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‘Experience is not what happens to you.

It is what you do with what happens to you.’

Aldous Huxley

‘Consistency is contrary to nature, contrary to life.

The only completely consistent people are the dead.’

Aldous Huxley
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Chapter 1

Introduction

The Compound Poisson Process (CPP) is one of the most basic and popular models

in applied probability. It can represent a workload arrival process, where customers

(or requests) arrive in a memoryless manner and bring independent and identically

distributed (i.i.d.) amounts of work. In risk theory the jumps of a CPP can be

interpreted as, for example, claims arriving at an insurance company. A CPP is one

of the simplest examples of a Lévy process, that is, a process with stationary and

independent increments. Brownian Motion is another well-known example. Lévy

processes allow for greater flexibility in modeling real-life phenomena compared

to CPPs, and at the same time often the associated problems turn out to remain

tractable. Our main textbook references concerning Lévy processes are Bertoin

[1996] and Kyprianou [2006].

The stationarity property of the Lévy process is somewhat restrictive, because

many real-world problems exhibit non-stationary behavior in longer time intervals.

One may think about seasonality of prices, recurring patterns of activity, burst

arrivals, occurrence of events in phases and so on. This motivates so-called regime-

switching models, where the process of interest X is modulated by an exogenous

background process J , which represents different modes or phases of activity, see

Figure 1.1 for an illustration. It is common to assume that J is a continuous-time

Markov chain with a finite state space; we also make this assumption throughout

this work.

Markov Additive Processes (MAPs) form a natural generalization of Lévy pro-

cesses to regime-switching models. A MAP is a bivariate Markov process (X, J),

such that the additive component X has stationary and independent increments

1
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Figure 1.1 Illustration of regime-switching (J jumps at 0.3 and 0.8).

given the state of the background process J . From another point of view, as will

be shown later, a MAP is a Markov-modulated Lévy process. That is, X evolves

as a Lévy process for which the parameters change in time according to the back-

ground process J . In addition, phase changes (jumps of J) may induce jumps of X.

The use of MAPs is widespread, making it a classical model in applied probability

with a variety of application areas, such as queues, insurance risk, inventories,

data communication, finance, environmental problems and so forth. The focus of

this thesis is on the path properties of MAPs. We believe that our results can be

best explained and demonstrated using the terminology of queueing theory and

risk theory. A textbook introduction to MAPs can be found in Asmussen [2003,

Ch. XI]; see also Prabhu [1998, Ch. 7].

In many applications it is natural to assume that all the jumps of the process X

have the same sign. That is, X has either positive jumps (arrivals of work in a

queue), or negative jumps (arrivals of claims to an insurance company). Through-

out this work we assume that there are no positive jumps; the case of no negative

jumps can be dealt with in a symmetric fashion. To avoid trivialities we exclude
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MAPs whose additive component X has almost surely (a.s.) non-increasing paths.

Processes satisfying these assumptions are said to be spectrally negative. They

form an important special case, which leads to tractable exit problems and rather

explicit solutions to those. It is noted that textbooks on Lévy processes often

contain a chapter treating the spectrally negative case, see Bertoin [1996, Ch. VII]

and Kyprianou [2006, Ch. 8]. The present thesis generalizes some of the results

contained in these chapters to the MAP setting.

In this work we consider various exit problems for spectrally negative MAPs.

The fundamental one, which underlies the other problems, is to characterize the

first passage time of X over a positive level. Another quantity of interest is the first

passage time of X over a negative level jointly with the corresponding overshoot ,

that is, the amount by which the level is exceeded when crossed by a jump. The

two-sided exit, such as exit from an interval over the upper boundary, is yet another

important problem considered in this book. It concerns the probability of exiting

over the upper boundary and the time of such an exit given that it occurs. This

problem is complemented by the two-sided exit over a lower boundary, where

additionally the corresponding overshoot is of interest. The so-called scale matrix,

which is the matrix analogue of the scale function of a Lévy process, plays an

important role in the study of these problems.

The concept of reflection at a certain boundary is important in applications.

For example, −X reflected at 0 can serve as a model of workload evolution in a

queue; here we use −X to get the spectrally positive case, which is natural in the

queueing setting. By adding another reflecting barrier at a level B > 0 one can

model a queue with a finite buffer of size B. The first passage time over the level

B can be interpreted as the first time of buffer overflow in this queue. Another

interesting interpretation comes from risk theory. Consider a risk process subject

to dividend payments. It is assumed that a classical barrier strategy is used, where

dividends are paid continuously at a certain barrier B. Paying dividends essentially

amounts to reflecting the risk process X at the level B. It is then important to

characterize the time of bankruptcy (first passage over 0), the debt (overshoot

over 0) and the amount of dividends paid up to the bankruptcy time. It is noted

that X reflected at B can be seen as −X reflected at 0 by flipping the picture

upside down. The problems of the first passage of X and −X reflected at 0 are

also addressed in this work. Most of the results appear in the form of Laplace

transforms.

So-called PHase-type (PH) distributions fit naturally into the framework of

MAPs. A random variable is said to be of phase-type if it is distributed as the life
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time of some transient finite-state continuous-time Markov chain, see Asmussen

[2003, Ch. III]. The main examples are the exponential, Erlang and hyperexpo-

nential distributions. Importantly, a MAP with positive PH jumps (these can be

jumps of underlying Lévy processes or jumps at phase changes) can be reduced to

a MAP with no positive jumps without losing any information. This procedure

is called fluid embedding. Informally, it involves enlarging the state space of the

background process J and replacing the jumps of X by linear stretches of unit

slope. Hence the results of this thesis can be used to analyze MAPs with upward

jumps of phase-type and arbitrary downward jumps. Furthermore, if the jumps in

both directions are PH then the analysis can be reduced to MAPs with continuous

sample paths. It is noted that a MAP has continuous sample paths if and only if

it is a Markov-Modulated Brownian Motion (MMBM). Roughly speaking, MMBM

is a process with piecewise Brownian paths with drift and variance parameters

determined by the background process J . The variance parameters are allowed

to be zero, in which case the corresponding pieces are linear. An MMBM is also

called a second-order fluid model in the literature. It is noted that in the case of

MMBM many results simplify considerably and become more explicit.

In Section 1.1 we present an outline of this thesis. The main results of this

work are summarized in Section 1.2.

1.1 Outline

To appreciate the results of this monograph, it is helpful to have a working knowl-

edge of Lévy processes and their path properties. In addition, experience with

problems coming from queueing theory or risk theory may facilitate understand-

ing of some basic concepts and techniques. Deep knowledge of these subjects is,

however, not essential. In order to make this work self-contained and accessi-

ble to a wider audience, we start by presenting some basic theory in Chapter 2.

We define a MAP and associate to it a matrix exponent, which characterizes the

law of the process. In addition, we discuss the concepts of killing, time-reversal,

and reflection, define the first passage problem, and elaborate on the phase-type

method.

The following two chapters are devoted to the fundamental problem of the first

passage time over a positive level. In Chapter 3 we consider an important special

case when the MAP is time-reversible. This special case is substantially easier

to analyze. The ideas and results, however, provide a good introduction to the

general case treated in Chapter 4. The latter chapter can be seen as a foundation
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for the rest of the thesis. It relies on the theory of analytic matrix functions,

which is summarized in the beginning of the chapter. The main results and their

proofs are followed by applications, which concern Markov-modulated queues. So,

for example, we present a generalization of the celebrated Pollaczek-Khintchine

formula to the MAP setting.

Chapter 5 and Chapter 6 are devoted to the special case of an MMBM. In other

words, the additive component of the MAP is assumed to have continuous sample

paths. In Chapter 5 we present some preliminary results concerning MMBM by

applying the theory of Chapter 4 to both the original process and its negative,

which is possible as both are spectrally negative. These results are then used to

study the workload process of an MMBM-driven queue with a finite buffer. We

identify the stationary distribution of the workload process and the so-called loss

vectors, which can be interpreted as expected overflow and unused capacity in

a unit of time in stationarity. In addition, we solve the two-sided exit problem.

Chapter 6 presents some further properties of an MMBM reflected to stay in a

strip. We fully characterize this model at inverse local times, which for example

yields identities for the first passage problem of a reflected MMBM.

Chapter 7 and Chapter 8 take the theory of two-sided exit and reflection to the

next level by considering general spectrally negative MAPs. A fundamental role in

this theory is played by scale matrices, which generalize scale functions associated

with Lévy processes. Chapter 7 is entirely devoted to the construction of the

scale matrix and the identification of its first properties. An important role in

this construction is played by so-called occupation densities. Using scale matrices,

in Chapter 8 we solve the problems of first passage over a negative level as well

as two-sided exit. We characterize the first passage process killed upon arrival of

an excursion exceeding a certain height. We extend the results of Chapter 6 and

derive identities for the first passage of the reflected process.

Throughout this book we extensively use matrices, functions of matrices, Jor-

dan forms, analytic functions and Laplace transforms. For completeness and con-

venience we gather the corresponding theory in the Appendix. The notation of

this book may look puzzling at first glance despite all the efforts of the author

to make it as transparent and convenient to use as possible. Getting acquainted

with notation and conventions is facilitated by the ‘List of Symbols’ and ‘Index’.

Finally, the references to related work are given in the individual chapters. I would

like to apologize to all those authors, whose work should have been mentioned in

this thesis, but has remained unknown to me at the completion of this manuscript.



6 1.2. CONTRIBUTION

1.2 Contribution

A MAP is a generalization of a Lévy process with many analogous properties and

characteristics. Some of the results on MAPs can be obtained mechanically by

repeating the proofs for the case of a Lévy process. Scalars and functions are

replaced by their multidimensional analogs such as matrices and matrix-valued

functions. This is, however, not always the case. Various new mathematical objects

appear in the theory of MAPs, posing new challenges. Often some details which

go unnoticed in the case of a Lévy process, because of their triviality, become

important issues, which require novel ideas and lead to better understanding of

the problem at hand. Consider, for example, the first passage process. In the Lévy

case it is a killed Lévy process with the Laplace exponent −Φ(q). In the MAP

case it is a MAP with matrix exponent Λ(q). The function Φ(q) is a non-negative

increasing function, whereas Λ(q) is the transition rate matrix of a certain Markov

chain for each q ≥ 0. Moreover, the case when Φ(0) = 0 corresponds to Λ(0) being

recurrent. This is a very simple example of the above statement. The reader will

encounter many others while reading the book.

This book is based on a number of research papers: Ivanovs and Mandjes

[2010], Ivanovs et al. [2010], D’Auria et al. [2010], Ivanovs [2010], D’Auria et al.

[2012], Ivanovs [2011], and Ivanovs and Palmowski [2011]. The most important

contributions of this work are the following.

• We show in Chapter 4 that the theory of analytic matrix functions plays a

fundamental role in explaining the relation between the first passage process

and the original process. This results in an explicit construction of the matrix

exponent Λ(q) of the first passage process, and leads in a simple and direct

way to the celebrated matrix integral equation. It turns out that the theory

of analytic matrix functions is exactly ‘that missing component’ in many

previous works which did not allow to treat various problems about MAPs

in their general form.

– We provide a number of alternative approaches to the first passage

problem.

– We analyze the (closely related) generalized Cramér-Lundberg equa-

tion. We determine the number of roots of this equation using entirely

analytic arguments. This extends and unifies various partial results

found in the literature.

– An alternative simple analysis of the time-reversible case is given in
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Chapter 3. It leads to important additional properties of Λ(q) in this

special case.

• We derive a number of results concerning MMBM in Chapter 5.

– We identify the so-called loss vectors corresponding to the two-sided

reflection of a general MMBM, which generalizes the results of Kella

and Stadje [2004].

– We provide a simple approach to the two-sided exit problem for an

MMBM, see also Jiang and Pistorius [2008]. Additionally, we solve the

delicate case when the asymptotic drift is zero.

– Using a simple probabilistic argument we identify the stationary distri-

bution of an MMBM reflected at two barriers. We also present relations

between different approaches to this problem.

• In Chapter 7 we construct a scale matrix W (x) for a general spectrally

negative MAP. This result is based on a number of novel ideas. So-called

occupation densities (also called local times) play a fundamental role in this

chapter. We show that eΛxW (x) can be interpreted as the expected local

time at zero up to the first passage over level x. This observation is essential

in order to establish various properties of W (x).

• We characterize the two-sided reflection of a spectrally negative MAP at in-

verse local times at the upper boundary. This method, in its simpler form, is

first used in the case of an MMBM in Chapter 6. In addition, in Chapter 8

we analyze the first passage process killed upon arrival of an excursion ex-

ceeding a certain height. These results are then combined to obtain identities

for the first passage of reflected processes.



Chapter 2

Basic theory

This chapter provides some introduction to the theory of MAPs. We set up the

notation and present some related concepts. We start with a definition and some

basic properties of a Lévy process, and then proceed to MAPs. We present such

fundamental notions as the matrix exponent of a MAP, its Perron-Frobenius eigen-

value, the asymptotic drift, and the first passage process. We discuss the concepts

of killing, time reversal, reflection, and fluid embedding. Our basic reference book

with respect to MAPs and queueing theory is Asmussen [2003], with Asmussen

and Kella [2000] being an important supplement to it.

Throughout this work we use bold symbols to denote column vectors unless

otherwise specified. In particular, 1 and 0 are the vectors of 1’s and 0’s respectively.

A coordinate vector with i-th element being 1 and all others being 0 is denoted

through ei. The symbols I and O denote the identity matrix and the matrix of

0s of appropriate dimensions. The typeface P and E are used for probability and

expectation. The expression E[X;A] means EX1A, where 1A is the indicator of

an event A (if say A = {X > 0}, we write E[X;X > 0]). The Laplace transform

of a random variable X means Ee−αX . The distribution of X is allowed to have

atoms; we do not use the term Laplace-Stieltjes transform to distinguish this case.

We often deal with negative random variables, e.g. jumps of a MAP, in which case

it is convenient to write EeαX . The meaning should be clear from the context. We

provide a ‘List of Symbols’ for further convenience.

8
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2.1 Lévy processes

Our main reference book concerning Lévy processes is Bertoin [1996]. A good

introduction for a less experienced reader is Kyprianou [2006]. The books Williams

[1991] and Kallenberg [2002] serve as a general reference to probability theory.

Let (Ω,F ,P) be a probability space endowed with a right-continuous complete

filtration (Ft)t≥0. Consider an adapted real-valued stochastic process X(t), t ≥ 0

with càdlàg (right-continuous with left limits) sample paths.

Definition 2.1. We say that X is a Lévy process if for every s, t ≥ 0 the increment

X(t+ s) −X(t) is independent of Ft and has the same law as X(s) −X(0).

It is usually assumed that X(0) = 0. We often write Px to denote the law of X

when X(0) = x. Even though the paths of a Lévy process are not a.s. continuous

in general, it can be shown that for any fixed t > 0 a Lévy process X is a.s.

continuous at t. Every Lévy process satisfies the so-called strong Markov property.

Proposition 2.2. Let T be a stopping time with P(T <∞) > 0. Then condition-

ally on {T < ∞}, the process X(T + t) − X(T ), t ≥ 0 is independent of FT and

has the same law as the original process X.

Throughout this work it will be assumed that X has no positive jumps. In this

case X is uniquely characterized (in the sense of finite-dimensional distributions)

by its Laplace exponent ψ(α), α ≥ 0, which in particular satisfies

EeαX(t) = eψ(α)t, t ≥ 0.

