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Abstract

We introduce one-sided cross-validation to nonparametric kernel density esti-

mation. The method is more stable than classical cross-validation and it has

a better overall performance comparable to what we see in plug-in methods.

One-sided cross-validation is a more direct data driven method than plug-in

methods with weaker assumptions of smoothness since it does not require a

smooth pilot with consistent second derivatives. Our conclusions for one-sided

kernel density cross-validation are similar to the conclusions obtained by Hart

and Yi (1998) when they introduced one-sided cross-validation in the regres-

sion context, except that in our context of density estimation the superiority

of this new method is even much stronger. An extensive simulation study

confirms that our one-sided cross-validation clearly outperforms the simple

cross validation. We conclude with real data applications.1

Keywords: bandwidth choice, cross-validation, plug-in, nonparametric esti-

mation
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1 Introduction

Suppose we have observed data X1, X2, . . . , Xn that are assumed to be independent

and identically distributed with common density function, f(·). We want to estimate

this common density nonparametrically using the standard kernel estimator:

f̂h(x) =
1

nh

n∑

i=1

K

(
x − Xi

h

)
, (1)

where K is the kernel function and h is the bandwidth parameter. Our problem is

to find a reliable data driven estimator of the bandwidth. We would like to use the

popular and widely used least squares cross-validation proposed of Rudemo (1982)

and Bowman (1984). We do, however, worry about the well known lack of stability

of this method, see e.g. Wand and Jones (1995) and Chiu (1996). Many alterna-

tives have been proposed to the intuitively appealing method of cross-validation, for

example the wide range of so called plug-in methods aiming at estimating the min-

imizer of the integrated squared error. However, all these plug-in methods require

a pilot estimator to be plugged in. We prefer a direct and immediate method like

cross-validation without extra complications with pilot estimators and without the

extra smoothing assumptions required to assure that the pilot estimator works well.

In regression an appealing improvement of standard cross-validation exists, namely

the so called one-sided cross-validation that simply is the cross-validation procedure

based on the one-sided kernel version of the original kernel K(·). However, to do

this correctly one has to correct for the bias induced by using only one-sided kernels.

This correction is obtained when applying local linear kernels, compare Section 2.2

of this paper. Notice that this has nothing to do with bandwidth selection in local

linear regression (Fan, Gijbels, Hu, and Huang, 1996). Furthermore, the estimated

bandwidth coming from this procedure is then readjusted by a simple constant only

depending on the kernel, see Hart and Yi (1998) and Yi (1996, 2001, 2004). The

surprising fact is that this one-sided procedure is much more stable than the original

cross-validation procedure and that in many ways it behaves similar to the plug-in

method without having its vices: the complicated pilot estimator and the added

smoothness assumptions.
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In this paper we introduce one-sided cross-validation for kernel density estimation

and we show through simulations that one-sided cross-validation is performing much

better, is more stable and to some extend has a similar performance to plug-in,

also in the kernel density case. Its performance and superiority will be shown via

simulation studies and real data applications.

2 The one-sided cross-validation method for den-

sity estimation

One commonly used measure of the performance of f̂h is the Mean Integrated

Squared Error (MISE), defined by

MISE(h) =

∫
E[{f̂h(x) − f(x)}2]dx.

Let’s denote by h0 the minimizer of MISE(·). This is the optimal bandwidth that

plug-in methods aim at estimating. Another performance measure to consider is the

data dependent Integrated Squared Error, defined by

ISE(h) =

∫ (
f̂h(x) − f(x)

)2

dx

with the optimal (random) bandwidth, ĥ0 as minimizer.

This is the optimal bandwidth that cross-validation aims at estimating. However,

theoretical studies have shown that standard cross-validation is so unstable that

plug-in methods do better at estimating ĥ0 than cross-validation does, even though

plug-in methods really aim at estimating h0.

2.1 Ordinary least squares cross-validation

Cross-validation is probably still the most popular automatic bandwidth selection

method. Its intuitive definition and its practical data driven flavor makes up for its

lack of stability in the eyes of many practitioners. Also cross-validation immediately
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generalizes to most statistical smoothing problems. Plug-in methods are only well

defined for a narrow range of statistical problems and even there, the debate over

which pilot estimator to use makes practitioners turn to cross-validation, see Chiu

(1996) and Loader (1999) for discussions of these issues.

