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Abstract

Auto-tuning DL compilers are gaining ground as an optimiz-
ing back-end for DL frameworks. While existing work can
generate deep learning models that exceed the performance
of hand-tuned libraries, they still suffer from prohibitively
long auto-tuning time due to repeated hardware measure-
ments in large search spaces. In this paper, we take a neural-
predictor inspired approach to reduce the auto-tuning over-
head and show that a performance predictor model trained
prior to compilation can produce optimized tensor operation
codes without repeated search and hardware measurements.
To generate a sample-efficient training dataset, we extend
input representation to include task-specific information
and to guide data sampling methods to focus on learning
high-performing codes. We evaluated the resulting predictor
model, One-Shot Tuner, against AutoTVM and other prior
work, and the results show that One-Shot Tuner speeds up
compilation by 2.81x to 67.7x compared to prior work while
providing comparable or improved inference time for CNN
and Transformer models.

CCS Concepts: · Software and its engineering → Com-

pilers; · Computing methodologies→ Neural networks;
Discrete space search.

Keywords: optimizing compilers, autotuning, performance
models, deep neural networks
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1 Introduction
Deep learning (DL) models have recently emerged as an
application field that drives innovations in domain-specific
optimization technologies. While many DL programming
frameworks [1, 11, 41] rely on hand-optimized libraries such
as NVIDIA cuDNN/cuBLAS or Intel oneDNN for their back-
ends, DL compilers [12, 44, 47], which can generate codes
specifically optimized for the target model, are exploring
the potential as a more flexible and portable solution on
increasingly diverse and heterogeneous platforms.
One key challenge for DL compilers lies in generating

highly optimized codes with comparable or better perfor-
mance than hand-tuned libraries. However, conventional
rule-driven optimization heuristics and cost models are of-
ten too general to fine-tune tensor operations with domain-
specific knowledge and/or too rigid to adapt to widely vary-
ing performance characteristics of DL hardware [2, 6, 17, 24].
Thus, DL compilers are increasingly adopting a data-driven
approach to determine optimization strategies [4, 7, 13, 15,
44]. These łauto-tuningž compilers use statistical cost mod-
els to learn the correlation between programs and runtime
behaviors from profiling runs. Then apply space exploration
algorithms, i.e., simulated annealing or genetic algorithm, on
the cost model to predict the candidates for the best perform-
ing codes. Profiling the candidates refines the cost model and
guides the search to the more promising space. By repeating
this process numerous times, DL compilers can search for
the ideal compilation configurations.
Although the auto-tuning approach can produce high-

performing codes, it incurs hours of compilation time from
repeated hardware measurements to explore the huge op-
timization space even for simple convolution kernels and
to train a performance-predicting cost model. Prior work
reduced the overhead by using more efficient search mecha-
nisms [3, 36, 60, 61], by improving cost models to guide the
search with a higher accuracy [13, 48], or by reducing/ac-
celerating profiling [21], often resulting in locating more
optimized codes as well. However, even with all the improve-
ments, the inherent cost of the core mechanism ś building
the cost model for optimization space through tons of pro-
filing runs ś remains significant. The most recent methods
still spend hours with hundreds of iterations per layer to get
reliable results [60, 61].

89

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3497776.3517774
https://doi.org/10.1145/3497776.3517774
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3497776.3517774&domain=pdf&date_stamp=2022-03-18


CC ’22, April 02ś03, 2022, Seoul, South Korea Jaehun Ryu, Eunhyeok Park, and Hyojin Sung

Auto-tuner

Design Space

Exploration Module

Target Independent pass

Target
hardwareCost Model

Code templates

Exploration Prediction

HW
measurementOptimal knobs

IR Generation pass

Update 
cost 
model

Code Generation Pass

Optimized 
binary

Front-end

Back-end

Figure 1. The Structure of DL auto-tuning Compilers

Table 1. Description of knobs in TVM

Knobs Definition

tile_f Loop tiling parameters on the number

of filter, height, and weight of feature

maps

tile_y

tile_x

tile_rc Loop tile reduction parameters on the

number of channels, height, and weight

of filters

tile_ry

tile_rx

auto_unroll
Guide max unroll iterations

max_step

unroll_explicit Explicitly unroll loops

offset_bgemm Determine offset value in bgemm

warp_row_tiles Number of WMMA tiles for row and

col in one warpwarp_col_tiles

block_row_warps Number of warps needed for row and

col in one blockblock_col_warps

Recent work [13, 48] showed that the auto-tuning time can
be reduced by conditioning the cost model through knowl-
edge reuse. The cost model, pre-trained by transfer learning
or meta learning with performance distributions for kernels
of different input/output shapes or different operation types,
more quickly adapts to the search space of a compiled kernel
and more effectively guides the search than a model trained
from scratch. The potential for a predictor model that gener-
alizes for unseen data in distinct search spaces suggested by
the results leads us to ask the following question: If we train
a cost model with a subset of random codes and their execu-
tion times prior to compilation, can we replace the auto-tuning
process with a one-shot validation with the model?

Thus, we propose One-Shot Tuner, a pre-trained perfor-
mance predictor model that can practically eliminate the re-
peated iterations of hardware measurement and cost model
update in the auto-tuning process. Inspired by recent re-
search in the neural architecture search (NAS) domain [55],
we train the One-Shot Tuner model with a set of randomly
generated code samples to learn correlations between opti-
mized tensor programs and their runtime performance, and
to identify high-performing codes during compilation.
However, pre-training a model to predict performance

distributions of unseen tensor operations with varying types
and input/output shapes, without any online adaptation,
poses a unique challenge in designing the sampling process
of training data and input representation for One-Shot Tuner.
In this paper, we propose the following to address the chal-
lenge: (1) input code representation extended to include ex-
plicit task-specific features, (2) a task-sampling mechanism
that exploits layer type and size distributions of existing
models to improve random sampling efficiency, and (3) an
exploration-based code sampling mechanism that enables
the predictor model to focus on learning high-performing
codes.

We implemented One-Shot Tuner as a Transformer-based
cost model for the AutoTVM-based auto-tuner [13], and com-
pared its compilation time and compiled model performance
with those of existing TVM-based auto-tuning solutions. The
evaluation result shows that One-Shot Tuner is 2.81x to 67.7x
faster than all prior work in generating optimized models,
which provide comparable or improved inference time with
for a range of CNN and Transformer models showing that
a single iteration of search and validation with One-Shot
Tuner is sufficient for locating high-performing codes.

The rest of the paper is organized as follows. Section 2 pro-
vides background information for DL compiler frameworks
with auto-tuning support and a NAS solution that inspired
One-Shot Tuner. Section 3 presents motivations and chal-
lenges for One-Shot Tuner. Section 4 describes the design
and implementation of One-Shot Tuner, focusing on how we
design input features and sample data to train the proposed
predictor model. Section 5 and 6 present and analyze the
evaluation result of One-Shot Tuner in terms of end-to-end
auto-tuning time and inference time of compiled models. Sec-
tion 7 discusses the cost and feasibility of One-Shot Tuner.
Section 8 describes related work, then Section 9 concludes
the paper.