Every such Laplace exponent is given by the famous Lévy-Khintchine formula

ψ(α) = aα+
1

2
σ2α2 +

∫ 0

−∞

(eαx − 1 − αx1{x>−1})ν(dx), (2.1)

where a ∈ R, σ ≥ 0 and ν is a measure on (−∞, 0) with
∫ 0

−∞
(1 ∧ x2)ν(dx) < ∞,

see Theorem I.1 and Chapter VII of Bertoin [1996]. An important special case

arises when
∫ 0

−1
|x|ν(dx) <∞. In this case (2.1) can be rewritten as

ψ(α) = dα+
1

2
σ2α2 +

∫ 0

−∞

(eαx − 1)ν(dx), d = a−

∫ 0

−1

xν(dx). (2.2)

Such a process can be interpreted as an independent sum of a purely deterministic

drift, a Brownian motion and a non-increasing jump process. The constant d in

(2.2) is referred to as the drift. Moreover, X has paths of bounded variation on

compacts a.s. if and only if σ = 0 and
∫ 0

−1
|x|ν(dx) <∞, that is, (2.2) holds with
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σ = 0. Finally, a bounded variation Lévy process is a CPP if the Lévy measure ν

is finite and d = 0. In this case ν(−∞, 0) is the intensity and ν(dx)/ν(−∞, 0) is

the distribution of jumps of a CPP.

Often it is convenient to add an isolated point ∂ to the value set of X. This

point will serve as a ‘cemetery’. More concretely, let eq be an exponential random

variable of rate q ≥ 0 (e0 = ∞ a.s. by convention), independent of X. If we

redefine X to be ∂ for all t ≥ eq, then such a process is called a Lévy process

‘killed’ at eq. Observe that

EeαX(t)1{t<eq} = e(ψ(α)−q)t,

hence ψ(α) − q can be interpreted as the Laplace exponent of X killed at eq.

It is known that ψ(α) is analytic in C
Re>0 and continuous in C

Re≥0, see also

Appendix A.6. Moreover, the real-valued right derivative ψ′(0+) equals EX(1) ∈

R ∪ {−∞}, where EX(1) = −∞ corresponds to large jumps of X being non-

integrable. If X has non-increasing paths, then ψ(α) ≤ 0; otherwise P(X(1) >

0) > 0, which implies that limα→∞ ψ(α) = ∞. Moreover, ψ(α), α ≥ 0 is convex

by Hölder’s inequality.

In the study of Lévy processes without positive jumps it is usual to exclude

the trivial case when the paths are non-increasing a.s. The remaining processes

are called spectrally negative Lévy processes. Let X be a spectrally negative Lévy

process. Then for every q > 0 there is a unique positive solution to ψ(α) = q,

which we denote through Φ(q). In addition, Φ(0) = limq↓0 Φ(q), which is 0 if

ψ′(0+) ≥ 0, and is the positive solution to ψ(α) = 0 otherwise, see Figure 2.1.

Hence we say that Φ is a right inverse of ψ. The equation ψ(α) = q is sometimes

called the Cramér-Lundberg (C-L) equation. The solution Φ(q) of the C-L equa-

tion characterizes the associated first passage process, see Section 2.6. It plays a

fundamental role in the study of path properties of Lévy processes.

2.2 Markov additive processes (MAPs)

Consider a real-valued càdlàg process (X(t))t≥0 and a right-continuous jump pro-

cess (J(t))t≥0 with a finite state space E, such that (X, J) is adapted to the

filtration (Ft)t≥0.

Definition 2.3. We say that (X(t), J(t)) is a Markov Additive Process (MAP) if,

given {J(t) = i}, the pair (X(t+ s)−X(t), J(t+ s)) is independent of Ft and has

the same law as (X(s) −X(0), J(s)) given {J(0) = i} for all s, t ≥ 0 and i ∈ E.
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ψ

Φ(0)
Φ(q)

q

Figure 2.1 The Laplace exponent ψ and its right inverse Φ.

It is usual to say that X is an additive component and J is a background

process representing the environment. Note that MAP is a generalization of a

Lévy process. The increments of the additive component are not stationary in

general; their distributions depend on the states of J .

It should be noted that in some other works MAP stands for a wider class of

processes. Namely, any Markov process with values in an arbitrary measurable

space can serve as the background process J , see Çinlar [1972] for the basic defi-

nitions. Unlike the case of a finite E, where the structure of a MAP is completely

understood, the case of an infinite E is much more complicated in general, as it is

noted and demonstrated in Asmussen [2003, Ch. XI]. Some of the results contained

in this work can be extended to the case of a countable E. A model belonging to

the latter class can be found in Prabhu [1998, Ch. 7], see also Virtamo and Norros

[1994].

In the following we use Pi in the context of MAPs to denote the law of (X, J)

given {X(0) = 0, J(0) = i}. Moreover, we write P(A, J) for an event A to denote

the N ×N matrix with entries Pi(A, J = j). Similarly, E[Z;J ] is used to denote

the matrix with entries Ei[Z;J = j] = Ei[Z1{J=j}]. Sometimes it is important to

consider a shifted additive component with X(0) = x0, in which case with slight

abuse of notation we write Px0
(A, J) and Ex0

[Z, J ] to denote the above matrices.

Next we assert the strong Markov property for MAPs, which can be proven

by following the same steps as in the case of Lévy processes, see Bertoin [1996,

Proposition I.6].
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Proposition 2.4. Let T be a stopping time with P(J(T ) = i) > 0. Then condi-

tionally on {J(T ) = i}, the process (X(T+t)−X(T ), J(T+t)), t ≥ 0 is independent

of FT and has law Pi.

Importantly, a MAP has a very special structure, which we reveal in the fol-

lowing. It is immediate from the definition that J is a Markov chain. For each

i, j ∈ E let Unij be a sequence of i.i.d. random variables and Xn
i be a sequence of

i.i.d. Lévy processes. All the objects J,Xn
i , U

n
ij are assumed to be independent.

Letting T0 = 0, T1, . . . be a sequence of the successive jump epochs of J we define

the process X for t ∈ [Tn, Tn+1) recursively through

X(t) = 1{n>0}

(

X(Tn−) + Unij
)

+Xn
j (t− Tn), (2.3)

where i = J(Tn−) and j = J(Tn). In words, X evolves as the Lévy process

Xj = X0
j during the intervals when J is in the state j, and jumps according to

Ujk = U0
jk, whenever J jumps from j to k. It is straightforward to check that

(X, J) is a MAP in its own filtration (completed to satisfy the usual conditions).

More interestingly, the converse is also true.

Proposition 2.5. Every MAP has Representation (2.3).

Proof. Assume that J(0) = i for some i ∈ E. Define Xi(t) to be X(t) if t ∈ [0, T1)

and put Xi(t) = ∂ otherwise. Note that Xi is a Lévy process killed at independent

exponential time T1. To see this, pick an arbitrary A ∈ F and B ∈ Ft, and write,

using the Markov property applied at time t,

Pi({X(t+ s) −X(t) ∈ A} ∩B ∩ {t+ s < T1})

= Pi({X(t+ s) −X(t) ∈ A} ∩B ∩ {t+ s < T1}|J(t) = i)Pi(J(t) = i)

= Pi({X(s) ∈ A} ∩ {s < T1})Pi(B ∩ {t < T1}).

Let Uij = X(T1) −X(T1−) given J(T1) = j. By the Markov property Uij is seen

to be independent of Xi and T1. An application of the strong Markov property at

the jump epochs of J completes the proof.

Every MAP evolves as a Lévy process Xi while J is in the state i. This

explains the other commonly used name for a MAP - ‘Markov-modulated Lévy

process’. Sometimes it is stressed that a MAP is a Markov-modulated Lévy process

with additional jumps at transition epochs of J . Observe that a MAP has a.s.

continuous sample paths if and only if every Uij = 0 and every Xi is a Brownian

motion (possibly a deterministic drift). Such a MAP is called Markov-modulated
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Brownian motion (MMBM). Another important special case arises when every Xi

is a CPP. Such a MAP is called Markov-modulated CPP.

Let us fix the basic setup of this thesis. Let (X, J) be a MAP without positive

jumps. The trivial case when the paths of X are a.s. non-increasing is excluded

from consideration. This results in a class of spectrally negative MAPs. Note that

some underlying Lévy processes Xi of a spectrally negative MAP are allowed to

be non-increasing. Essentially without loss of generality it is assumed that J is

irreducible. The following list presents some related notation.

• E = {1, 2, . . . , N} is the state space of J ,

• Q is the irreducible transition probability matrix of J and π is its unique

stationary distribution,

• ψi(α) is the Laplace exponent of the Lévy process Xi,

• Gij(α) = EeαUij is the Laplace transform of the jump when J has a transition

from i to j (if qij = 0 we put Uij = 0; by convention we also put Uii = 0).

Some basic facts concerning the Laplace transform are given in A.7. In addition,

we mention that the right derivative G′
ij(0+) equals EUij , which may not be finite.

The state space E of J is partitioned into E+ and E↓, where i ∈ E↓ if the Lévy

process Xi has a.s. non-increasing paths. In other words, i ∈ E+ if and only if

P(Xi(1) > 0) > 0. The cardinalities of E+ and E↓ are denoted through N+ and

N↓ respectively. For convenience we often assume that indices in E+ are smaller

than indices in E↓. Note that according to our basic assumptions stated above it

is ensured that N+ ≥ 1.

Definition 2.6. Let M be a matrix with N rows. Then M+ denotes the matrix

obtained from M by dropping all the rows except those indexed by E+. We say

that M+ is the restriction of M to the rows in E+. Similarly we define M↓.

Finally, we use the symbol I
+ to denote the N+ ×N+ identity matrix.

2.3 Matrix exponent of a MAP

Any Lévy process (without positive jumps) is characterized by the associated

Laplace exponent. In the case of a MAP this exponent becomes a matrix-valued

function

F (α) = diag(ψ1(α), . . . , ψN (α)) +Q ◦G(α), (2.4)
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where G(α) = (Gij(α)) and A ◦ B denotes entrywise (Hadamard) matrix mul-

tiplication. The matrix-valued function F (α) is referred to as the matrix ex-

ponent of a MAP. Recall that E[eαX(t);J(t)] denotes the matrix with entries

Ei[e
αX(t);J(t) = j].

Proposition 2.7. It holds for all α ∈ C
Re≥0 that

E[eαX(t);J(t)] = eF (α)t.

Proof. Up to o(h) terms,

Ei[e
αX(h);J(h) = j] = 1{i=j}(1 + qiih)Ee

αXi(h) + 1{i 6=j}qijhEeαUij ,

because J jumps from i to j in an interval of length h with probability qijh+o(h),

and EeαXk(h) = 1 + o(1) for any k ∈ E. But (1 + qiih)Ee
αXi(h) = 1 + qiih +

ψi(α)h+ o(h), hence we obtain

E[eαX(h);J(h)] = I + F (α)h

up to o(h) terms. The Markov property states that

E[eαX(t+h);J(t+ h)] = E[eαX(t);J(t)]E[eαX(h);J(h)],

and so
∂

∂t
E[eαX(t);J(t)] = E[eαX(t);J(t)]F (α).

Finally, note that E[eαX(0);J(0)] = I, which implies the result according to the

standard solution formula for systems of linear differential equations.

Let (λ(α),h(α)) be an eigenvalue-eigenvector pair of F (α), α ≥ 0, that is,

F (α)h(α) = λ(α)h(α). Then

Eie
αX(t)hJ(t)(α) = Ei[e

αX(t);J(t)]h(α) = eλ(α)thi(α). (2.5)

This leads to the following important result.

Proposition 2.8. eαX(t)−λ(α)thJ(t)(α) is an Ft-martingale under Pi for any i ∈ E.

Proof. Using the Markov property we write

Ei[e
αX(t+s)−λ(α)(t+s)hJ(t+s)(α)|Ft] = Ei[e

αX(t)−λ(α)t;J(t)]E[eαX(s)−λ(α)shJ(s)(α)].

But according to (2.5) the last term in the right hand side is h(α).
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In the final part of this section we present another important martingale of As-

mussen and Kella [2000].

Theorem 2.9. Let Y (t) be an adapted continuous process having finite variation

on compact intervals. Set Z(t) = X(t)+Y (t) and pick α ∈ C
Re≥0. Then for every

initial distribution of (X, J)

M(t) =

∫ t

0

eαZ(s)e⊤
J(s)dsF (α) + eαZ(0)e⊤

J(0) − eαZ(t)e⊤
J(t) + α

∫ t

0

eαZ(s)e⊤
J(s)dY (s)

is a vector-valued local martingale.

Remark 2.10. Even though Theorem 2.9 is stated in Asmussen and Kella [2000]

for the case of no killing, it holds in a more general setting. Namely, the transition

rate matrix Q of J can be transient, see Section 2.5. The proof does not require

any changes.

The local martingale M(t) becomes a martingale if certain extra conditions are

met.

Corollary 2.11. Assume that Y (t) has finite expected variation on compact in-

tervals and Z(t) is bounded from above on the interval [0, T ], where T is a stopping

time. Then M(t ∧ T ) is a martingale.

Proof. Letting τn be the localizing sequence of stopping times, we have by Doob’s

optional stopping theorem Kallenberg [2002, Thm. 7.12] that E[M(t∧T∧τn)|Fs] =

M(s∧T ∧ τn). Under the extra conditions of the corollary we have for every t > 0

that E sup0≤s≤t |M(s∧T )| <∞. The dominated convergence theorem then shows

that E[M(t ∧ T )|Fs] = M(s ∧ T ).

We remark that for many applications it is sufficient to pick T = ∞ in Corol-

lary 2.11.

2.4 Perron-Frobenius eigenvalue

For a fixed α ≥ 0, one of the eigenvalues of F (α) will play a special role.

Proposition 2.12. For α ≥ 0 the matrix F (α) has a real simple eigenvalue k(α),

which is larger than the real part of any other eigenvalue. The corresponding left-

eigenvector v(α) and right-eigenvector h(α) can be chosen so that vi(α) > 0 and

hi(α) > 0 for all i ∈ E. The normalization requirement

πh(α) = 1, v(α)h(α) = 1

results in a unique choice of v(α) and h(α).



16 2.4. PERRON-FROBENIUS EIGENVALUE

Proof. Observe that the off-diagonal elements of F = F (α) are non-negative.

Hence we can find a non-negative matrix M and some m ∈ R, such that F =

M −mI. Moreover, irreducibility of Q implies irreducibility of M . The Perron-

Frobenius theory, see Horn and Johnson [1985, Thm. 8.4.4], states that the spectral

radius λ of M is a simple eigenvalue of M with the corresponding eigenvector h

satisfying hi > 0 for all i ∈ E. Clearly, (k,h), where k = λ−m, is an eigenvalue-

eigenvector pair of F . The maximality property of k is immediate.

The uniqueness of h(α) follows from the facts that the matrix (F (α) − k(α)I)

has rank N − 1, and the vector π is not in the row space of this matrix. If the

latter is false then u⊤(F (α) − k(α)I) = π for some vector u. But multiplication

of this equality by any h(α) with positive elements results in 0 = πh(α) > 0.

Similarly, h(α) is not in the column space of (F (α)− k(α)I), which completes the

proof.

It is noted that the eigenvalue k(α) plays in many respects the same role as the

Laplace exponent of a Lévy process. In the following we establish some important

properties of the function k(α). Let us first discuss smoothness of k(α).

Proposition 2.13. The functions k(α),v(α),h(α) are infinitely many times dif-

ferentiable for α > 0. It holds that,

k′(α) = v(α)F ′(α)h(α), α ≥ 0,

where k′(0) ∈ R∪{−∞} is interpreted as the right derivative. Moreover, existence

of k(n)(0) implies existence of the right derivatives v(n)(0) and h(n)(0).

Proof. Firstly, k(α) is a continuous function according to Hurwitz’s theorem, see

Appendix A.5. Denoting M(α) = F (α) − k(α)I, we have that M(α)h(α+ ǫ) → 0

as ǫ → 0, because the entries of h(α + ǫ) are bounded as seen from the normal-

ization requirement. Recall that π is not in the row space of M(α), and apply

Proposition A.10 to deduce continuity of h(α) for α ≥ 0. Continuity and posi-

tivity of h(α) imply that the entries of v(α) are bounded in some neighborhood

of α, hence v(α+ ǫ)h(α) → 1 and v(α+ ǫ)M(α) → 0. Use Proposition A.10 with

u = h(α) to show continuity of v(α).