Least squares cross-validation was proposed by Rudemo (1982) and Bowman (1984),

who estimated ĥ0 by minimizing the criterion,

CV(h) =

∫
f̂ 2

h(x)dx − 2n−1

n∑

i=1

f̂h,−i(Xi), (2)

where f̂h,−i is the density estimator obtained by leaving out the observation Xi. Let

̂̂
h be this classical cross-validation bandwidth estimator.

Hall (1983) showed that the cross-validation bandwidth is a consistent estimate of

the optimal bandwidth ĥ0, and its asymptotic normality was established in Hall and

Marron (1987). They pointed out the lack of stability of classical cross-validation.

Härdle, Hall and Marron (1988) showed the equivalent result for the regression

context. The cross-validation bandwidth also tends to be undersmoothing in many

practical applications. There has therefore been a number of studies on more stable

bandwidth selectors, see Härdle, Müller, Sperlich, and Werwatz (2004). Most of

them related to the plug-in method. For example the plug-in method of Sheather

and Jones (1991), biased cross-validation by Scott and Terrell (1987) smoothed cross-

validation by Hall, Marron and Park (1992) and the stabilized bandwidth selector

rule by Chiu (1991).

2.2 One-sided cross-validation

Hart and Yi (1998) used local linear regression when introducing one-sided cross-

validation in the regression context. They did this for good reasons since first, one

sided weighting clearly yields biased estimates for local constant estimation, and

second, a good boundary correction method is crucial for the one-sided procedure.

We therefore combine our one-sided cross-validation method with the local linear

density estimator of Jones (1993). In density estimation the local linear density
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estimator is identical to the standard kernel density estimator (not speaking of one-

sided kernels) away from boundaries, see below.

Let K(·) be any common symmetric kernel function and let us consider its (left)one-

sided version,

K̄(u) =





2K(u) if u < 0

0 otherwise.
(3)

Now consider the one-sided density estimator, f̂left,b based on the one-sided kernel

K̄ and bandwidth b. We define the one-sided versions of the error measures ISE

and MISE calling them OISE and MOISE. Define also b̂0 and b0, their minimizers

(respectively).

We also have the following assumptions on the kernel: µ0(K) = 1, µ1(K) = 0 and

µ2(K) < ∞, where µl(K) =
∫

ulK(u)du (l = 0, 1, 2).

The one-sided cross-validation criterion is defined as

OSCV(b) =

∫
f̂ 2

left,b(x)dx − 2n−1

n∑

i=1

f̂left,b(Xi), (4)

with
̂̂
b as its minimizer. However, in (4) we will use a kernel K̄∗ for fleft,b which will

be derived in the following.

With these definitions, the one-sided cross-validation bandwidth is based on
̂̂
b but

it has to be adjusted by a constant to become an estimator of the bandwidth for

the original kernel density estimator. Let us define

ĥOSCV := C
̂̂
b, (5)

where the constant, C, will be the ratio of the optimal bandwidth (in MISE sense)

of the density estimator (f̂h) to the optimal bandwidth (in MOISE sense) of the

one-sided density estimator (f̂left,b), i.e.

C =
h0

b0

.

Asymptotically, our C constant will not depend on the underlying density. In order

to get this to correct the bias of the one-sided kernel, we use local linear density
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estimators throughout, see Jones (1993) and Cheng (1997a,1997b). Consider the

minimization problem:

min
β0,β1

[∫
{fn(u) − β0 − β1(u − x)}2 K

(
u − x

h

)
du

]
,

where fn(u) = n−1
∑n

i=1 1{u=Xi} is the empirical density function. Then, the local

linear estimator is defined by the equivalent-kernel expression

f̂h(x) =
1

nh

n∑

i=1

K∗

(
Xi − x

h

)
(6)

with the equivalent-kernel

K∗(u) = eT
1 S−1(1, u)T K(u) =

= µ2(K)−µ1(K)u

µ0(K)µ2(K)−(µ1(K))2
K(u),

(7)

being e1 = (1, 0)T and S = (µi+j−2)0≤i,j≤2. Certainly, neglecting boundary correct-

ing issues, for most of the commonly used kernels we get K∗ = K, but not so if we

consider K̄.

