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ABSTRACT.   By the kernel of a one-sided (left or right) congruence   p
on an inverse semigroup  S, we mean the set of p-classes which contain idempo-

tents of S.   We provide a set of independent axioms characterizing the kernel of
a one-sided congruence on an inverse semigroup and show how to reconstruct the
one-sided congruence from its kernel.  Next we show how to characterize those

partitions of the idempotents of an inverse semigroup  S  which are induced by a
one-sided congruence on   S  and provide a characterization of the maximum and
minimum one-sided congruences on   S  inducing a given such partition.   The final
two sections are devoted to a study of indempotent-separating one-sided con-
gruences and a characterization of all inverse semigroups with only trivial full in-
verse subsemigroups.   A Green-Lagrange-type theorem for finite inverse semigroups
is discussed in the fourth section.

1. Basic notions, terminology. We adhere throughout to the notation and
terminology of A. H. Clifford and G. B. Preston [1].  Throughout the paper, S
will always denote an inverse semigroup (i.e., for each a ES, there exists a unique
element a~l E S suchthat a = aa~la and a-1 = a~1aa~1) and Es will de-
note the set of idempotents of S.  The elementary properties of inverse semi-
groups may be found in [1].  In particular, we shall liberally use, without com-
ment, the fact that Es is a semilattice (a commutative semigroup of idempotents)
and that a~lEsa ÇES   Va E S.  We shall also use the fact that if S is an inverse
semigroup then the Green's relations   L  and   R  on S are given by

L = {(a, b) G S x S: a~xa = b~lb}

and

R = {(a, b)ES xS: aa~l = bb~l}.

We denote the latiice of left congruences on S by  L(S)  and the lattice of right
congruences on S by R(S).  For each p G L(S) U R(S) we set

P-, = {(a,b)eSxS:(a-l,b-x)Gp}.

It is obvious that p_x   is a left (right) congruence on S iff p  is a right
(left) congruence on 5, and that  (p_1)_1=p.
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68 JOHN MEAKIN

Proposition 1.1.  The lattice of left congruences on an inverse semigroup
S is isomorphic to the lattice of right congruences on S.

Proof.   The mapping <f>: p —> p_t V P G L(S) is easily seen to be a
lattice isomorphism of L(S) onto R(S).

By virtue of this observation we feel at liberty to restrict our attention to
left congruences on inverse semigroups throughout the remainder of the paper.
Any result concerning left congruences on S has an obvious dual result concern-
ing right congruences on S.

We remark that it is clear that  R_j = L  and   L_i = R, where  R and   L
denote the usual Green's relations on S: note also that if p G R(S) U L(S), then
p_x = p iff p  is a congruence on S.  (This last remark follows from the fact
that if p  is a congruence on an inverse semigroup then (a, b)E p iff
(a~1,b~1)Ep; see, for example, J. M.Howie [3].)

2. The kernel of a left congruence on an inverse semigroup. If p  is a left
congruence on an inverse semigroup S then the kernel of p is the set of p-classes
which contain indempotents of S, i.e.,

Ker p = [ep: e EES}.

It is well known that if p  and a are two left congruences on an inverse semi-
group, then p = o iff Ker p = Ker o. (See [1, Theorem 7.39].) This result
naturally suggests the following question:  How do we characterize the kernel of a
left congruence on an inverse semigroup and how do we reconstruct the left congru-
ence from its kernel? In Theorem 2.1 we provide an answer to this question. The
corresponding problem for two-sided congruences on inverse semigroups has been
solved by G. B. Preston [4].

We introduce the following notation.  If A = {A¡: i EI} is a nonempty
set of disjoint subsets of S then we shall consistently use the notation A(A) =
U/e/^i  (or more simply .4(A) =.4  if no confusion can arise) and if a G 4,
then A(a) will denote the element A¡ of A to which a belongs, i.e. A( =
A(a) iff a G A¡.

Definition 2.1. A set  A = {A¡: i El} of disjoint subsets of the inverse
semigroup S is called a left kernel system  of S if it satisfies the conditions:

(LI) Es CA;
(L2)  for each i EI,ESDA,^ D;
(L3) for each aEA  and jEI, 3 k EI suchthat aAjCAk;
(L4) for each a EA, a~lA(a) CA(a~la);
(L5) if a~lb EA(a~xa) for some b EA, then aEA.
(We remark that L3 implies in particular that A  is a subsemigroup of S.)
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ONE-SIDED CONGRUENCES ON INVERSE SEMIGROUPS 69

Lemma 2.1. // p is a left congruence on S with  Ker p = [A¡: i EI},
then Ker p is a left kernel system of S.

Proof. Ker p clearly satisfies LI, L2 and L4. Let a EA, j El and
/G Aj H Es, e E A(a) n Es. Then for each b E Ajt ab paf = aa~xaf =
(afa~l)a p (afa~1)e EES.