2 Background

Deep learning compilers. DL compiler frameworks pro-
vides programming infrastructure to design and implement
DL models and code-generating back-ends to either trans-
late the high-level models into a sequence of hand-tuned
library calls or optimized binary codes. Popular DL frame-
works [1, 11, 29, 41] provide different levels of programmabil-
ity, portability, and compilation support. While some frame-
works have dedicated compilers (e.g., XLA [34] for Ten-
sorFlow [1] and Glow [47] for PyTorch [41]), general com-
piler back-ends such as TVM [12] and Tensor Comprehen-
sions [52] can support multiple front-ends.
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Figure 2. Predicted vs. target accuracy

of a regression model pre-trained with

data samples for VGG-16.

Figure 3. Visualization of the occurrence

frequency of input and channel sizes

crawled from the online model zoo.

TFLOPS

Figure 4.Histogram of inference time for

codes sampled by random knob sampling

for ResNet-18.

DL compiler frameworks consist of language front-ends
and code-generating back-ends, as shown in Figure 1. The
front-end translates input models into high-level internal
representation (IR; often graph-based) and applies target-
independent optimizations such as operator fusion and data
layout transformation, whereas the back-end goes through
target-dependent optimization passes that further transform
IR to better exploit target hardware features. TVM [12], an
open-source DL compiler, provides an auto-tuning frame-
work as a back-end optimization pass.
Template-based auto-tuning in TVM. In general, auto-
tuning approaches the optimization problem as exploring
a search space of all optimized codes to locate the best-
performing versionwith hardwaremeasurements [22, 30, 43].
For efficient navigation of the search space, a cost model
function is often used to predict code performance and guide
the search. With a code-generating function 𝜌 that uses opti-
mization parameters𝜙 (e.g., tile size), tensor operation 𝜎 (e.g.,
2D convolution) and operation options 𝑐 (e.g., input/output
sizes) to create a unique search space 𝐷𝜎𝑐 of optimized codes
and a cost model function 𝑓 that predicts performance of
codes in 𝐷𝜎𝑐 , an auto-tuning łtaskž solves a problem formu-
lated as

𝜙∗
= argmax𝜙 𝑓 (𝜌 (𝜙 |𝜎, 𝑐)) . (1)

In AutoTVM [13], 𝜌 relies on code templates pre-defined
for each tensor operation on a given platform, and 𝜙 consists
of tunable parameters (knobs) that determine how the code
template is optimized. Thus, an auto-tuning task for 𝜎𝑐 finds
an optimal combination of knobs (Table 1) to maximize the
performance predicted by the cost model 𝑓 . AutoTVM adopts
a machine-learning based predictor model for 𝑓 , and for each
auto-tuning task, 𝑓 is dynamically trained with hardware
measurements of codes in 𝐷𝜎𝑐 . One-Shot Tuner does not
change the problem itself, but proposes to solve it with 𝑓 ′

pre-trained with samples from a set of 𝐷’s to deliver 𝜙 with
competitive performance for an unseen 𝐷 .
Neural Predictor. Neural architecture search (NAS) is a
method that uses machine learning algorithms to locate the
best model architecture in a given search space [37, 45, 63].

NAS performs search space exploration to identify the ar-
chitecture that maximizes an objective function, e.g., test ac-
curacy or computation cost. However, measuring the model
accuracy is prohibitively expensive, because it can be done
only after the network is generated and trained. Thus, the
key challenge for efficient NAS is to precisely predict the
accuracy of a given architecture configuration, and there
has been active research to minimize the cost of NAS al-
gorithm [8, 14, 19, 35, 42, 55, 57, 58, 64]. Recently, Neural
Predictor-based NAS [8, 19, 55] shows promising results
with high sampling efficiency with minimal architecture
evaluations. Neural Predictor trains a performance regres-
sion network as a cost model to predict the target accuracy
for a given model architecture. The predictor training is ex-
pensive but this is a one-time cost, and a tiny fraction of
random samples over the input space can produce a repre-
sentative model [55]. The final NAS result is obtained by
performing architecture search guided by the prediction of
the trained predictor model. The approach reduces the ex-
ploration overhead without any degradation of the resulting
model accuracy. In the rest of the paper, we present how we
developed the idea of Neural Predictor to drastically reduce
the overhead of the auto-tuning process.

3 Motivations and Challenges

To establish the feasibility of a neural predictor for perfor-
mance prediction, we conducted preliminary experiments.
Figure 2 shows that a regression model trained with a small
set of data samples can predict the outcomes of codes opti-
mized with unseen knob values. However, per-task predictor
models are not realistic, because numerous tasks are dynam-
ically generated with different tensor operation types and
input/output shapes. We identify three key challenges that
guide our cost model design in Section 4.

1. Current input data and cost models are not designed

to learn (task, knob, performance) triplets. While prior
work [3, 13, 36, 61] had to train and adapt a cost model to
learn (knob, performance) correlation only in a given search
space of a compiled kernel, a multi-task cost model should
be able to consider multiple search spaces as well, i.e., to
predict how the same optimization will behave for kernel
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FLOPS

Figure 5. The Overview of One-Shot Tuner

instances with different performance distributions. However,
template-based code representation in TVM is designed with
an assumption of a single search space; the representation
does not include task features such as input/output shapes or
filter size, and only implicitly embeds them as loop iteration
counts. This makes it very challenging for a single predictor
model to accurately encode performance distributions of
multiple tasks and generalize across tasks.

2. The task sampling method dictates the generality

of the cost model. The search space of optimized codes
is large but bounded, and knob values are constrained by
allowed value ranges or types of external parameters, but the
search space of plausible tasks is technically unbounded. If
we sample tasks directly from a small set of popular models,
the resulting predictor model will not work for unseen tasks
that are still plausible but have shapes and sizes not in the
range of sampled tasks. If we randomly sample tasks from
a more general and sparse set of models such as [25] or
synthesized tasks, we will need a prohibitively large number
of samples for the cost model to see enough samples for tasks
from known models (e.g., red stars for tasks in ResNet-18 and
VGG-16 in Figure 3) so that it can make learned predictions.
This calls for a task sampling method that balances the trade-
off between generality and sampling efficiency.