We define the operator R(g) =
∫
{g(x)}2dx, for a generic squared integrable function

g. Then the optimal bandwidth for local linear estimator is given by

h0 =

(
R(K∗)

(µ2(K∗))2R(f ′′)

)1/5

n−1/5, (8)

for the ordinary local linear estimator, and

b0 =

(
R(K̄∗)

(µ2(K̄∗))2R(f ′′)

)1/5

n−1/5, (9)

for the one-sided version, where K̄∗ := (K̄)∗ is the one-sided equivalent kernel (7),

i.e.

K̄∗(u) =
µ2(K) − u

(
2
∫ 0

−∞
tK(t)dt

)

µ2(K) −
(
2
∫ 0

−∞
tK(t)dt

)2 2K(u)1{u<0}. (10)

The adjusting constant becomes then

C =

(
R(K∗)

R(K̄∗)

µ2(K̄
∗)2

µ2(K∗)2

)1/5

, (11)

which obviously is a feasible number.
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3 Asymptotic theory

The theoretical justification for the stability of one-sided cross-validation seems to

come from the fact that the variation of one-sided cross-validation around the op-

timal bandwidth it is aiming at estimating, is much smaller than the variation of

ordinary cross-validation around its optimal bandwidth. We will carry out the de-

tails of this argument below following Hall and Marron (1987). For the ease of

notation we will set K = K∗ and just write K in the following.

Assumptions

(A1) The density, f , is bounded and twice differentiable, f ′ and f ′′ are bounded

and integrable, and f ′′ is uniformly continuous.

(A2) The kernel K is a compactly supported, symmetric density function on R with

Hölder-continuous derivative, K ′, and satisfies µ2(K) 6= 0.

Note that (A2) refers to kernel K, not to its derivatives K̄ or K̄∗. Consider the

following additional definitions and notation, assuming that (A1) and (A2) hold:

Set W (u) = −zK ′(u) and the one-sided version, W̄ ∗(u) = −uK̄∗ ′(u)1{u<0}. Under

assumption (A2) these functions are kernels which integrate to one and verify that

µ1(W ) = µ1(W̄
∗) = 0.

Define the constants:

c0 =
[
R(K)/

{
µ2(K)2R(f ′′)

}]1/5

and

c1 = 2c−3
0 R(K) + 3{µ2(K)}2R(f ′′)c2

0 ,

and the one-sided versions:

c̄0 = [R(K̄∗)/{µ2(K̄
∗)2R(f ′′)}]1/5,

c̄1 = 2c̄−3
0 R(K̄∗) + 3{µ2(K̄

∗)}2R(f ′′)c̄2
0 .
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Next, let us define the variance terms:

σ2
c = (2/c0)

3R(f)R(W ) + (2µ2(K)c0)
2

{∫
(f ′′)2f −

(∫
f ′′f

)2
}

(12)

and

σ̄2
oc = (2/c̄0)

3R(f)R(W̄ ∗) + (2µ2(K̄
∗)c̄0)

2

{∫
(f ′′)2f −

(∫
f ′′f

)2
}

. (13)

Observe that the difference
∫

(f ′′)2f −
(∫

f ′′f
)2

is the variance of f ′′(X). It will be

denoted by V (f ′′) in the following.

Under conditions (A1) and (A2), Hall and Marron (1987) demonstrated that

n3/10(
̂̂
h − ĥ0) −→ N (0, σ2

cc
−2
1 ). (14)

An application of Hall and Marron (1987) gives the following result allowing us

to compare the variation of one-sided cross-validation to the variation of standard

cross-validation:

Theorem 1. Under conditions (A1) and (A2),

n3/10(ĥOSCV − Cb̂0) −→ N (0, C2σ̄2
occ̄

−2
1 ). (15)

Then, the gain in reduction of the variation can be approximated as follows.

