ⊗ Y E R D and thus

θ B E R ≤ 2Hmax(R D|E)θ |θ · I B ⊗ Y E R . (151)

Let X ∈ P(HE R) be an arbitrary positive semidefinite operator, and define

 E R
X := √

1 − ι · (X E R)
1
2 ((1 − ι) · X E R + ι · Y E R)−

1
2 (152)

and |θX 〉B E R D :=  E R
X |θ〉B E R D . From (151), X ≥ 0 and the assumption that ι ≤ 1, it

follows that

θ B E R ≤ 2Hmax(R D|E)θ |θ
ι

· I B ⊗ ((1 − ι) · X E R + ι · Y E R), (153)

and consequently,

θ B E R
X =  E R

X θ B E R 
†E R
X ≤ (1 − ι) · 2Hmax(R D|E)θ |θ

ι
· I B ⊗ X E R

≤ 2Hmax(R D|E)θ |θ
ι

· I B ⊗ X E R . (154)

8.1.2. Proof of Ineq. (149) Define a subnormalized probability distribution
{
qk :=

‖〈k|Rc |θ〉‖21
}J

k=1, andnormalized pure states |θk〉Er Rr by |θk〉Er Rr := q−1/2
k 〈k|Ec 〈k|Rc |θ〉

for k such that qk > 0. Let ω ∈ S≤(HE R) be a subnormalized state defined by

ωE R :=
∑

k:qk>0

qk |k〉〈k|Ec ⊗ θ
Er
k ⊗ θ

Rr
k ⊗ |k〉〈k|Rc , (155)

where θ Er
k and θ Rr

k are reduced states of |θk〉 on Er and Rr , respectively. Consider an
arbitrary X ∈ P(HE R) so that

[(X E R)−
1
2 , ωE R] = 0 (156)

and

(θ E )−
1
2 (X E R)−

1
2ωE R(X E R)−

1
2 (θ E )−

1
2 =

∑

k:qk>0

|k〉〈k|Ec ⊗ I Er
k ⊗ I Rr

k ⊗ |k〉〈k|Rc .

(157)

As we prove in Appendix F, for any such X , the state |θX 〉 is a subnormalized pure state,
and the partial decoupling condition (141) implies

P(θ B E R
X ,�B E R) ≤ λ, (158)

where λ is defined by (144). Due to the definition of� and the invariance of min-entropy
under local isometry (Lemma 21), we obtain

Hmin(B E |R)θX ≤ Hλ
min(B E |R)� = Hλ

min(A|R)�. (159)
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8.1.3. Proof of Ineq. (150) We choose a proper X E R satisfying Conditions (156) and
(157), and prove Ineq. (150) from (148). Define a normalized state

θ̂ R := 1

J ′
∑

k:qk>0

|k〉〈k|Rc ⊗ θ
Rr
k (160)

where J ′ := |{k|1 ≤ k ≤ J, qk > 0}|, and X E R := J ′ · I E ⊗ θ̂ R . Noting that θ is
classically coherent in Ec Rc, it is straightforward to verify that

(X E R)−
1
2 =

∑

k:qk>0

I E ⊗ |k〉〈k|Rc ⊗ (θ
Rr
k )−

1
2 , (θ E )−

1
2 =

∑

k:qk>0

q
− 1

2
k |k〉〈k|Ec ⊗ (θ

Er
k )−

1
2 .

(161)

Consequently, X E R satisfies Conditions (156) and (157).
Using Ineq. (148), we have

θ B E R
X ≤ J ′ · 2Hmax(R D|E)θ |θ

ι
I B E ⊗ θ̂ R, (162)

which implies, together from the definition of the conditional min-entropy and J ′ ≤ J ,
that

Hmin(B E |R)θX + Hmax(RD|E)θ |θ + log J ≥ log ι. (163)

8.2. Proof of Ineq. (143) under WA 1 and WA 2. We prove (143), that is,

Hλ′
min(A|R)C(�) + Hυ

max(RD|E)T ◦C(�) ≥ log ι + log (1 − 2υ), (164)

under the assumptions WA 1 and WA 2. To show this, we introduce the following
notations:

• |�〉AR D: A purification of � AR , in the same way as in the previous subsection.
• T A→E

C : A trace preserving CP map defined by T A→E
C := T A→E ◦ CA.

• �E R D
C : A normalized state on E RD defined by �E R D

C := T A→E ◦ CA(� AR D).
• θ E R D

C :A subnormalized state on E RD such that Hmax(RD|E)θC = Hυ
max(RD|E)�C

and P(θC,�C) ≤ υ, which is classically coherent and diagonal in Ec Rc.
• θ̂ E R D

C : A normalized state on E RD defined by θ̂ E R D
C := θ E R D

C /Tr[θC].
The assumptionsWA1 andWA2 imply that�E R D

C is classically coherent anddiagonal in
Ec Rc. Thus, the existence of θC satisfying the above condition follows from Lemma 30.
By definition, we have

Hυ
max(RD|E)T ◦C(�) = Hmax(RD|E)θC = Hmax(RD|E)

θ̂C
+ log Tr[θC]. (165)

The proof of Ineq. (164) proceeds as follows. First, we introduce a quantum state
�̂ AR D and a quantum channel T̂ A→E

C , such that T̂ A→E
C (�̂ AR D) is close to the state

T A→E
C (� AR D). Second, we apply the converse inequality (142) to the channel T̂ Ar →E

C,k
and the state �̂ Ar Rr

k , which are obtained by restricting T̂ A→E
C and �̂ AR D to the k-th
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subspace. The obtained inequalities are then averaged over all k. Finally, by using the
properties of the smooth entropies, we obtain Ineq. (164).

To explicitly define �̂ AR D and T̂ A→E
C , observe that, since�C is a normalized state,

we have

P(�R D
C , θ̂ R D

C ) ≤ P(�E R D
C , θ̂ E R D

C ) ≤ P(�E R D
C , θ E R D

C ) ≤ υ. (166)

Thus, due toUhlmann’s theorem, and noting that�R D
C = �R D , there exists a normalized

pure state |�̂〉AR D such that P(� AR D, �̂ AR D) ≤ υ and �̂R D = θ̂ R D
C . It follows

from the latter equality that there exists a trace preserving CP map T̂ A→E
C satisfying

θ̂ E R D
C = T̂ A→E

C (�̂ AR D).

8.2.1. Block-wise application of the converse inequality (142) Define a normalized
probability distribution {rk := ‖〈k|Rc |�̂〉‖21}J

k=1, and let |�̂k〉Ar Rr D := r−1/2
k 〈k|Ec 〈k|Rc

|�̂〉 for k such that rk > 0. Since �̂ is classically coherent in Ec Rc, the �̂k are normalized
states. Define also a CP map T̂ Ar →E

C,k by

T̂ Ar →E
C,k (τ ) = |k〉〈k|Ec T̂ A→E

C (|k〉〈k|Ac ⊗ τ Ar )|k〉〈k|Ec , (167)

which is trace preserving due to the assumptionsWA1 andWA2. We apply the converse
inequality (142) for �̂k and T̂ Ar →E

C,k for each k, by letting J = 1. We particularly choose
υ = 0, in which case Ineq. (142) leads to

Hλk
min(Ar |Rr )�̂k

+ Hmax(Rr D|Er )T̂C,k (�̂k )
≥ log ι. (168)

The smoothing parameter λk is given by

λk := 2
√
ι + 4

√
2δk +

√
2
√
2δk + 4

√
2δk, δk :=

∥∥∥T̂ Ar →E
C,k (�̂

Ar Rr
k )− ς E

k ⊗ �̂
Rr
k

∥∥∥
1
.

(169)

A simple calculation yields

− log

(
∑

k

rk · 2−H
λk
min(Ar |Rr )�̂k

)
≥ − log

(
∑

k

rk · 2Hmax(Rr D|Er )T̂C,k (�̂k )

)
+ log ι.

(170)

8.2.2. Calculation of averaged entropies Using the fact that θ̂C is classically coherent
and diagonal in Ec Rc, it is straightforward to verify that θ̂ E R D

C = T̂ A→E
C (�̂ AR D) =

∑
k rk T̂ Ar →E

C,k (�̂
Ar Rr D
k )⊗|k〉〈k|Rc . Thus, by using the property of the smooth conditional

entropies (Lemmas 26 and 31 ) and P(�, �̂) ≤ υ, both sides of Ineq. (170) are calculated
to be

− log

(
∑

k

rk · 2Hmax(Rr D|Er )T̂C,k (�̂k )

)
= −Hmax(RD|E)

θ̂C
, (171)
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− log

(
∑

k

rk · 2−H
λk
min(Ar |Rr )�̂k

)
≤ H

√
2λ̄

min (A|R)C(�̂) ≤ Hυ+
√
2λ̄

min (A|R)C(�), (172)

where λ̄ :=∑k rkλk . Combining these all together with Eq. (165), we obtain

Hυ+
√
2λ̄

min (A|R)C(�) + Hυ
max(RD|E)T ◦C(�) ≥ log ι + log Tr[θC]. (173)

As we prove in Appendix G, the partial decoupling condition (141) implies

λ̄ ≤ λ(ι,
√
2 4
√
24υ + 2δ) + λ(ι, 4) · √2 4

√
24υ + 2δ, (174)

where λ(ι, x) := 2
√
ι + 2x +

√
x + 2x . A simple calculation then yields

υ +
√
2λ̄ ≤ υ +

√
4
√
ι + 2x + 2

√
x + (4

√
ι + 8 + 24)x, (175)

whose right-hand side is exactly λ′ given in (145). In addition, noting that �C is nor-
malized, and by using the relation between the purified distance and the trace distance
(Property 2 in Lemma 16), the last term in the R.H.S. of (173) is calculated to be

Tr[θC] ≥ ‖�C‖1 − ‖θC −�C‖1 ≥ 1 − 2P(θC,�C) ≥ 1 − 2υ. (176)

Combining these all together, we arrive at

Hλ′
min(A|R)C(�) + Hυ

max(RD|E)T ◦C(�) ≥ log ι + log (1 − 2υ). (177)

8.3. Dropping the working assumptionsWA1andWA2. Wehere show that theworking
assumptions WA 1 and WA 2 can be dropped. The proof is based on Lemma 12. Since
the CP map Ť A→E Ec , defined in Lemma 12, satisfy both conditions, it satisfies Ineq.
(142), which is

Hλ
min(A|R)� + Hυ

max(RD|E Ec)Ť (�) + log J ≥ log ι. (178)

Let V A→B E be a Stinespring dilation of T A→E , and let Z Rc→Rc Ec be a linear isometry
defined by Z := ∑

j | j j〉Rc Ec 〈 j |Rc . A purification |ϑ〉B R DE Ec of Ť A→E Ec (� AR D) is

given by |ϑ〉B R DE Ec = (V A→B E ⊗ Z Rc→Rc Ec )|�〉AR D , and satisfies ϑ B R D = T A→B ◦
CA(� AR D). Hence, due to the duality for the conditional smooth entropy (Lemma 24),
it holds that