3. Random sampling of hardwaremeasurements can re-

sult in skewed performance distributions. Wemeasured
the fraction of zero or close-to-zero hardware measurements
for AutoTVM as shown in Figure 4. 5.6% of the total samples
have zero FLOPS due to compilation or runtime errors (e.g.,
out of memory), and about 44.9% of samples have very low,
close to zero FLOPS (<1% of the maximum FLOPS measured).
Some prior work also observed this phenomenon of many
invalid measurements [3, 36, 59]. [3, 36] reported łnumer-
ous invalid configurations" and łlots of zero points (invalid
knobs) in the search spacež, and [59] reported that 27.8%
of samples are invalid. While some unstable (zero FLOPS)
results due to invalid knob values can be filtered out to an
extent by search algorithms [61], a non-uniform search space
can arise when a tensor kernel with a certain type or data

sizes does not respond well to optimizations. This phenome-
non does not severely affect the accuracy of the online cost
model, because low-performing samples are not used for cost
model adaption, although they can slow down the search.
However, if a predictor model is pre-trained only using data
samples that have such distributions as in our proposal, it
cannot properly model and predict high-performing codes.

4 Design and Implementation

In this section, we present the design and implementation
of One-Shot Tuner focusing on how we address the chal-
lenges identified in Section 3. As a pre-trained predictor
model, One-Shot Tuner goes through a one-time model con-
struction phase prior to compilation. This phase reduces the
traditional auto-tuning phase with thousands of iterations
during compilation into a single-search and single-validation
tuning phase. The following subsections provide a detailed
description of each phase, the predictor model construc-

tion phase and the optimal code generation phase.

4.1 Predictor Model Construction

The accuracy of the predictor model heavily depends on the
quality of the training dataset. However, our preliminary
analysis in Section 3 reveals that the combined search space
for multiple tasks is not only huge and sparse, but that each
search space has a distinct and often highly skewed distri-
bution. This makes the straightforward random sampling
method unfeasible in our case as it will have a very low
sampling efficiency. With random sampling, we would need
an unrealistically large number of data samples to achieve
reliable prediction accuracy.

Figure 5 shows the execution steps of the model construc-
tion phase that feature task and code sampling methods to
maximize sampling efficiency. For the dataset to include a
sufficient number of representative samples from diverse
tasks, we guide both 1 task sampling (determined by tensor
operation type and input/output shapes) and 2 code sam-
pling (determined by knob values) methods to exploit prior
model knowledge and focus on promising samples. Sampled
codes are executed on the target device to measure infer-
ence time in FLOPS. The training data set generated with

92



One-Shot Tuner for Deep Learning Compilers CC ’22, April 02ś03, 2022, Seoul, South Korea

T
F
L
O
P
S

Figure 6. Scatter plot of sampling data as the sampling progresses.

input features for the sampled codes and their performance
in FLOPS as labels is then used to 3 pre-train the predictor
model for the optimal code generation phase.

4.1.1 Prior-Guided Task Sampling (PGS). Task sam-
pling navigates an unbounded number of performance dis-
tributions determined by the operation type, input/output
shapes and sizes, and filter size (if it exists) of a kernel. To
give a bias to the randomness towards known models and
guarantee the generality of sampled tasks at the same time,
we devise a task sampling method that exploits prior knowl-
edge. First, we crawl popular models from public repositories
such as PyTorch TorchVision [38] andMXNetmodel zoo [25],
then build a probability model that is conditioned on the task
distribution of the collected models which is proportional
to the frequency of occurrences within the given condition.
This PGS method randomly selects training tasks according
to the conditioned probability, where the overall probability
is estimated by the chain of the conditional probabilities. For
instance, we first select a knob for kernel size, where the
probability of selecting the kernel size 𝐾𝑖 is proportional to
the number of occurrences of 𝐾𝑖 over entire data. Then, we
choose the stride 𝑆 𝑗 based on the probability, proportional
to the number of collected tasks that have both 𝐾𝑖 and 𝑆 𝑗
over the number of samples with 𝐾𝑖 . In Algorithm 1, the
innermost loop from line 7 to 10 implements the probability
chaining by storing sampled knobs in 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 and use it to
calculate 𝑃𝑘𝑛𝑜𝑏 in the next iteration. By repeating this pro-
cess likewise until the entire knobs are selected, we create a
sampled task space that roughly follows the distribution of
tasks in knownmodels. PGS allows a predictor to learn about
common and probable kernels rather than corner cases so
that the prediction accuracy can be accurate for practical
candidates.

4.1.2 Exploration-Based Code Sampling (EBS). Once
a task is sampled, we need to generate code samples with
different knob values and execute them to model its unique
performance distribution with One-Shot Tuner. However,
as observed in Section 3, the performance distributions are
often very skewed, with many useless or poor-performing
codes. Therefore, to focus on sampling and learning about
more promising codes, we propose gathering samples on
the trajectory of a space exploration algorithm. As shown in

Algorithm 1 Dataset Generation

Input: Probability Model𝑀 , Task set size 𝐾 , Max trials 𝑁 ,

Space Exploration Algorithm 𝑆 ,Cost model𝐶

1: function prior_guided_task_sampling(𝑀 ,𝐾 )

2: 𝑘𝑛𝑜𝑏𝑠 = {𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 : 𝑘 , 𝑠𝑡𝑟𝑖𝑑𝑒 : 𝑠 , ...} ⊲ Initialize 𝑘𝑛𝑜𝑏𝑠 for tasks

3: 𝑡𝑎𝑠𝑘𝑠 = []

4: for 𝑖 in 𝐾 do

5: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 = []

6: for 𝑘𝑛𝑜𝑏_𝑘𝑒𝑦 in 𝑘𝑛𝑜𝑏𝑠.𝑘𝑒𝑦 do

7: for 𝑘𝑛𝑜𝑏 in 𝑘𝑛𝑜𝑏𝑠 [𝑘𝑛𝑜𝑏_𝑘𝑒𝑦 ] .𝑖𝑡𝑒𝑚𝑠 do

8: 𝑃𝑘𝑛𝑜𝑏 =

𝑀 [𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ∪ [𝑘𝑛𝑜𝑏 ] ] .𝑐𝑜𝑢𝑛𝑡 ()

𝑀 [𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ] .𝑐𝑜𝑢𝑛𝑡 ()

9: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠𝑎𝑚𝑝𝑙𝑒_𝑘𝑛𝑜𝑏 (𝑃𝑘𝑛𝑜𝑏 ))

10: ⊲ Sample task knob values with probability 𝑃

11: 𝑇 = create_task(𝑠𝑎𝑚𝑝𝑙𝑒𝑑)

12: 𝑡𝑎𝑠𝑘𝑠 .append(𝑇 )
return 𝑡𝑎𝑠𝑘𝑠

13: function exploration_based_code_sampling(𝑡𝑎𝑠𝑘𝑠 ,𝑁 ,𝑆 ,𝐶)

14: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠 = []

15: for 𝑡𝑎𝑠𝑘 in 𝑡𝑎𝑠𝑘𝑠 do

16: for 𝑖 in 𝑁 do

17: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝑆 .explore(𝐶 , 𝑡𝑎𝑠𝑘𝑘𝑛𝑜𝑏𝑠 )

18: ⊲ Store search results as𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

19: for 𝑐𝑜𝑑𝑒 in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do

20: 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 = 𝑐𝑜𝑑𝑒 .measure_on_hardware()

21: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠 .append(History)

22: ⊲ Collect (code,FLOPS) pairs

23: 𝐶 .update(𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠) ⊲ Update the cost model𝐶
return 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠
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Figure 7. Predictor model architecture

Algorithm 1, once the target tasks are determined by the PGS,
we perform a discrete space search from a random starting
point for each task. The search algorithm visits many local-
optimal points during the exploration process. While these
intermediate search results are originally for guiding the
search with cost model updates, we create a data set from
them.