Theorem 6.3.12 in Horn and Johnson [1985] shows that k(α) is differentiable

and the identity in the display holds. Some care should be taken when α = 0

(observe that the entries of F ′(0) either converge or approach −∞). We also have,

as ǫ ↓ 0,

M(α)
1

ǫ
(h(α+ ǫ) − h(α)) +M ′(α)h(α) → 0.
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Observe that π(h(α+ ǫ)−h(α))/ǫ = 0, so we can apply Proposition A.10 to claim

differentiability of h(α). Moreover,

1

ǫ
(v(α+ ǫ) − v(α))h(α) =

1

ǫ
v(α+ ǫ)(h(α) − h(α+ ǫ)) → −v(α)h′(α),

which allows us to deduce differentiability of v(α) using Proposition A.10.

Next we can differentiate the identity in the display to show that k′′(α) ex-

ists. Then we use similar steps as above to prove that v(α) and h(α) are twice

differentiable. These steps can be repeated arbitrarily many times.

Observe that F (0) = Q, which has non-positive eigenvalues, so k(0) = 0,

h(0) = 1 and v = π. Proposition 2.13 then implies

k′(0) =
∑

i∈E

πi



ψ′
i(0) +

∑

j∈E

qijG
′
ij(0)





=
∑

i∈E

πi



EXi(1) +
∑

j∈E

qijEUij



 = EπX(1). (2.6)

The last equality follows from the fact that J , started with its stationary distribu-

tion π, will on average spend a fraction πi of the time in the state i, and will make

πiqij jumps i→ j in the time interval [0, 1]. In particular, we see that k′(0) is finite

if and only if all the first moments EXi(1) and EUij exist. Otherwise k′(0) = −∞,

which indicates the presence of non-integrable jumps.

In order to simplify notation we often write κ for k′(0). It is common to refer

to κ as to the stationary drift of X(t). Alternatively, the term asymptotic drift is

used, which is supported by the following lemma.

Lemma 2.14. It holds Pi-a.s. that limt→∞X(t)/t = κ for all i ∈ E.

Proof. Let Ti(t) =
∫ t

0
1{J(s)=i}ds be the amount of time spent by J in the state

i in the interval [0, t]. Let also Nij(t) be the number of transitions of J from i to

j in the interval [0, t]. According to Proposition 2.5 there exist Lévy processes Xi

and sequences of i.i.d. random variables Unij , such that

X(t) =
∑

i∈E

Xi(Ti(t)) +
∑

i,j∈E,i 6=j

Nij(t)
∑

n=1

Unij

Pi-a.s. Finally, observe that Pi-a.s. it holds that Ti(t)/t→ πi, Nij(t)/t→ πiqij and,

moreover, Xi(t)/t→ EXi(1) as t→ ∞. Identity (2.6) completes the proof.
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Proposition 2.15. It holds Pi-a.s. that (a) X(t) → −∞, (b) X(t) → ∞, (c)

lim infX(t) = −∞, lim supX(t) = ∞ according to (a) κ < 0, (b) κ > 0 and (c)

κ = 0.

Proof. The cases (a) and (b) are immediate from Lemma 2.14. The case (c)

follows from random walk theory, see Theorem 2.4 in Asmussen [2003, Ch. VIII].

The random walk is defined through Sn = X(Tni ), where Tni is the time of n-th

entrance of J into the state i.

2.5 Killing and time reversal

In this section we discuss two important concepts. Firstly, the state space of a

MAP (X, J) can be appended with an absorbing state (∂X , ∂J). This extends the

class of MAPs by allowing the background Markov chain J to be transient. As it

is common in the theory of Markov chains, we do not include the additional state

∂J in the descriptor of the process. In other words, the matrix exponent F (α) is

assumed to have the same form (2.4) as before, but the transition rate matrix Q

is allowed to be transient. Equivalently, such a process can be seen as a ‘regular’

MAP with state-dependent killing. That is, every Lévy process Xi is ‘killed’ with

some rate qi ≥ 0. This kind of process appears naturally when one considers first

passage times, as is shown in Section 2.6.

In the rest of this section we discuss time reversion. Assume that J(0) is

distributed according to π. Fix T > 0 and define a process (X̂, Ĵ) on [0, T )

through

Ĵ(t) = J((T − t)−), X̂(t) = X(T ) −X((T − t)−).

The left limits are taken to guarantee that X̂ and Ĵ have càdlàg paths. It is well-

known that Ĵ is an irreducible Markov chain with the same stationary distribution

π, see Asmussen [2003, Prop. II.5.2]. The transition rate matrix of Ĵ is given

by Q̂ = ∆−1
π
Q⊤∆π, where ∆π is a diagonal matrix with π on the diagonal.

Moreover, time reversion of a Lévy process results in a process with an identical

law, see Bertoin [1996, Lem. II.2]; this remains true if T > 0 is an independent

random variable. Considering Representation (2.3), we see that (X̂, Ĵ) is a MAP

with Q̂ defined above, X̂i having the law of Xi, and Ûij distributed as Uji. In

other words, the matrix exponent of a time-reversed process is given by

F̂ (α) = ∆−1
π
F (α)⊤∆π. (2.7)
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The process (X, J) is called time-reversible if it has the same law as (X̂, Ĵ). That

is, F̂ (α) = F (α), which according to (2.7) is true if and only if ∆πF (α) is a

symmetric matrix. Furthermore, this is equivalent to J being time-reversible and

Uij having the same law as Uji for all i 6= j.

Finally, we note that the eigenvalues of F (α) and F̂ (α) coincide. This in

particular implies that the asymptotic drifts coincide too.

2.6 First passage process

Let X(t) be the supremum of the additive component X up to time t, that is,

X(t) = sup0≤s≤t{X(s)}. We often write X to denote X(∞). Similarly, one

defines the infimum process X(t). The first passage time over level x ≥ 0 is

defined through

τx = inf{t ≥ 0 : X(t) > x}. (2.8)

It is known that τx is a stopping time, see Bertoin [1996, Corollary I.8] for an idea

of the proof. Observe that X(τx) = x, because of the absence of positive jumps.

Moreover, the events {τx < t} and {X(t) > x} coincide. The strong Markov

property then implies that (τx, J(τx))x≥0 is a MAP. This is a killed MAP, where

the killing time is given by x = X.

Alternatively, we can consider the process (X,J) killed with rate q ≥ 0. Again

J(τx)x≥0 is a Markov chain. Letting Λ(q) be its N+ ×N+ transition rate matrix

we have for i, j ∈ E+ the following identity

(eΛ(q)x)ij = P(J(τx) = j, τx < eq | J(τ0) = i) = EJ(τ0)=i[e
−qτx ;J(τx) = j]. (2.9)

Hence Λ(q) is also the matrix exponent of the MAP (−τx, J(τx))x≥0. Finally, let

Π(q) denote the matrix with initial distributions of this new MAP. More formally,

Π(q) is a N × N+ matrix with elements Pi(J(τ0) = j, τ0 < eq), where i ∈ E and

j ∈ E+, with the obvious ordering. The strong Markov property implies

E[e−qτx ;J(τx)] = E[e−qτ0 ;J(τ0)]EJ(τ0)[e
−qτx ;J(τx)] = Π(q)eΛ(q)x.

Moreover, the matrices Π(q) and Λ(q) fully characterize the first passage process

(τx, J(τx))x≥0 under Pi, i ∈ E in terms of its finite-dimensional distributions. The

first part of this thesis is devoted to the study of the matrices Π(q) and Λ(q) and

their relation to the matrix exponent F (α).

Let us present some basic properties of the matrices Π(q) and Λ(q). Firstly,

τ0 = 0 Pi-a.s. for any i ∈ E+, see e.g. Kyprianou [2006, Thm. 6.5]. Therefore
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Π(q)+ is the identity matrix, see also Definition 2.6. Secondly, it is easy to see

that irreducibility of Q implies irreducibility of Λ(0). Moreover, if κ ≥ 0 then

Pi(τx < ∞) = 1 for all x ≥ 0 and i ∈ E by Proposition 2.15. This shows

that J(τx) is an irreducible recurrent Markov chain. We denote its stationary

distribution through πΛ. If, however, κ < 0 or q 6= 0 then Λ(q) is transient. We

summarize these properties in the following proposition.

Proposition 2.16. It holds that Π(q)+ = I
+ for all q ≥ 0. Moreover, Λ(q) is an

irreducible recurrent transition rate matrix if q = 0 and κ ≥ 0, and is transient

otherwise.

Remark 2.17. Let ρ(q) denote the Perron-Frobenius eigenvalue of Λ(q). If κ ≥ 0,

then ρ(0) = 0, that is, Λ(0) has a simple eigenvalue at 0 (with corresponding eigen-

vector 1) and all others in C
Re<0. Otherwise ρ(q) < 0, that is, all the eigenvalues

of Λ(q) are in C
Re<0, see Appendix A.4.

It is instructive to consider a MAP on a single state, which is just a Lévy

process. Then Λ(q) = −Φ(q), where Φ(q) is the right-inverse of ψ(α), α ≥ 0,

see Bertoin [1996, Thm. VII.1]. Note also that Φ(q) is 0 if q = 0 and κ ≥ 0 and is

strictly positive otherwise, see Section 2.1.

In general, identification of Λ(q), as well as its relation to the C-L equation, is

more complicated. These questions are addressed in Chapter 3 in the case when

(X, J) is time-reversible. This case is substantially simpler, but it illustrates some

of the main ideas and concepts well. The general theory is presented in Chapter 4.

Remark 2.18. The concept of killing plays a pivotal role in this book. It is often

easier to analyze a killed MAP. Then the analysis can be extended to the case of no

killing by a limiting argument. For notational convenience we often suppress the

killing rate q ≥ 0 and simply assume that the transition rate matrix Q is transient.

In this context we write Λ and Π to denote Λ(q) and Π(q). One should be careful

when making q explicit. When doing so, one must substitute Q with Q− qI, and

hence F (α) with F (α) − qI. In fact, this setup can be generalized. That is, Q

need not satisfy Q1 = −q1; it can be any transient transition rate matrix, see

Section 2.5. Finally, it is always assumed that there is no killing when talking

about stationary distributions and stationary (asymptotic) drift.

2.7 Phase-type distributions and MAPs

Let J be a continuous-time Markov chain on m <∞ states. Assume that α is its

initial distribution and T is its m×m transition rate matrix. In addition, assume
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that J is transient, that is t = −T1 ≥ 0 has a positive entry. It is convenient

to add an absorbing state ∂ to the state space of J . Finally, the life time of J is

denoted through ζ = inf{t > 0 : J(t) = ∂}, which is known to be finite a.s.

Definition 2.19. The distribution of ζ is called phase-type with parameters

(m,α, T ).

It is not difficult to prove the following, see Asmussen [2003, Ch. III.4].

Proposition 2.20. For x ≥ 0, the cumulative distribution function of ζ is F (x) =

1 − αeTx1 and the density is f(x) = αeTxt. The Laplace transform of ζ is

Ee−sζ = α(sI − T )−1t.

It is mentioned in the introduction that phase-type distributions fit naturally

in the framework of MAPs. Consider a MAP with transition rate matrix T and

Xi(t) = t for all i. The matrix exponent of such MAP is T + αI. Given that

J is started with distribution α, the value of X right before entrance into the

absorbing state has phase-type distribution with parameters (m,α, T ). Roughly

speaking, by slanting a phase-type jump we get a simple MAP, whose additive

component evolves linearly. This idea can be taken one step further. Namely,

phase-type jumps of an arbitrary MAP can be replaced by linear stretches of unit

slope. This procedure requires adding supplementary states to the background

process (as many as there are phases), and is called fluid embedding. It allows to

apply the results of this thesis to a general MAP with all upward jumps of phase-

type by constructing an auxiliary spectrally negative MAP with an enlarged state

space.

Let us describe fluid embedding in more detail. Consider a general MAP (X, J).

First we address jumps of X at switching epochs of J . Suppose the distribution of

the jump Uij is phase-type with parameters (m,α, T ). The corresponding entry

of F (α) is qijGij(α). Let us use fluid embedding with respect to Uij to construct

an auxiliary MAP. Figure 2.2 presents the matrix exponent of the auxiliary MAP.

It is a (N +m)-dimensional matrix with upper left block being F (α), except that

the (i, j)-th entry is 0. The lower right block is T + αI, representing the jump.

Suppose next that a Lévy process Xi is an independent sum of some Lévy process

with Laplace exponent ψ̃i(α) and a CPP, where the latter models arrivals of jumps

with intensity λ. We assume that these jumps are of phase-type with parameters

(m,α, T ). Let us use fluid embedding to ‘eliminate’ these jumps. The resulting

matrix exponent has a very similar form to the one depicted in Figure 2.2. In this

case j = i, the (i, i)-th entry is qii − λ + ψ̃i(α), and the last part of the i-th row

reads λα.
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j

0 qijα

t T + αI

F (α)

Figure 2.2 An example of fluid embedding.

Let us conclude the discussion about fluid embedding with some comments.

Note that if the distribution of the jump Uij is a mixture of phase-type and some

other distribution then we can still use fluid embedding to eliminate the phase-type

component. Moreover, negative jumps of phase-type can be handled in exactly the

same way by introducing linear stretches of slope −1. It is noted that instead of

enlarging the state space of J , it can be sometimes useful to reduce it by eliminating

certain states, see Section 7.1 for further discussion.

Phase-type distributions arise when one considers all-time supremum X of a

spectrally negative MAP (X, J). This quantity turns out to be important for

queueing theory, see Section 2.8. Observe that X is the life time of J(τx). The

latter is transient if Q is transient, or Q is recurrent and κ < 0. Assuming either

of these conditions, we see that (X|J(0) = i) is phase-type with initial distribution

given by Πi and transition rate matrix Λ. It is important to note that (X|J(0) = i)

may have a mass at 0. This mass is (1 − Πi1), which is always 0 if i ∈ E+.

2.8 Reflection

In the first part of this section we consider an arbitrary sample path of a stochastic

process forgetting about the probability space. That is, we assume that X(t), t ≥ 0

is a real càdlàg function. In the following we define the two-sided reflection of X

with respect to the strip [0, B], where B ∈ [0,∞]. It is noted that the one-sided
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reflection at 0 is a special case with B = ∞. It will be assumed that the initial

value of X belongs to the strip, that is, X(0) ∈ [0, B].

Definition 2.21. The two-sided reflection R(t) of X(t), with respect to the strip

[0, B], is defined through

R(t) = X(t) + L(t) − U(t), (2.10)

where R(t), L(t), U(t) are real càdlàg functions which satisfy the following condi-

tions:

• L(t) and U(t) are non-decreasing with L(0) = U(0) = 0,

• R(t) ∈ [0, B] for all t ≥ 0,

• R(s) = 0 if ∀t > s : L(s−) < L(t), and R(s) = B if ∀t > s : U(s−) < U(t).

It is known that such a triplet of functions exists and is unique, see Kella

[2006] and Kruk et al. [2007], and is called the solution of the two-sided Skorokhod

problem. The functions L(t) and U(t) are called regulators at the lower and upper

barriers respectively, that is at 0 and at B. The last condition of the above

definition states that the points of increase of L and U are contained in {t ≥ 0 :

R(t) = 0} and {t ≥ 0 : R(t) = B} respectively. It can be alternatively written as
∫ ∞

0

R(t)dL(t) = 0,

∫ ∞

0

(B −R(t))dU(t) = 0.

Let us consider the one-sided reflection, that is, we set B = ∞. In this case the

solution to the Skorokhod problem has a simple explicit form: U(t) = 0, L(t) =

−(X(t) ∧ 0) and R(t) = X(t) − (X(t) ∧ 0), where X(0) ∈ [0,∞).

Theorem 2.22. Let (X,J) be a MAP with negative asymptotic drift, that is,

κ < 0. Then the one-sided reflection (R(t), J(t)) has a stationary version. The cor-

responding stationary distribution coincides with the distribution of (X̂(∞), Ĵ(0)),

where (X̂, Ĵ) is the time-reversed MAP.