Thus aAj CA((afa~x)e), and so ker p  satisfies L3.  Finally, if a~xbE
A(a~la) for some b EA  and if g EA(b) n Es, then

a = a(a~xa) p a(a~xb) = (aa~x)b p (aa~x)g E Es,

and so aEA.
We make two small remarks about Lemma 2.1 and Definition 2.1. The

lemma implies that even though each element ep  of Ker p is not necessarily
a subsemigroup of S (for example an R-class of S is not necessarily a subsemi-
group of S but  R  is a left congruence on S), the union \JeE£Sep  of the
elements of Ker p is always a subsemigroup of S.  We also remark that, in the
special case in which  5 is a group with identity e, Ker p = {A(e)} and con-
ditions L1-L5 reduce simply to the condition that A(e) is a subgroup of S.

The next theorem tells us that conditions LI —L5 provide the desired char-
acterization of the kernel of a left congruence on an inverse semigroup.

Theorem 2.1. If A = {A¿. i EI} is a left kernel system of S then the
relation

(*) Pa = &a> b)ES xS: a~xb EA(a~xa) and b~xa EA(b~xb)}

is a left congruence on S with kernel  A.  If p is a left congruence on S with
kernel A  then  A is a left kernel system of S and p = pA .

Proof. In view of Lemma 2.1 and the uniqueness theorem of Clifford and
Preston it suffices to show that if A  is a left kernel system of S then p,   is a
left congruence on S with kernel A.  Let  A  satisfy LI-L5 and introduce the
following notation:  a ~ b  iff a and b   are in the same element A¡ of A, i.e.,
a ~ b iff a, b E A¡ for some i E I.  Note that ~ is a partial equivalence rela-
tion on S.

It is clear that pA   is reflexive and symmetric:  To prove that pA   is tran-
sitive let  (a, ft)GpA    and (b,c)Ep^. Then a~xb ~ a~xa,  b~xa ~ b~xb,
b~xc ~ b~xb  and c~xb ~ c~xc.   Hence, by L3 and LI,

c~xaa~xc = (c~xaa~xc)c~xc ~ (c~xaa~xc)c~xb = c~xad~xb.

Hence (a~xc)~x(a~xb) EA((a~xc)~x(a~xc)) and a~xbEA  and it follows by
L5 that a~xc EA.  Thus by many applications of L3 we have
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a xc=a xcc xc~a xcc xb—a xcc xbb xb~a xcc xbb xa

= a~xcc~xbb~xaa~xa ~ a~xcc~xbb-xaa~xb

= a~xbb-xcc-xb ~ a_1èft_1cc_1c = a~lbb~lc ~ a~xbb~xb

= a~xb~a~xa.

Hence a~xc E A(a~xa), and a similar argument shows that  c~xa G A(c~xc). Thus
(a, c) G pA   and so  pA   is transitive.

Now suppose that  (a, b) G p     and cGS.   Then a~xb ~ a~xa,  b~xa~
ft    ¿>, and, by L3,

(ca)_1ca = a~xc~xca = (fl_1c_1cfl)û_1a ~ a~xc~xcaa~xb

= a_1c_1cè = (ca)~xcb,

and similarly  (cb)~xcb ~ (ce)_1cß.  It follows that  pA   is a left congruence on 5.
Now let   K. = {Kj-.jEJ} be the kernel of pA . We let A;- G K and show

first that Kj ç ^ for some i E I.   Choose e G A". O ¿"^  and let Â; G A;-. Then
(&, e) G pA   and so  k~x k ~ k~xe and e& ~ e.   Since A:-1& ~ Â:_1e it follows
that  kEA  by L5. Hence, by L3, k = kk~xk ~ kk~xe ~ kk~x(ek) = ek ~ e,
so  kEA(e).  It follows that K¡C.A(e).

Conversely, let Ai G A  and suppose that eE^n^,  Then eEKj for
some ;'G/.   Let aEA¡. Then a~e and so ea~e by L3. Also, a~xeE
a~xA(a) ÇA(a~xa) by L4.  It follows that a~xe ~ a~xa and this, together with
ea ~ e, implies that  (a, e) G pA , i.e., a G A-, and so AtÇKi. Thus  K = A  is
the kernel of p. .  This completes the proof of the theorem.

We now provide examples which show that the conditions LI—L5 are
mutually independent.  Let   I2  be the symmetric inverse semigroup on two
letters   {1,2}. (I2  is the set of all one-one mappings from subsets of  {1,2}
onto subsets of  {1,2}  (including the empty mapping) with composition defined
in the usual way—see [1] for details.) We use the notation  (J £,) for the map-
ping which takes x to 2  and v  to w, (*) for the mapping which takes x
to  v, and  0  for the empty mapping.  Note that

Example 1. Let

HiGJMDM»-©}}-
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Example 2. Let

A-{«i)M(¡)}#.K)!i
Conditions LI, L2, L3, and L5 are satisfied but L4 is not.

Example 3. If

*-§). (!)}■{(?)• (Ml Í)- o-Gîf
then  A  satisfies LI, L2, L4 and L5 but not L3.

Example 4.  Let  A = {{0}}, A   satisfies L2-L5 but not LI.
Example 5. If

then conditions LI, L3, L4 and L5 are satisfied but L2 is not satisfied.
Thus no four of LI —L5 imply the fifth and so LI -L5 are mutually inde-

pendent. We make the remark that while it is true that if p  is a left congruence
on S then A = \JeeE„ep is a subsemigroup of S, it is not true that A  is
necessarily an inverse subsemigroup.  For example the partition

{(ilMOHl?). (?)}*)■<>•©}
defines a left congruence on   J2   and here

-{si). (!)•©•»• a»
is not an inverse subsemigroup of  I2.