Hυ
max(R D|E Ec)Ť (�) = Hυ

max(R D|E Ec)ϑ = −Hυ
min(R D|B)ϑ = −Hυ

min(R D|B)T ◦C(�).
(179)

Combining this with (178), we conclude

Hλ
min(A|R)� − Hυ

min(RD|B)T ◦C(�) + log J ≥ log ι. (180)

The map Ť A→E Ec also satisfies Ineq. (143):

Hλ′
min(A|R)C(�) + Hυ

max(RD|E Ec)Ť ◦C(�) ≥ log ι + log (1 − 2υ). (181)
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Similarly to (179) and (140), by using the property of the conditional max entropy for
classical-quantum states (Lemma 29), we have

Hυ
max(RD|E Ec)Ť ◦C(�) = Hυ

max(Rr D|E Ec)Ť ◦C(�) = Hυ
max(Rr D|E Ec)Ť (�)

= Hυ
max(Rr D|E Ec)ϑ = −Hυ

min(Rr D|B Rc)ϑ = −Hυ
min(Rr D|B Rc)T ◦C(�), (182)

which leads to

Hλ′
min(A|R)C(�) − Hυ

min(Rr D|B Rc)T ◦C(�) ≥ log ι + log (1 − 2υ). (183)

This concludes the proof of Theorem 4 for any trace preserving CP map T A→E . ��

9. Conclusion

In this paper, we have proposed and analyzed a task that we call partial decoupling.
We have presented two different formulations of partial decoupling, and derived lower
and upper bounds on how precisely partial decoupling can be achieved. The bounds are
represented in terms of the smooth conditional entropies of quantum states involving the
initial state, the channel and the decomposition of theHilbert space. Therebyweprovided
a generalization of the decoupling theorem in the version of [11], by incorporating
the direct-sum-product decomposition of the Hilbert space. Applications of our result
to quantum communication tasks and black hole information paradox are provided in
Refs. [21–23] and [24], respectively. A future direction is to apply the result to various
scenarios that have been analyzed in terms of the decoupling theorem, such as relative
thermalization [10] and area laws [8] in the foundation of statistical mechanics.
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Appendix A: Proof of the twisted twirling

Wehere provide the proof of the twisted twirling (Lemma 9). The statement is as follows:
letHAr

j be a subspace ofHAr of dimension r j , and�
Ar
j be the projector ontoHAr

j ⊂ HAr

for j = 1, . . . , J . Let IAr A′
r be I Ar ⊗ I A′

r , and FAr A′
r ∈ L(HAr A′

r ) be the swap operator
defined by

∑
a,b |a〉〈b|Ar ⊗ |b〉〈a|A′

r for any orthonormal basis {|a〉} in HAr and HA′
r .

Further, let I
Ar A′

r
jk and F

Ar A′
r

jk be �Ar
j ⊗�

A′
r

k and (�Ar
j ⊗�

A′
r

k )FAr A′
r , respectively. For

any M Ar A′
r B B′ ∈ L(HAr A′

r B B′
), define

M B B′
I, jk := TrAr A′

r
[IAr A′

r
jk M Ar A′

r B B′ ], M B B′
F,k j := TrAr A′

r
[FAr A′

r
k j M Ar A′

r B B′ ]. (A1)

http://creativecommons.org/licenses/by/4.0/
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Then, it holds that, for j �= k,

EU j ∼H j ,Uk∼Hk

[
(U Ar

j ⊗ U
A′

r
k )M Ar A′

r B B′
(U Ar

j ⊗ U
A′

r
k )†

] = I
Ar A′

r
jk

r j rk
⊗ M B B′

I, jk , (A2)

EU j ∼H j ,Uk∼Hk

[
(U Ar

j ⊗ U
A′

r
k )M Ar A′

r B B′
(U Ar

k ⊗ U
A′

r
j )†

] = F
Ar A′

r
jk

r j rk
⊗ M B B′

F,k j . (A3)

Moreover,

EU j ∼H j

[
(U Ar

j ⊗ U
A′

r
j )M Ar A′

r B B′
(U Ar

j ⊗ U
A′

r
j )†

]

= 1

r j (r2j − 1)

[
(r j I

Ar A′
r

j j − F
Ar A′

r
j j )⊗ M B B′

I, j j + (r jF
Ar A′

r
j j − I

Ar A′
r

j j )⊗ M B B′
F, j j

]
.

(A4)

Otherwise, EU j ,Uk ,Um ,Un

[
(U Ar

j ⊗ U
A′

r
k )M Ar A′

r B B′
(U Ar

m ⊗ U
A′

r
n )†

] = 0.

Proof. The equation EU j ,Uk ,Um ,Un

[
(U Ar

j ⊗ U
A′

r
k )M Ar A′

r B B′
(U Ar

m ⊗ U
A′

r
n )†

] = 0 for
i �= j �= k �= l trivially follows from the fact that the random unitaries {U j } j are
independent and that EU j ∼H j [U j ] = 0.
Let us consider the case where j �= k and prove Eqs. (A2) and (A3). Note that any
X Ar B ∈ L(HAr B) is decomposed into X Ar B =∑p,q X Ar

p ⊗ X B
q , where X Ar

p ∈ L(HAr )

and X B
q ∈ L(HB). Using the fact that

EU j ∼H j [U Ar
j X Ar

p U A†
j ] = Tr[�Ar

j X Ar
p ]

r j
�

Ar
j (A5)

for any X Ar
p ∈ L(HAr ), which follows from the Schur–Weyl duality [46], we have

EU j ∼H j [U Ar
j X Ar BU A†

j ] =
∑

p,q

EU j ∼H j [U Ar
j X Ar

p U A†
j ] ⊗ X B

q

= �
Ar
j

r j
⊗
∑

p,q

Tr[�Ar
j X Ar

p ]X B
q

= �
Ar
j

r j
⊗ TrAr [�Ar

j X Ar B]. (A6)

Using this equality twice for j and k, we obtain Eq. (A2). It also leads to Eq. (A3) as
follows:

EU j ,Uk

[
(U Ar

j ⊗ U
A′

r
k )M Ar A′

r B B′
(U Ar

k ⊗ U
A′

r
j )†

]

= EU j ,Uk

[
(U Ar

j ⊗ U
A′

r
k )M Ar A′

r B B′
F

Ar A′
r (U Ar

j ⊗ U
A′

r
k )†

]
F

Ar A′
r

= EU j ,Uk

[
(U Ar

j ⊗ U
A′

r
k )M Ar A′

r B B′
F

Ar A′
r

k j (U Ar
j ⊗ U

A′
r

k )†
]
F

Ar A′
r

jk

= F
Ar A′

r
jk

r j rk
⊗ TrAr A′

r
[IAr A′

r
jk M Ar A′

r B B′
F

Ar A′
r

k j ]
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= F
Ar A′

r
jk

r j rk
⊗ M

B B′
F,k j . (A7)

Here, we have used relations

F
Ar A′

r
k j = (�

Ar
k ⊗�

A′
r

j )F
Ar A′

r = F
Ar A′

r (�
Ar
j ⊗�

A′
r

k ),

F
Ar A′

r
k j I

Ar A′
r

jk = F
Ar A′

r
k j (�

Ar
j ⊗�

A′
r

k ) = F
Ar A′

r
k j ,

and used Eq. (A2) in the last line.

We finally show Eq. (A4). Consider the operator EU j ∼H j

[
(U Ar

j ⊗ U
A′

r
j )|p〉〈q|Ar ⊗

|s〉〈t |A′
r (U Ar

j ⊗ U
A′

r
j )†

]
. Since this commutes with V ⊗2 (∀V ∈ U(r j )), we obtain from

the Schur–Weyl duality [46] that

EU j ∼H j

[
(U Ar

j ⊗ U
A′

r
j )|p〉〈q|Ar ⊗ |s〉〈t |A′

r (U Ar
j ⊗ U

A′
r

j )†
] = αpqst I

Ar A′
r

j j + βpqstF
Ar A′

r
j j ,

(A8)

where αpqst and βpqst are determined by

δpqδst = αpqstr
2
j + βpqstr j , δptδqs = αpqstr j + βpqstr

2
j . (A9)

Note that the first equation is obtained by taking the trace of Eq. (A8), and the second
is by calculating the expectation of FAr A′

r by both sides in Eq. (A8). Solving these
equalities, we obtain

EU j ∼H j

[
(U Ar

j ⊗ U
A′

r
j )|p〉〈q|Ar ⊗ |s〉〈t |A′

r (U Ar
j ⊗ U

A′
r

j )†
]

= 1

r j (r2j − 1)

(
(δpqδst r j − δptδqs)I

Ar A′
r

j j + (δptδqsr j − δpqδst )F
Ar A′

r
j j

)
, (A10)

from which the equation (A4) is obtained after a straightforward calculation. ��

Appendix B: Proof of Lemma 10

We prove Lemma 10 based on the twisted twirling (Lemma 9) and the swap trick, a
commonly used method in the context of decoupling given as follows:

Lemma 39. (Swap trick (see e.g. [11])) Let X A and Y A be linear operators on HA, and
F

AA′
be the swap operator betweenHA andHA′

defined by
∑

i, j |i〉〈 j |A⊗| j〉〈i |A′
, where

{|i〉} is any basis of HA and HA′ ∼= HA. Then, Tr[X AY A] = Tr[(X A ⊗ Y A′
)FAA′ ].