Proof. Assume that X(0) = 0 and J(0) is distributed according to π. In this case

R(t) = X(t) −X(t). Observe that for any time horizon T > 0 it holds that

X̂(T ) = X(T ) − inf
0≤t≤T

{X((T − t)−)} = X(T ) −X(T−)

by the construction presented in Section 2.5, see also Figure 2.3. Note that neither

X, nor J , jumps at T with probability 1. Hence (R(T ), J(T )) has the same

distribution as (X̂(T ), Ĵ(0)).
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Recall that the time-reversed process has the same asymptotic drift as the

original process, hence X̂(T ) → −∞ as T → ∞ by Proposition 2.15, and so

X̂ < ∞ a.s. This completes the proof for the case when X(0) = 0. Finally, if

X(0) > 0 then X hits (−∞, 0] in finite time a.s. The strong Markov property

allows us to reduce the problem to the case when X(0) = 0.

T

X

R(T )

Axes of the time-reversed path

Figure 2.3 Reflection and time reversal.

Consider the stationary version of the reflected process (R(t), J(t)), and let

a random pair (R∗, J∗) have this stationary distribution. The following corol-

lary is an immediate consequence of Theorem 2.22 and the observations made in

Section 2.7.

Corollary 2.23. The distribution of (R∗|J∗ = i) is phase-type with initial distri-

bution Π̂i and transition rate matrix Λ̂. It has mass (1 − Π̂i1) at 0, which is 0 if

i ∈ E+.



Chapter 3

First passage: time-reversible case

Consider a spectrally negative MAP, and the matrices Π and Λ characterizing its

first passage process, see Section 2.6. In this chapter we identify Π and Λ in the

special case when the MAP is time-reversible. This special case is substantially

easier to analyze. In particular, there will be no need to go beyond classical linear

algebra. The ideas and results, however, provide a good introduction to the general

case which will be dealt with later in this monograph. Moreover, the results in this

important special case are of a particularly neat and simple form, which can be used

to greatly reduce the computational efforts required to obtain numerical output, as

demonstrated in Section 3.2. Hence the purpose of this chapter is twofold. Firstly,

we illustrate the main ideas and concepts needed to identify Λ, and secondly, we

establish some additional important properties of Λ for this important special case.

3.1 Main results

Throughout this chapter it is assumed that (X, J) is a time-reversible spectrally

negative MAP. In other words, J is a time-reversible Markov chain, and the laws

of Uij and Uji coincide for all i 6= j, see also Section 2.5. We will prove that

the transition rate matrix Λ is similar to some real diagonal matrix Γ, in the

sense that Λ = V ΓV −1 for some invertible matrix V , see also Appendix A.2.

Moreover, we provide a procedure to construct the matrices V and Γ given the

matrix exponent F (α). For simplicity it is assumed that there is no killing: q = 0.

Let λ1, . . . , λn be all the distinct zeros of det(F (α)) in (0,∞). Let also pi

denote the dimension of the null space of F (λi) (geometric multiplicity of the null-
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eigenvalue). Define Γi to be a pi × pi diagonal matrix with λi on the diagonal,

and Vi to be an N×pi matrix formed from a basis of the (right) null-space of F (λi).

Finally, we construct matrices Γ and V as follows:

Γ = diag(Γ1, . . . ,Γn) and V = [V1, . . . , Vn], if κ < 0,

Γ = diag(0,Γ1, . . . ,Γn) and V = [1, V1, . . . , Vn], if κ ≥ 0, (3.1)

where κ is the asymptotic drift of X. It will be shown in the following that
∑n
i=1 pi = N+ − 1{κ≥0} and hence V is an N ×N+ matrix. Let us now formulate

the main theorem of this chapter.

Theorem 3.1. If (X,J) is a time-reversible MAP, then Γ and V+ are

N+ ×N+-dimensional matrices, V+ is invertible, and

Λ = −V+Γ(V+)−1, Π = V (V+)−1.

Let us start by establishing a lemma, which can be considered as a weak analog

of the above theorem.

Lemma 3.2. If λ > 0 and v are such that F (λ)v = 0, then

Λv+ = −λv+ and v = Πv+.

Proof. According to Proposition 2.8, eλX(t)vJ(t) is a martingale under Pi for any

i ∈ E. By Doob’s optional stopping theorem, see e.g. Kallenberg [2002, Theorem

7.12], we have

vi = Ei[e
λX(τx∧t)vJ(τx∧t)]

for any x ≥ 0 and t > 0. Proposition 2.15 implies that either τx < ∞ or

X(t) → −∞ as t → ∞ Pi-a.s., where the latter case corresponds to κ < 0. More-

over, X(t) ≤ x on [0, τx], hence using the dominated convergence theorem we

obtain

vi = Ei[1{τx<∞}e
λxvJ(τx)] = eλxPi(J(τx))v.

Plugging in x = 0 we get v = Πv+; and (Λ + λI)v+ = 0 is obtained by differenti-

ating v+ = eλxeΛxv+ at x = 0.

This lemma shows that ΛV+ = −ΓV+ and V = ΠV+, see also Proposition 2.16

and Remark 2.17. Moreover, the matrix V+ is composed from eigenvectors of Λ,

where the eigenvectors corresponding to the same eigenvalue are linearly indepen-

dent (the restriction to E+ can not ruin independence, because V = ΠV+). It is a
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standard fact from linear algebra that all these vectors are linearly independent.

Hence the proof of Theorem 3.1 will be complete if we establish that

n
∑

i=1

pi ≥ N+ − 1{κ≥0}, (3.2)

because the number of columns in V+ cannot exceed N+. We address this ques-

tion in the rest of this section. It is exactly this part of the proof, where time-

reversibility is essential.

The following lemma is an important starting point of the analysis.

Lemma 3.3. The eigenvalues of F (α), α ≥ 0 are real with algebraic and geometric

multiplicities being the same.

Proof. Time-reversibility is equivalent to the requirement that ∆πF (α) is a sym-

metric matrix for all α ≥ 0, see Section 2.5. Then ∆
1/2
π F (α)∆

−1/2
π is a real

symmetric matrix too. Theorem A.7 completes the proof.

Let gi(α) be the i-th largest eigenvalue of F (α), α ≥ 0 (so that g1(α) = k(α),

the Perron-Frobenius eigenvalue defined earlier). It is well-known that the eigen-

values of a matrix, which is continuous in its parameter, trace continuous curves

in the complex plane. This is an immediate consequence of Hurwitz’s theorem,

see Appendix A.5. Therefore, gi : [0,∞) 7→ R are continuous functions. The next

lemma presents some additional properties of these functions.

Lemma 3.4. It holds that

• g1(0) = 0 and gi(0) < 0 for i = 2, . . . , N ,

• gi(α) → ∞ as α→ ∞ for i = 1, . . . , N+.

Proof. The first statement is immediate from F (0) = Q. Recall that ψi(α) → ∞

as α → ∞ for i ∈ E+. Moreover, the off-diagonal elements of F (α) are bounded

for α ≥ 0. Gershgorin’s theorem, see Appendix A.1, completes the proof.

Proof of Theorem 3.1. Recall that we are left to prove (3.2). Lemma 3.4 shows

that the functions g2(α), . . . , gN+
(α), and in addition g1(α) provided that κ =

k′(0) < 0, hit 0 in the interval (0,∞) at least once (recall that k(α) = g1(α)) by

continuity. But the algebraic and geometric multiplicities of the null-eigenvalue

of F (α) coincide according to Lemma 3.3. These multiplicities are given by pi,

so (3.2) holds.
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Remark 3.5. Recall that inequality (3.2) is in fact an equality. Hence the func-

tions g2(α), . . . , gN+(α), and in addition g1(α) provided that κ < 0, hit 0 exactly

once for positive α. Moreover, these are the only functions gi(α) hitting 0 for

positive α.

Let us summarize the results. Firstly, note that there is a one-to-one corre-

spondence between the positive zeros of det(F (α)) and non-zero eigenvalues of Λ.

Secondly, the (geometric) multiplicity of any such eigenvalue coincides with the

dimension of the corresponding null space of F (α). This results in the following

corollary, which is a counterpart of Lemma 3.2.

Corollary 3.6. If λ 6= 0 and h are such that Λh = λh then F (−λ)v = 0, where

v = Πh.

Proof. Let v1, . . . ,vn be a basis of the null space of F (−λ). Then vi+, i = 1, . . . , n

is a basis of the eigenspace of Λ corresponding to the eigenvalue λ. Hence h can

be written as a linear combination of these vectors. But vi = Πvi+, and hence Πh

is in the null space of F (−λ).

3.2 Computational aspects

In this section we consider the problem of finding the positive zeros of det(F (α)),

which are then used to construct matrices Γ and V . Time-reversibility greatly

reduces the computational efforts required to construct these matrices, as com-

pared to the general case discussed in the following chapters. Firstly, we have

restricted ourselves to the domain of positive reals, whereas in general the right

half of the complex plane is to be considered. Secondly, it turns out that the

functions gi(α)/α, α > 0 are strictly increasing (which furthermore implies that

gi(α) are strictly increasing after they hit 0), see Lemma 3.8. Hence a simple

root finding procedure can be employed to find the zeros of functions gi(α), which

are exactly the zeros of det(F (α)). Finally, this idea can be extended further for

a MAP, which can be represented as a superposition of multiple time-reversible

MAPs. In this case one can reduce the computational burden by several orders of

magnitude.

Let us first present a useful lemma.

Lemma 3.7. The positive zeros of det(F (α)) are bounded by

C = max{Φi(2qi) : i ∈ E+}, where qi = −qii.
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Proof. We only need to show that F (α) is strictly diagonally dominant and hence

non-singular for all α > C, see Appendix A.1. Consider the i-th row of F (α) and

note that the off-diagonal elements are non-negative; their sum is bounded by qi.

If i ∈ E+ then the diagonal element is −qi + ψi(α) > qi, otherwise it is smaller

than −qi, because ψi(α) < 0.

Define hi(α) = gi(α)/α for α > 0 and let dj be the deterministic drift of the

Lévy process Xj if this process has paths of bounded variation, and ∞ otherwise,

see Section 2.1 and in particular Identity (2.2).

Lemma 3.8. The functions hi(α) are strictly increasing with

(i) limα↓0 h1(α) = κ and limα↓0 hi(α) = −∞ for i > 1,

(ii) limα→∞ hi(α) = ci, where ci is the i-th largest number among the di-s.

Proof. Fix a c ∈ R, and consider a time-reversible MAP (X(t) − ct, J(t))t≥0.

Its matrix exponent is F̃ (α) = F (α) − cα. Trivially g̃i(α) = gi(α) − cα and

h̃i(α) = hi(α)− c. But the functions g̃i(α), and hence also h̃i(α), hit 0 for positive

α at most once. This shows that hi(α) are strictly increasing, because c is arbitrary.

Claim (i) follows immediately from Lemma 3.4. Finally, note that Ñ+ (in self-

evident notation) is non-increasing in c. More precisely, Ñ+ decreases when c = dj

for some j, because then Xj(t) − ct becomes a process with non-increasing paths.

This means that one of the functions hi(α) approaches dj but does not hit it, which

proves the second claim. Some care should be taken when Ñ+ = 0. In this case

det(F̃ (α)) has no positive zeros as follows from the familiar diagonal dominance

argument.

We now consider the situation in which the MAP (X, J) is a superposition of

multiple independent MAPs (X(1), J (1)), . . . , (X(M), J (M)), see also Kosten [1984],

Stern and Elwalid [1991]. Then F (α) can be written as F (1)(α) ⊕ . . .⊕ F (M)(α),

with F (1)(α), . . . , F (M)(α) being matrix exponents, and ⊕ and ⊗ denoting the

Kronecker sum and product respectively, see Bellman [1960]. If the underlying

MAPs are time-reversible, then so is (X, J). Following the procedure outlined

above, one can identify Γ and V by finding the zeros of the eigenvalue functions

gi(α) of F (α). If Nm is the dimension of the matrix exponent F (m)(α), this would

require working with eigenvalues of the
∏M
m=1Nm dimensional matrix F (α). It is,

however, known that these eigenvalues and eigenvectors are given by

M
∑

m=1

g
(m)
i(m)(α) and

M
⊗

m=1

v
(m)
i(m)(α), i(m) ∈ {1, . . . , Nm}.
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This essentially entails that the bulk of the computations can be performed at the

level of individual MAPs (X(m), J (m)). This procedure may lead to reducing the

computational burden by several orders of magnitude.



Chapter 4

First passage: general theory

In the previous chapter we presented results on the first passage problem under the

assumption of time-reversibility. In particular, we identified the matrix Λ, which

turned out to be similar to a real diagonal matrix. It was shown that the non-zero

eigenvalues of −Λ coincide with the positive zeros of det(F (α)). Moreover, the

corresponding eigenspaces and null spaces have a very close relation. There is no

reason to expect that all the eigenvalues of Λ are real in general. In the following

we will consider the zeros of det(F (α)) in its region of analyticity, that is, in C
Re>0.

The main difficulty stems from the fact that Λ may not be similar to a diagonal

matrix. In other words, some eigenvalues may have geometric multiplicity strictly

smaller then their algebraic one. In this case the eigenvectors do not provide

enough information, and Jordan chains are to be considered.

We have seen that null spaces of F (α) correspond to eigenspaces of Λ. But

then what kind of object associated with F (α) corresponds to an arbitrary Jordan

chain of Λ? This question will be answered using the theory of analytic matrix

functions. It turns out that the concepts of eigenvalues and Jordan chains can

be extended to analytic matrix functions, where in the classical case this matrix

function is a monic matrix polynomial of degree 1. So the zeros of det(F (α)) and

the corresponding null spaces can be called eigenvalues and eigenspaces in that

generalized sense.

Before we proceed to the theory of analytic matrix functions, let us illustrate

the above mentioned problems with a simple example.
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Example 4.1. Let (X, J) be a MAP with the following matrix exponent

F (α) =







−1 + α 1 0

0 −1 + α+ α2 1

1 0 −1 + 2
5α






.

Observe that N+ = 3. Moreover, det(F (α)) is a fourth order polynomial with

the following zeros: −3/2, 0, 2, 2. So the only zero in C
Re>0 is α = 2, which has

multiplicity 2. But the algebraic and geometric multiplicities of the null eigenvalue

of F (2) are both 1. The construction (3.1) requires two vectors, and hence cannot

be satisfactory.

This chapter is organized as follows. First, we present some fundamental def-

initions and results from the theory of analytic matrix functions. This theory

builds upon the theory of matrix polynomials. Most of the basic concepts are well

illustrated by the latter, see Gohberg et al. [1982]. Having the necessary tools

at hand, we proceed in Section 4.2 to the main results concerning the relation

between F (α) and matrices Π and Λ. These results appeared in D’Auria et al.

[2010]. The present proof is, however, new in one direction, see Lemma 4.13. Next,

using our main results, we derive in Section 4.3 a matrix integral equation. This

equation can be considered as a commonly used tool for identification of Π and Λ,

and appears in a number of papers in the literature under different assumptions.

Moreover, we discuss the relationship between the results, and different methods of

proving them. In Section 4.4 we present an alternative approach based on entirely

analytic arguments. These arguments are taken from Ivanovs et al. [2010], and

served as a basis for D’Auria et al. [2010]. The material of this section, which is

rather technical, is not required in the rest of this thesis.

In the final two sections of this chapter we discuss the applicability of our re-

sults. Importantly, our results serve as a basis for developing a technique, which

allows to derive various further identities. This technique is an extension of the

approach known as ‘martingale calculations for MAPs’, see Asmussen [2003, Ch.

XI, 4a], to its final and general form. That is, no assumptions on simplicity and

the number of zeros are required. The discussion of the technique is followed by

applications. In particular, we consider a Markov-modulated queue and derive a

generalization of the famous Pollaczek-Khintchine formula. Moreover, we compute

the transforms of the supremum and infimum of X up to an independent expo-

nentially distributed time. Further applications of the technique can be found in

Chapter 5.
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4.1 Generalized Jordan chains

The concept of a Jordan chain associated with an analytic matrix function plays

a fundamental role our theory. In this section we review some basic facts from

analytic matrix function theory. These facts can be found, for example, in Gohberg

and Rodman [1981], Hryniv and Lancaster [1999].