3. Idempotent-equivalent one-sided congruences. The set of left congruences
on S which induce the same fixed partition   E = {E¡: i EI }  of Es con-
stitutes a complete sublattice of L(S) (with both 0 and 1 elements). Two left
congruences on S are called idempotent-equivalent if they induce the same
partition of Es. In view of these remarks it is natural to ask which partitions of
Es are induced by left congruences on S and to seek a characterization of the
maximum and minimum left congruences on S which induce a given partition
of Es. We provide the solution to this problem in the following theorem. Reilly
and Scheiblich have answered the corresponding set of questions for two-sided
congruences on inverse semigroups in [5].

Theorem 3.1. A partition  E = {E¡: i EI} of Es into disjoint subsets
is induced by some left congruence on S iff E satisfies:

(N) V i, j E I,   3 k = k(i, j) EI such that Efij Ç Ek.
The minimum left congruence on S inducing such a partition of Es is
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% = {(a, b) ES x S: 3 i EI such that a~xa, b~xb EE¡ and
ae = be for some e E E¡}.

The maximum left congruence on S inducing such a partition of Es is

f = {(a, b) ES x S: a~xbb~xa EE(a~xa), b~xaa-xb EE(b~xb) and for

each  k El, 3/, m EI such that a~xbEkb~xa CE¡ and

b~xaEka-xb ÇEm}.

Proof. Let p be a left congruence on S and let E = {E¡:iEI} be the
partition of Es induced by p. It is an easy matter to see that  E satisfies the con-
dition (N), for if ex, e2 EE¡ and fx, f2 EEj it follows that exfx p exf2 =
$2e\ P f2e2 = e2/2  an^ so Efii ^ P'k  ^or some k e^-

Suppose now that   E is a partition of Es which satisfies (N). We show
that there is some left congruence on S which induces this partition   E of Es
by showing directly that both  % and f have this property. We first prove that
|  is a left congruence on S with the properties stated in the theorem.

Evidently, |  is reflexive and symmetric.  Suppose now that  (a, b) E £ and
(b,c)E%:  Then there exists i EI suchthat a~xa, b~xb, c~xc EE¡ and ae =
be,  bf = cf for some e, f E E¡. Then a(ef) = bef = bfe = cfe = c(ef), and
ef E E¡, so  (a, c) E if. Now let c be any element of S and suppose that
a~xc~xcaEEj. Then (ä~xa)(a~xc~xca)(a~xa) EEj and it follows by (N) that

e(b~xc-xcb)e = (eb-x)(c~xc)(be) = e(a~xc~xca)e EE¡,

and hence that b~~xc~xcb = (b~xb)(b~xc~xcb)(b~xb) G^.. Furthermore, if we
let /= ed~xc~xca = ea~xc~xcae = eb~xc~xcbe = b~xc~xcbe, we easily see that
fEE,  and that

caf= caa~xc~xcae = cae = cbe = cbb~xc~xcbe = cbf,

and hence  (ca, cb) G |. Thus | is a left congruence on S.
It is almost immediate from the definition of % that if e, fEEs, then

(e, f)E% iff e, f E E¡ for some i E I.   Thus % induces the partition   E of
Es and it remains to show that if p  is any left congruence on S which in-
duces this partition   E of Es, then  £ Cp.  Let  (a, b) E %:  There exists i EI
suchthat a~xa, b~xb EEj and ae = be  for some eEE¡. Since p is a left
congruence on S which induces the partition   E of Es it follows that aE¡ Ç
a(ep)Cxp for some xGS.   But a = a(a~xa) EaE¡ and so aExp. By a
similar arguement, bE( Çyp  and b Eyp for some y ES, but since ae =
be EaE¡ n bE¡, it follows that xp = yp  and that a, b Exp. Thus (a, b)E p
and so  % Ç p. This completes the proof of the claims made about  |.
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Now let  f be the relation defined in the statement of the theorem. That
f is reflexive follows from (N), and that f is symmetric is immediately obvious.
Suppose now that  (a, b) E f and  (b, c) E f. Then there are elements i, j, kEI
suchthat a~xa,a~xbb~xaEEit  b~xb, b~xaa~xb, b~xcc~xb EEjt c~xc,
c~xbb~xc EEk, and for each I El, there exist m,n,p,q El such that
a-xbE¡b~xaCEm,  b-xaElarxb CEn,  b~xcElc~xb CEp  and c~x bE,b~x c Ç
Eq. To prove the transitivity of f, we need to prove that a~xcc~xa EE¡ and
c~xaa~xc EEk, and that if / G/, there exist r,sEI such that a~ xcEf~ xa Ç
Er and c~xaE¡a~xc CES. Now a~xcc~xa = (a~xcc~1a)(a~xa), so by (N),
a~xcc~xa is in the same element of  E as ,(a~xcc~xa)(a~xbb~xa). But