Remark 1. The ratio of the asymptotic variance of one-sided cross-validation to

standard cross-validation is given by the ratio of the asymptotic variance from (14)

and the asymptotic variance of (15):

Goc = C2

(
c1

c̄1

)2
σ̄2

oc

σ2
c

. (16)

The reductions of variance for the Epanechnikov kernel and the Gaussian kernel are

given by

GEp
oc =

0.530605928R(f)R(f ′′) + 0.117383673V (f ′′)

1.418004931R(f)R(f ′′) + 0.47266831V (f ′′)
(17)

and

GGa
oc =

0.6913873R(f)R(f ′′) + 0.6173955V (f ′′)

17.094364R(f)R(f ′′) + 1.363272V (f ′′)
. (18)

So the variance reduction is at least 35% for the Epanechnikov kernel and at least

50% for the Gaussian kernel.
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4 Finite Sample Performance

The small sample performance of one-sided kernel density estimation is compared to

its most immediate competitors, classical cross-validation and plug-in. The here cho-

sen plug-in method is also called ”refined plug-in” or often referred to as Sheather-

Jones bandwidth; details are given below. The performance is compared by in-

tegrated squared error (ISE) of which we derive several measures: the classical

measure, where the ISE(ĥ)s are calculated for all samples and then averaged (our

measure m3); a new - and perhaps better - measure where the L2-distance of the

ISE(ĥ) from ISE(ĥ0) is calculated (our measure m1), and the L1-distance (our m2)

respectively. The new measures take variability of the ISE’s into account and pe-

nalize bandwidth selectors that often do well but once in a while fail completely.

We also calculate the bias of the bandwidth selectors (our m5) and the volatility

of the ISE’s (our measure m4). These numbers will help us explaining why one-

sided cross-validation does better than classical cross-validation. Concretely, given

a bandwidth estimate, ĥ, the considered criteria are the followings:

m1 = mean({ISE(ĥ) − ISE(ĥ0)}
2),

m2 = mean(| ISE(ĥ) − ISE(ĥ0)|),

m3 = mean(ISE(ĥ)),

m4 = std(ISE(ĥ)),

and

m5 = mean(ĥ − ĥ0).

For brevity we will concentrate on kernel density estimation with the local linear

Epanechnikov kernel.

The plug-in bandwidth h0 is calculated, respectively estimated, from equation (8).

Here, R(K) and µ2(K) are known whereas R(f ′′) has to be estimated with a prior

bandwidth gp . To this aim, take Silverman’s rule of thumb bandwidth gp for Gaus-

sian kernels, see Silverman (1986), where the standard deviation of X is estimated

by the minimum of two methods: the moment estimate sn and the interquartile
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range IRX divided by 1.34, i.e. gS = 1.06 min{IRX1.34−1, sn}n
−1/5. Then, as the

Quartic kernel KQ comes close to the Epanechnikov but allows for estimating the

second derivative, we normalize gS by the factors of the canonical kernel (Gaus-

sian to Quartic) and adjust for the slower rate (n−1/9) needed to estimate second

derivatives, i.e.

gp = gS
2.0362

0.7764
n1/5−1/9 .

Next, calculate

R̂(f ′′) = R(f̂ ′′) −
1

ng5
p

R(K ′′
Q)

to correct for the bias inherited by

f̂ ′′(x) =
1

ng3
p

n∑

i=1

K ′′
Q

(
x − Xi

gp

)
.

In simulation studies not shown here, this prior choice turned out to perform better

than any modification we have tried, at least for the estimation problems discussed

here.

4.1 Data Generating Processes and Numerical Results

As data generating process (DGP) we have considered a large number of normal,

gamma and mixed densities from which we will concentrate on the following six:

1. a simple normal distribution, N(0.5, 0.22),

2. a mixture of two normals which were N(0.35, 0.12) and N(0.65, 0.12),

3. a gamma distribution, Gamma(a, b) with b = 1.5, a = b2 applied on 5x with

x ∈ IR+, i.e.

f(x) = 5
ba

Γ(a)
(5x)a−1e−5xb,

4. a mixture of two gamma distributions, Gamma(aj, bj), aj = b2
j , b1 = 1.5,

b2 = 3 applied on 6x, i.e.

f(x) =
6

2

2∑

j=1

b
aj

j

Γ(aj)
(6x)aj−1e−6xbj

giving one mode and a plateau,
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5. a mixture of three gamma distributions, Gamma(aj, bj), aj = b2
j , b1 = 1.5,

b2 = 3, and b3 = 6 applied on 8x giving two bumps and one plateau,

6. and a mixture of three normals, namely N(0.25, 0.0752), N(0.5, 0.0752) and

N(0.75, 0.0752) giving three clear modes.
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Figure 1: The six data generating densities: design 1 to 6 from the upper left to the

lower right.