The intuition behind the exploration-based code sampling
is that the promising areas in the search space will be vis-
ited increasingly frequently as the search continues, which
leads to higher sampling efficiency. The samples obtained
by the EBS in Figure 6 appear more in the upper part of
the search space with higher FLOPS than randomly sampled
data. This difference enables the predictor model trained
with these samples to predict performance precisely for high-
performing candidates. We also expect the samples on the
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trajectory are likely to be those that are explored during
the knob search in compilation time. As a result, the EBS
accelerates the convergence of the knob search, but more
importantly, it helps to improve the compiled model perfor-
mance (details in Section 6.3).
Along with these sampling methods, we also use a data

oversampling technique to further increase the quality of
data samples by sampling infrequent but faster samples more
often based on the inversed frequency.

4.1.3 Feature Generation. From the sampled codes in
the previous steps, we generate training input data for the
predictor model. We rely on the template-based code genera-
tion scheme in TVM, so we reuse TVM features for template
code representation. Unique knob values of each sample de-
termine how a code template is lowered to the loop-level
AST, from which TVM generates curve features that repre-
sent loop characteristics [13]. Then we append raw knob
values and task-identifying information, e.g., input sizes and
shapes, batch size, the number of channels, to the TVM curve
features as shown in Figure 7. The loop-level AST only im-
plicitly includes these values, e.g., as a node for loop iteration
count. We found that with such features the model cannot
properly learn correlations between samples and the search
space they belong to. Explicit task-specific features at the
same level as TVM features help the predictor model to dif-
ferentiate distinct search spaces, as supported by the ablation
study result in Section 6.3.

4.1.4 Predictor Model Architecture. We conducted an
extensive sensitivity study with DL model architectures and
hyperparameters to find a model that can learn (task, knob,
performance) correlations with high accuracy (details in
Section 6.3). Multi-head self-attention mechanism [54] is
effective in understanding multi-dimensional correlations
in structured data, and among the tested networks provided
the best performance with stable convergence. Thus, we
design One-Shot Tuner with a model architecture as shown
in Figure 7: three stacks of Transformer encoders followed by
a linear layer, with 1,024 hidden feature dimensions and four
self-attention heads. For the loss function, One-Shot Tuner
using mean square error (MSE) produced models with faster
inference time than versions that used L1 and ranking [10],
so the predictor is trained using MSE loss between real and
estimated performance.

4.2 Optimal Code Generation

The optimal code generation phase in Figure 5 replaces the
existing iterative auto-tuning framework in TVM. By de-
sign, we keep this phase straightforward compared to the
model construction phase and reuse many existing TVM
components.
During compilation, the auto-tuning back-end first per-

forms a single iteration of space exploration guided by the
pre-trained One-Shot Tuner predictor model 4 . For the knob

Table 2.Hyper-parameters used inOne-Shot Tuner during
model training (values used for results in bold) and code
generation.

Model Training

Hyperparameter Values considered

Batch size {1, 16, 64, 256, 512, 1024}
Epoch # {100,200}

Learning rate {1e-2,1e-3,5e-4,1e-4,5e-5,1e-5}
Learning rate decay {1e-2,1e-3,5e-4,1e-4,5e-5,1e-5}

Dropout rate {0,0.25,0.5,0.75}
Attention head # {4,12,16}

Layer # {1,3,5,7}
Hidden state # {128,256,512,1024,2048}

Code Generation

Hyperparameter Value

Hardware measurements for validation 64
Maximum steps (simulated annealing) 160

Batch size (simulated annealing) 512
Early stop steps (simulated annealing) 50

Batch size (genetic algorithm) 512
Maximum steps (genetic algorithm) 120

Mutation probability (genetic algorithm) 0.1
Elite # (genetic algorithm) 96

search, we use black-box optimizations as implemented in
TVM, e.g., simulated annealing and genetic algorithm, but
without cost model update. Then, the compiler performs 5
validation for the top-K candidates found during the search,
in a sense that predicted performance for them is "validated"
against actual measurements on hardware. The validation
result is used to determine the best-performing candidate.
For subsequent optimization and code generation with the
identified knob values, we rely on the TVM back-end.

Unlike typical auto-tuning solutions, neither knob search
nor hardware measurement is repeated, so this phase com-
pletes in tens of seconds per task, significantly reducing the
end-to-end compilation time (details in Section 6.1).

5 Methodology

We implemented One-Shot Tuner cost models using a
built-in Transformer (torch.nn.TransformerEncoder) in
PyTorch 1.8.1 [41]. After hyperparameter tuning, we used
a four-head Transformer with three feed-forward layers
of width 1024. We used PyTorch WeightedRandomSampler

to implement oversampling in Section 4.1.2. We assume
that the cost models are distinct for each tensor operation
(e.g., conv2d) but are shared by code templates for the
operation (e.g., naïve, deformable, bitserial, group,

depthwise, transpose, Winograd, tensorcore). Thus,
One-Shot Tuner technically requires a total of five cost
models to complete all TVM auto-tuning jobs. We built and
evaluated two predictor models for conv2d and matmul, be-
cause our PGS guides us to sample tasks of łactual templates
chosen by Relay (TVM front-end) [46] for auto-tuningž for
models in model zoos. FC layers are often skipped as an
auto-tuning target since TVM finds the search space too
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small, whereas conv1d and conv3d did not appear in any of
the models in the zoos.
For testing, we modified TVM version 0.8dev [12] to run

a single iteration of template-based auto-tuning using a pre-
trained One-Shot Tuner in place of the original gradient-
boosted tree (XGB) model. For search algorithms, we experi-
mented with simulated annealing and genetic algorithm as
implemented in TVM. Detailed hyperparameters for model
architecture, training process, and search algorithms can be
found in table 2. We sampled data and compiled models on
NVIDIA 2080 Ti GPU’s for GPU results and AWS Intel Xeon
CPU’s for CPU results.
Task and data sampling methods. For PGS, tasks were
sampled from TorchVision [38] and MXNet [11] model zoos.
Synthetic tasks were then generated using the layer fre-
quency information extracted from the tasks in the model
zoos, as described in Section 4.1.1. We used 800 tasks for
model training. We used a strictly disjoint set of models to
to guide generation of the training data set from evaluated
models in the test data set. However, as the PGS is designed
to statistically sample probable tasks more frequently, so
the resulting training and test data sets inadvertently have
9-12% common layers (tasks). We did not post-process them
to remove overlapped tasks, which will distort the actual
layer distribution.
For EBS, we used TVM built-in search algorithm (sim-