(a-xcc-xa)(a-xbb-la) = «-'¿(ft-1«?-1^-1« Ea-xbEjb~xa,

and a-xbb~xa = a-xb(b-xb)b~xa Ea-xbEjb-xa. Hence a~xbEjb-xa C\E¡
=£ D, and it follows that a~xbEjb~xa CE¡. Hence a~xcc~la EE¡ and similarly
c~xaa~xc EEk. Now choose I El arbitrarily and let eEE,. Then, by (N),
a~xcec~xa is in the same element of  E as (a~xcec~xa)(a~xbb~xa), since
a_1cec_1a = (a~xcec~xa)(a~xa). But

(a-W-^XiT'Wr'a) = a""1ôô"1cec_1ôô"1a E a~xb(b~xcEf~xb)b~la,

and a~xb(b~xcElc~xb)b~xa ÇEr for some r6/, since there exist p, rEI
for which b~xcElc~xbÇEp  and a~xbEpb~la CEr. Hence a_1cec-1a ££,
for each e EE¡ and it follows that a~xcElc~xa ÇEr. Similarly, c~xaEp~xc
EES, some s El, and so f is an equivalence relation on 5. Now let c be any element
of 5and let (a, b)Ef as above,and suppose that a~xc~xcaEE . Then since
a~xc~xca = (a~xc~xca)(a~xa), we have thatEpE¡ ÇEp. It follows that a~xc~xcb-
b~xc~xca = (a~xc~xca)(a~xbb~xa)EEp, and the proof that b~xc~xcb and Z>-1c_1ca •
a~xc~xcb are in the same element of E is similar. Further, if / G/and e G^, then

a~1c~1côeô"1c"1ca = (a"1c"1ca)(a_1ôe&~1fl) G (a~1c~xca)(a'xbElb~xa)

ÇEpEm CEq,   for some qEI,

and it follows that a~xc~xcbElb~xc~1ca CEq. Similarly b~xc~xcaE¡a~xc~xcb
CEr for some rEI, and so f is a left congruence on 5.

Again, it follows fairly easily that f induces the partition E of Es: Let p
be any left congruence on S which induces the partition E of Es, and let (a, b) E
p. Then (a~xa, a~xb)Ep and (b~xa, b~xb)Ep and also (b~xa, b~laa~xb) =
(b-xaa-xa,b-xaa-lb)Ep. Since (¿"V ft-'^Gp it foUowsthat (ô_1ô,
b~xaa~xb)Ep andhencethat b~xb,b~xaa~xbEE¡ for some iEI. Similarly
a~xa,a~xbb~xaEEj for some jEI. Now let IEI and eEE¡. Then
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(ea~xb, ea~xa) Ep, i.e., (ea~xb, a~xae) Ep, and hence  (b~xaea~xb, b~xaa~xae)
E p, i.e., (b~xaea~xb, b~xae) Ep.  Let  A={A¡:iEI}  be the kernel of p.
Then b~xae G b~xaE, Cb~xaA¡, and since b~xaea~xb EA. for some / G I,

we have b~xaA¡CAj by the left congruence property of p.  In particular,
b~xafEA. for all fEE,. Hence b-xafaTxbEAj for all fEE¡, and it fol-
lows that b~xaEla~xb ÇAj- Since b~xaE¡a~xb ÇES, we evidently have that
b~xaEla~xb ÇEj. Similarly, a~xbElb~xa ÇEk, for some  ¿G/.  Hence  (a, ¿)
G f and so p Ç J. This completes the proof of the theorem.

We mention two corollaries of the theorem which are of independent interest
and may be proved directly.

Corollary 3.1. A partition   E= {E¡:iEl} of Es is induced by a
left congruence on S iff E is induced by a right congruence on S.

(This follows from the left-right symmetry of condition (N).)

Corollary 3.2. Any left (right, two-sided) congruence on Es may be
extended to a left or right congruence on  S whose restriction to Es coincides
with the original left congruence on Es.

(This follows since condition (N) is of course just the condition which in-
sures that the partition   E defines a congruence on the semilattice Es.)

4. Idempotent-separating one-sided congruences. A one-sided congruence p
on S is called idempotent-separating if distinct idempotents of S are in dis-
tinct equivalence classes of p.  Idempotent-separating left congruences on S are
clearly idempotent-equivalent in the sense of the previous section.  For idempotent-
separating left congruences on S we are able to obtain a Green-Lagrange type
theorem (Theorem 4.3): We first show how the results of the previous two sections
may be simplified in the idempotent-separating case.

Theorem 4.1.  The maximum idempotent-separating left (right) congruence
on S is  R (L).

Proof.   This may be proved by noting that the relation J" of Theorem 3.1
reduces to  R  in the special case in which  E = {{e}: e EES}. For with this
partition   E, the relation f clearly reduces to the relation

f = {(a, b)ES xS: a~xa = a~xbb'xa and b~xb = b~xaa~xb}.

If (a, b) E f, then

aa~x =a(a~xayrx = a(a_1èô_1a)a_1 = (aa-x)(bb-x)(aa~x)

= (bb-x)(aa-x)(bb-x) = b(b~xaa~xb)b~x = b(b~xb)b-x = bb~x,
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so  (a, b) G R, i.e., f Ç R.  Since   R  is an idempotent-separating left congruence
on S, R = f as required. One may of course provide a direct proof of this
result without using Theorem 3.1.