As you can see in Figure 1, all six models have the main mass in [0, 1]. You can see

also that we have mostly densities with exponentially decreasing tails so that in this

simulation study we will disregard the possible use of boundary correcting kernels.

Moreover, we assume that the empirical researcher has no knowledge on possible

boundaries. For the six models we have considered sample sizes: n = 50, 100 and

200, and 250 repetitions (simulation runs) for each model and each sample size.

The results of the six densities are collected in Table 1 to Table 3. We see that

one-sided cross-validation does better and is much more stable than classical cross-

validation on most of our performance measures (see especially m1 and m2). There-

fore, the relative improvement in performance is even bigger with our main perfor-

mance measure m1, compare Remark 1. One can see that the price for stability

(compare e.g. m4) of both the one-sided cross-validation and the plug-in method is
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Design 1 Design 2

n Criteria CV OSCV Plug-in CV OSCV Plug-in

m1 .0112 .0004 3e-05 .0171 .0012 .0016

m2 .0407 .0064 .0029 .0552 .0263 .0357

50 m3 .0781 .0438 .0403 .1112 .0823 .0917

m4 .1028 .0372 .0305 .1214 .0351 .0197

m5 -.0225 .0136 .0193 .0071 .0500 .0803

m1 .0028 8e-05 1e-05 .0019 .0004 .0009

m2 .0234 .0039 .0014 .0246 .0142 .0288

100 m3 .0479 .0285 .0260 .0590 .0486 .0633

m4 .0530 .0209 .0185 .0450 .0241 .0137

m5 -.0234 .0088 .0160 .0067 .0308 .0763

m1 .0017 3e-05 1e-06 .0021 .0007 .0005

m2 .0110 .0024 .0007 .0159 .0084 .0213

200 m3 .0255 .0170 .0152 .0384 .0309 .0438

m4 .0417 .0125 .0108 .0448 .0287 .0116

m5 -.0136 .0034 .0127 .0003 .0145 .0671

Table 1: Criteria values for designs 1 and 2

a tendency to overestimate the bandwidth a little bit, see m5. However, the stability

easily makes up for this bias, and the overall performance of both methods tend to

be better than the performance of classical cross-validation. To see this, recall that

the measures of interest for the practitioner are usually m1 to m3. The conclusion

is that one-sided cross-validation performs similar to - sometimes worse, sometimes

better - the plug-in method. Our results therefore parallel the results of Hart and

Yi (1998) in the regression context.

5 Practical Remarks and Data Applications

5.1 Data Transformation and Boundary Correction

In our application we estimate densities of data belonging to the interval (0,1) be-

cause we want to apply the transformation approach of Buch-Larsen et al. (2005)

to estimate some loss distributions of operational risk. While the transformation

12



Design 3 Design 4

n Criteria CV OSCV Plug-in CV OSCV Plug-in

m1 .0164 .0026 .0019 .0062 .0009 6e-05

m2 .0564 .0339 .0342 .0343 .0096 .0053

50 m3 .1316 .1092 .1095 .0823 .0576 .0534

m4 .1206 .0557 .0457 .0756 .0353 .0215

m5 -5e-05 .0456 .0669 -.0081 .0335 .0398

m1 .0018 .0006 .0010 .0007 8e-05 4e-05

m2 .0227 .0196 .0269 .0126 .0056 .0047

100 m3 .0698 .0667 .0741 .0466 .0397 .0387

m4 .0480 .0329 .0306 .0276 .0158 .0134

m5 -.0008 .0388 .0666 -.0035 .0327 .0395

m1 .0030 .0008 .0005 .0022 .0008 3e-05

m2 .0168 .0126 .0193 .0130 .0061 .0040

200 m3 .0495 .0453 .0520 .0365 .0296 .0275

m4 .0559 .0318 .0200 .0460 .0292 .0070

m5 -.0038 .0245 .0593 -.0056 .0302 .0393

Table 2: Criteria values for designs 3 and 4

methodology of Buch-Larsen et al. (2005) have proved to be extremely efficient

and beat its direct competitors in the extensive simulation study of that paper,

the bandwidth selection part of that paper is not very sophisticated. It is just the