ulated annealing) and cost model (XGB cost model) with
default configurations. We collected 1,000 samples per task
and excluded samples more than 20x slower than the highest-
performing sample.
Evaluated models. We tested seven convolutional neural
networks (AlexNet [32], VGG-16 [50], SqueezeNet-v1.0 [28],
ResNet-18 [26], DenseNet-121 [27], MobileNet-v2 [49] and
EfficientNet-B0 [53]) and an NLP model (BERT-base [20]). We
usedmodel implementation provided byMXNet (EfficientNet,
MobileNetV2) and TVM (the rest) with no modifications.
Evaluated auto-tuning solutions.We compared One-Shot
Tuner with several prior auto-tuning solutions in terms of
compilation time and model inference time. We evaluated
three AutoTVM-based prior solutions (autotvm [13] (base-
line), chameleon [3] and adatune [36]), two variants of One-
Shot Tuner (one-shot-sa with simulated annealing and one-
shot-ga with genetic algorithm for candidate search), and
ansor, which is a template-free auto-scheduler in TVM [61].
To evaluate previous work, we used authors’ implementation
with no modifications.

6 Evaluation

For the evaluation of One-Shot Tuner, we structured our
experiments in two dimensions. First, we focused on show-
ing how One-Shot Tuner, as a pre-trained predictor model,
can improve an existing auto-tuning solution in terms of
compilation and inference performance. For fair and isolated

comparison, we made sure evaluated solutions for this part
are all based on AutoTVM [13]. Second, we compared two
end-to-end auto-tuning solutions for TVM, an AutoTVM-
based auto-tuner augmented with One-Shot Tuner and the
template-free auto-scheduler which is a more recent addition
in TVM based on [61]. These methods significantly differ in
the overall structure, search space definition, and exploration
mechanisms, so this evaluation focuses rather on exploring
the potential that template-based One-Shot Tuner can ad-
vance the current state-of-the-art.

We also provide detailed ablation analysis for different task
and sampling methods, input features, and search algorithm
parameters for One-Shot Tuner.

6.1 End-to-End Compilation Time

As shown in Figure 8, One-Shot Tuner dominates all prior
work on both CPU and GPU platforms in terms of the com-
pilation speed by practically eliminating the repeated search
and measurement overheads during auto-tuning. As a re-
sult, One-Shot Tuner reduces the end-to-end compilation
time dramatically by 13.84x on average against the baseline
(autotvm), and also against more recent work (8.7x against
chameleon and 10.55x against adatune) on GPUs. For exam-
ple with DenseNet, compared to chameleon and adatune that
compile faster than than autotvm by 3x mainly by improving
the search algorithm, the speedup by One-Shot Tuner is up
to 20x. Even for the models for which chameleon or adatune
performs comparable to or worse than the baseline (VGG-16
and BERT), One-Shot Tuner consistently provides an order
of magnitude reduction in compilation time. In terms of wall-
clock time, One-Shot Tuner finished compilation under two
hours for all the models (under an hour for four models)
for which prior work needed several hours to a whole day
(Table 3).

Figure 10 shows that One-Shot Tuner compiles ResNet-18
by orders of magnitude faster than the baseline. 1 The auto-
tuning process consists of three steps, (1) candidate search
and selection, (2) hardware measurements of candidates,
and (3) cost model update. AutoTVM performs numerous
iterations of the above steps to fine-tune the cost model and
to improve the search results. By default, it goes through
16 iterations to perform 1,000 hardware measurements as a
batch of 64 candidates. In contrast, One-Shot Tuner performs
only one iteration of steps (1) and (2) (no green sub-bars in
the figure). The auto-tuning time in the baseline varies from
layer to layer because the auto-tuning process can stop early
once a search space is exhausted or the result converges. This
explains why many layers in the figure show much less than
16x reduction for One-Shot Tuner. Without early stopping,

1Non auto-tuning compilation overheads (front-end parsing, back-end

code generation, etc.) are excluded from the graphs as they comprise less

than 1% of the total compilation time.
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(a) Nvidia GPU (b) Intel CPU

Figure 8. End-to-end compilation time (normalized to AutoTVM)

(a) Nvidia GPU (b) Intel CPU

Figure 9.Model inference time (normalized to AutoTVM)

Figure 10. Layer-wise breakdown of compilation time for ResNet-

18 on GPU, compiled by One-Shot Tuner (left bar in each pair) and

AutoTVM (right bar in each pair).

Table 3. End-to-end compilation time (hours) on GPU.
autotvm chameleon adatune one-shot-ga one-shot-sa

DenseNet 24.01 14.40 7.86 1.16 1.20

ResNet-18 9.73 8.43 8.20 0.97 1.07

BERT 4.36 2.13 13.89 0.21 0.21
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Figure 11. The time-series visualization of the inference time mea-

sured on GPU by One-Shot Tuner and AutoTVM (their best samples

as stars).

One-Shot Tuner achieves higher than 16x (e.g., 25.2x for
layer 1) by getting rid of the cost model update overhead.

6.2 Inference Time

As shown in Figure 9, One-Shot Tuner outperforms all the
existing template-based auto-tuning solutions by a signifi-
cant margin (8.9% on average, up to 21%) for every model in
terms of optimized model performance on GPU. The result
implies that the pre-trained One-Shot Tuner model can guide
the search more effectively towards optimal codes than the
fine-tuned cost model after numerous iterations. On CPU,
One-Shot Tuner provides comparable model performance to
prior work (2% better on average). The knob search spaces
are usually only 1/1.1K to 1/97K as large on CPUs as on GPUs;
thus the cost model does not make as much difference.

Figure 11 isolates the effectiveness of the cost model in pre-
dicting candidate performance and locating high-performing
candidates. autotvm repeatedly performs hardware measure-
ments and cost model updates during the auto-tuning pro-
cess (red dots in the figure), but most of the search points,
even after many iterations, have low FLOPS. This result
shows that most of the sampled data does not make real con-
tributions to performance improvement. In contrast, One-
Shot Tuner performs a one-shot validation on target hard-
ware after a single iteration of search, and the entire process
finishes in 250s. The top-K candidates found by the search
(blue dots in the figure) are high-quality predictions that
outperform most of the samples identified by the baseline.
We observed that the predictor model functions as a very
precise filter that narrows down the search space, but that
validation is also essential to compensate for predictor errors
and inefficiencies in search algorithms.

Layer-wise decomposition of the model inference time for
MobileNet-v2 (Figure 12) illustrates that the performance gain
by One-Shot Tuner over prior work is considerably high in
the early or intermediate layers of the network, but relatively
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Figure 12. Layer-wise breakdown of model performance

for MobileNet-v2 on GPU.

low for the layers close to the output layer. The later layers
are 1x1 convolution layers with many channels; locating
the best optimization option for these layers is particularly
challenging, because the search space quickly becomes huge
as the channel size increases. Overall, One-Shot Tuner con-
sistently outperforms prior work except for a few layers.