Thus the study of idempotent-separating left congruences on S reduces to
the study of those left congruences on S which are contained in  R.  Recall
that  T is called a full inverse subsemigroup of S if T is an inverse subsemi-
group of S which contains all idempotents of S.

Theorem 4.2.  The lattice of idempotent-separating left conguences on an
inverse semigroup   S   is isomorphic to the lattice of full inverse subsemi-
groups of S.

Proof.   Let p be an idempotent-separating left congruence on S with
kernel Ker p = {A(e): e EES}. As usual, set A = Uee£-o^(e)- Then A  is
a subsemigroup of S which contains Es. In addition, if a G A, then a G
A(aa~x) because p Ç R, and so a~x = a~x(aa~x) p a~xa EES, i.e., a-1 G A.
Hence A  is a full inverse subsemigroup of 5.

Conversely, if A  is a full inverse subsemigroup of S, let  A = [A C\Re:
eEEs}. We claim that A is a left kernel system of S. A clearly satisfies LI and
L2. If aEA, then V e EES, aA(e) ÇA  since A  is a subsemigroup of S, and
also aA(e) ÇaRe CRae  since  R is a left congruence on S. Hence aA(e) Ç
Rae n A = A(ae), so  L3  is satisfied.  Furthermore, a-1 G A  so a-'¿1(a) Ç
A(a~xa) by  L3 so  L4 is satisfied.  Finally, if a~xb EA(a~xa) for some
6G.4,then a~xb R a~xa, so a~xbb~xa = a~xa:  Hence a =a(a~xa) =
aa~xbb~xa = (aa~x)b(b~la) EA (since aa~x, b, b~xa EA), and so  L5  is
satisfied. One can easily check (by using Theorem 2.1) that this establishes an
isomorphism between the lattice of idempotent-separating left congruences on S
and the lattice of full inverse subsemigroups of S.

Lemma 4.1. // p  is an idempotent-separating left congruence on S then
p_ j  is an idempotent-separating right congruence on S and p ° p_x — p, ° p
is the smallest equivalence relation containing both p and p_x.

Proof.   That p_x   is an idempotent-separating right congruence on S is
obvious. The rest of the proof follows from Lemma 1.4 of [1] and Lallement's
result [6] that any left congruence on a regular semigroup which is contained in
Green's relation  R  commutes with any right congruence which is contained in L

The following theorem describes how a U-class of S is further partitioned
by an idempotent-separating left congruence on S.   It may be thought of as a
generalization of Green's lemma [1, Lemma 2.2] and provides an analogue of
Lagrange's theorem for finite groups in the case where S is finite.
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Theorem 4.3 (a Green-Lagrange theorem).  Let p be an idempotent-
separating left congruence on S with kernel A = {A(e): e EES}. For each
a ES define

Rp(a)=lJ{Hx:xEap},

Lp(a)= \J{Hx:xEap_x},

Dp(a)= U^x-xEa^op^}.

Then
(1)V aES,ap = aA(a-xa).
(2) If a Lb  then for some x.yES, xa = b and yb = a:   the map-

pings <t>: u —*xu V u Eap and  i//: v —► vu V v Ebp are mutually inverse one-
one L-class preserving mappings of ap onto bp and bp onto ap respectively.

(3) For each e E Es, e(p n p_x) = ep n He = ep_ x^He is a sub-
group of H e: If e,fEEs and fEDp(e) then e(p n p_i)=/(p n p_x).

(4) If S is finite, then for each a ES,
(i)  \bp\ = lap| and  \bp_x\ = \ap_x\V b EDp(a);   \apC\HJ = \bp n

Hb\ and  \ap_x C\Ha\ = \bp_x DHb\ \/bEDp(a);
(Ü)  M||Rp(fl)||U)p(a)| and  \ap_x\ \\Lp(a)\ \\Dp(a)\;

(in)  |ap|, |flp_,|||a(P ° P_i)tî
(iv)  lapl = |ap_, | if Dp(a) n Es ± U.

Proof.  (1) Let ax EaA(a~xa). Then ax p a(a~xa) = a, so ax Eap.
Conversely if x p a then xx-1 = aa~x   and so x = (xx~xpc = aa~xx =
a(a~xx), and a~xx p a~xa, so a~xx EA(a~xa). Hence xG4(a_1a).

(2) This is straightforward and is omitted.
(3) Let eEEs:  Then if aEepC)He, (a,e)Ep and so a~x =

a~xe p a~xa — e, i.e., a~x Eep (^He, and so a G ep_x n He. It follows easily
that ep C\He = ep_x C\He= e(p C\ p_x). Clearly e(p n p_x) is a subgroup
of He   since p   induces a left congruence on the group He.

Suppose now that e,fEEs and that eEDp(f). There are elements
a.bES suchthat b EHp ep _xa and apb, and it follows that aa~l = f,
a~xa = e,  bb~x = b~xb = /,  epa~x   and a~xp_xb~x. It is straightforward
to check that the mapping x^ e(P n P_i) —*■/(/> n P_i) defined by  x(") =
b~xa u a~xb V u Ee(p flp_,) is an isomorphism from efpn^j) onto
/(pnp.,).