simplest possible bandwidth selector: Silverman’s rule of thumb. Recall that if the

prior information of facing a one mode distribution is available, Silverman’s rule of

thumb may give nice plots but is generally much too coarse for a detailed data anal-

ysis. So, while the transformation method of Buch-Larsen et al. (2005) already has

shown its usefulness it clearly needs to be updated by a better bandwidth selection

method. We use cross-validation, refined plug-in, Silverman’s rule of thumb and our

new one-sided cross validation estimator as our selection rules. We conclude that

while the other estimators grossly oversmooth or undersmooth to what seems to be

appropriate, the one-sided cross validation seems to work very well in practice.

First a few words on the actual transformation. In our two considered cases the

modified Champernowne distribution of Buch-Larsen et al. (2005) actually simplifies

13



Design 5 Design 6

n Criteria CV OSCV Plug-in CV OSCV Plug-in

m1 .0034 .0042 .0001 .0095 .0055 .0055

m2 .0283 .0239 .0088 .0455 .0659 .0669

50 m3 .0810 .0765 .0615 .1173 .1377 .1387

m4 .0591 .0664 .0222 .0896 .0159 .0126

m5 .0023 .0860 .0518 .0211 .0989 .1057

m1 .0006 .0001 .0001 .0034 .0020 .0046

m2 .0123 .0090 .0086 .0240 .0325 .0655

100 m3 .0480 .0447 .0442 .0687 .0771 .1101

m4 .0272 .0158 .0146 .0600 .0358 .0080

m5 .0041 .0397 .0521 .0102 .0500 .0977

m1 .0012 7e-05 7e-05 .0008 .0002 .0034

m2 .0114 .0065 .0070 .0125 .0084 .0577

200 m3 .0359 .0310 .0315 .0403 .0362 .0855

m4 .0352 .0108 .0094 .0293 .0186 .0069

m5 -.0009 .0342 .0506 .0015 .0152 .0878

Table 3: Criteria values for designs 5 and 6

since their parameter c is estimated to zero. This implies that the transformation

is a special case of the original Champernowne distribution, see Champernowne

(1936,1952), and from a transformation point of view is identical to the Möbius

transformation used for the same purpose by Clements, Hurd and Lindsay (2003).

The simple Champernowne distribution has cumulated distribution function

T (x) = xα(xα + Mα)−1

with density

t(x) = αxα−1Mα(xα + Mα)−2 ,

where M and α will be estimated via maximum likelihood on the original data.

We will apply our method with boundary correcting kernels on the transformed data

yi = T̂ (xi), (i = 1, , . . . , n), where T̂ (·) refers to T (·) with estimated α and M . The

same way we define t̂(·). The resulting kernel density estimate we call f̂transf (y).

Then, the final density estimate for the original data is f̂(xi) = f̂transf (yi) · t̂(xi).
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Note that {yi}
n
i=1 ∈ (0, 1). So we have to define a local linear estimator on the

interval (0, 1). As long as all bandwidths considered, i.e. the bandwidth of the

original kernel estimator and the bandwidth of the one-sided kernel estimator, are

smaller than one half, we can continue to use the local linear estimator defined

above that only takes care of one boundary. The reason for this is that, as long as

all bandwidths are smaller than one half, we can modify our approach of one-sided

kernel estimation as follows; taking weights only from the right when estimating in

the interval (0, 1/2) and taking weighs from the left when estimating in the interval

(1/2, 1). The asymptotic theory that our one-sided kernel bandwidth approach is

based on is of course unchanged by this and we can proceed just as described above.

Since in our specific applications we indeed need only bandwidths being smaller than

0.5, see below, we do not need to generalize our procedure further to take care of

two boundaries. It is enough to replace (3) by

K̄(u) =






2K(u) if u < 0 and 0 < x ≤ 1/2

2K(u) if u > 0 and 1/2 < x < 1

0 otherwise

,

Then, calculate our one-sided bandwidth and rescale to our final bandwidth.

5.2 Operational Risks: Execution, Delivery and Process

Management

We first apply our method to a small data set with sample size n = 75. It has been

taken from a major publicly available financial loss data base on operational risk

data. We consider the loss line ”execution, delivery and process management” with

relatively few reported claims.