6.3 Ablation Analysis

6.3.1 Design Components. The impact of each design
component in the paper, i.e., task features (TF), prior-guided
task sampling (PGS), and exploration-based data sampling
(EBS), on model performance was evaluated by eliminating
one at a time from One-Shot Tuner. Figure 13a shows that no
one or two combinations of the design components dominate,
and their performance contributions vary across models. For
ResNet-18 and MobileNetv2, the effect of EBS is prominent.
On the other hand, the combination of task features and PGS
by itself achieves 90% of the total speedup for EfficientNet. Ef-
ficientNet has NAS-generated non-typical tasks, and requires
effective sampling of a broad range of kernels.

6.3.2 Sampling Methods. To examine the effectiveness
of PGS and EBS in more detail, we experimented with com-
binations of different sampling methods as shown in Table 4.
EBS outperforms random sampling for all evaluated

models in all combinations, regardless of the task sampling
method. For example, with PGS, EBS produces models 22x
faster on average (up to 77.7x) than random sampling. We
observed that models such as EfficientNet and MobileNetV2
are affected more than the others when they include layers
with distinctively larger sample spaces. EBS is more sensitive
to the type of task sampling methods than random sampling,
showing that the potential for EBS can be maximized when
sampled tasks have more probable distributions.
To evaluate PGS, we created two variants of One-Shot

Tuner trained with randomly sampled tasks (random) and
tasks directly sampled from models in the Model Zoo
(model zoo) respectively. Table 4 shows that One-Shot Tuner
(PGS+EBS) outperforms random+EBS and modelzoo+EBS
for four models except for ResNet-18. Tasks in ResNet-18
happen to appear very often in other models resulting in
93% of its tasks in the training set. PGS addresses the danger
of overfitting the cost model in modelzoo by gently guiding
random sampling with the distributions of known tasks.

Task sampling methods with random data sampling are
consistently slower by up to 77.7x than the counterpart with
EBS.

6.3.3 Task Size. We evaluated variant versions of One-
Shot Tuner to see how sensitive the predictor model accuracy
is to the number of sampled tasks. Figure 13b shows that One-
Shot Tuner consistently produces better-performing codes
as the number of training task samples increases. The perfor-
mance improvement saturates around 600 task samples for
ResNet-18 and VGG-16, by when prior-guided sampling have
collected enough data for common tasks for performance
modeling. Models such as EfficientNet and MobileNetv2 that
have more diverse and unconventional tasks tend to require
more task samples than other models.

6.3.4 Model Architecture. We experimented with dif-
ferent ML and DL model architectures for the pre-trained
predictor model. We trained an XGB model (baseline), an
MLP-based and an LSTM-based cost model with the same
training samples, and compiled ResNet-18, VGG-16, Efficient-
Net, andMobileNetv2 (One-Shot Tuner, LSTM, and MLP mod-
els are similar in model size). One-Shot Tuner outperforms
XGB by 10% on average for all evaluated models in opti-
mized inference time. The LSTM model showed comparable
performance to One-Shot Tuner except for EfficientNet for
which it is 2.1x worse than One-Shot Tuner, while the MLP
model showed very poor performance with EfficientNet and
MobileNetv2 (more than 30x slower inference time). Both
EfficientNet and MobileNetv2 include layers of more diverse
and unusual shapes and filter sizes than the others, which
should be challenging for a simple network without explicit
structural correlation to generalize for unseen tasks (and
with fewer relevant samples from prior-guided sampling).

6.4 Comparison with TVM Auto-scheduler

One-Shot Tuner reduced compilation time by 10.64x
compared to TVM auto-scheduler for the same reason
as it is faster than other auto-tuning solutions (Table 5).
Auto-scheduler updates its cost model and profiles candi-
dates for 20,000 iterations for an entire model by default,
whereas One-Shot Tuner does not repeat exploration and
measurements.
Table 5 shows inference times of CNN models compiled

by One-Shot Tuner and Ansor (TVM auto-scheduler) [61].
With a single batch, One-Shot Tuner provides comparable
performance to Ansor for DenseNet and ResNet-18 but it
is outperformed by 85.7% and 80.3% for MobileNetV2 and
SqueezeNet. In contrast, with a batch size of eight, One-Shot
Tuner produces 40.2% faster models on average than Ansor
for all evaluated models. Different approaches to candidate
code generation, i.e., template-based or template-free, ex-
plains the result. One-Shot Tuner relies on AutoTVM code
templates for high-level code structures, while template-free
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(a) Design components (b) Task size

Figure 13. Ablation analysis on the performance impact by sampled task sizes and proposed methods (TF=task-specific features,

EBS=exploration-based sampling, and PGS=prior-guided sampling).

Table 4. Model inference time (ms) on GPU with different combinations of task sampling and data sampling methods.

AlexNet SqueezeNet EfficientNet MobileNetV2 ResNet-18 VGG-16

Random + Random 1.27 7.97 42.63 47.38 3.58 15.79
Random + EBS (no PGS) 0.99 1.08 10.35 10.49 1.59 5.10

ModelZoo + Random 1.03 6.42 34.85 33.31 2.01 15.55
ModelZoo + EBS 0.79 4.35 7.72 5.82 0.80 4.28

PGS + Random (no EBS) 1.03 1.10 41.47 52.06 3.09 10.87
PGS + EBS 0.79 0.69 1.27 0.67 0.93 3.78

Table 5. Model inference time (ms) and end-to-end compilation

time (h) on GPU, optimized byOne-Shot Tuner andAnsor in NHWC

format with batch size 1 and 8.

Model inference time

Batch
Method DenseNet SqueezeNet MobileNetV2 ResNet-18

Size

1
Ansor 2.45 0.51 0.7 1.3

One-Shot 2.49 0.92 1.3 1.36

8
Ansor 5.45 1.89 2.6 5.24

One-Shot 4.66 1.54 1.73 2.89

End-to-end compilation time

Batch
Method DenseNet SqueezeNet MobileNetV2 ResNet-18

Size

1
Ansor 8.02 9.93 9.73 9.35

One-Shot 0.93 0.86 0.96 0.73

8
Ansor 8.40 9.93 10.28 9.70

One-Shot 0.96 0.93 1.16 0.81

auto-scheduler can more freely transform codes with rewrit-
ing rules and possibly generate better candidates. The single-
batch result is consistent with results in [61], and thus prove
the above point. However, [61] cannot easily opt to use spe-
cialized algorithms (e.g., winograd convolution or kernels
that use NVIDIA Tensor Core) in its code-generation scheme,
while AutoTVM can do so with pre-defined templates for
them. With a batch size of eight, One-Shot Tuner can gener-
ate optimized codes based on a conv2D template for batch
execution on Tensor Core. As future work, we will integrate
One-Shot Tuner with TVM auto-scheduler so that the result-
ing solution can reduce the compilation time by pre-training
One-Shot Tuner with template-free candidates, and also im-
prove the model performance as well by partially adopting
template-based solutions.