For simplicity of notations in the proof, we embed a Hilbert space that has the DSP form
to the tensor product of three Hilbert spaces. We explain the notation for this embedding
in Subsection B1 and then show Lemma 10 in Subsection B2.
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1. Embedding of the Hilbert space. Let A be a quantum system described by a finite
dimensional Hilbert space HA, which is decomposed in the form of

HA =
J⊕

j=1

HAl
j ⊗ HAr

j . (B1)

The dimension of each subspace is denoted by l j := dimHAl
j , r j := dimHAr

j . LetHAc ,

HAl and HAr be Hilbert spaces such that

dimHAc = J, dimHAl = max
1≤ j≤J

l j , HAr = max
1≤ j≤J

r j , (B2)

and fix linear isometries W Al
j : HAl

j → HAl , W Ar
j : HAr

j → HAr for each j . We

introduce the following linear isometry, by which the Hilbert space HA is embedded
intoHAc ⊗ HAl ⊗ HAr :

W A→Ac Al Ar :=
J∑

j=1

| j〉Ac ⊗ (W Al
j ⊗ W Ar

j )� j . (B3)

Here, � j is the projection onto a subspace HAl
j ⊗ HAr

j ⊂ HA, and {| j〉}J
j=1 is a fixed

orthonormal basis ofHAc . The W is indeed an isometry, because

(W A→Ac Al Ar )†W A→Ac Al Ar = I A. (B4)

Noting that HAl
j = imgW Al

j ⊂ HAl and HAr
j = imgW Ar

j ⊂ HAr , we have

img(W A→Ac Al Ar ) =
J⊕

j=1

HAc
j ⊗ HAl

j ⊗ HAr
j ⊂ HAc ⊗ HAl ⊗ HAr , (B5)

whereHAc
j ⊂ HAc is a one-dimensional subspace spanned by | j〉 for each j . Denoting

the projection onto HAl
j ⊂ HAl by �Al

j ∈ L(HAl ) and one onto HAr
j ⊂ HAr by

�
Ar
j ∈ L(HAr ), we also have

W Al
j (W Al

j )† = �
Al
j , W Ar

j (W Ar
j )† = �

Ar
j (B6)

and thus

(W A→Ac Al Ar )(W A→Ac Al Ar )† =
J∑

j=1

| j〉〈 j |Ac ⊗�
Ac
j ⊗�

Ar
j . (B7)

Let R be another quantum system represented by a finite dimensional Hilbert spaceHR .
Any X AR ∈ L(HAR) is decomposed by W A→Ac Al Ar in the form of

W A→Ac Al Ar (X AR) =
∑

j,k∈J
| j〉〈k|Ac ⊗ X̃ Al Ar R

jk , (B8)
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where

X̃ Al Ar R
jk := 〈 j |AcW A→Ac Al Ar (X AR)|k〉Ac = (W Al

j ⊗ W Ar
j )� j X AR�k(W

Al
k ⊗ W Ar

k )†.

(B9)

Conversely, any Y Ac Al Ar ∈ L(HAc ⊗ HAl ⊗ HAr ) such that supp(Y Ac Al Ar ) ⊂
img(W A→Ac Al Ar ), is mapped to (W A→Ac Al Ar )†(Y Ac Al Ar ) ∈ L(HA). Note that X̃ jk

is related to X jk defined by (10) as | j〉〈k|Ac ⊗ X̃ Al Ar R
jk = W A→Ac Al Ar (X AR

jk ). In the

following, we denote X̃ Al Ar R
jk by X Al Ar R

jk for simplicity of notations.

Let A′ be a quantum system such thatHA ∼= HA′
. It is straightforward to verify that the

fixed maximally entangled state |�〉 defined by (26) is decomposed by W as

(W A→Ac Al Ar ⊗ W A′→A′
c A′

l A′
r )|�〉AA′ =

J∑

j=1

√
l j r j

dA
| j〉Ac | j〉A′

c |�l
j 〉Al A′

l |�r
j 〉Ar A′

r ,

(B10)

where |�l
j 〉 ∈ HAl

j ⊗HA′
l

j and |�r
j 〉 ∈ HAr

j ⊗HA′
r

j are fixed maximally entangled states
of rank l j and r j , respectively.

2. Proof of Lemma 10. We now prove Lemma 10. The statement is given as follows:
for any ς E R ∈ S=(HE R) and any X ∈ Her(HAR) such that X Al R

j j = 0, the following
inequality holds for any possible permutation σ ∈ P:

EU∼H×

[∥∥∥T A→E ◦ GA
σ−1 ◦ U A(X AR)

∥∥∥
2

2,ς E R

]

≤
J∑

j,k=1

d2
A

r jrk

∥∥∥∥TrAl

[
X

AT
l Ar R

σ( j)σ (k)τ
Al Ār E
jk

]∥∥∥∥
2

2,ς E R
. (B11)

Here, AT
l denotes the transposition of Al with respect to the Schmidt basis of the fixed

maximally entangled state used to define the Choi–Jamiołkowski representation τ AE of
T A→E .

Proof. Introducing anotationFRE,R′ E ′
ς := ((ς E R)⊗2)−1/4(FR R′⊗F

E E ′
)((ς E R)⊗2)−1/4,

we have
∣∣∣∣T A→E ◦ G†A

σ ◦ U†A(X AR)
∣∣∣∣2
2,ς E R

= Tr

[(
(ς E R)−

1
4 T A→E ◦ G†A

σ ◦ U†A(X AR)(ς E R)−
1
4

)2]

= Tr

[(
(ς E R)−

1
4 T A→E ◦ G†A

σ ◦ U†A(X AR)(ς E R)−
1
4

)⊗2 (
F

R R′ ⊗ F
E E ′)

]

= Tr

[(
T A→E ◦ G†A

σ ◦ U†A(X AR)
)⊗2

F
RE,R′ E ′
ς

]

= Tr
[(

X AR)⊗2[
(GA
σ ◦ U A ◦ T ∗E→A)⊗2(FRE,R′ E ′

ς )
]]
. (B12)
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Thus, using the fact that Gσ−1 = G†
σ and that EU∼H×[ f (U )] = EU∼H×[ f (U †)] for any

function f , we have

EU

[∥∥∥T A→E ◦ GA
σ−1 ◦ U A(X AR)

∥∥∥
2

2,ς E R

]

= EU

[∣∣∣∣T A→E ◦ G†A
σ ◦ U†A(X AR)

∣∣∣∣2
2,ς E R

]

= EUTr
[(

X AR)⊗2[
(GA
σ ◦ U A ◦ T ∗E→A)⊗2(FRE,R′ E ′

ς )
]]

= Tr
[(

X AR)⊗2
EU
[
(GA
σ ◦ U A ◦ T ∗E→A)⊗2(FRE,R′ E ′

ς )
]]

= Tr[(X AR)⊗2#AA′ R R′
σ ], (B13)

where we have defined #AA′ R R′
σ := EU∼H×[(GA

σ ◦ U A ◦ T ∗E→A)⊗2(FRE,R′ E ′
ς )].

We first embed the operator #AA′ R R′
σ into the space Ac Al Ar R and A′

c A′
l A′

r R′. We
introduce the following notations for the embedded map and the embedded operators:

T Ac Al Ar →E := T A→E ◦ (W A→Ac Al Ar )†, τ Ac Al Ar E := W A→Ac Al Ar (τ AE ), (B14)

ϒς := (T ∗E→Ac Al Ar )⊗2(FRE,R′ E ′
ς ),

ϒ
Al Ar R A′

l A′
r R′

ς, jkmn := (〈 j |Ac ⊗ 〈k|A′
c )ϒς(|m〉Ac ⊗ |n〉A′

c ). (B15)

Using these notations, the operator #AA′ R R′
σ is embedded to be

(W A→Ac Al Ar )⊗2(#AA′ R R′
σ )

=
J∑

j,k,m,n=1

[|σ( j)〉〈σ(m)|Ac ⊗ |σ(k)〉〈σ(n)|A′
c
]

⊗ EU∼H×
[
(U Ar

j ⊗ U
A′

r
k )ϒ

Al Ar R A′
l A′

r R′
ς, jkmn (U †Ar

m ⊗ U
†A′

r
n )

]
.

Due to Lemma 9, the terms in the summation remain non-zero only in the following
three cases: (i) J ≥ 2 and ( j, k) = (m, n) ( j �= k), (ii) J ≥ 2 and ( j, k) = (n,m)
( j �= k), and (iii) j = k = m = n. In the following, we assume that J ≥ 2, and
separately investigate the three cases using Lemma 9. Our concern is then#σ,(i),#σ,(ii)
and #σ,(iii) such that

(W A→Ac Al Ar )⊗2(#σ,(i))

=
J∑

j,k=1

[|σ( j)〉〈σ( j)|Ac ⊗ |σ(k)〉〈σ(k)|A′
c
]

⊗ EU
[
(U Ar

j ⊗ U
A′

r
k )ϒ

Al Ar R A′
l A′

r R′
ς, jk jk (U †Ar

j ⊗ U
†A′

r
k )

]
, (B16)

(W A→Ac Al Ar )⊗2(#σ,(ii))

=
J∑

j,k=1

[|σ( j)〉〈σ(k)|Ac ⊗ |σ(k)〉〈σ( j)|A′
c
]

⊗ EU
[
(U Ar

j ⊗ U
A′

r
k )ϒ

Al Ar R A′
l A′

r R′
ς, jkk j (U †Ar

k ⊗ U
†A′

r
j )

]
, (B17)
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(W A→Ac Al Ar )⊗2(#σ,(iii))

=
J∑

j=1

[|σ( j)〉〈σ( j)|Ac ⊗ |σ( j)〉〈σ( j)|A′
c
]

⊗ EU
[
(U Ar

j ⊗ U
A′

r
j )ϒ

Al Ar R A′
l A′

r R′
ς, j j j j (U †Ar

j ⊗ U
†A′

r
j )

]
. (B18)

Note that #σ = #σ,(i) +#σ,(ii) +#σ,(iii).
In the case (i), from Lemma 9, we have

(W A→Ac Al Ar )⊗2(#AA′ R R′
σ,(i) ) =

∑

j �=k

1

r jrk
|σ( j)〉〈σ( j)|Ac ⊗ |σ(k)〉〈σ(k)|A′

c ⊗ I
Ar A′

r
jk ⊗#

Al R A′
l R′

(i), jk , (B19)

where #
Al R A′

l R′
(i), jk = TrAr A′

r

[
I

Ar A′
r

jk ϒ
Al Ar R A′

l A′
r R′

ς, jk jk

]
. It follows that

Tr
[(

X Al Ar R
σ( j)σ ( j) ⊗ X

A′
l A′

r R′
σ(k)σ (k)

) (
I

Ar A′
r

jk ⊗#
Al R A′

l R′
(i), jk

)]

= Tr
[(

X Al R
σ( j)σ ( j) ⊗ X

A′
l R′

σ(k)σ (k)

)
#

Al R A′
l R′

(i), jk

]
, (B20)

and consequently, from the condition for X , i.e. X Al R
j j = 0, that Tr[(X AR)⊗2#AA′ R R′

σ,(i) ] =
0.
Let us next consider the case (ii), where ( j, k) = (n,m) ( j �= k). This case yields

(W A→Ac Al Ar )⊗2(#AA′ R R′
σ,(ii) )

=
∑

j �=k

1

r jrk
|σ( j)〉〈σ(k)|Ac ⊗ |σ(k)〉〈σ( j)|A′

c ⊗ F
Ar A′

r
jk ⊗#

Al R A′
l R′

(ii), jk , (B21)

where #
Al R A′

l R′
(ii), jk = TrAr A′

r

[
ϒ

Al Ar R A′
l A′

r R′
ς, jkk j F

Ar A′
r

k j

]
. Denoting the Ar part of ϒ and T ∗ by

Ār , we have

Tr
[(

X Al Ar R
σ(k)σ ( j) ⊗ X

A′
l A′

r R′
σ( j)σ (k)

) (
F

Ar A′
r

jk ⊗#
Al R A′

l R′
(ii), jk

)]

= Tr

[(
X Al Ar R
σ(k)σ ( j) ⊗ X

A′
l A′

r R′
σ( j)σ (k) ⊗ F

Ār Ā′
r

k j

)(
F

Ar A′
r

jk ⊗ϒ
Al Ār R A′

l Ā′
r R′

ς, jkk j

)]