Let A(z) be an analytic matrix-valued function of a complex variable z tak-

ing values in some domain D ⊂ C. It is assumed that A(z) is n × n matrix,

and det(A(z)) is not identically zero. For any λ ∈ D and z in a close enough

neighborhood of λ we can write

A(z) =

∞
∑

i=0

1

i!
A(i)(λ)(z − λ)i,

where A(i)(λ) denotes the i-th derivative of A(z) at λ, see Appendix A.5. A

complex number λ ∈ D is an eigenvalue of A(z) if det(A(λ)) = 0.

Definition 4.2. We say that vectors v0, . . . ,vr−1 ∈ C
n with v0 6= 0 form a Jordan

chain of A(z) corresponding to the eigenvalue λ if

j
∑

i=0

1

i!
A(i)(λ)vj−i = 0, j = 0, . . . , r − 1. (4.1)

Remark 4.3. A classical Jordan chain of a square matrix M , see Appendix A.2,

is obtained by considering a first order monic polynomial A(z) = zI−M . Indeed,

in this case equations (4.1) reduce to

Mv0 = λv0, Mv1 = λv1 + v0, . . . , Mvr−1 = λvr−1 + vr−2.

Let m be the multiplicity of λ as a zero of det(A(z)) and p be the dimension

of the null space of A(λ). Then there exists a canonical system of Jordan chains

v
(k)
0 ,v

(k)
1 , . . . ,v

(k)
rk−1, k = 1, . . . , p

corresponding to the eigenvalue λ, such that

• the vectors v
(1)
0 , . . . ,v

(p)
0 form the basis of the null space of A(λ),

•
∑p
i=1 ri = m.

Such a canonical system of Jordan chains is specified by the matrices:

V = [v
(1)
0 ,v

(1)
1 , . . . ,v

(1)
r1−1, . . . ,v

(p)
0 ,v

(p)
1 , . . . ,v

(p)
rp−1],

Γ = diag[Γr1(λ), . . . ,Γrp
(λ)], (4.2)
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where Γk(λ) is the Jordan block of size k × k corresponding to the eigenvalue λ,

see Appendix A.2.

Definition 4.4. A pair of matrices (V,Γ) given by (4.2) is called a Jordan pair of

A(z) corresponding to the eigenvalue λ.

It is noted that a Jordan pair is unique up to similarity. That is, if (V,Γ) and

(V ′,Γ′) are two Jordan pairs corresponding to the same eigenvalue, then V ′ = V S

and Γ′ = S−1ΓS for some invertible matrix S. Unlike the classical case, the vectors

forming a Jordan chain are not necessarily linearly independent; furthermore, a

Jordan chain may contain a null vector.

Assume for a moment that A(z) is a matrix polynomial of degree l, that is

A(z) =
∑l
i=0Aiz

i. Then (4.1) is equivalent to the following matrix equation

l
∑

i=0

AiV Γi = O, (4.3)

see also Proposition 1.10 and the comments thereafter in Gohberg et al. [1982]. It

is instructive to prove this equivalence using the Identity (A.1) in Appendix A.3.

In the classical case we obtain a familiar equation MV = V Γ. The following result

is well known and is an immediate consequence of (4.1).

Proposition 4.5. Let v0, . . . ,vr−1 be a Jordan chain of A(z) corresponding to the

eigenvalue λ, and let C(z) be an m× n dimensional matrix. If B(z) = C(z)A(z)

is r − 1 times differentiable at λ, then

j
∑

i=0

1

i!
B(i)(λ)vj−i = 0, j = 0, . . . , r − 1.

Note that if B(z) is a square matrix then v0, . . . ,vr−1 is a Jordan chain of

B(z) corresponding to the eigenvalue λ. It is, however, not required that C(z) and

B(z) are square matrices. Finally we state the following corollary.

Corollary 4.6. Let (V,Γ) be a Jordan pair of A(z). Assume that

c(z)A(z) =
K
∑

i=1

fi(z)ui,

where c(z),ui ∈ C
n and fi(z) are entire functions. Then it holds that

K
∑

i=1

ui V fi(Γ) = 0. (4.4)
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Proof. It is enough to show that Identity (4.4) holds for an arbitrary Jordan

chain v0, . . . ,vn−1 of A(z) corresponding to some eigenvalue λ. Letting b(z) =
∑K
i=1 fi(z)ui, we have according to Proposition 4.5 that

k
∑

j=0

1

j!
b(j)(λ)vk−j = 0, k = 0, . . . , n− 1.

It only remains to observe that the columns of V fi(Γ) are given by

k
∑

j=0

1

j!
f

(j)
i (λ)vk−j , k = 0, . . . , n− 1,

according to (A.1) in Appendix A.3.

4.2 Main results

Consider a (possibly killed) spectrally negative MAP (X(t), J(t)) with matrix ex-

ponent F (α). The killing rate q ≥ 0 is implicit here and in the following. If q = 0

then we define the asymptotic drift κ as in Section 2.4. Observe that F (α) is an

analytic matrix function on C
Re>0, because ψi(α) and Gij(α) are analytic on this

domain for any i, j, see Section 2.1 and Section A.7. Hence we can talk about

(generalized) Jordan pairs of F (α), α ∈ C
Re>0. Let us immediately formulate the

main result of this chapter.

Theorem 4.7. A pair (V,Γ) is a Jordan pair of F (α) corresponding to an eigen-

value λ ∈ C
Re>0 if and only if (V+,Γ) is a Jordan pair of αI + Λ corresponding to

the eigenvalue λ 6= 0 and V = ΠV+.

This theorem follows immediately from Lemma 4.11 and Lemma 4.13 given

in the final part of this section. As a consequence of Theorem 4.7, the zeros of

det(F (α)) and det(αI + Λ) in C
Re>0 coincide. This leads to the following result,

see also Remark 2.17.

Theorem 4.8. The number of zeros of det(F (α)) in C
Re>0 is equal to

(i) N+ if Q is transient,

(ii) N+ − 1{κ≥0} if Q is recurrent.

The equation det(F (α)) = 0 can be seen as a generalization of the Cramér-

Lundberg equation in the theory of Lévy processes: ψ(α) − q = 0. It is noted
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that a number of special cases of Theorem 4.8 are scattered over the literature,

see e.g. Asmussen et al. [2004], Karandikar and Kulkarni [1995], Mandjes and

Scheinhardt [2008], Regterschot and de Smit [1986], Sonneveld [2004], Tzenova

et al. [2005].

Furthermore, Theorem 4.7 allows to obtain a complete characterization of the

matrices Λ and Π in terms of the Jordan pairs of F (α). Namely, let λ1, . . . , λn be

all the distinct zeros of det(F (α)) in C
Re>0. Let also (Vi,Γi) be a Jordan pair of

F (α) corresponding to λi, and put (V0,Γ0) = (1, 0). Then we define

V = [Vi] and Γ = diag(Γi), where i =







0, . . . , n if q = 0, κ ≥ 0,

1,. . . ,n otherwise.

In other words, we use (V0,Γ0) only in the case of no killing and non-negative

asymptotic drift.

Corollary 4.9. The matrices V and Γ have N+ columns, V+ is invertible, and

the following holds

Λ = −V+Γ(V+)−1 and Π = V (V+)−1.

Proof. Use Theorem 4.7 to show that −ΛV+ = V+Γ and ΠV+ = V , see also (4.3).

Observe that V+ is composed from the classical Jordan chains of −Λ. So the

invertibility of V+ is a standard fact from linear algebra.

The matrices V and Γ will play a central role in the remainder of this thesis.

Hence we introduce the following definition.

Definition 4.10. A pair (V,Γ) is called (right) spectral pair of F (α).

The word ‘right’ in the above definition indicates that the pair (V,Γ) is con-

structed from Jordan pairs corresponding to the eigenvalues in C
Re>0. A MAP

without negative jumps similarly leads to a left spectral pair, where the eigenvalues

in C
Re<0 are of interest. Moreover, if MAP has no jumps then F (α) is analytic on

the whole of C. The latter case gives rise to a full spectral pair, see Section 5.1 for

an in-depth discussion.

Let us present a proof of Theorem 4.7, which is split into two parts. First, we

prove a generalization of Lemma 3.2.

Lemma 4.11. Let v0, . . . ,vr be a Jordan chain of F (α) corresponding to the

eigenvalue λ ∈ C
Re>0. Then v0

+, . . . ,v
r
+ is a Jordan chain of αI+Λ corresponding

to the eigenvalue λ, and Πvi+ = vi for i = 0, . . . , r.
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Proof. Consider the martingale M(t ∧ T ) presented in Corollary 2.11 with Y = 0

and T = τx. It leads to the following equation for any α ∈ C
Re≥0 and k ∈ E

Ek

[∫ t∧τx

0

eαX(s)e⊤
J(s)ds

]

F (α) + e⊤
k − Ek[e

αX(t∧τx)e⊤
J(t∧τx)] = 0

⊤.

Observe that Ek[e
αX(t∧τx);J(t∧ τx)]−e⊤

k is infinitely many times differentiable in

α ∈ C
Re>0 in view of Proposition A.15. Moreover, differentiation can be performed

under the expectation sign. Apply Proposition 4.5 to see that for all j = 0, . . . , r

the following holds true:

j
∑

i=0

1

i!
Ek

[

Xi(t ∧ τx)e
λX(t∧τx)e⊤

J(t∧τx)

]

vj−i − e⊤
k vj = 0.

Let t→ ∞ and use the dominated convergence theorem and Lemma A.18 to obtain

j
∑

i=0

1

i!
xieλxPk(J(τx))v

j−i − e⊤
k vj = 0. (4.5)

Note that the case of no killing when Pk(τx = ∞) > 0 should be treated with care.

In this case limt→∞X(t) = −∞ a.s. according to Proposition 2.15, so the above

equation is still valid.

Considering (4.5) for all k ∈ E and choosing x = 0, we obtain Πv
j
+ = vj . For

k ∈ E+ we get
j
∑

i=0

1

i!
xie(λI+Λ)xv

j−i
+ − v

j
+ = 0+,

which results in (λI + Λ)vj+ + v
j−1
+ = 0+ after differentiating at x = 0.

In the rest of this section we prove the converse of Lemma 4.11. Before we do

so, let us present a martingale, see also Rogers [1994, Section 7]. The proof of the

lemma below relies on some basic properties of the conditional expectation, see for

example Kallenberg [2002, Theorem 6.1].

Lemma 4.12. Fix a > 0 and a vector h, and let

f(j, x) = Ej [hJ(τa)|X(0) = x] = Pj(J(τa−x))h,

where f(∂J , ∂X) = 0 by convention. Then f(J(t ∧ τa), X(t ∧ τa)) is an Ft∧τa
-

martingale for any initial distribution of J .

Proof. It is sufficient to show that

f(J(ta), X(ta)) = Ei[hJ(τa)|Fta ] a.s.,
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where ta = t ∧ τa. Use the strong Markov property to write Ei[hJ(τa)1B ], where

B ∈ Fta , as follows:
∑

j

∫

x≤a

Pi[B|J(ta) = j,X(ta) = x]f(j, x)Pi(J(ta) = j,X(ta) ∈ dx)

= Ei[f(J(ta), X(ta))1{B}].

This completes the proof.

Let us present the second part of the main result, which can be seen as a

generalization of Corollary 3.6.

Lemma 4.13. Let h0, . . . ,hr be a Jordan chain of αI + Λ corresponding to the

eigenvalue λ < 0. Then v0, . . . ,vr is a Jordan chain of F (α) corresponding to the

eigenvalue λ, where vi = Πhi for i = 0, . . . , r.

Proof. Observe that (Λ + λI)hk = −hk−1 for k = 1, . . . , r. Write the exponential

e(Λ+λI)x as a series to obtain

eΛxhk = e−λx(hk − xhk−1 + . . .+
1

k!
(−x)kh0),

where k ≤ r. Letting h = hk in Lemma 4.12 we get

f(j, x) = e⊤
j ΠeΛ(a−x)hk = e⊤

j

k
∑

i=0

1

i!
(x− a)ieλ(x−a)vk−i.

From Ejf(J(ta), X(ta)) = f(j, 0) we obtain

k
∑

i=0

1

i!
E[(X(ta) − a)ieλ(X(ta)−a);J(ta)]vk−i =

k
∑

i=0

1

i!
(−a)ie−λavk−i.

Multiply this equation by ar−k/(r − k)! and sum over k = 0, . . . , r to obtain
r
∑

i=0

1

i!
E[Xi(ta)e

λX(ta);J(ta)]vr−i = vr, (4.6)

see Lemma A.20. Observe that eαX(ta) ≤ eαX(t) + eαa ≤ eαX(t) + 1 for any α < 0.

Let a→ ∞ and use the dominated convergence theorem with Lemma A.18 to see

that (4.6) holds with ta replaced by t. This in turn implies that
r
∑

i=0

1

i!

∂ieF (λ)t

∂iλ
vr−i = vr.

Differentiate at t = 0 and exchange the order of differentiation (which is possible

according to Clairaut’s theorem in calculus) to finish the proof.

Proof of Theorem 4.7. Combine the results of Lemma 4.11 and Lemma 4.13.
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4.3 The matrix integral equation

Let (X,J) be a MAP, where the associated transition rate matrixQ is allowed to be

transient. It is known that the matrices Π and Λ characterizing the corresponding

first passage process solve a certain matrix integral equation. Moreover, this pair

is a unique solution in a certain domain. Under various specific assumptions,

this equation appears in e.g. Asmussen [1995], Breuer [2008], Dieker and Mandjes

[2009], Miyazawa [2009], Pistorius [2006], Prabhu and Zhu [1989], Rogers [1994].

Let M+ be a set of matrices in R
N+×N+ with all the eigenvalues in C

Re>0. In

addition, let M0 be a set of matrices in R
N+×N+ with a simple eigenvalue at 0

and all others in C
Re>0. Define M = M+ if the MAP (X, J) is killed or κ < 0,

and M = M0 otherwise. Moreover, we denote through P the set of N ×N+ real

matrices P satisfying P+ = I. Clearly, −Λ ∈ M and Π ∈ P.

For any choice of M ∈ M and P ∈ P we write F (P,M) to denote the following

N ×N+ matrix

F (P,M) =∆aPM +
1

2
∆2

σ
PM2 +

∫ 0

−∞

∆ν(dx)P
(

eMx − I −Mx1{x>−1}

)

+

∫ 0

−∞

Q ◦G(dx)PeMx, (4.7)

where (ai, σi, νi(dx)) are the Lévy triplets corresponding to the Lévy processes Xi,

see (2.1), and Gij(dx) is the distribution of Uij . In other words, if we forget for a

while that P and M are matrices and substitute P = 1 and M = α, we get exactly

F (α).

Let us comment on the integrals appearing in (4.7), see also Appendix A.3.

These integrals converge absolutely for the above choice of M . It is enough to

show that
∫ 0

−∞

‖eMx − I −Mx1{x>−1}‖∞νi(dx) <∞,

∫ 0

−∞

‖eMx‖∞Gij(dx) <∞

for all i, j. In fact, it is sufficient to show the above with M replaced by its Jordan

matrix Γ. Use Identity (A.1) to compute the elements of eΓx− I−Γx1{x>−1} and

eΓx. Observe that it is only left to establish absolute convergence of

∫ 0

−∞

[∂k(eλx − 1 − λx1{x>−1})/∂
kλ]νi(dx),

∫ 0

−∞

xkeλxGij(dx),

where λ is any eigenvalue of M and k does not exceed its multiplicity. Use

Lemma A.18, Lemma A.19, and
∫ 0

−∞
(1 ∧ x2)νi(dx) <∞ to conclude.
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Theorem 4.14. It holds that F (Π,−Λ) = O. Moreover, (Π,−Λ) is the only such

pair in P ×M.

Proof. Consider a Jordan decomposition (H,Γ) of M ∈ M, that is, M = HΓH−1,

and define V = PH. For an entire function f , see Appendix A.3, we have that

Pf(M) = PHf(Γ)H−1 = V f(Γ)H−1. Pick an arbitrary n ∈ {1, . . . , N+} and

consider the n-th column of Γ. Suppose this column corresponds to the k-th

column in some Jordan block with eigenvalue λ. Then according to (A.1) the n-th

column of V f(Γ) is
k−1
∑

i=0

1

i!
f (i)(λ)vn−i.