(4) Suppose now that S is finite.
(i) First note that by part (2) of the theorem, if a Lb then   |ap| = |¿»p|

and  lap n HJ = |2>p n Hb\. Let   lap OHa\ = k: Since #a =UxS// (xp^Hx)
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it follows that \Ha| = Ik for some I EZ+. We claim that if c Eap  then
lap n Ha\ = \cp n Hc\ = k.  Let A = {xp D Ha: x EHa}  and B = {xp n //c:
xEHc}  and define v: ,4 —* 5 by v(xP C\Ha) = xp C\HCV x EHa. One
checks that i> is well defined and is a one-one mapping of A  onto B, and so
L4| = \B\. But   I/7J = Ml \apOHa\ and   |i/c| = |£| \cp DHC\, and since
|#a| = \HC\   it follows that   lap n 7/J = |cp n #c|. The remainder of (i) fol-
lows easily.

(ii) We have k = \bp OHb\ V b EDp(a) and \Hb\ = lk. Let « be the
number of L-classes which ap intersects and let m be the number of R-classes
which ap_j intersects. Then since Rp(a) = \JxeapHx> \Rp(a)\ = nlk, \ap\ =
nk and also £>p(a) = \Jx(=ap_xRp(a) so |Z)p(a)| = mnlk. Thus |ap|| |Äp(a)| |
|£>p(a)| and similarly   |ap_ J ||¿p(a)| | |£>p(a)|.

(iii) We need only note that a(p ° p_x) = \JxeaP_lxP = Uxeap*P-i>
and so   \ap\,\ap_x\\\a(p ° p_x)\.

(iv) Note that if e EES then the mapping a —*■ a~x V a G ep is a bi-
jection between ep  and ep_ t :  The result follows easily.

5. Inverse semigroups with only trivial full inverse subsemigroups. We now
turn to the question of characterizing inverse semigroups S which have no
idempotent-separating left congruences between is and  R.  In view of Theorem
4.2 this is equivalent to the problem of characterizing those inverse semigroups S
which have no full inverse subsemigroups other than Es and S. We shall refer
to Es  and S as the trivial full inverse subsemigroups of 5.

We use the notation <W> to denote the subsemigroup generated by a sub-
set W of S. It is clear that if S is an inverse semigroup with only trivial full
inverse subsemigroups, then either S — Es is a semilattice or S = (a, a~x, Es)
Va ES\ES. This comment will be used without further reference.

Lemma 5.1. If S = (a, a~l, Es) for some a G S\ES then S = Es U
Es(a, a~x).

Proof.   Let s be an element of S\ES. Then

s = exwxe2w2-'-enwnen + x,  some e¡EEs, w^ia.ä'1),

= exwxe2w2 ••• en_xwn_xenwn(w-xwn)en + x

= exwxe2w2 ••• en_xw„_xen(wnen + xw-x)wn

= exwxe2w2 • • • e„_xwn_xfnwn   where /„ = enwnen+ xw~x EES.

If we proceed inductively in this manner it is easy to see that s = fxwx • • • wn,
some /j EES, and so s EEs{a, a~x).
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Lemma 5.2. // S = Es U ESA for some inverse subsemigroup A of S
and if S has only trivial full inverse subsemigroups, then A  has only trivial full
inverse subsemigroups.

Proof. Suppose that B is a proper full inverse subsemigroup of A  and
set Bx = Es U ESB. A standard argument shows that Bx   is a full inverse sub-
semigroup of S.   Furthermore, since B ÇESB ÇBX   and since B contains non-
idempotents, Bx #Es and so Bx = S. Now let x be any element of A: Then
xES and so xEBx.  If x E Es, xEAC\EsÇB and so xEB.  If x $ Es,
then x =fb  for some fEEs, bEB.   Thus xx-1 =fbb~x EES DA ÇB,
and so x = fb = (fbb~x)b EB.  This yields A ÇB and so A = B which con-
tradicts the fact that B is proper.  Hence A  has no proper full inverse subsemi-
groups.

We recall that an inverse semigroup S is called an elementary inverse semi-
group if S is generated by an element and its inverse, i.e., S = (a, a-1 > for
some a G S.  We make use of the following lemma concerning elementary inverse
semigroups due to L. M. Gluskin [3].

Lemma 5.3  (Gluskin [2]). If S is an elementary inverse semigroup gen-
erated by a and b(=a~x) then every element wES is expressible in the form

w = db'ak,      0<i,k </,   / > 1.

Furthermore, if l>i and n>k, then a'bma" = a'biak implies that bm =
y+(n-k) + (l-i); ¡f ¡<i   and   n>k> then   albman = ¿tfjt   implies that
bm + (i-l) =bj+(n-k)^

We deduce a number of technical corollaries and lemmas concerning element-
ary inverse semigroups. The arguments involved in the first two of these are quite
routine, involving only the commuting of idempotents, the expansion x = xx~xx
and Lemma 5.3, so we omit these details and provide statements of the results
without proof.

Corollary 5.1. If S is an elementary inverse semigroup generated by
a and b(=a~x) and if a is of infinite order then

(a) albma" = a'b'ak implies m -1 - n = j - i - k;
(b) a'b'akEEs  iff i + k = j.