= Tr
[(

|k〉〈 j |Ac ⊗| j〉〈k|A′
c ⊗X Al Ar R

σ(k)σ ( j)⊗X
A′

l A′
r R′

σ( j)σ (k)⊗F
Ār Ā′

r
k j

)

(
F

Ar A′
r

jk ⊗ (T ∗E→Ac Al Ār )⊗2(FRE,R′ E ′
ς )

)]

= Tr
[(
(T Ac Al Ār →E )⊗2

(
|k〉〈 j |Ac ⊗| j〉〈k|A′

c ⊗ X Al Ar R
σ(k)σ ( j)⊗X

A′
l A′

r R′
σ( j)σ (k)⊗F

Ār Ā′
r

k j

))

(
F

Ar A′
r

jk ⊗ F
RE,R′ E ′
ς

)]

= d2
ATr

[((
| j〉〈k|Ac ⊗|k〉〈 j |A′

c ⊗X
AT

l Ar R
σ(k)σ ( j)⊗X

A′T
l A′

r R′
σ( j)σ (k)⊗F

Ār Ā′
r

jk

)
(τ Ac Al Ār E )⊗2

)
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(
F

Ar A′
r

jk ⊗F
RE,R′ E ′
ς

)]

= d2
ATr

[(
X

AT
l Ar R

σ(k)σ ( j) ⊗ X
A′T

l A′
r R′

σ( j)σ (k)

)(
τ

Al Ār E
k j ⊗ τ

A′
l Ā′

r E ′
jk

)

(
F

Ar A′
r

jk ⊗ F
Ār Ā′

r
jk ⊗ F

RE,R′ E ′
ς

)]

= d2
ATr

[(
TrAl

[
X

AT
l Ar R

σ(k)σ ( j)τ
Al Ār E

k j

]
⊗ TrA′

l

[
X

A′T
l A′

r R′
σ( j)σ (k)τ

A′
l Ā′

r E ′
jk

])

(
F

Ar A′
r

jk ⊗ F
Ār Ā′

r
jk ⊗ F

RE,R′ E ′
ς

)]

= d2
A

∥∥∥∥TrAl

[
X

AT
l Ar R

σ( j)σ (k)τ
Al Ār E
jk

]∥∥∥∥
2

2,ς E R
, (B22)

where the fourth line follows from the Choi–Jamiołkowski correspondence (25) and the
last line from the swap trick (Lemma 39). Hence we obtain

Tr[(X AR)⊗2#AA′ R R′
σ,(ii) ]

=
∑

j �=k

d2
A

r jrk

∥∥∥∥TrAl

[
X

AT
l Ar R

σ( j)σ (k)τ
Al Ār E
jk

]∥∥∥∥
2

2,ς E R
. (B23)

Finally, we investigate the case (iii). Lemma 9 leads to

(W A→Ac Al Ar )⊗2(#AA′ R R′
σ,(iii) )

=
J∑

j=1

1

r j (r2j − 1)
|σ( j)〉〈σ( j)|Ac ⊗|σ( j)〉〈σ( j)|A′

c ⊗#Al R A′
l R′

(iii), j j , (B24)

where

#
Al R A′

l R′
(iii), j j :=

[
r j I

Ar A′
r

j j ⊗#
Al R A′

l R′
(i), j j − I

Ar A′
r

j j ⊗#
Al R A′

l R′
(ii), j j

+r jF
Ar A′

r
j j ⊗#

Al R A′
l R′

(ii), j j − F
Ar A′

r
j j ⊗#

Al R A′
l R′

(i), j j

]
. (B25)

Similarly to (B20) and (B22), we have

Tr
[(

X Al Ar R
σ( j)σ ( j) ⊗ X

A′
l A′

r R′
σ( j)σ ( j)

) (
I

Ar A′
r

j j ⊗#
Al R A′

l R′
(ii), j j

)]
= 0 (B26)

and

Tr
[(

X Al Ar R
σ( j)σ ( j) ⊗ X

A′
l A′

r R′
σ( j)σ ( j)

) (
F

Ar A′
r

j j ⊗#
Al R A′

l R′
(i), j j

)]

= Tr
[(

| j〉〈 j |Ac ⊗| j〉〈 j |A′
c ⊗X Al Ar R

σ( j)σ ( j)⊗X
A′

l A′
r R′

σ( j)σ ( j)⊗I
Ār Ā′

r
j j

)

(
F

Ar A′
r

j j ⊗ (T ∗E→Ac Al Ār )⊗2
(
F

RE,R′ E ′
ς

))]

= Tr
[(
(T Ac Al Ār →E )⊗2

(
| j〉〈 j |Ac ⊗ | j〉〈 j |A′

c ⊗ X Al Ar R
σ( j)σ ( j) ⊗ X

A′
l A′

r R′
σ( j)σ ( j) ⊗ I

Ār Ā′
r

j j

))

(
F

Ar A′
r

j j ⊗ F
RE,R′ E ′
ς

)]
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= d2
ATr

[(
X

AT
l Ar R

σ( j)σ ( j) ⊗ X
A′T

l A′
r R′

σ( j)σ ( j)

)(
τ

Al Ār E
j j ⊗ τ

A′
l Ā′

r E ′
j j

)

(
F

Ar A′
r

j j ⊗ I
Ār Ā′

r
j j ⊗ F

RE,R′ E ′
ς

)]

= d2
ATr

[(
TrAl

[
X

AT
l Ar R

σ( j)σ ( j)τ
Al E
j

]
⊗TrA′

l

[
X

A′T
l A′

r R′
σ( j)σ ( j)τ

A′
l E ′

j j

])(
F

Ar A′
r

j j ⊗ F
RE,R′ E ′
ς

)]

= d2
A

∥∥∥∥TrAl

[
X

AT
l Ar R

σ( j)σ ( j)τ
Al E
j j

]∥∥∥∥
2

2,ς E R
. (B27)

Combining this with (B20), (B22) and (B25), we obtain

Tr
[
(X Al R

σ( j)σ ( j))
⊗2#

Al A′
l R R′

(iii), j j

]

= d2
Ar j

∥∥∥∥TrAl

[
X

AT
l Ar R

σ( j)σ ( j)τ
Al Ār E
j j

]∥∥∥∥
2

2,ς
− d2

A

∥∥∥∥TrAl

[
X

AT
l Ar R

σ( j)σ ( j)τ
Al E
j j

]∥∥∥∥
2

2,ς
.

Noting that TrAl [X
AT

l Ar R
σ( j)σ ( j)τ

Al Ār E
j j ] is a Hermitian operator for each j , and by using the

property of the Hilbert–Schmidt norm (see Lemma 13), the above equality leads to

Tr
[
(X Al R

σ( j)σ ( j))
⊗2#

Al A′
l R R′

(iii), j j

]
≤ d2

A

(
r j − 1

r j

)∥∥∥∥TrAl

[
X

AT
l Ar R

σ( j)σ ( j)τ
Al Ār E
j j

]∥∥∥∥
2

2,ς E R
.

(B28)

Combining this with (B24), we have

Tr[(X AR)⊗2#AA′ R R′
σ,(iii) ] =

J∑

j=1

1

r j (r2j − 1)
Tr
[
(X Al R

σ( j)σ ( j))
⊗2#

Al A′
l R R′

(iii), j j

]

≤
J∑

j=1

d2
A

r2j

∥∥∥∥TrAl

[
X

AT
l Ar R

σ( j)σ ( j)τ
Al Ār E
j j

]∥∥∥∥
2

2,ς E R
. (B29)

Since #σ = #σ,(i) +#σ,(ii) +#σ,(iii), we can thus obtain from these evaluations that

Tr[(X AR)⊗2#AA′ R R′
σ ] ≤

J∑

j,k=1

d2
A

r jrk

∥∥∥∥TrAl

[
X

AT
l Ar R

σ( j)σ (k)τ
Al Ār E
jk

]∥∥∥∥
2

2,ς E R
(B30)

for any ς E R ∈ S=(HE R) and σ ∈ P. Combining this with Eq. (B13) concludes the
proof. ��
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Appendix C: Proof of Lemma 11

We prove Lemma 11. We start with recalling the statement: Consider arbitrary unnor-
malized states � AR, �̂ AR ∈ P(HAR) and arbitrary CP maps T , T̂ : A → E . Let
DA→E

+ and DA→E− be arbitrary CP maps such that T − T̂ = D+ − D−. Let δAR
+ and

δAR− be linear operators on HA ⊗ HR , such that

δAR
+ ≥ 0, δAR− ≥ 0, supp[δAR

+ ] ⊥ supp[δAR− ] (C1)

and that

�̂ AR −� AR = δAR
+ − δAR− . (C2)

The following inequality holds for any possible permutation σ ∈ P and for both �∗ =
�av and �∗ = CA(�):

EU∼H×

[∥∥∥T A→E ◦ GA
σ ◦ U A(� AR −� AR∗ )

∥∥∥
1

]

≤ EU∼H×

[∥∥∥T̂ A→E ◦ GA
σ ◦ U A(�̂ AR − �̂ AR∗ )

∥∥∥
1

]

+2 Tr[(DA→E
+ +DA→E− ) ◦ GA

σ (�
AR
av )]

+2 EU∼H×Tr[T̂ A→E ◦ GA
σ ◦ U A(δAR

+ + δAR− )]. (C3)

Here, �̂∗ = EU∼H×[U A(�̂ AR)] for �∗ = �av and �̂∗ = CA(�̂) for �∗ = CA(�).