First we have transformed the data along the lines described above. For this trans-

formation T̂ we got from a maximum likelihood estimation α̂ = 1.1129968 and

M̂ = 3.2357247. Then, we have searched for the optimal bandwidths on an eq-

uispaced grid of 50 bandwidths from hmin = 1/75 to hmax = 0.5, respectively

0.27 ≈ C/2 for the one sided cross validation (such that bmax = hmaxC
−1 ≈ 0.5
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and we can avoid the necessity of doing boundary correction for the OSCV density

estimates). For kernel K we have used again the Epanechnikov kernel as we did

in the simulations. The results were ĥCV = 0.05 for the classical cross validation,

ĥOSCV = 0.24 for the one sided cross validation, ĥS = 0.29 for Silverman’s band-

width, and ĥPI = 0.43 for the refined plug-in method. Silverman’s bandwidth has

been calculated as described in Section 4 gS but corrected for Epanechnikov kernels.

Compared to the other bandwidth estimates, ĥPI is much to big. A closer look at

the calculation revealed that for this (small) data set the refined plug-in method has

serious problems with the estimation of the second derivative f ′′.
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Figure 2: The density estimates for the transformed (left) and the original data

(right): black solid for ĥOSCV , blue dashed for ĥCV , and green solid for ĥS. The

graph on the right is cut off at x = 25.

In Figure 2 are given the resulting density plots for both the original and the trans-

formed data except for ĥPI as this was ridiculously oversmoothed. It can be seen

clearly that CV tends to under- and plug-in to oversmooth whereas our one sided

cross validation method lies in between. While the difference between the three

curves might seem negligible to the untrained eye, the difference in the heaviness

of the three tails are actually enormous and economic judgements would be very

different for these three curve estimators. Note that the transformation approach

allows us to compare the entire tail and that we therefore are able to get a visual

impression of the relationship between tails for different estimators. This visual

comparison is more complicated on the original scale: we can not capture the entire
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positive axis in one picture.

In the second example we consider external fraud taken from the same financial

data base as our first data set was taken from. Here the number of observations is

n = 538.

For this data set, the transformation T̂ has been performed with the maximum like-

lihood estimates α̂ = 1.113242 and M̂ = 4.0. Accordingly to the sample size we have

searched for the optimal bandwidths on an equispaced grid of 50 bandwidths from

hmin = 1/538 to hmax = 0.25 < C/2. Here, we also tried with larger hmin for reasons

we discuss below. For kernel K we have applied again the Epanechnikov kernel. The

results were that ĥCV (using the classical cross validation) always converged to zero

whatever our hmin was. Now it is well known that for increasing n cross validation

suffers from this problem. As a remedy, Feluch and Koronacki (1992) propose to

leave out in the cross validation not just observation xi (yi respectively in our appli-

cation) but xi and its neighbors, in other words an ǫ− environment Uǫ(xi). However,

in practice it is not clear how large this environment has to be, but this depends

certainly on sample size n. Moreover, often ĥCV varies a lot with the size of Uǫ(xi).

Summarizing, in this application we failed in finding a reasonable ĥCV . Further

results have been ĥOSCV = 0.100 for the one sided cross validation, ĥS = 0.190 for

Silverman’s bandwidths, and ĥPI = 0.214 for the refined plug-in method.
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Figure 3: The density estimates for the transformed (left) and the original data

(right): black solid for ĥOSCV , green solid for ĥS, and red solid for ĥPI . The graph

on the right is cut off at x = 25.
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In Figure 3 are given the resulting density plots for both the original and the trans-

formed data. Again, obviously CV tends to strongly undersmooth (not plotted as

ĥCV ≈ 0.0) and plug-in to oversmooth whereas our one sided cross validation method

lies in between although with the tendency to undersmooth. Also here the difference

of the shown curves might seem slight, but the difference in the heaviness is so big

that it is very important on which of these curves economic judgements are based.

We conclude that our one-sided method beats clearly classic cross validation and

refined plug-in in both the simulations and the real data examples. We have seen

one example in which refined plug-in breaks down, and one in which classic cross

validation breaks down whereas our method does reasonably well throughout.
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