Hence the n-th column of F (P,M)H is given by

k−1
∑

i=0

1

i!

[

∆a

∂iλ

∂iλ
+

1

2
∆2

σ

∂iλ2

∂iλ
+

∫ 0

−∞

∂i(eλx − 1 − λx1{x>−1})

∂iλ
∆ν(dx)

+Q ◦

∫ 0

−∞

∂ieλx

∂iλ
G(dx)

]

vn−i =

k−1
∑

i=0

1

i!
F (i)(λ)vn−i,

where the last equality holds, because the differentiation operators can be taken

outside of the integral signs for any λ ∈ C
Re>0. If λ = 0 then k = 1, and hence

there is no differentiation. So F (P,M) = O if and only if (V,Γ) is composed from

Jordan pairs of F (α). Theorem 4.7 shows that F (Π,−Λ) = O, and Corollary 4.9

establishes uniqueness.

Observe that if N+ = N then P = I, so that P ‘disappears’ from the matrix

integral equation. In the case of a Markov-modulated Brownian motion (MMBM)

we obtain a result of Rogers [1994] and Asmussen [1995].

Corollary 4.15. If (X, J) is an MMBM then (Π,−Λ) is the unique pair (P,M) ∈

P ×M such that
1

2
∆2

σ
PM2 + ∆aPM +QP = O.

4.4 Alternative approaches: the analytic method

Consider the main result of this chapter, namely Theorem 4.7, which relates the

Jordan pairs of F (α) and αI+Λ. This result can be equivalently stated in terms of a

matrix integral equation, see Theorem 4.14 and its proof. Moreover, the statement

that (Π,−Λ) is a solution is equivalent to Lemma 4.13, whereas uniqueness is
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equivalent to Lemma 4.11. Hence an alternative approach would be to attack the

matrix integral equation right away.

A proof of the fact that (Π,−Λ) is a solution of the matrix integral equation

can be found in Breuer [2008], where the author applies the infinitesimal generator

of (X, J) to the function f(x, j) = E[eατx ;J(τx) = j]. It should also be mentioned

that an early work Prabhu and Zhu [1989], see also Prabhu [1998, Ch. 7], considers

the matrix integral equation for a Markov-modulated compound Poisson process.

The theory of infinitesimal generators plays a key role in these works. Finally, a

method based on discretization and Wiener-Hopf factorization for Lévy processes

can be found in Dieker and Mandjes [2009].

In the rest of this section we consider the generalized C-L equation, and prove

that it has a certain number of zeros in C
Re>0, see Theorem 4.8. This proof

entirely relies on analytic arguments. This result then can be used with either

Lemma 4.11 or Lemma 4.13 to establish a one-to-one relation between the zeros

of det(F (α)) and the eigenvalues of −Λ in C
Re>0, resulting in an alternative proof

of Theorem 4.7.

In the following we prove Theorem 4.8(i), where Q is assumed to be transient,

from first principles using analytic arguments. This proof is based on Ivanovs et al.

[2010]. Importantly, Theorem 4.8(ii) follows from Theorem 4.8(i) by a limiting

argument, which we sketch in the next paragraph.

Note that Theorem 4.8(i), and either Lemma 4.11 or Lemma 4.13, show that

there is a one-to-one relation between the zeros of det(F (α)) in C
Re>0 and the

eigenvalues of −Λ. Assume that Q is recurrent. Consider a sequence (Q − q/nI)

of transient matrices. We use Fn(α) and Λn to denote matrices F (α) and Λ cor-

responding to (Q− q/nI). It is easy to see from (2.9) that eΛn → eΛ. This further

implies Λn → Λ, see Proposition A.11. Hence the eigenvalues of Λn converge to

the eigenvalues of Λ (preserving multiplicities) as n → ∞. All the eigenvalues of

Λ are in C
Re>0 except a simple one at 0 if κ ≥ 0. But F (α) is analytic in C

Re>0,

which allows to use Hurwitz’s theorem, see Appendix A.5, to extend the one-to-one

relation between zeros and eigenvalues to the recurrent case.

It is noted that one can also try to approach the recurrent case stated in

Theorem 4.8(ii) using analytic arguments. This case, however, presents many

additional difficulties, see Ivanovs et al. [2010]. In this work we had to exclude the

case when κ ∈ {0,−∞}.
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Basic idea

The main ingredient of the proof is given by the following lemma, which relies on

the argument principle, see Appendix A.5. Let D ⊂ C be a bounded domain with

boundary γ, which is a simple closed curve.

Lemma 4.16. Let M : D 7→ C
N×N be a matrix-valued function and f(z) :=

det(M(z)). Assume that

A1 all mij(z) are analytic on D and continuous on D ∪ γ,

A2 ∀i and ∀z ∈ γ : |mii(z)| ≥
∑

j 6=i |mij(z)| 6= 0,

A3 f(z) 6= 0 for z ∈ γ.

Then f(z) and
∏N
i=1mii(z) have the same number of zeros in D.

The main idea of the proof is taken from Gail et al. [1992], where the authors

use the following procedure. First they introduce an additional parameter t; the

original function is retrieved by taking t = 1. For t = 0, however, the function has

a nice form (that is, it nicely factorizes) making the analysis of the number of zeros

easy. Then essentially continuity arguments are used to conclude that the number

of zeros, as a function of the new parameter t, is constant. This basic idea used in

a related context can be also found in Boudreau et al. [1962] and Sonneveld [2004].

Proof of Lemma 4.16. Define f(z, t) := det(Mt(z)) for t ∈ [0, 1], where Mt(z) is a

N ×N matrix obtained from M(z) by multiplying the off-diagonal elements by t.

Note that f(z, 0) =
∏N
i=1mii(z) and f(z, 1) = f(z). Moreover, f(z, t) 6= 0 for all

z ∈ γ. To see this use assumption A3 when t = 1 and A2 when t < 1. In the

second case Mt(z), z ∈ γ is strictly diagonally dominant and thus non-singular, see

Appendix A.1. Since f(z, t) is a continuous function on D× [0, 1], one can choose

δ > 0, such that f(z, t) 6= 0 on Eδ× [0, 1], where Eδ := {z ∈ D : y ∈ γ, |z− y| < δ}

is a boundary strip of D. This is true, because otherwise there exists a converging

sequence of the zeros with a limit (z∗, t∗), such that z∗ ∈ γ and f(z∗, t∗) = 0.

Let nt denote the number of zeros (counting multiplicities) of the function

ft(z) := f(z, t) in D. Take some simple closed curve γ′ ⊂ Eδ (which is possible)

and write using the argument principle

nt =
1

2πi

∮

γ′

f ′t(z)

ft(z)
dz.

Note that nt is integer-valued and continuous, because f ′t(z)/ft(z) is continuous

in t uniformly in z ∈ γ′. This means that nt is constant.
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Properties of the Laplace exponent of a Lévy process

Next we present two technical lemmas concerning the Laplace exponent ψ(α) of a

Lévy process without positive jumps.

Lemma 4.17. It holds that |ψ(α)| → ∞ as |α| → ∞ through C
Re≥0 unless X is

a pure jump process, that is, ψ(α) =
∫ 0

−∞
(eαx − 1)ν(dx).

Proof. Let us start by proving that

lim
|α|→∞,α∈CRe≥0

ψ(α)

α2
=

1

2
σ2. (4.8)

This limit follows immediately from Representation (2.1) if we can show that
∫ 0

−1
(eαx−1−αx)ν(dx)/α2 → 0. The latter is true, because the dominated conver-

gence theorem applies, see Lemma A.19. Thus the proof of the lemma is complete

if σ > 0. Assume that σ = 0 and
∫ 0

−∞
(1 ∧ |x|)ν(dx) < ∞. Consider Representa-

tion (2.2) and follow the same steps as above to show that ψ(α)/α→ d.

It is only left to consider the case when
∫ 0

−∞
(1 ∧ |x|)ν(dx) = ∞ and σ = 0.

Note that |
∫ −1

−∞
(eαx − 1)ν(dx)| is bounded for all α ∈ C

Re≥0 and hence we can

assume without loss of generality that

ψ(α) = aα+

∫ 0

−1

(eαx − 1 − αx)ν(dx).

The rest of the proof will be split in two steps.

Step 1. We show that Im(ψ(u+ iv))/v → ∞ as |v| → ∞ uniformly in u ≥ 0.

Note that

Im(ψ(u+ iv)) = av +

∫ 0

−1

(eux sin(vx) − vx)ν(dx)

is an odd function in v, thus it is enough to consider the case when v > 0. Note

also that y − sin(y) ≥ 0 for y ≥ 0, and so eux sin(vx)− vx ≥ 0 for x < 0. Thus we

have for any ǫ > 0

Im(ψ(u+ iv))

v
≥ a+

∫ ǫ

−1

(

eux sin(vx) − vx

v

)

ν(dx)

≥ a+

∫ ǫ

−1

(−x)ν(dx) −

∫ ǫ

−1

1

v
ν(dx) → a+

∫ ǫ

−1

(−x)ν(dx) as v → ∞.

Recall that
∫ 0

−1
(−x)ν(dx) = ∞ to complete the proof of the first step.

Step 2. We show that given any constants C > 0 and Cv > 0 one can choose

a large Cu > 0, so that Re(ψ(u+ iv)) > C for all u and v such that |v| ≤ Cv and
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u > Cu. Observe that the process under consideration cannot have non-increasing

paths a.s., hence ψ(u) → ∞ as u→ ∞, see Section 2.1. Next note that

∂Re(ψ(u+ iv))

∂v
= −

∫ 0

−1

xeux sin(vx)ν(dx),

because differentiation can be done under the integral sign according to Proposi-

tion A.15. But

∣

∣

∣

∣

∫ 0

−1

xeux sin(vx)ν(dx)

∣

∣

∣

∣

≤ Cv

∫ 0

−1

x2ν(dx) <∞

for |v| ≤ Cv. So it is enough to choose Cu such that ψ(u) > C + C2
v

∫ 0

−1
x2ν(dx)

for all u > Cu.

Now pick any C > 0. The result of Step 1 implies that there exists a large

enough Cv > 0, so that |Im(ψ(u + iv))| > C for all u ≥ 0 and all v satisfying

|v| > Cv. Combining this with the result of Step 2, we see that there exists Cu > 0,

such that |ψ(α)| > C when α ∈ C
Re≥0 and |α| > Cu + Cv, which completes the

proof.

Lemma 4.18. For a fixed q > 0 the equation ψ(α) = q has no solution in

C
Re≥0\R.

Proof. Let u ≥ 0, v 6= 0 and assume that ψ(u+ iv) = q, then

au+
1

2
σ2(u2 − v2) +

∫ 0

−∞

(eux cos(vx) − 1 − ux1{x>−1})ν(dx) = q,

av + σ2uv +

∫ 0

−∞

(eux sin(vx) − vx1{x>−1})ν(dx) = 0.

Divide the second equation by v, multiply it by u and subtract it from the first

equality to obtain

1

2
σ2(−u2 − v2) +

∫ 0

−∞

(

−
u

v
eux sin(vx) − 1 + eux cos(vx)

)

ν(dx) > 0.

This is impossible, because

q

r
e−q sin r − 1 + e−q cos r ≤ 0 for q ≥ 0, r 6= 0,

which follows from sin r/r ≤ 1 and eq − 1 ≥ q.
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Completing the proof

Proof of Theorem 4.8(i). Define a bounded domain

DR = {α ∈ C
Re>0 : |α| < R}

for all R > 0. Let us first show that there exists R > 0 large enough, so that

F (α) is irreducibly diagonally dominant in C
Re≥0\DR. Observe that for α ∈

C
Re≥0 the matrix F (α) is irreducible. Moreover, its (i, j)-th off-diagonal element

is bounded in absolute value by qij . Recall that Q is transient, hence it is enough

to establish that |qii + ψi(α)| ≥ |qii|. This inequality is satisfied if |ψ(α)| is large,

or if Re(ψi(α)) ≤ 0, because qii < 0. Note that

eRe(ψi(ir)) = |eψi(ir)| = |EeirXi(1)| ≤ 1

for any i and r ∈ R. Hence Re(ψi(α)) ≤ 0 for all α on the imaginary axis.

Moreover, if ψi(α) =
∫ 0

−∞
(eαx − 1)ν(dx) then Re(ψi(α)) ≤ 0 for all α ∈ C

Re≥0.

Finally, use Lemma 4.17 to see that there exists R > 0 as claimed above.

An irreducibly diagonal matrix is non-singular, see Appendix A.1. Hence for R

large enough det(F (α)) has no zeros in C
Re≥0\DR. Moreover, DR and F (α) satisfy

the assumptions of Lemma 4.16. Thus it remains to show that
∏

(ψi(α) + qii) has

N+ zeros in C
Re>0. Lemma 4.18 shows that we only need to consider α > 0. If Xi

has non-increasing paths a.s. then ψi(α) < 0, otherwise ψi(α) + qii has one simple

zero by convexity, see Section 2.1.

4.5 Applications via martingale calculations

The results presented in this chapter are not only about identification of the ma-

trices Λ and Π characterizing the first passage of a MAP. We prefer to see our

contribution rather as the development of a new technique: the theory of analytic

matrix functions, combined with the special structure of the Jordan pairs of F (α),

and their relation to the matrices Λ and Π, enables the derivation of a set of fur-

ther identities. In the next section we demonstrate this technique with a simple

example. More specifically, we compute the transform of the stationary workload

in a Markov-modulated queue. This result can be seen as a generalization of the

famous Pollaczek-Khintchine formula to the MAP setting. Further examples of

the applicability of our technique can be found in Chapter 5.

Our technique roughly consists of the following steps.

• use a martingale argument to arrive at an initial equation involving the

unknown quantities and F (α);
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• use the properties of Jordan chains such as stated in Proposition 4.5, Equa-

tion (A.1), and Corollary 4.6, to rewrite the initial equation in terms of a

spectral pair (V,Γ);

• use the special structure of (V,Γ), such as invertibility of V+, to simplify the

equation;

• rewrite the equation in terms of matrices Λ and Π using Corollary 4.9 to

gain some probabilistic insight and claim uniqueness of the solution.

It is noted that this approach can be seen as an extension of the ideas known

as ‘martingale calculations for MAPs’, see Asmussen [2003, Ch. XI, 4a], to its

final and general form. It is important that no assumptions about the number and

simplicity of the eigenvalues are needed. For some problems certain eigenvalues are

inherently non-simple. An example of such a problem is discussed in Chapter 5,

where a Markov-modulated Brownian motion (MMBM) is considered. In the case

of MMBM, one works with a full spectral pair instead of a right spectral pair. In

this setting Corollary 5.7 is essential to prove uniqueness of the solution.

4.6 Queues and extremum processes

In this section we compute the transform of the stationary workload in a Markov-

modulated queue. Moreover, we obtain the transform of the workload at an ex-

ponential epoch, which then leads to the transforms of extremes of X considered

up to this epoch. Let (Y, J) be a MAP without negative jumps. Consider the

one-sided reflection of Y at 0 as defined in Section 2.8. Recall that the reflected

process R has the form R(t) = Y (t) + L(t), where the regulator L is given by

L(t) = −(Y (t)∧0). The aim of this section is to characterize the stationary distri-

bution of (R(t), J(t)) when it exists. It is noted that the case of no positive jumps

is rather simple, see Corollary 2.23.

It is convenient to define the process X(t) = −Y (t), because then (X, J) is a

MAP without positive jumps. As from now we forget about the process Y and

work exclusively withX, whose matrix exponent is denoted as usual through F (α).

Throughout this section it is assumed that Q is recurrent (the case of no killing).