Proof. By a recursive application of the triangle inequality, we have
∥∥∥T A→E ◦ GA

σ ◦ U A(� AR −� AR∗ )

∥∥∥
1

≤
∥∥∥(T A→E − T̂ A→E ) ◦ GA

σ ◦ U A(� AR)

∥∥∥
1
+
∥∥∥T̂ A→E ◦ GA

σ ◦ U A(� AR − �̂ AR)

∥∥∥
1

+
∥∥∥T̂ A→E ◦ GA

σ ◦ U A(�̂ AR − �̂ AR∗ )

∥∥∥
1
+
∥∥∥T̂ A→E ◦ GA

σ ◦ U A(�̂ AR∗ −� AR∗ )

∥∥∥
1

+
∥∥∥(T̂ A→E − T A→E ) ◦ GA

σ ◦ U A(� AR∗ )

∥∥∥
1
. (C4)

The expectation value of the first term is bounded as

EU

[∥∥∥(T A→E − T̂ A→E ) ◦ GA
σ ◦ U A(� AR)

∥∥∥
1

]

= EU

[∥∥∥(DA→E
+ − DA→E− ) ◦ GA

σ ◦ U A(� AR)

∥∥∥
1

]

≤ EU

[∥∥∥DA→E
+ ◦ GA

σ ◦ U A(� AR)

∥∥∥
1

]
+ EU

[∥∥∥DA→E− ◦ GA
σ ◦ U A(� AR)

∥∥∥
1

]

= EU

[
Tr[DA→E

+ ◦ GA
σ ◦ U A(� AR)]

]
+ EU

[
Tr[DA→E− ◦ GA

σ ◦ U A(� AR)]
]

= Tr[(DA→E
+ +DA→E− ) ◦ GA

σ (�
AR
av )]. (C5)

In the same way, the expectation value of the last term is bounded as

EU

[∥∥∥(T̂ A→E − T A→E ) ◦ GA
σ ◦ U A(� AR∗ )

∥∥∥
1

]
≤ Tr[(DA→E

+ +DA→E− ) ◦ GA
σ (�

AR
av )].
(C6)
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For the second term, we have

EU

[∥∥∥T̂ A→E ◦ GA
σ ◦ U A(� AR − �̂ AR)

∥∥∥
1

]

= EU

[∥∥∥T̂ A→E ◦ GA
σ ◦ U A(δAR

+ − δAR− )

∥∥∥
1

]

≤ EU

[∥∥∥T̂ A→E ◦ GA
σ ◦ U A(δAR

+ )

∥∥∥
1

]
+ EU

[∥∥∥T A→E ◦ GA
σ ◦ U A(δAR− )

∥∥∥
1

]

= EU

[
Tr[T̂ A→E ◦ GA

σ ◦ U A(δAR
+ )]

]
+ EU

[
Tr[T̂ A→E ◦ GA

σ ◦ U A(δAR− )]
]

= EU

[
Tr[T̂ A→E ◦ GA

σ ◦ U A(δAR
+ + δAR− )]

]
. (C7)

Similarly, the expectation value of the fourth term is bounded as

EU

[∥∥∥T̂ A→E ◦ GA
σ ◦ U A(�̂ AR∗ −� AR∗ )

∥∥∥
1

]
≤ EU

[
Tr[T̂ A→E ◦ GA

σ ◦ U A(δAR
+ + δAR− )]

]
.

(C8)

Combining these all together, we obtain (C3). ��

Appendix D: Proof of Lemma 12

We prove Lemma 12, the statement of which is as follows: let T A→E be a CP
map, and introduce a quantum system Ec with dimension J . Define an isometry
Y :=∑ j | j j〉Ac Ec 〈 j |Ac , and a linear supermap Ť A→E Ec by T A→E ◦Y Ac→Ac Ec . Then,

Ť A→E Ec is a CP map and, for any � AR that is classically coherent in Ac Rc, it holds
that
∥∥∥Ť A→E Ec(� AR −� AR

av )

∥∥∥
1

=
∥∥∥T A→E (� AR −� AR

av )

∥∥∥
1
, (D1)

∥∥∥Ť A→E Ec ◦ GA
σ ◦ U A(� AR −� AR

av )

∥∥∥
1

=
∥∥∥T A→E ◦ GA

σ ◦ U A(� AR −� AR
av )

∥∥∥
1
.

(D2)

Proof. Define Z Rc→Rc Ec by Z :=∑ j | j j〉Rc Ec 〈 j |Rc . Since� AR is classically coherent

in Ac Rc and the averaged state is given by� AR
av =∑J

j=1 | j〉〈 j |Ac ⊗π Ar ⊗�Rr
j j ⊗| j〉〈 j |Rc ,

we have

Ť A→E Ec(� AR −� AR
ex ) = T A→E ⊗ Z Rc→Rc Ec (� AR −� AR

ex ) (D3)

and

Ť A→E Ec ◦ GA
σ ◦ U A(� AR −� AR

ex ) = T A→E ◦ GA
σ ◦ U A ⊗ Z Rc→Rc Ec (� AR −� AR

ex ).

(D4)

Therefore, due to the invariance of the the trace distance under linear isometry, we obtain
(D1) and (D2). ��
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Appendix E: Proof of Lemmas 16–20 and 29 –35

Proof of Lemma 16. Property 1 immediately follows from the definition of the purified
distance.
To show Property 2, note that for any ρ, ς ∈ S≤(H), we have (see Lemma 6 in [25])

D̄(ρ, ς) ≤ P(ρ, ς) ≤
√
2D̄(ρ, ς), (E1)

where D̄ is the generalized the trace distance defined by

D̄(ρ, ς) := 1

2
‖ρ − ς‖1 + 1

2
|Tr[ρ] − Tr[ς ]|. (E2)

Noting that the second term in the above expression is no greater than the first term, we
conclude the proof.
For Property 3, define λφ := 〈φ|φ〉 and consider a normalized pure state |φn〉 :=
λ

−1/2
φ |φ〉. Due to the triangle inequality and the first statement of this lemma, we have

P(ψ, φ) ≤ P(ψ, φn) + P(φn, φ)

=
√
1 − |〈ψ |φn〉|2 +

√
1 − |〈φn|φ〉|2

=
√
1 − λ−1

φ |〈ψ |φ〉|2 +
√
1 − λ−1

φ |〈φ|φ〉|2

≤
√
1 − |〈ψ |φ〉|2 +√1 − λφ, (E3)

which completes the proof. ��
Proof of Lemma 17. Since ρABK and ρAB

k are normalized, the purified distances are
given by

P(ρABK , ρ̂ABK ) =
√
1 − ‖

√
ρABK

√
ρ̂ABK ‖21, δk := P(ρk, ρ̂k) =

√
1 − ‖√ρk

√
ρ̂k‖21.
(E4)

The latter equality leads to

∑

k

pk‖√ρk

√
ρ̂k‖1 =

∑

k

pk

√
1 − δ2k ≥

∑

k

pk(1 − δk) = 1 −
∑

k

pkδk . (E5)

In addition, a simple calculation yields ‖√ρABK
√
ρ̂ABK ‖1 = ∑

k pk‖√ρk
√
ρ̂k‖1.

Combining these relationswith the first one in (E4), and by using
√
1 − (1 − x)2 ≤ √

2x ,
we obtain the desired result. ��
Proof of Lemma 18. Define ς ′AK := ∑

k pkς
A
k ⊗ |k〉〈k|K . By the triangle inequality,

we have
∥∥∥ρAK − ς AK

∥∥∥
1

≤
∥∥∥ρAK − ς ′AK

∥∥∥
1
+
∥∥∥ς ′AK − ς AK

∥∥∥
1

=
∑

k

pk ‖ρk − ςk‖1 +
∑

k

|pk − qk |. (E6)
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We also have
∑

k

pk ‖ρk − ςk‖1 =
∑

k

‖pkρk − pkςk‖1

≤
∑

k

‖pkρk − qkςk‖1 +
∑

k

‖qkςk − pkςk‖1

=
∥∥∥ρAK − ς AK

∥∥∥
1
+
∑

k

|pk − qk |, (E7)

which implies the first inequality in (69). The second inequality simply follows from the
monotonicity of the trace distance under discarding of system A. ��
Proof of Lemma 19. Consider arbitrary finite dimensional quantum system C and any
subnormalized state ξ on AC such that the reduced state on A takes the form of ξ A =⊕J

j=1 q j

Al
j ⊗ π

Ar
j . Due to the triangle inequality for the trace norm, it holds that

‖E A→B(ξ AC ) + F A→B(ξ AC )‖1 ≤ ‖E A→B(ξ AC )‖1 + ‖F A→B(ξ AC )‖1
≤ ‖E A→B‖DSP + ‖F A→B‖DSP.

By taking the supremum over all C and ξ in the first line, we obtain Lemma 19. ��
Proof of Lemma 20. Due to the completeness of the set of projectors, it holds
that � = ∑

j,k � j��k .. This yields Tr[�†�] = ∑
j, j ′,k Tr[� j��k�k�� j ′ ] =∑

j,k Tr[� j��k�k�� j ] and completes the proof. ��
Proof of Lemma 29. Let |ϕk〉ABC be a purification of ρAB

k for each k. A purification of
ρABK1K2 is given by |ϕ〉ABC K1K2K3 := ∑

k
√

pk |ϕk〉ABC |k〉K1 |k〉K2 |k〉K3 . Due to the
duality of the conditional entropies (Lemma 24), Lemma 27 and isometric invariance
(Lemma 22), we have

H ε
max(AK1|BK2)ρ = −H ε

min(AK1|C K3)ϕ = −H ε
min(A|C K3)ϕ

= H ε
max(A|BK1K2)ρ = H ε

max(A|BK2)ρ, (E8)

which completes the proof. ��
Proof of Lemma 30. Consider ρ′ ∈ Bε(ρ) such that H ε

max(K1A|K2B)ρ = Hmax

(K1A|K2B)ρ′ . Introduce a projector �K1K2 := ∑
k |k〉〈k|K1 ⊗ |k〉〈k|K2 , and define

ρ̂K1K2 AB := �K1K2ρ′K1K2 AB�K1K2 . Using the monotonicity of purified distance
under trace non-increasing CP map (Property 2 in Lemma 15), and noting that
ρK1K2 AB = �K1K2ρK1K2 AB�K1K2 by assumption, we have P(ρ̂K1K2 AB, ρK1K2 AB) ≤
P(ρ′K1K2 AB, ρK1K2 AB), which yields ρ̂ ∈ Bε(ρ). Due to the operator monotonicity of
the square root function (see e.g. [47]) and ρ′K1K2 AB ≥ ρ̂K1K2 AB , we have, for any
ς ∈ S(HK2B),

∥∥∥∥
√
ρ′K1 AK2B

√
ςK2B

∥∥∥∥
1

= Tr

[√√
ςK2Bρ′K1 AK2B

√
ςK2B

]

≥ Tr

[√√
ςK2B ρ̂K1 AK2B

√
ςK2B

]
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=
∥∥∥∥
√
ρ̂K1 AK2B

√
ςK2B

∥∥∥∥
1
. (E9)

Recalling the definition of the conditional max entropy (18), (21) and (24), this implies

Hmax(K1A|K2B)ρ′ ≥ Hmax(K1A|K2B)ρ̂ ≥ H ε
max(K1A|K2B)ρ, (E10)

and consequently, H ε
max(K1A|K2B)ρ = Hmax(K1A|K2B)ρ̂ . If ρ is also diagonal in

K1K2, we may, without loss of generality, assume that ρ′ is diagonal in K1K2 (see
Proposition 5.8 in [48]), which completes the proof. ��
Proof of Lemma 31. Let ρ̂AB

k ∈ Bεk (ρAB
k ) be such that H εk

min(A|B)ρk = Hmin(A|B)ρ̂k

for each k, and define a subnormalized state ρ̂ABK := ∑
k pk ρ̂

AB
k ⊗ |k〉〈k|K . From

Lemma 26, we have Hmin(A|BK )ρ̂ = − log(
∑

k pk ·2−Hmin(A|B)ρ̂k ). Due to the property

of the purified distance (Lemma 17), we also have ρ̂ABK ∈ B
√
2ε(ρABK ), where ε =∑

k pkεk . This completes the proof. ��
Proof of Lemma 32. Let {|i〉}dA

i=1 and {| j〉}dB
j=1 be the Schmidt bases of |�〉AA′

and

|�〉B B′
, respectively, and suppose that X = ∑

i, j xi j | j〉〈i | and Y = ∑
i, j yi j | j〉〈i |.