7 Discussion

Data sampling and model training cost. It takes about
30 minutes to collect 1,000 data samples for a task using
EBS on the GPU. Sampling the 800-task data set we used
for evaluation takes roughly 24 hours on our 16-GPU server
(400 GPU hours), and training the cost model with the data
takes about one hour. These sum up to a one-time fixed cost
prior to compilation, which will be easily compensated with
less than 23 compilations.
Moving a large part of recurring compilation costs to a

one-time pre-compilation cost can be translated into energy
savings and carbon footprint reduction. As a preliminary
analysis, we estimated how much 𝐶𝑂2 emission could be
reduced by using One-Shot Tuner compared to AutoTVM,
based on methods in [33]. One-Shot Tuner generates 30kg
𝐶𝑂2 for pre-compilation data sampling and model training
and 0.07kg 𝐶𝑂2 for each compilation, whereas AutoTVM
generates 1kg 𝐶𝑂2 for each compilation. Thus, after 32 com-
pilation instances, One-Shot Tuner outperforms AutoTVM
in terms of total energy impact. In addition, the reduction in
model execution time by One-Shot Tuner against prior work
saves 0.58kg 𝐶𝑂2 per 100 GPU hours.
Generalization across target hardware platforms. One-
Shot Tuner currently does not consider hardware platforms
as a variable parameter, i.e., assumes that a separate model
is trained and deployed for each hardware. We expect that
adding hardware-extracted features will enable One-Shot
Tuner to understand both hardware and code characteris-
tics in correlation with performance distributions. As future
work, we will explore how we can extend One-Shot Tuner
to generalize across platforms.
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Integration with existing auto-tuning frameworks. One-
Shot Tuner is implemented as a plug-in cost model for the
TVM auto-tuning framework, and therefore can be seam-
lessly integrated into any TVM-based existing auto-tuning
solutions. As a learned cost model with high accuracy, it will
help reduce the time taken by the search algorithm to locate
high-performing codes, and will improve both optimization
time and model performance of prior work that reuses the
default XGBoost-based cost model in TVM.

8 Related Work

Black-box auto-tuning. Search-driven optimizations have
shown the effectiveness in optimizing complex systems [5, 17,
40]. [23, 56] exploit empirical optimizations for generating
math library routines such as BLAS and FFT. [4] proposes
an auto-tuning framework with a multi-arm bandit meta-
technique to select a search mechanism. [9, 16] use auto-
tuning to solve the problems of I/O parameter and work-
group size selection. More recently, [18] provides a compiler
infrastructure in LLVM for testing and evaluating different
auto-tuning mechanisms.
Automatic optimization for tensor operations. DL frame-
works have increasingly adopted auto-tuning to improve
compute-intensive tensor operations in DL models. Au-
toTVM [13] searches optimal schedules for tensor operations
guided by a cost model adapted online during compilation,
while [3, 36] reduce the search and measurement overheads
by removing unnecessary measurements from [13]. [60]
improves the convergence speed for individual kernel
auto-tuning by using multi-armed bandit to dynamically
learn the cost model for the entire network. FlexTensor [62]
and Ansor [61] automatically create schedules to reduce
the overheads of defining code templates and find better
schedules. [62] auto-tunes platform-independent schedules
for tensor operations, and [61] takes a hierarchical approach
to high-level code structure generation and parameter
auto-tuning. One-Shot Tuner proposes a pre-trained cost
model that can be plugged into prior work, while prior
work focuses mainly on improving search mechanisms and
reducing measurement overheads.
Learning-based cost model. [39] trains an LSTM-based
cost model with program control flow graphs, then uses the
model to predict basic block throughput in LLVM optimiza-
tion passes. [6] proposes an LSTM-based cost model that
encodes hardware characteristics and loop structures to pre-
dict optimal code transformations for Tiramisu [7] compiler.
[31] utilizes a graph neural network-based cost model for
tile-size selection and operator fusion passes to predict op-
timized kernel performance. [51] proposes a bidirectional
LSTM-based model to predict the performance of loop-based
tensor optimizations on a CPU. The model is trained using
model-dependent epsilon-greedy beam search with value
iterations, whereas One-Shot Tuner focuses on training the

cost model with a dataset sampled via model-independent
black-box optimization.

9 Conclusion

This paper introduces a NAS-inspired approach to the black-
box optimization pass in DL compilers. The approach can
drastically reduce the expensive auto-tuning overhead to
a one-shot validation with a pre-trained predictor model.
Building a general yet powerful cost model that understands
distinct instances of huge and sparse search spaces faces chal-
lenges in many aspects, but we showed that our proposed
data sampling methods and improved input representation
can effectively make the search space tractable. The results
show that One-Shot Tuner generates comparable or faster
models than the state-of-the-art, while significantly reducing
the optimization time (up to 67.6x) for a variety of DNNmod-
els. We plan to extend One-Shot Tuner to a cross-platform
solution that enables more portable auto-tuning and inte-
grating it with template-free auto-tuning solutions to exploit
flexible code generation.
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A Artifact Appendix

A.1 Abstract

Our artifact includes an implementation of the One-Shot
Tuner predictor model and a variant of the TVM compiler
modified to use One-Shot Tuner. We provide a fully trained
One-Shot Tuner predictor model, along with model source
codes, training data samples obtained using PGS and EBS
methods, and scripts to use the data to re-train the model. For
the compiler, we provide binaries and source codes for the
TVM compiler modified to use the trained One-Shot Tuner
predictor model for a single iteration of search and validation
in place of its AutoTVM-based auto-tuning process. This
will allow evaluation and reproduction of our results on the
NVIDIA GPU and Intel CPU systems described in the paper.
We also provide customizable scripts for generating

datasets using PGS and EBS methods. The scripts can use
different sets of models for prior knowledge extraction and
different exploration algorithms for EBS and knob search.
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A.2 Description

A.2.1 Artifact Check-List (Meta-information).

• Algorithm:Methods for (1) collecting data samples for
the One-Shot Tuner predictor model, (2) training the pre-
dictor model, and (3) performing one-shot validation dur-
ing auto-tuning.

• Program (Model): AlexNet, VGG, ResNet, SqueezeNet,
DenseNet as provided by TVM, EfficientNet and Mo-
bileNetV2 as provided by gluoncv2 for MXNET/Gluon
(https://pypi.org/project/gluoncv2/), and Hugging
Face transformers for BERT-base (https://github.com/

huggingface/transformers).
• Compilation: Modified Apache TVM compiler based on
version 0.8.dev0 (commit: 772fa6b). Binaries and sources
provided.