In this context Λ is to be understood as Λ(0). Firstly, we have R(t) = −X(t)+L(t),

where L(t) = X(t) ∨ 0. Assume that the asymptotic drift of X is positive, that

is κ > 0. Repeating the arguments of Theorem 2.22, we see that the process

(R(t), J(t)) has a stationary version. The corresponding distribution coincides
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with the distribution of (−X̂(∞), Ĵ(0)). As before we let a random pair (R∗, J∗)

have this distribution as well.

Observe that −R(t) is bounded from above and −L(t) is continuous. Moreover,

EX(∞) < ∞, because X(∞) is of phase type. Hence −L(t) has a finite expected

variation on compact intervals. So according to Corollary 2.11 M(t) given by
∫ t

0

e−αR(s)e⊤
J(s)dsF (α) + e−αR(0)e⊤

J(0) − e−αR(t)e⊤
J(t) − α

∫ t

0

e−αR(s)e⊤
J(s)dL(s)

is a martingale for any initial distribution of (X, J) and all α ∈ C
Re≥0. Let

(X(0), J(0)) be distributed as (R∗, J∗). Then from EM(1) = M(0) = 0
⊤ we get

E[e−αR
∗

;J∗]F (α) = αE

∫ 1

0

e⊤
J(s)dL(s) = αℓ.

There is no e−αR(s) under the integral sign, because the points of increase of L(t)

are contained in {t : R(t) = 0}. It is only left to determine the vector of non-

negative constants ℓ, which we will do using the technique outlined above.

Before we start let us note that li = 0 for all i ∈ E↓. Moreover, ℓ1 = EL(t)/t

for any t > 0. But R(t)/t → 0 and X(t)/t → κ a.s. as t → ∞, see Lemma 2.14,

hence L(t)/t→ κ and then ℓ1 = κ.

Let (Vλ,Γλ) be a Jordan pair of F (α) corresponding to some eigenvalue λ ∈

C
Re>0 then ℓVλΓλ = 0 according to Corollary 4.6. This implies ℓVλ = 0, which can

be also derived directly from Proposition 4.5. Hence for a right spectral pair (V,Γ)

of F (α), see Definition 4.10, it holds that ℓV = κe⊤
1 and so ℓ+ = κe⊤

1 (V+)−1. But

e⊤
1 (V+)−1 = πΛ, the stationary distribution corresponding to Λ. To see this it is

enough to check that e⊤
1 (V+)−1Λ = 0, which is indeed true in view of Corollary 4.9.

This results in the following proposition.

Proposition 4.19. Let R(t) ≥ 0 be a reflection of −X(t) at 0. If κ > 0, then the

process (R(t), J(t)) has a stationary version. A random pair (R∗, J∗) having this

stationary distribution satisfies

E[e−αR
∗

;J∗]F (α) = αℓ

for all α ∈ C
Re≥0, where ℓ↓ = 0 and ℓ+ = κπΛ = κe⊤

1 (V+)−1.

Using the above outlined technique we essentially showed that

ℓi = E

∫ 1

0

1{J(s)=i}dL(s) = κ(πΛ)i, where i ∈ E+.

This is a very simple relation which should have a direct probabilistic proof. This

is indeed the case. First, observe that ℓi = limt→∞
1
t

∫ t

0
1{J(s)=i}dL(s). Note that
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dL(t) coincides with dX(t) for large t, that is, for t ≥ inf{t ≥ 0 : R(t) = 0}. So ℓi
represents (up to a common scaling factor κ) the long run proportion of time J(τx)

spends in state i, which is exactly (πΛ)i. More precisely, the change of variable

x = X(s) leads to

1

t

∫ t

0

1{J(s)=i}dX(s) =
X(t)

t

∫ X(t)

0

1{J(τx)=i}dx/X(t).

But X(t)/t→ κ, which completes the proof.

Finally, it is important to observe that the transform of (R(t), X(t), J(t)) at

an independent exponentially distributed time eq can be obtained along the same

lines as Proposition 4.19.

Proposition 4.20. Let R be the reflection of −X at 0, where R(0) = −X(0) =

w0 ≥ 0. Then for q > 0 and α, β ≥ 0 it holds that

−
1

q
E[e−αR(eq)−βL(eq);J(eq)](F (α) − qI)

= e−αr0I + (α+ β)[Π(q)eΛ(q)r0(Λ(q) − βI)−1,O].

Proof. First observe that −αR−βL = αX− (α+β)L. Apply Corollary 2.11 with

Z(t) = αX(t) − (α + β)L(t). For this, note that (αX, J) is a MAP; its matrix

exponent at 1 is given by F (α). In addition, EL(eq) < ∞, because X(eq) is of

phase-type. So M(t∧ eq) is a martingale. Note that E
∫ eq

0
e−αR(s)−βL(s)e⊤

J(s)ds =

E[e−αR(eq)−βL(eq);J(eq)]/q. Apply Doob’s optional stopping theorem at t∧eq and

let t→ ∞ to obtain

1

q
E[e−αR(eq)−βL(eq);J(eq)](F (α) − qI)

= (α+ β)E

∫ eq

0

e−αR(s)−βL(s)e⊤
J(s)dL(s) − e−αr0I.

It is left to identify the matrix E
∫ eq

0
e−βL(s)e⊤

J(s)dL(s). This can be done either

using the approach based on the theory of generalized Jordan chains, or the prob-

abilistic argument. The latter written in a succinct form reads

E

∫ eq

0

e−βL(s)e⊤
J(s)dL(s) = Π(q)eΛ(q)r0E+

∫ ∞

0

e−qse−βX(s)e⊤
J(s)dX(s)

= Π(q)eΛ(q)r0

∫ ∞

0

e−βyE+[e−qτ
+
y ;J(τ+

y )]dy = −Π(q)eΛ(q)r0(Λ(q) − βI)−1,

where we restrict J(s), s > 0 under the integral signs to the indices in E+. The

restriction of E
∫ eq

0
e−βL(s)e⊤

J(s)dL(s) to the columns in E↓ is the zero matrix.
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The following corollary identifies the transforms of the infimum and the supre-

mum of X, see also Kyprianou and Palmowski [2008, Thm. 4]. Another represen-

tation of this transform is given in Dieker and Mandjes [2009, Thm. 3.2].

Corollary 4.21. For q > 0 and α, β ≥ 0 it holds that

−
1

q
E[eαX(eq)−(α+β)X(eq);J(eq)](F (α) − qI) = I + (α+ β)[Π(q)(Λ(q) − βI)−1,O],

−
1

q
(F (α) − qI)E[e(α+β)X(eq)−βX(eq);J(eq)]

= I + (α+ β)∆−1
π

[Π̂(q)(Λ̂(q) − βI)−1,O]⊤∆π.

Proof. The first equation is a direct consequence of Proposition 4.20 with r0 = 0.

Using (2.7) this can be rewritten as

−
1

q
(F̂ (α) − qI)∆−1

π
E[eαX(eq)−(α+β)X(eq);J(eq)]

⊤∆π

= I + (α+ β)∆−1
π

[Π(q)(Λ(q) − βI)−1,O]⊤∆π.

Finally, a time reversal argument as in the proof of Theorem 2.22 shows that

(X(eq), X(eq), J(0), J(eq)) has the distribution of the following random vector

(X(eq) −X(eq), X(eq), J(eq), J(0)) under P̂.

Remark 4.22. It is important to note that the identities of Corollary 4.21 hold

true for a wider set of (α, β). Observe that the eigenvalues of Λ(q) and Λ̂(q)

coincide, because so do the zeros of det(F (α)−qI) and det(F̂ (α)−qI). In particular,

the Perron-Frobenius eigenvalues coincide; they are denoted through ρ(q) < 0. The

identities of Corollary 4.21 are valid for all α ≥ 0 and β > ρ(q). To see this, use

analyticity and Proposition A.17.



Chapter 5

Markov-modulated Brownian

motion (MMBM) in a strip

MAPs with a.s. continuous sample paths form an important special case of spec-

trally negative MAPs. Let (X,J) be such a MAP. Then every Uij = 0 and every

Xi is a Brownian motion with parameters (ai, σ
2
i ). It is noted that σi is allowed

to be 0, that is, Xi can be a deterministic drift. We call such a process Markov-

modulated Brownian motion or MMBM for short. This section is devoted to the

study of MMBM reflected to stay in a strip [0, B], see Section 2.8.

The present model is also called in the literature a second-order fluid model

or a fluid model with Brownian noise. It was introduced as a generalization of

an extensively studied fluid flow model, where it is assumed that all the variance

parameters are 0, making the process piecewise linear. Fluid models were initially

proposed for manufacturing and telecommunication systems, where units of work

(products or packets) are processed so fast that they can be modelled as fluid

instead of discrete units. Since then the use of fluid models has become widespread,

making it a classical model in applied probability with a variety of application

areas, like the theory of queues and dams, risk processes and insurance, biology

problems, etc. The literature on this topic is extensive; we only mention the

seminal papers by Kosten [1974/75], Anick et al. [1982], a survey by Kulkarni

[1997], and a more recent paper by Ahn et al. [2007] with an extensive list of

references.

Second-order fluid models were simultaneously introduced in Asmussen [1995],

Karandikar and Kulkarni [1995], and Rogers [1994]. The paper by Rogers [1994]

50
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can be considered as one of the most influential papers, not just in the theory of

fluid models, but in the much more general theory of fluctuations of MAPs. In that

paper the stationary distribution of a reflected MMBM is derived for both a single

barrier and two barriers assuming that either all the variance parameters are zero

or all are positive, see the comments in Section 5.5. The case of a single barrier, see

also Asmussen [1995] and Karandikar and Kulkarni [1995], is a special case of the

latter problem with B = ∞. In this case the analysis can be extended to MAPs

with one-sided jumps, see Section 2.8 and Section 4.5. An important reference

in this context is Prabhu and Zhu [1989], where the stationary distribution of an

infinite buffer Markov-modulated M/G/1 queue is obtained.

Fluid models play a prominent role in applied probability. The importance

comes from the fact that they are flexible enough to model a variety of different

phenomena, and at the same time the analysis often remains tractable. Recall that

phase-type jumps can be easily incorporated in the model, see also Section 2.7.

This shows the importance of an MMBM, where some variance parameters are

allowed to be 0. This case is often omitted in the literature, as in Rogers [1994].

This chapter is organized in the following way. First, we present some fun-

damental preliminary results concerning MMBM. Then we find the transform of

the stationary distribution of a MMBM reflected to stay in a strip. A central

role here is played by the loss vectors, which are determined using our technique

outlined in Section 4.5. Next, we solve the two-sided exit problem; see also Jiang

and Pistorius [2008] for an alternative approach. The stationary distribution of

an MMBM in a strip turns out to have an explicit form. We provide an easy to

understand argument based on time reversal leading to this result. Finally, we

discuss alternative approaches to this problem and show how they relate to each

other.

5.1 Preliminaries

Start by observing that the matrix exponent F (α) of an MMBM (X, J) is of a

particularly simple form:

F (α) =
1

2
∆2

σ
α2 + ∆aα+Q.

Thus the asymptotic drift is κ = πa, see (2.6). Importantly, both (X,J) and

(−X, J) are MAPs without positive jumps; the matrix exponent of the latter

is F (−α). Hence the first passage theory presented in this thesis can be applied

to both processes. We denote the corresponding first passage processes by τ+
x and
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τ−x respectively. Consistently with Section 2.6, the transition rate matrix of J(τ±x )

is denoted through Λ±, and the matrix with initial distributions through Π±. Let

E− and E↑ be the analogues of E+ and E↓ corresponding to the process (−X, J).

That is,

E+ = {j ∈ E : σj > 0 or aj > 0}, E↓ = {j ∈ E : σj = 0 and aj ≤ 0},

E− = {j ∈ E : σj > 0 or aj < 0}, E↑ = {j ∈ E : σj = 0 and aj ≥ 0}.

We let N− and N↑ be the cardinalities of E− and E↑. So, for example, Λ− is a

N−×N− matrix. Throughout this section it is assumed that X is not a monotone

process, that is, N+ > 0 and N− > 0.

In the case of MMBM the matrix exponent F (α) is a second order matrix

polynomial. So it is an analytic matrix function on the whole of C. This section is

devoted to the study of the eigenvalues of F (α) in C and the corresponding Jordan

pairs, see Section 4.1 for general definitions. Most of the results of this section will

follow immediately from Section 4.2.

Recall that there is a one-to-one relationship between the Jordan pairs of F (α)

and Λ++αI
+ in C

Re>0, see Theorem 4.7. It then follows that the same relationship

holds between the Jordan pairs of F (α) and Λ−−αI
− in C

Re<0. Next we consider

Corollary 4.9. Let (V +,Γ+) be formed from the Jordan pairs of F (α), α ∈ C
Re>0

and in addition (1, 0) (as the first component) if κ ≥ 0. Similarly, let (V −,Γ−) be

formed from the Jordan pairs of F (α), α ∈ C
Re<0 and in addition (1, 0) (as the

first component) if κ ≤ 0. It is assumed that π is not defined if Q is transient.

Then it holds that

Λ+ = −V +
+ Γ+(V +

+ )−1 Π+ = V +(V +
+ )−1

Λ− = V −
− Γ−(V −

− )−1 Π− = V −(V −
− )−1,

(5.1)

where the second line is true because a Jordan pair (V,Γ) of Λ− − αI
− solves

Λ−V − V Γ = O
− according to (4.3), so that it is a classical Jordan pair of Λ−.

Observe that det(F (α)) is a polynomial of degree N+ +N−. If the matrix Q is

transient then det(F (α)) has N+ zeros in C
Re>0 and N− zeros in C

Re<0. Hence

none of the zeros lies on the imaginary axis. If Q is recurrent then these numbers

are N+−1{κ≥0} and N−−1{κ≤0}. Hence if κ 6= 0 then there is a single zero on the

imaginary axis at 0. Finally, in the 0-drift case κ = 0 there is again a unique zero

on the imaginary axis at 0. Its multiplicity, however, is 2. To see this, consider the

zeros of det(F (α)− qI) and let q ↓ 0. These zeros correspond to the eigenvalues of

−Λ+(q) and Λ−(q), and hence exactly 2 of them converge to 0. Finally, the null

space of F (0) = Q is spanned by the single vector 1. This implies that there exists
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a vector h such that

F (0)h + F ′(0)1 = Qh + ∆a1 = 0, (5.2)

according to (4.1). Then (1,h) is a Jordan chain corresponding to the null eigen-

value. So if Q is recurrent we can pick a Jordan pair (V0,Γ0) corresponding to the

eigenvalue 0 of the form:

V0 = 1,Γ0 = 0 if κ 6= 0,

V0 = (1,h),Γ0 =

(

0 1

0 0

)

if κ = 0. (5.3)

The Jordan chain (1,h) will play an important role in the analysis of the 0-drift

case in the rest of this chapter. Let us present a simple lemma concerning this

chain.

Lemma 5.1. If κ = 0 and (1,h) is a Jordan chain of F (α) corresponding to the

null eigenvalue, then

π(
1

2
∆2

σ
1 + ∆ah) 6= 0.

Proof. Assume that π( 1
2∆2

σ
1 + ∆ah) = 0. Then the vector in brackets should be

in the column space of Q, because Q has rank N − 1 and πQ = 0. Hence there

exists a vector v such that

1

2
∆2

σ
1 + ∆a h +Qv = 0.

So (1,h,v) is a Jordan chain of F (α) corresponding to the null eigenvalue. This

implies then that 0 is a zero of det(F (α)) of multiplicity at least 3, see Gohberg

et al. [1982, Theorem 7.1]. We have arrived at a contradiction.

We conclude this discussion with a definition.

Definition 5.2. A pair of matrices (V,Γ) is called a spectral pair if it is composed

of Jordan pairs (Vλ,Γλ) of F (α): V = [Vλ],Γ = diag(Γλ), where λ runs over all

eigenvalues of F (α) in C. If 0 is an eigenvalue then it is in addition assumed that

(V0,Γ0), as defined in (5.3), is used as the first element in constructing (V,Γ).