The statement follows by noting that Tr[X T Y ] =∑i, j xi j yi j . ��
Proof of Lemma 33. Suppose that �2 is classically coherent. For any x �= y, it holds
that

0 = 〈x |X 〈y|Y�2|x〉X |y〉Y

=
∑

x ′,y′
〈x |X 〈y|Y�|x ′〉X |y′〉Y · 〈x ′|X 〈y′|Y�|x〉X |y〉Y

≥ (〈x |X 〈y|Y�|x〉X |y〉Y )2, (E11)

which implies 〈x |X 〈y|Y�|x〉X |y〉Y = 0 and completes the proof. ��
Proof of Lemma 34. The first inequality is proved as
∥∥∥ρAR − π A ⊗ ρR

∥∥∥
2

2
= Tr[(ρAR − π A ⊗ ρR)2]
= Tr[(ρAR)2 − ρAR(π A ⊗ ρR)− (π A ⊗ ρR)ρAR + (π A ⊗ ρR)2]
= Tr[(ρAR)2] − 1

dA
Tr[(ρR)2]

≤ Tr[(ρAR)2] =
∥∥∥ρAR

∥∥∥
2

2
. (E12)

Similarly, we obtain the second one as

∥∥∥ρAR − CA(ρAR)

∥∥∥
2

2

= Tr[(ρAR − CA(ρAR))2]
= Tr[(ρAR)2] + Tr[(CA(ρAR))2] − 2Tr[ρARCA(ρAR)]
= Tr[(ρAR)2] +

∑

i, j

Tr[(|i〉〈i |A ⊗ ρR
ii )(| j〉〈 j |A ⊗ ρR

j j )] − 2
∑

j

Tr[ρAR(| j〉〈 j |A ⊗ ρR
j j )]
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= Tr[(ρAR)2] −
∑

j

Tr[(ρR
j j )

2]

≤ Tr[(ρAR)2] =
∥∥∥ρAR

∥∥∥
2

2
, (E13)

which concludes the proof. ��
Proof of Lemma 35. There exist normalized state vectors |ψ ′〉, |φ′〉 ∈ H such that

|ψ〉 = 〈e|ψ〉|e〉 + α|ψ ′〉, |φ〉 = 〈e|φ〉|e〉 + β|φ′〉, 〈
e|ψ ′〉 = 〈e|φ′〉 = 0, (E14)

where the coefficients α and β are given by

α =
√
1 − 〈e|ψ〉2, β =

√
1 − 〈e|φ〉2. (E15)

Since 〈e|ψ〉 ≥ c, and 〈e|φ〉 ≥ c, we have α, β ≤ √
1 − c2, which implies

|〈ψ |φ〉| = |〈ψ |e〉〈e|φ〉 + αβ〈ψ ′|φ′〉| ≥ |〈ψ |e〉〈e|φ〉| − |αβ〈ψ ′|φ′〉| ≥ c2 − (1 − c2).
(E16)

This completes the proof. ��

Appendix F: Proof of Ineq. (158)

We prove Ineq. (158), i.e.

P(θ B E R
X ,�B E R) ≤ 2

√
ι + 4

√
20υ + 2δ +

√
2
√
20υ + 2δ + 2

√
2δ + 2

√
20υ + 2δ + 3υ,

(F1)

under the following conditions that are presented in Sect. 8:

(i) The δ-partial decoupling condition is satisfied, that is, there exists a state

�E R :=
J∑

j=1

ς E
j ⊗�

Rr
j j ⊗ | j〉〈 j |Rc , (F2)

where {ς j }J
j=1 are normalized states on E , such that

∥∥∥T A→E (� AR)−�E R
∥∥∥
1

≤ δ. (F3)

(ii) The operator X ∈ P(HE R) satisfies

[(X E R)−
1
2 , ωE R] = 0 (F4)

and

(θ E )−
1
2 (X E R)−

1
2ωE R(X E R)−

1
2 (θ E )−

1
2 =

∑

k:qk>0

|k〉〈k|Ec ⊗ I Er
k ⊗ I Rr

k ⊗ |k〉〈k|Rc ,

(F5)
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where ω is a subnormalized state defined by

ωE R :=
∑

k:qk>0

qk |k〉〈k|Ec ⊗ θ
Er
k ⊗ θ

Rr
k ⊗ |k〉〈k|Rc . (F6)

and

qk := ‖〈k|Rc |θ〉‖21, |θk〉Er Rr := q−1/2
k 〈k|Ec 〈k|Rc |θ〉. (F7)

To this end, we evaluate the distances between purifications of �E R ∈ S=(HE R) and
ωE R ∈ S≤(HE R), in addition to a normalized pure state |�〉 and subnormalized pure
states |θ〉, |θX 〉 and |ωX 〉 on B E RD. Recall that |�〉 and |θ〉 are defined as follows:

• |�〉 := V |�〉, where |�〉AR D is a purification of� AR and V A→B E is a Stinespring
dilation of T A→E .

• |θ〉: A subnormalized pure state such that

Hmax(RD|E)θ = Hυ
max(RD|E)�, P(θ B E R D,�B E R D) ≤ υ, (F8)

which is classically coherent in Ec Rc.

With  E R
X being a linear operator

 E R
X := √

1 − ι · (X E R)
1
2 ((1 − ι) · X E R + ι · Y E R)−

1
2 , (F9)

the subnormalized pure states |θX 〉 and |ωX 〉 are define by
|θX 〉 :=  E R

X |θ〉, |ωX 〉 :=  E R
X |ω〉. (F10)

Due to the operator monotonicity of the inverse function (see e.g. [47]), we have

 X 
†
X = (1 − ι) · (X E R)

1
2 ((1 − ι) · X E R + ι · Y E R)−1(X E R)

1
2

≤ (1 − ι) · (X E R)
1
2 ((1 − ι) · X E R)−1(X E R)

1
2 = I E R . (F11)

Consequently,  E R
X is contractive, and thus |θX 〉 and |ωX 〉 are indeed subnormalized

states. Relations among these states are depicted in Figure 2.

1. Application of triangle inequality. Consider a subnormalized state ωE R defined by
(F6). Due to Uhlmann’s theorem (Lemma 15), there exists a purification |ω〉B E R D of
ωE R such that

P(θ B E R D, ωB E R D) = P(θ E R, ωE R). (F12)

By the triangle inequality for the the purified distance, it holds that

P(θ B E R
X ,�B E R)

≤ P(θ B E R
X , ωB E R

X ) + P(ωB E R
X , ωB E R) + P(ωB E R, θ B E R) + P(θ B E R,�B E R)

≤ P(θ B E R D
X , ωB E R D

X ) + P(ωB E R D
X , ωB E R D) + P(ωB E R D, θ B E R D)

+ P(θ B E R D,�B E R D)

≤ 2P(ωB E R D, θ B E R D) + P(ωB E R D
X , ωB E R D) + υ
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|θX |ωX

ΓX

|Θ

|θ |ω ωθ

Ω

υ-smoothing υ

δ-P.D.

Uhlmann’s
theorem

contractivity

T (Ψ) = Θ

BERD ER

ΓX

Fig. 2. Relations among subnormalized states �, θ , θX , �, ω and ωX are depicted. Dashed arrows represent
how the states are defined, and the dotted lines represent the distances between the states. The goal of the
proof is to evaluate the distance between |�〉 and |θX 〉, by expressing it in terms of distances between other
states on the whole system B E RD as depicted in the left. To evaluate the distance between |θ〉 and |ω〉, we
also consider those states on subsystem E R, as depicted in the right

= 2P(ωE R, θ E R) + P(ωB E R D
X , ωB E R D) + υ

≤ 2P(ωE R,�E R) + 2P(�E R,�E R) + 2P(�E R, θ E R) + P(ωB E R D
X , ωB E R D) + υ

≤ 2P(ωE R,�E R) + 2P(�E R,�E R) + P(ωB E R D
X , ωB E R D) + 3υ. (F13)

Here, the third line follows from the monotonicity of the purified distance under partial
trace (see Lemma 15); the fourth line from the monotonicity of the purified distance
under the trace-nonincreasing CP map  E R

X and from the condition for θ given by (F8);
the fifth line due to Eq. (F12); and the last line again from (F8). Noting that we have
�E R = T A→E (� AR) from the definition of �, and by using the partial decoupling
condition (F3) as well as the relation between the purified distance and the the trace
distance (Lemma 16), we have

P(�E R,�E R) ≤
√
2
∥∥�E R −�E R

∥∥
1 ≤ √

2δ (F14)

for the second term in (F13). In the following, we prove that the first and the third term
in (F13) are bounded as

P(ωE R,�E R) ≤ √
20υ + 2δ, (F15)

P(ωB E R D
X , ωB E R D) ≤ 2

√
ι + 4P(ωE R,�E R) +

√
2P(ωE R,�E R), (F16)

respectively. Combining these all together, we arrive at (F1).