Lemma 5.4. If S is an elementary inverse semigroup generated by a and
b(=a~x) then multiplication in S is defined by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



one-sided congruences on inverse semigroups 79

aib'+m-k-la" if k + Kj.m,

aib¡ak + l-m+n ifm<k + l<j,

ak+H+ibman ifj<k + l<m,

ak + l-j+ibk + lak + l-m+n     if k + i >j> m

From these two results we obtain the following

Corollary 5.2. If S is an elementary inverse semigroup generated by
a and b and if S has only trivial full inverse subsemigroups, then a is of
finite order.

Proof.  Suppose that a  is of infinite order.  As in Lemma 5.1, S =
{Es, a2, b2) and thus a G (Es, a2, b2). Hence a — ew for some e EES,
wE(a2,b2) and by the preceding lemmas, e = a'bl+'a' and w = a2kb2,a2m
for some integers i, j, k, I and m such that i, j > 0, 0 < k, m < /.  Thus by
the previous lemma

if j + 2k<i+j, 21,

if 2Kj + 2k<i+j,

if i+j<j + 2k<2l,

if j + 2k>i+j, 21.

Then since a is of infinite order, Corollary 5.1 yields  2/ - 2k - 2m = - 1, which
is a contradiction since  21 -2k - 2m  is even. Hence a is of finite order.

Lemma 5.5. // S is an elementary inverse semigroup with only trivial
full inverse subsemigroups, then either S is a group of prime order or S is the
five-element Brandt semigroup.

Proof.   Let S be generated by a and b ( = a~x). By Corollary 5.2,
3 m, n E Z+   such that m> n  and am = a". With m and «  chosen mini-
mally it follows easily (using Gluskin's Lemma 5.3) that G = {a", a" + x, • • ■ , am ~x}
= {bn, '" , bm~x }  is a cyclic group and an ideal of S.

Now set A = Es U G:   since   G is an ideal of S, A  is a full inverse sub-
semigroup of S and hence A = S or A = Es.  If A = S, then a EES  or
a EG, and if a GEs then a = a~x   and S = {a}:  If a G G then S = G
is a group which has no proper subgroups and so is a cyclic group of prime order.

Suppose now that A = Es. Thert  G = {0}  because  G is an ideal of S
and is a group consisting of idempotents:  We claim now that this implies that

(a'Vafc)(a/èma") = '

a =

aibi+i+2l-i-ka2m

,aibi+iai+2k-2l+2m

\ai+2k-H+ib2la2m

ai+2k-H+ibi+2ka)+2k-2l+2m
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a2 =b2 = 0.  Suppose that a2 =£ 0:  Then a" = 0  for some « > 2 and
{a, a2, • • • , a"-1, a" = 0}  and   {6, b2, • • • , b"'1, b" = 0}  are sets of «
distinct elements with a' ^ ¿Ty  and  b' ^ ^  for i < «.   Now set B = Es U
Es(a2, b2). B is clearly a full inverse subsemigroup of S and B ^ Es since
a2 G 5; we produce a contradiction by showing that a^B, and so B ¥= S. First
note that if e is an idempotent of S other than  0 then e = a'bl+'a'  for
some i, j EZ+ U {0} such that 0 < i + / < «.  (This follows by a routine
argument using the fact that the elements b, b , • • • , bn~l   are all distinct.)
That a ^ Es(a2, b2) may be proved by an argument along the same lines as the
argument used in Corollary 5.2. Thus a2 = b2 = 0 and so S = {a, b, ab, ba, 0}.
One checks easily that the elements a, b, ab and ba are all distinct, and thus
S is the five-element Brandt semigroup (with nonzero idempotents ab  and ba).

Lemma 5.6. Let S = (Es, a, a~x) be an inverse semigroup with only
trivial full inverse subsemigroups and suppose that (a, a~x) = G is a cyclic group
of prime order with identity e0 EES.   Then S = Es U G with multiplication
between Es and G defined by

eg = ge = ee0   if eEEs,gEG and ee0 =£ e0,
(*)

eg = ge = g      if eEEs,gEG and ee0 = e0.

Proof.   From Lemma 5.2 we know that S = Es U ESG.   Before embark-
ing on the proof we recall that the natural partial ordering on Es is defined by
e </ iff ef = fe = e:  We make liberal use of this partial ordering in the proof.
Note that for each e, / G Es, ef < e and ef < /

We first claim that for each e EES, Ree   — {eé: i = 1, • • • ,p}, Lee   =
{a'e: i = 1, • • • , p}, and Dee   = {a'ea1: i, j = 1, • • • , p}. Clearly   {eal:
i = 1, • • • ,p} ÇRee .  Suppose now that s ERee :  If s EES then s = ee0;
if s $ES then s = fa', some fEEs,iE {1, • • • ,p}, and so ee0 = ss~x =
fa'a~'f = fe0f = fe0, so s = /a'= fe0a' = ee0a' = ea'. A similar argument shows
that Lee   = {a'e: i = I, • - - ,p}. It follows that the set of idempotents of
Dee    is   {a'ea~x: i = 1, • • • ,p}, and if x R a'ea'1 for some i then x =
a'ea~xa' = a'eafc, some k. Thus DeeQ = [a'ea1: i, j = 1, • • • ,p}.