• Binary: Included for Linux (Ubuntu 18.04) with CUDA
10.2 runtime for X86-64. Source code and scripts included
to regenerate binaries.

• Runtime environment: Provided binaries for Linux
(Ubuntu 18.04) X86-64, but source code given.

• Data set: Training data samples are included. They can
be regenerated by following the procedure in A.4, but due
to the probabilistic nature of the sampling process, the
distribution of the resulting samples will vary.

• Hardware: We recommend systems with NVIDIA
GeForce RTX 2080 Ti GPU and Intel Xeon CPU E5-2666
v3 CPU (AWS c4 4x large instances) for verifying GPU
and CPU results respectively. Similar systems should
give comparable results but we do not claim such
cross-platform performance portability.

• Metrics: Model inference time (inference queries are ran-
domly generated) and end-to-end compilation time mea-
sured by TVM built-in timing interfaces.

• Output: Performance results are provided as console out-
put and also stored in a file specified by an evaluation
script.

• Experiments: The experiment flow is described in detail
in Section A.4 and README at our archive locations.

• How much disk space is required (approximately)?:

1GB including training data samples
• How much time is needed to prepare workflow (ap-

proximately)?: Reproducing data samples for 800 tasks
used in the paper will take roughly 600 GPU hours on
NVIDIA GeForce RTX 2080 Ti GPU. Pre-training the One-
Shot Tuner predictor model takes about one hour.

• How much time is needed to complete experiments

(approximately)?: Up to 18 hours for compiling all eight
models using One-Shot Tuner, and four days using the
baseline (AutoTVM).

• Publicly available?: Yes.
• Workflow framework used?: No.
• Archived (provide DOI)?: Yes (https://doi.org/10.5281/
zenodo.6337971)

A.2.2 How Delivered. Our predictor model (pre-trained
binary and sources), training data samples, scripts, and
a git patch file for the TVM modifications are available
at the following link: https://zenodo.org/record/6337971.
We also maintain a GitHub repository (https://github.com/

ryujaehun/one-shot-tuner).

A.2.3 Hardware Dependencies. We recommend systems
with NVIDIA GeForce RTX 2080 Ti GPU and Intel Xeon CPU
E5-2666 v3 CPU (AWS c4 4x large instances) for verifying
GPU and CPU results respectively. Similar systems should
give comparable results but we do not claim such cross-
platform performance portability.

A.2.4 Software Dependencies. Our code is implemented
and tested on Ubuntu 18.04 x86-64 system, with CUDA 10.2
and cuDNN 7. Additional software dependencies include
minimal pre-requisites on Ubuntu for TVM and deep learn-
ing frameworks (PyTorch v1.6.0) for model implementations.
We recommend using a docker image, "jaehun/ost:v2", with
all software dependencies and pre-requisites included.

A.3 Installation

A.3.1 Docker Installation. docker and nvidia-docker
packages are required to use the One Shot Tuner docker
image. The following command will run the image as an
isolated container.

docker run -it --gpus 1 --rm jaehun/ost:v2 bash

A.3.2 Local Installation (Zenodo). After installing TVM
and its python dependencies (https://tvm.apache.org/docs/

install/from_source.html), you can apply a git patch file for
One-Shot Tuner and bulid TVM using cmake:

git am one-shot-tuner.patch --ignore-whitespace \

--no-scissors --ignore-space-change

Detailed instructions can be found at the archive location.

A.3.3 Local Installation (GitHub). The GitHub reposi-
tory includes the modified TVM compiler. You can clone the
repository to your local machine, install TVM and its python
dependencies, and then build TVM using cmake.

git clone \

https://github.com/ryujaehun/one-shot-tuner.git

Detailed instructions can be found in the GitHub
README.

A.4 Experiment Workflow

The overall experiment workflow is composed of three steps:
data set generation, predictor model training, and optimal
knob search using the trained model. You can jump to Step
2 if you reuse data samples already collected using PGS and
EBS, or to Step 3 if you reuse the pre-trained predictor model.

Step 1: To sample data using the PGS and EBS configurations
in the paper, execute the following command:

python3 dataset_generate/sampling.py -p -e
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Step 2: To train the One-Shot Tuner predictor model using
the pre-sampled dataset, execute the following commands:

python3 train_model/train.py --dataset_dir \

<dataset path> --layout NCHW --batch 1

Step 3: You can compile all benchmark models using the
trained model and reproduce the reported values in the paper
with the following command:

./main.sh

A.5 Evaluation and Expected Result

After each auto-tuning compilation, log files are generated
and saved in the numpy format. These log files include per-
formance results such as model inference time (FLOPS) and
end-to-end compilation time. The files are stored under di-
rectories automatically created in the user-specified script
home directory. You can collect information about multiple
networks by executing the following script command:

python3 get_result.py

The expected evaluation result is as follows.

network alexnet algorithm ga inference time\

second 0.75655ms end2end 0.62h

network alexnet algorithm sa inference time\

second 0.75658ms end2end 0.70h

network densenet-121 algorithm ga inference time\

second 0.60628ms end2end 0.74h

network densenet-121 algorithm sa inference time\

second 0.62021ms end2end 0.79h

network efficientnet algorithm ga inference time\

second 0.61417ms end2end 1.51h

network efficientnet algorithm sa inference time\

second 0.56854ms end2end 1.61h

network resnet-18 algorithm ga inference time\

second 0.78022ms end2end 0.97h

network resnet-18 algorithm sa inference time\

second 0.76898ms end2end 1.07h

network mobilenetv2 algorithm ga inference time\

second 0.58570ms end2end 1.50h

network mobilenetv2 algorithm sa inference time\

second 0.60312ms end2end 1.49h

network squeezenet_v1.0 algorithm ga inference time\

second 0.61417ms end2end 1.51h

network squeezenet_v1.0 algorithm sa inference time\

second 0.56854ms end2end 1.61h

network bert algorithm ga inference time\

second 2.96953ms end2end 0.21h

network bert algorithm sa inference time\

second 2.99085ms end2end 0.21h

network vgg-16 algorithm ga inference time\

second 2.83573ms end2end 1.49h

network vgg-16 algorithm sa inference time\

second 2.78476ms end2end 1.64h

A.6 Experiment Customization

Scripts are all customizable with different sampling, mod-
eling, and search methods. For data set sampling, other

than the default configuration that uses the both sam-
pling methods (PGS+EBS), Random+EBS, PGS+Random, and
Random+Random (as experimented in the sensitivity analysis)
can be tested. For model training, different neural network
architectures, e.g., MLP, LSTM, and Transformer, are avail-
able for the feature encoder. Training hyperparameters, e.g.,
learning rate, l2 decay, batch size, and loss function, are also
adjustable. For optimal knob search, you can experiment
with different search algorithms (e.g., simulated annealing
and genetic algorithm) and search hyperparameters (e.g.,
batch size, mutation probability, population size).
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