One-Shot Randomized and Nonrandomized Partial Decoupling 641

2. Evaluation of P(�E R, ωE R). We first evaluate P(�E R, ωE R) by using the partial
decoupling condition (F3). From the normalized state |�〉, define

pk := ‖〈k|Rc |�〉‖21, |�k〉 := p−1/2
k 〈k|Ec 〈k|Rc |�〉. (F17)

From the condition that � AR is classically coherent in Ac Rc and T A→E is trace-
preserving, it follows that

pk�
Rr
k = TrB E D[〈k|Rc |�〉〈�|B E Rc Rr D|k〉Rc ]

= TrAD[〈k|Rc |�〉〈�|ARc Rr D|k〉Rc ]
= 〈k|Rc�Rc Rr |k〉Rc = �

Rc
kk . (F18)

Consequently, the state �E R defined by (F2) is represented as

�E R =
J∑

k=1

pkς
Ec Er
k ⊗�

Rr
k ⊗ |k〉〈k|Rc . (F19)

Thus, from the definition of ω given by (F6) and (F7), and by using the property of the
trace distance (Lemma 18),we have
∥∥∥�E R − ωE R

∥∥∥
1

≤
J∑

k=1

|pk − qk | +
J∑

k=1

pk

∥∥∥ς Ec Er
k ⊗�

Rr
k − |k〉〈k|Ec ⊗ θ

Er
k ⊗ θ

Rr
k

∥∥∥
1

≤
J∑

k=1

|pk − qk | +
J∑

k=1

pk

∥∥∥ς Ec Er
k ⊗�

Rr
k − |k〉〈k|Ec ⊗�

Er
k ⊗�

Rr
k

∥∥∥
1

+
J∑

k=1

pk

∥∥∥�Er
k ⊗�

Rr
k −�

Er
k ⊗ θ

Rr
k

∥∥∥
1
+

J∑

k=1

pk

∥∥∥�Er
k ⊗ θ

Rr
k − θ

Er
k ⊗ θ

Rr
k

∥∥∥
1

=
J∑

k=1

|pk − qk | +
J∑

k=1

pk

∥∥∥ς Ec Er
k − |k〉〈k|Ec ⊗�

Er
k

∥∥∥
1

+
J∑

k=1

pk

∥∥∥�Rr
k − θ

Rr
k

∥∥∥
1
+

J∑

k=1

pk

∥∥∥�Er
k − θ

Er
k

∥∥∥
1
. (F20)

Noting that �Ec and θ Ec are both diagonal in {|k〉}k , the first term is equal to
‖�Ec − θ Ec‖1. By using Lemma 18 again, the third and the fourth terms are bounded
as
∑J

k=1 pk‖�Rr
k − θ

Rr
k ‖1 ≤ 2‖�Rc Rr − θ Rc Rr ‖1 and

∑J
k=1 pk‖�Er

k − θ
Er
k ‖1 ≤

2‖�Ec Er −θ Ec Er ‖1, respectively. In addition, denoting by CRc the completely dephasing
operation on Rc with respect to the basis {|k〉}k , the second term is bounded as

J∑

k=1

pk

∥∥∥ς Ec Er
k − |k〉〈k|Ec ⊗�

Er
k

∥∥∥
1
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=
∥∥∥∥∥

J∑

k=1

pkς
Ec Er
k ⊗ |k〉〈k|Rc −

J∑

k=1

pk |k〉〈k|Ec ⊗�
Er
k ⊗ |k〉〈k|Rc

∥∥∥∥∥
1

=
∥∥∥�Ec Er Rc − CRc(�Ec Er Rc)

∥∥∥
1

≤
∥∥∥�Ec Er Rc −�Ec Er Rc

∥∥∥
1
, (F21)

where we used�Ec Er Rc = CRc(�Ec Er Rc) in the last line. Substituting all these inequal-
ities to (F20), we arrive at

∥∥∥�E R − ωE R
∥∥∥
1

≤
∥∥∥�Ec − θ Ec

∥∥∥
1
+ 2
∥∥∥�Rc Rr − θ Rc Rr

∥∥∥
1
+ 2
∥∥∥�Ec Er − θ Ec Er

∥∥∥
1

+
∥∥∥�Ec Er Rc −�Ec Er Rc

∥∥∥
1

≤ 5
∥∥∥�E R − θ E R

∥∥∥
1
+
∥∥∥�E R −�E R

∥∥∥
1

≤ 5
∥∥∥�E R − θ E R

∥∥∥
1
+ δ, (F22)

where the last line follows from the partial decoupling condition (F3) and �E R =
T A→E (� AR). From the relation between the trace distance and the purified distance
(see Lemma 15), and from the definition of θ , the first term is bounded as

∥∥∥�E R − θ E R
∥∥∥
1

≤ 2P(�E R, θ E R) ≤ 2υ. (F23)

Substituting this to (F22), and again using Lemma 15, it follows that

P(�E R, ωE R) ≤
√
2
∥∥�E R − ωE R

∥∥
1 ≤ √

20υ + 2δ, (F24)

which implies (F15).

3. Evaluation of P(ωB E R D
X , ωB E R D). Due to the property of the purified distance for

subnormalized pure states (Property 3 in Lemma 16), we have

P(ωB E R D
X , ωB E R D) ≤

√
1 − |〈ωX |ω〉|2 + √

χω =
√
1 − |〈ω|( E R

X )†|ω〉|2 + √
χω,

(F25)

where χω := 1 − 〈ω|ω〉 and the last line follows from the definition of ωX given by
(F10). To bound the first term, define

|ω̃〉B E R D :=
√
1 − ι

α
· ( E R

X )−1|ω〉B E R D, (F26)

where

α := (1 − ι) · 〈ω|ω〉 + ι. (F27)
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Note that α ≤ 1 due to the condition ι ≤ 1. As we prove below, |ω̃〉 is a normalized pure
state. In addition, since  †

X is a contraction, ( E R
X )†|ω〉 is a subnormalized pure state.

Hence, we can apply Lemma 35 for subnormalized pure states |ω〉, ( E R
X )†|ω〉 and a

normalized pure state |ω̃〉 to bound the first term in (F25).
Due to the definition of ω̃ in (F26) and α ≤ 1, we have

〈ω̃|( E R
X )†|ω〉 =

√
1 − ι

α
· 〈ω|ω〉 ≥ √

1 − ι · (1 − χω). (F28)

In addition, we have

〈ω|ω̃〉 =
√
1 − ι

α
· 〈ω|( E R

X )−1|ω〉
= α−1/2 · Tr[ωE R((1 − ι) · X E R + ι · Y E R)

1
2 (X E R)−

1
2 ]

= α−1/2 · Tr[(X E R)−
1
4ωE R(X E R)−

1
4 ((1 − ι) · X E R + ι · Y E R)

1
2 ]

≥ √
1 − ι · Tr[(X E R)−

1
4ωE R(X E R)−

1
4 · (X E R)

1
2 ]

= √
1 − ι · Tr[ωE R] = √

1 − ι · (1 − χω). (F29)

Here, the second line follows from the definition of  X by (F9), the third line from the
commutativity of (X E R)−1/2 and ωE R , given by (F4), and the fourth line due to α ≤ 1
and the matrix monotonicity of the square root function. Thus, Lemma 35 yields

|〈ω|( E R
X )†|ω〉| ≥ 2(1 − ι) · (1 − χω)

2 − 1 ≥ 1 − 2(ι + 2χω). (F30)

Combining this with (F25), and by using
√
1 − (1 − x)2 ≤ √

2x , we obtain

P(ωB E R D
X , ωB E R D) ≤ 2

√
ι + 2χω +

√
χω. (F31)

Noting that�E R is a normalized state, the triangle inequality for the trace norm and the
relation between the trace distance and the purified distance (Lemma 16) lead to

χω = Tr[�E R] − Tr[ωE R] = ‖�E R‖1 − ‖ωE R‖1 ≤ ‖ωE R −�E R‖1 ≤ 2P(ωE R,�E R).

(F32)

Substituting this to (F31), we arrive at (F16).
To prove that |ω̃〉 is a normalized pure state, we observe, from the definition of  X in
(F9) and that of ω̃ in (F26), that

α · 〈ω̃|ω̃〉 = (1 − ι) · 〈ω|( E R
X )−1†( E R

X )−1|ω〉
= 〈ω|(X E R)−

1
2 ((1 − ι) · X E R + ι · Y E R)(X E R)−

1
2 |ω〉

= (1 − ι) · 〈ω|ω〉 + ι · 〈ω|(X E R)−
1
2 Y E R(X E R)−

1
2 |ω〉

= (1 − ι) · 〈ω|ω〉 + ι · Tr[(X E R)−
1
2ωE R(X E R)−

1
2 Y E R]. (F33)

Noting that Y E R is classically coherent in Ec Rc due to Lemma 33, we obtain from the
property (F5) of X E R that

(X E R)−
1
2ωE R(X E R)−

1
2 Y E R



644 E. Wakakuwa, Y. Nakata

= (θ E )
1
2 · (θ E )−

1
2 (X E R)−

1
2ωE R(X E R)−

1
2 (θ E )−

1
2 · (θ E )

1
2 Y E R

=
⎛

⎝
∑

k:qk>0

|k〉〈k|Ec ⊗ θ
Er
k ⊗ I Rr

k ⊗ |k〉〈k|Rc

⎞

⎠ Y E R

= (θ E ⊗ I R)Y E R . (F34)

Substituting this to (F33), we obtain

α · 〈ω̃|ω̃〉 = (1 − ι) · 〈ω|ω〉 + ι · Tr[θ E Y E R]. (F35)

Note thatwe haveTr[θ E Y E R] = Tr[θ E Y E R D] = 1 from the definition of the conditional
max-entropy and the definition of Y E R D . Thus, using the definition of α in (F27), we
arrive at 〈ω̃|ω̃〉 = 1. ��

Appendix G: Proof of Ineq. (174)

We prove Ineq. (174), that is,

λ̄ :=
∑

k

rkλk ≤ λ
(
ι,

√
2 4
√
24υ + 2δ

)
+ λ(ι, 4) · √

2 4
√
24υ + 2δ, (G1)

under the partial decoupling condition (141). Recall that λ(ι, x) is defined by λ(ι, x) :=
2
√
ι + 2x +

√
x + 2x , and that rk and λk are given by

rk := ‖〈k|Rc |�̂〉‖21, λk := 2
√
ι + 4

√
2δk +

√
2
√
2δk + 4

√
2δk, (G2)

where

δk :=
∥∥∥T̂ Ar →E

C,k (�̂
Ar Rr
k )− ς E

k ⊗ �̂
Rr
k

∥∥∥
1

(G3)

and

|�̂k〉Ar Rr D := r−1/2
k 〈k|Ec 〈k|Rc |�̂〉,

T̂ Ar →E
C,k (τ ) = |k〉〈k|Ec T̂ A→E

C (|k〉〈k|Ac ⊗ τ Ar )|k〉〈k|Ec . (G4)

We introduce similar notations for |�〉 and T A→E
C := T A→E ◦ C as follows:

pk := ‖〈k|Rc |�〉‖21, |�k〉Ar Rr D := p−1/2
k 〈k|Ec 〈k|Rc |�〉,

T Ar →E
C,k (τ ) = |k〉〈k|EcT A→E

C (|k〉〈k|Ac ⊗ τ Ar )|k〉〈k|Ec . (G5)

Note that�Rr
kk = pk�

Rr
k . It is straightforward to verify that the states T̂ A→E

C (�̂ AR) and
T A→E
C (� AR) are represented by

T̂ A→E
C (�̂ AR) =

∑

k

rk |k〉〈k|Ec ⊗ |k〉〈k|Rc ⊗ T̂ Ar →E
C,k (�̂

Ar Rr
k ), (G6)

T A→E
C (� AR) =

∑

k

pk |k〉〈k|Ec ⊗ |k〉〈k|Rc ⊗ T Ar →E
C,k (�

Ar Rr
k ). (G7)
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Since � AR is assumed to be classically coherent in Ac Rc (Converse Condition 2),
the partial decoupling condition (141) implies that there exists {ς E

j } (ς E
j ∈ S=HE )

satisfying

‖T A→E ◦ CA(� AR)−�E R‖1 ≤ δ, (G8)

where �E R :=∑J
j=1 ς

E
j ⊗�

Rr
j j ⊗ | j〉〈 j |Rc =∑J

j=1 p jς
E
j ⊗�

Rr
j ⊗ | j〉〈 j |Rc .