We now claim that in fact Dee   = {ee0} if ee0 + e0 (i.e., if ee0 < e0).
Suppose that D¡      + {/0e0}  for some /0 EES for which /0e0 # e0, and
consider B = Ue</0e0De  and let A = Es U B:  We claim that 4  is a full
inverse subsemigroup of S. It clearly suffices to show that A  is a subsemigroup
of 5 since if xEDe  then x_1 GDe.  Let aief0eQa',akff0e0al EB.  Then

a%e0afakff0eoa' = ai+'+k(a-'-kefoeoa'+kff0e0)al E B.
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(Note that a-'-kef0e0a'+kff0e0EEs and a->-kef0e()ai+kff0e0 </0e0.)
Also, if /GEs and a'ef0e0a'!EB, then f(a!efQe0a') = a'(a~'fa')ef0e0a'EB
since a~'/a'e/0e0 </0e0; similarly (a'ef0e0a')fEB, and thus .4  is a full inverse
subsemigroup of S.  Now £/oeo =£ {/0^o^ an(^ ^Vn<?o -^' s0 ^ ^ ^s- ^n
the other hand a GD      and e0 $ e0/0, so a ^ A, so A =t S.   This contradicts
the fact that 5 has no full inverse subsemigroups other than Es and S. Hence
Dee   = {ee0} if ee0 =£ e0. Thus a'ee0 = a'e = ee0a' = ea' = ee0 V i = I,*** ,p
provided ee0 # e0.  Clearly, if ee0 = e0, then a'e = a'e0e = a'e0 = a' = ea'.
This proves the lemma.

Lemma 5.7. Let S = <ES, a, a~x) be an inverse semigroup with only
trivial full inverse subsemigroups and suppose that (a, a-1> = T is the five-
element Brandt semigroup  T= {a, b, ex, e2, e0} (where b = a~x, ex=aa~x,
e2 = a~xa, e0 is the zero). Then S = Es U T with multiplication between
Es and T defined by

ea = eej    if eex =£ ex, ae = ee2    if ee2 =£ e2,

= a      ifeex=ex; =a      if ee2 = e2;
(**)

eb = ee2    if ee2 J= e2, be = eex   if eex + ex,
= b      if ee2 = e2; =b     ifee1=el.

Proof.  This is similar in spirit to the proof of Lemma 5.6 so we provide
only an outline of the proof.  One checks first that for each e G Es, Ree   =
{ee1( ea}, Ree2 = {ee2, eb}, Leei = {be, eex}, Lee2 = {ee2, ae} and so
Dee   = {eej, ea, be, bea} and Dee   = {ee2, eb, ae, aeb}. Since a2 = b2 = e0
and since S = ESUEST, it follows that S = Es U (Ue<etDe) U (\Je<e2De)-
One then proves, as in the proof of Lemma 5.6, that Dee   = {eej} if eex # ex
and that Dee2 = {ee2} if ee2 =£ e2. The result 5 = Es U 7/ and the multipli-
cation (**) then follow easily.

Motivated by the results of Lemmas 5.6 and 5.7 we introduce two semi-
groups F(E, e0, G) and F(E, e0, ex, e2, a, b) as follows:

(1) Let E be a semilattice, e0 a fixed element of E and  G a group
with identity e0:  We define ir(£'1, e0, G) = E U G with multiplication inherited
by that in E and G and multiplication between elements of E and elements
of G defined by (*) (in Lemma 5.6).

(2) Let E be a semilattice, e0, et   and e2  distinct fixed elements of E
for which e0 < ex, e0 < e2  and let a, b be elements not in E:  let  T =
{a, ô, e0, e1( e2} be the five-element Brandt semigroup with b = a~x,   el = ab,
e2 = ba and e0  as zero. Now define F(E, eQ, ex, e2, a, b) = E U T with

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



82 JOHN MEAKIN

multiplication inherited by that in E and T and multiplication between elements
of E and elements of T defined by (**) (in Lemma 5.7).

Combining all of the results of this section we have the following theorem.

Theorem 5.1. An inverse semigroup S has no proper full inverse sub-
semigroups (other than Es and S) iff either

(i) S = F(E, e0, ex, e2, a, b) for some semilattice E and elements e0,
ex, e2 EE and a, b G E; or

(ii) S = F(E, e0, G) for some semilattice E, some e0 EE and some
cyclic group G of prime order.

Remarks. (1) Semilattices and cyclic groups of prime order are special
cases of the semigroup F(E, e0, G).

(2) Theorem 5.1 also characterizes inverse semigroups S which have no
idempotent-separating left (right) congruences between is and  R (i.).

(3) Theorem 5.1 suggests that a general study of the connection between
the lattice of full inverse subsemigroups of an inverse semigroup and the structure
of the semigroup might prove rewarding.

I should like to offer my thanks to Professor G. B. Preston, who originally
suggested the problem solved in Theorem 2.1. The results of this paper were pre-
sented at a symposium on inverse semigroups and their generalizations at the
University of Northern Illinois in February, 1973.
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