From (G2) and the definition of λ(ι, x), we have λk = λ(ι, 2
√
2δk). Noting that δk ≤ 2

by the definition of the trace distance, and that
∑

k rk · 2√2δk ≤ 2
√
2δ̄ by Jensen’s

inequality, where δ̄ :=∑k rkδk , we can apply Lemma 36 for f (x) = λ(ι, x), c = 4 and
εk = 2

√
2δk to obtain

λ̄ =
∑

k

rkλ(ι, 2
√
2δk) ≤ λ

(
ι,

√
2
√
2δ̄

)
+ λ(ι, 4) ·

√
2
√
2δ̄. (G9)

The δ̄ can further be calculated as follows. By the triangle inequality, we have

δ̄ =
∑

k

rk

∥∥∥T̂ Ar →E
C,k (�̂

Ar Rr
k )− ς E

k ⊗ �̂
Rr
k

∥∥∥
1

≤
∑

k

rk

∥∥∥T̂ Ar →E
C,k (�̂

Ar Rr
k )− T Ar →E

C,k (�
Ar Rr
k )

∥∥∥
1

+
∑

k

rk

∥∥∥T Ar →E
C,k (�

Ar Rr
k )− ς E

k ⊗�
Rr
k

∥∥∥
1

+
∑

k

rk

∥∥∥�Rr
k − �̂

Rr
k

∥∥∥
1

≤ 2
∑

k

rk

∥∥∥T̂ Ar →E
C,k (�̂

Ar Rr
k )− T Ar →E

C,k (�
Ar Rr
k )

∥∥∥
1

+
∑

k

rk

∥∥∥T Ar →E
C,k (�

Ar Rr
k )− ς E

k ⊗�
Rr
k

∥∥∥
1
, (G10)

where the last line follows from the monotonicity of the trace distance under partial
trace.
Using the property of the trace distance (Lemma 18 and 16 ), and Eqs. (G6) and (G7),
the first term in (G10) is bounded as

∑

k

rk

∥∥∥T̂ Ar →E
C,k (�̂

Ar Rr
k )− T Ar →E

C,k (�
Ar Rr
k )

∥∥∥
1

≤ 2
∥∥∥T̂ A→E

C (�̂ AR)− T A→E
C (� AR)

∥∥∥
1

≤ 4P(T̂ A→E
C (�̂ AR), T A→E

C (� AR)). (G11)

Noting that T̂ A→E
C (�̂ AR) = θ̂ E R

C and T A→E
C (� AR) = �E R

C from the definitions of

T̂C and �C , and recalling Ineq. (166), we have P(T̂ A→E
C (�̂ AR), T A→E

C (� AR)) ≤
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P(θ̂ E R D
C ,�E R D

C ) ≤ υ. Whereas, noting that the total variation distance is no greater
than 2, the second term is calculated to be

∑

k

rk

∥∥∥T Ar →E
C,k (�

Ar Rr
k )− ς E

k ⊗�
Rr
k

∥∥∥
1

≤ 2
∑

k

|pk − rk | +
∑

k

pk

∥∥∥T Ar →E
C,k (�

Ar Rr
k )− ς E

k ⊗�
Rr
k

∥∥∥
1

≤ 2
∥∥∥T̂ A→E

C (�̂ AR)− T A→E
C (� AR)

∥∥∥
1
+
∑

k

pk

∥∥∥T Ar →E
C,k (�

Ar Rr
k )− ς E

k ⊗�
Rr
k

∥∥∥
1

≤ 4υ +
∑

k

pk

∥∥∥T Ar →E
C,k (�

Ar Rr
k )− ς E

k ⊗�
Rr
k

∥∥∥
1

= 4υ +

∥∥∥∥∥
∑

k

pkT Ar →E
C,k (�

Ar Rr
k )⊗ |k〉〈k|Rc −

∑

k

pkς
E
k ⊗�

Rr
k ⊗ |k〉〈k|Rc

∥∥∥∥∥
1

= 4υ +
∥∥∥T A→E ◦ CA(� AR)−�E R

∥∥∥
1

≤ 4υ + δ, (G12)

where the fourth line follows from the similar argument to show the bound of the first
term, and the last line follows from the partial decoupling condition (G8).
Combining these all together, we obtain δ̄ ≤ 12υ +δ. Substituting this to (G9), we arrive
at

λ̄ ≤ λ
(
ι,

√
2 4
√
24υ + 2δ

)
+ λ(ι, 4) · √2 4

√
24υ + 2δ. (G13)

��

Appendix H: List of notations

The followings are the lists of notations used in the proofs of the main theorems.

General notation
L(H) The set of linear operators onH
L(HA,HB ) The set of linear operators fromHA to HB

Her(H) {ρ ∈ L(H) : ρ = ρ†}
P(H) {ρ ∈ Her(H) : ρ ≥ 0}
S≤(H) {ρ ∈ P(H) : Tr[ρ] ≤ 1}
S=(H) {ρ ∈ P(H) : Tr[ρ] = 1}
CP(A → B) The set of CP maps from A to B
CP≤(A → B) The set of trace non-increasing CP maps from A to B
CP=(A → B) The set of trace preserving CP maps from A to B
�AR A subnormalized (resp. normalized) state on AR in Theorem 1 and 3 (resp.

Theorem 4)
T A→E A completely-positive superoperator from L(HA) to L(HB ) (trace-

preserving in Theorem 4)
T A→B A complementary superoperator of T A→E

�AA′
Maximally entangled state between A and A′ (HA ∼= HA′

)
τ AE , τ AB The Choi–Jamiołkowski state of T A→E and T A→B :

τ AE = T A′→E (�AA′
), τ AB = T A′→B (�AA′

)

U(d) Unitary group of degree d
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Norms and distances

‖X‖1 The trace norm of a linear operator X : ‖X‖1 = Tr[
√

X X†]
‖X‖2 The Hilbert–Schmidt norm of a linear operator X : ‖X‖2 =

√
Tr[X X†]

||X V W ||2,ςW ||(ςW )−1/4X V W (ςW )−1/4||2 for ς ∈ S=(HW )

F̄(ρ, ρ′) Generalized fidelity between subnormalized states ρ, ρ′ ∈ S≤(H):
F̄(ρ, ρ′) = ‖√ρ√ρ′‖1 +

√
(1 − Tr[ρ])(1 − Tr[ρ′])

P(ρ, ρ′) Purified distance between subnormalized states ρ, ρ′ ∈ S≤(H): P(ρ, ρ′) =
√
1 − F̄(ρ, ρ′)2

Bε(ρ) The ε-ball of a subnormalized state ρ: Bε(ρ) = {ρ′ ∈ S≤(H)| P(ρ, ρ′) ≤ ε}

Conditional Entropies for ρ ∈ P(HAB ) and ς ∈ S=(HB )

Hmin(A|B)ρ|ς sup{λ ∈ R|2−λ I A ⊗ ς B ≥ ρAB }
Hmax(A|B)ρ|ς log ‖

√
ρAB

√
I A ⊗ ς B‖21

H2(A|B)ρ|ς − log Tr
[(
(ς B )−1/4ρAB (ς B )−1/4)2]

Hmin(A|B)ρ sup
ς B∈S=(HB ) Hmin(A|B)ρ|ς

Hmax(A|B)ρ sup
ς B∈S=(HB ) Hmax(A|B)ρ|ς

H2(A|B)ρ sup
ς B∈S=(HB ) H2(A|B)ρ|ς

Hε
min(A|B)ρ supρ̂AB∈Bε (ρ) Hmin(A|B)ρ̂ for ρ ∈ S≤(HAB )

Hε
max(A|B)ρ inf

ρ̂AB∈Bε (ρ) Hmax(A|B)ρ̂ for ρ ∈ S≤(HAB )

Notations when a Hilbert space HA is decomposed into
⊕J

j=1H
Al
j ⊗ HAr

j (Theorem 1)

l j and r j dimHAl
j and dimHAr

j , respectively

�A
j ∈ P(HA) The projection ontoHAl

j ⊗ HAr
j

�l
j , �

r
j Maximally entangled states onHAl

j ⊗H Āl
j andHAr

j ⊗H Ār
j (HAl

j
∼= H Āl

j ,

HAr
j

∼= H Ār
j )

�AA′
Maximally entangled state between A and A′:
|�〉AA′ =∑J

j=1
√

l j r j /dA|�l
j 〉Al A′

l |�r
j 〉Ar A′

r

A∗ A quantum system represented by a Hilbert space

HA∗ :=⊕J
j=1H

Ar
j ⊗ H Ār

j (HAr
j

∼= H Ār
j )

F AĀ→A∗
A linear operator fromHA ⊗ H Ā to HA∗

:

F AĀ→A∗ =⊕J
j=1

√
dAl j /r j 〈�l

j |Al Āl (�A
j ⊗� Ā

j )

�(�,T ) An unnormalized state on A∗ RE : �(�,T ) = F(�AR ⊗ τ ĀE )F† ∈
P(HA∗ RE )

�
Al Ar R
jk �A

j �
AR�k ∈ L(HAl

k ⊗ HAr
k ⊗ HR ,HAl

j ⊗ HAr
j ⊗ HR)

τ
Al Ar E
jk �A

j τ
AE�k ∈ L(HAl

k ⊗ HAr
k ⊗ HE ,HAl

j ⊗ HAr
j ⊗ HE )

π
Ar
j ∈ S(HAr

j ) The maximally mixed state on HAr
j

H j The Haar measure on U(r j )
H× A product measure H1 × · · · × HJ on U(r1)× · · · × U(rJ )

�AR
av A subnormalized state on AR: �AR

av = EU∼H×[U A(�AR)]
‖E A→B‖DSP The DSP-diamond norm of a supermap E from L(HA) to L(HB ):

‖E A→B‖DSP = supC, ξ {‖E A→B (ξ AC )‖1 : ξ ∈ S≤(HAC ), ξ A =
⊕J

j=1 q j

Al
j ⊗ π

Ar
j }

BεDSP(E) {E ′ ∈ CP=(A → B) | ‖E ′ − E‖DSP ≤ ε}
Hε,μ
min (A

∗|RE)�(�,T ) sup�′∈Bε (�) supT ′∈BμDSP(T )
Hmin(A

∗|RE)�(�′,T ′)
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Notations when l j = 1 and r j = r for 1 ≤ j ≤ J (Theorem 3 and 4 )
α(J ) A function that is equal to 0 when J = 1 and to 1/(J − 1) if J ≥ 2
P The permutation group on [1, . . . , J ]
P The uniform distribution on P
Gσ A unitary inHA: Gσ =∑J

j=1 |σ( j)〉〈 j |Ac ⊗ I Ar for any σ ∈ P

C The completely dephasing operation on Ac with respect to the basis {| j〉}J
j=1

�AR
dp A normalized state on AR: �AR

dp = C(�AR)

π Ar The maximally mixed state on HAr
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