Observe that Γ is a square (N+ + N−)-dimensional matrix and V is a N ×

(N+ +N−) matrix.
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5.2 Transform of the stationary distribution and

the loss vectors

Consider the two-sided reflection R(t) of X(t) with respect to the strip [0, B],

where B ∈ (0,∞], as defined in Section 2.8. Recall that R(t) has the representation

R(t) = X(t) +L(t)−U(t), where L and U are the regulators at respectively lower

and upper barriers, that is, 0 and B. It is well-known that the process (R(t), J(t))

has a stationary version (independent of the sign of the asymptotic drift of X).

This is a consequence of the fact that the state space of the Markov process (R, J)

is compact. Moreover, it is a regenerative process, which implies uniqueness of

the stationary distribution. These facts as well as the material presented in this

section up to Theorem 5.3 are taken from Asmussen and Kella [2000]. Theorem 5.3

resolves an open problem left in that paper. As usual, a random pair (R∗, J∗) refers

to the stationary distribution of (R(t), J(t)).

Let us show that

M(t) =

∫ t

0

eαR(s)e⊤
J(s)dsF (α) + eαR(0)e⊤

J(0) − eαR(t)e⊤
J(t)

+ α

∫ t

0

e⊤
J(s)dL(s) − αeαB

∫ t

0

e⊤
J(s)dU(s)

is a martingale for any α ∈ C and any initial distribution of (X,J). This is a

consequence of Corollary 2.11 with Y (t) = L(t)−U(t) and the fact that the points

of increase of L and U are contained in {t ≥ 0 : R(t) = 0} and {t ≥ 0 : R(t) =

B} respectively. It is only required to show that EL(t) < ∞ (and hence also

EU(t) < ∞ by considering the process (−X, J)), which can be reduced to the

same problem for a Brownian motion instead of MMBM. But the latter fact is

well-known, see Harrison [1985]. Finally, the result is true for α ∈ C
Re<0, because

(−X, J) is an MMBM with matrix exponent F (−α).

Assume that the process (X, J) is started with (R∗, J∗) to obtain

E[eαR
∗

;J∗]F (α) = −αℓ + αeαBu, (5.4)

where ℓ = E
∫ 1

0
e⊤
J(s)dL(s) and u = E

∫ 1

0
e⊤
J(s)dU(s). Observe that u and ℓ can

be interpreted as the expected overflow and unused capacity in a unit of time in

stationarity. We refer to them as to the loss vectors. Note that u↓ = 0 and ℓ↑ = 0.

So it is only required to determine u+ and ℓ−.

In this section we construct a system of linear equations, which uniquely de-

termines the loss vectors u and ℓ. These equations are formulated in terms of an

arbitrary spectral pair (V,Γ) of F (α).
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Theorem 5.3. The vectors u+ and ℓ− are the unique solutions to the system of

linear equations

(u+, ℓ−)

(

V+ e
B Γ

−V−

)

= (k, 0, . . . , 0), (5.5)

where

k = π

(

∆aV0 +
1

2
∆2

σ
V0Γ0

)

. (5.6)

Remark 5.4. Observe that Equation (5.6) can be rewritten as

k =

{

κ, if κ 6= 0

(0,π( 1
2∆2

σ
1 + ∆ah)), if κ = 0.

(5.7)

Let us first present a result concerning k.

Lemma 5.5. It holds that (u − ℓ)1 = κ. If κ = 0, then

Bu1 + (u − ℓ)h = π(
1

2
∆2

σ
1 + ∆ah). (5.8)

Proof. Differentiate Equation (5.4) at 0 and right multiply by 1 to get (u− ℓ)1 =

πa = κ. If, however, we right multiply the result of differentiation by h, we obtain

the identity

(u − ℓ)h = E[R∗;J∗]Qh + P(J∗)∆ah = −E[R∗;J∗]∆a1 + P(J∗)∆ah,

where the second equality follows from (5.2). Differentiating Equation (5.4) twice

at 0 and multiplying by 1, we find

B u1 = E[R∗;J∗]∆a1 + P(J∗)
1

2
∆2

σ
1.

Sum up the above two equations to complete the proof.

Proof of Theorem 5.3. We split the proof into two steps. First we show that

(u+, ℓ−) solves (5.5), and then we show that the solution is unique.

Step 1. Apply Corollary 4.6 to (5.4) to obtain

uV eBΓΓ − ℓV Γ = 0. (5.9)

Let Γ̂ be the matrix Γ with Jordan block Γ0 replaced with I. Suppose first that

κ 6= 0. Then (V0,Γ0) = (1, 0) and so (5.9) can be rewritten as

uV eBΓΓ̂ − ℓV Γ̂ = ((u − ℓ)1, 0, . . . , 0).

Multiply by Γ̂−1 from the right to obtain (5.5).
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Now suppose that κ = 0. Addition of

k̂ = uV0e
BΓ0

(

1 −1

0 1

)

− ℓV0

(

1 −1

0 1

)

to the first two elements of the vectors appearing on both sides of (5.9), leads to

uV eBΓΓ̂ − ℓV Γ̂ = (k̂, 0, . . . , 0).

To complete Step 1 it is enough to show that k̂ = k. A simple computation reveals

that k̂ = u(1, (B− 1)1 + h)− ℓ(1,−1 + h) = (0, Bu1 + (u− ℓ)h), where we used

that (u − ℓ)1 = κ = 0. Use Lemma 5.5 and (5.7) to see that k̂ = k.

Step 2. Without loss of generality we assume that κ ≥ 0. Consider the pairs

(V ±,Γ±), see Section 5.1, constructed from the Jordan pairs appearing in the

spectral pair (V,Γ). It is easy to see that (u+, ℓ−) solves (5.5) if and only if

(u+,−ℓ−)

(

V +
+ eBΓ+

V −
+ eBΓ−

V +
− V −

−

)

= κe⊤
1

and, in addition, Equation (5.8) is satisfied if κ = 0. The above display can be

rewritten as

(u+,−ℓ−)

(

V +
+ V −

+ eBΓ−

V +
− e

−BΓ+

V −
−

)

= κe⊤
1

(

e−BΓ+

O

O I
−

)

= κe⊤
1 , (5.10)

because of the form of Γ+. According to (5.1) we have

V +
− e

−BΓ+

= Π+
−e

BΛ+

V +
+ and V −

+ eBΓ−

= Π−
+e

BΛ−

V −
− .

So we obtain
(

V +
+ V −

+ eBΓ−

V +
− e

−BΓ+

V −
−

)

=

(

I
+ Π−

+e
BΛ−

Π+
−e

BΛ+

I
−

)(

V +
+ O

O V −
−

)

. (5.11)

Observe that Π+
−e

BΛ+

Π−
+e

BΛ−

and Π−
+e

BΛ−

Π+
−e

BΛ+

are irreducible transition

probability matrices. It is then not difficult to see that the first matrix on the

right hand side of (5.11), call it M , is also irreducible. If κ > 0 then M is irre-

ducibly diagonally dominant and hence non-singular, because Π−
+e

BΛ−

is transient.

If κ = 0, then M has a simple eigenvalue at 0 by Perron-Frobenius theory. So

(u+,−ℓ−)

(

I
+ Π−

+e
BΛ−

Π+
−e

BΛ+

I
−

)

= 0



5. MMBM IN A STRIP 57

determines the vector (u+,−ℓ−) up to a scalar. This scalar is then identified

using (5.8):

(u+,−ℓ−)

(

B1+ + h+

h−

)

= π(∆ah +
1

2
∆2

σ
1),

which is non-zero by Lemma 5.1.

We finish this section with two corollaries.

Corollary 5.6. It holds that

(u+,−ℓ−)

(

I
+ Π−

+e
BΛ−

Π+
−e

BΛ+

I
−

)

= κ











(πΛ+ ,0−), if κ > 0

(0+,0−), if κ = 0

(0+,πΛ−), if κ < 0

,

where πΛ+ is the unique stationary distribution of Λ+, which is well-defined if

κ > 0. Similarly, if κ < 0, then πΛ− denotes the stationary distribution of Λ−.

Proof. We only consider the case when κ > 0. Observe that e⊤
1 (V +

+ )−1 = cπΛ+

for some constant c, because e⊤
1 (V +

+ )−1Λ+ = 0 according to (5.1). Moreover,

1 = cπΛ+1+ = c, because the first column of V + is 1. The result then follows

from (5.10) and (5.11).

Corollary 5.7. For any B > 0 the matrix

(

I
+ Π−

+e
BΛ−

Π+
−e

BΛ+

I
−

)

is invertible if Q is transient, or Q is recurrent and κ 6= 0. If κ = 0 then it has

rank N+ + N− − 1, and the vector

(

B1+ + h+

h−

)

does not belong to its column

space.

Proof. See the end of the proof of Theorem 5.3.

5.3 Two-sided exit

The aim of this section is to characterize the exit times of X from the strip [−b, a],

where a, b ≥ 0, not simultaneously 0. In other words, we determine the following

matrices

C(a, b) = E[e−qτ
+
a ; τ+

a < τ−b , J(τ+
a )] and D(a, b) = E[e−qτ

−
b ; τ−b < τ+

a , J(τ−b )],
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which are of dimensions N ×N+ and N ×N− respectively.

Observe that τ+
a = τ−b can only hold if they are both infinite. Use the strong

Markov property to write

C(a, b) = E[e−qτ
+
a ;J(τ+

a )] − E[e−qτ
+
a ; τ−b < τ+

a , J(τ+
a )]

= E[e−qτ
+
a ;J(τ+

a )] −D(a, b)E[e−qτ
+
a+b ;J(τ+

a+b)],

where τa <∞ is implicit in the first line. Thus we get

C(a, b) = Π+eaΛ
+

−D(a, b)Π+
−e

(a+b)Λ+

(5.12)

D(a, b) = Π−ebΛ
−

− C(a, b)Π−
+e

(a+b)Λ−

,

where Π± and Λ± correspond to the first passage of a process killed with rate

q ≥ 0. The above display can be rewritten as

[C(a, b), D(a, b)]

(

I
+ Π−

+e
BΛ−

Π+
−e

BΛ+

I
−

)

= [Π+eaΛ
+

,Π−ebΛ
−

]. (5.13)

Assume Q is transient, or it is recurrent and κ 6= 0, then the second matrix on the

left is invertible according to Corollary 5.7. In this case one can express C(a, b)

and D(a, b) as follows:

C(a, b) = (Π+eaΛ
+

+ Π−ebΛ
−

Π+
−e

(a+b)Λ+

)(I+ − Π−
+e

(a+b)Λ−

Π+
−e

(a+b)Λ+

)−1

D(a, b) = (Π−ebΛ
−

+ Π+eaΛ
+

Π−
+e

(a+b)Λ−

)(I− − Π+
−e

(a+b)Λ+

Π−
+e

(a+b)Λ−

)−1.

(5.14)

If κ = 0 then the above matrix has rank N+ + N− − 1. Hence (5.13) does not

determine the matrices C(a, b) and D(a, b) uniquely. An additional equation is

required. We derive this equation using our technique based on Jordan chains of

F (α).

Application of the technique

Pick an arbitrary eigenvalue λ of F (α) − qI and a corresponding Jordan chain

v0, . . . ,vr. Following the same steps as in the proof of Lemma 4.11, but using

τ = τ+
a ∧ τ−b instead of τx, we obtain

j
∑

i=0

1

i!
E

[

X(τ)ieλX(τ); τ < eq, J(τ)
]

vj−i − vj = 0.

This reasoning relies on the dominated convergence theorem and the finiteness

of τ .
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The above equation can be rewritten as

C(a, b)

j
∑

i=0

1

i!
aieλavj−i+ +D(a, b)

j
∑

i=0

1

i!
(−b)ie−λbvj−i− = vj .

Letting (V,Γ) be a Jordan pair of F (α) − qI corresponding to the eigenvalue λ,

and using (A.1), we arrive at

C(a, b)V+e
aΓ +D(a, b)V−e

−bΓ = V. (5.15)

This equation can be immediately extended to a spectral pair of F (α)− qI, which

we again denote through (V,Γ). Finally, we rewrite it in a form similar to (5.5):

[C(a, b), D(a, b)]

(

V+e
(a+b)Γ

V−

)

= V ebΓ. (5.16)

Note that (5.15) holds with (V,Γ) replaced by (V +,Γ+), which is defined in

Section 5.1. After a trivial transformation we get

C(a, b) = V +e−aΓ
+

(V +
+ )−1 −D(a, b)V +

− e
−(a+b)Γ+

(V +
+ )−1,

which is exactly the first equation in (5.12) according to Lemma 5.1. The second

equation is obtained by considering (V −,Γ−).

Observe that in the case κ = 0 the above procedure results in the loss of the

equation associated to the null Jordan chain (1,h). This equation is

C(a, b)(a1+ + h+) +D(a, b)(−b1− + h−) = h. (5.17)

Corollary 5.7 shows that (5.13) together with this equation determines the matrices

C(a, b) and D(a, b) uniquely. Here we also used the fact that 1 is in the column

space of the matrix appearing in Corollary 5.7. We thus arrive at the following

theorem.

Theorem 5.8. The matrices C(a, b) and D(a, b) are uniquely determined by Equa-

tion (5.16). Alternatively, they are uniquely determined by (5.13) unless κ = 0, in

which case Equation (5.17) should be added.

5.4 Stationary distribution revisited

Time reversion is an important technique in the study of fluctuations of MAPs.

For example, considering one-sided reflection we have shown that (R∗, J∗) has
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the same distribution as (X̂(∞), Ĵ(0)), see Theorem 2.22. This then immediately

yields that (R∗|J∗ = i) is phase type. It turns out that time reversion allows to

determine the distribution of (R∗, J∗) in the case of two-sided reflection in a rather

simple way as well. The basic relation reads

P(R∗ ≥ x|J∗ = i) = P̂i(X(τ[x−B,x)) ≥ x), (5.18)

where τ [u, v) = inf{t ≥ 0 : X(t) /∈ [u, v)} and P̂ denotes the law of the time-

reversed process. In particular, if B = ∞ the right hand side of (5.18) reduces

to P̂i(X ≥ x). This type of representation was first noted in Lindley [1959] in

the case of a random walk with two reflecting barriers. A short derivation of its

continuous-time analogue is given in Asmussen [2003, Prop. 3.7, Ch. XIV], see

also Asmussen and Pihlsgård [2007] for the case of Markov additive input.

Let us illustrate this result with two figures. Firstly, it is convenient to depict

two-sided reflection by plotting the free process X and shifting the barriers accord-

ingly. For example, when the process hits the upper barrier, it starts pushing the

reflecting strip up, see Figure 5.1. Consider the time reversal of X at some time T ,

B

Figure 5.1 Two-sided reflection.

see Figure 5.2. Assume that the time-reversed process exits [x−B, x) through x.

In this case the original process cannot shift the reflecting strip high enough (just

before T ) to make R(T ) < x. The converse is shown similarly.

In order to simplify the notation in the following, we consider P̂(R∗ ≥ x|J∗ = i),

and note that reversing time twice results in the original process. It is well-known

that an MMBM can not hit a level without passing it, so we obtain

P̂(R∗ ≥ x|J∗ = i) = Pi(τ
+
x < τ−B−x), where x ∈ (0, B]. (5.19)

One should treat the case x = 0 with care. Note that this identity indeed does not

hold for x = 0 and i ∈ E↓.
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x

B

Figure 5.2 Two-sided reflection and the axes corresponding to the time-reversed path.

We have reduced our problem to the two-sided exit problem, which is discussed

in depth in Section 5.3. That is, we have

P̂(R∗ ≥ x|J∗ = i) = Ci(x,B − x)1

for x ∈ (0, B], which is then determined using Theorem 5.8. In the following we

provide some explicit formulas under the assumption that κ 6= 0.

Theorem 5.9. If κ 6= 0 then it holds that

P̂(R∗ ≥ x|J∗)⊤ = (Π+exΛ
+

− Π−e(B−x)Λ−

Π+
−e

BΛ+

)K+
1, x ∈ (0, B],

P̂(R∗ ≤ x|J∗)⊤ = (Π−e(B−x)Λ−

− Π+exΛ
+

Π−
+e

BΛ−

)K−
1, x ∈ [0, B),

where

K+ := (I+ − Π−
+e

BΛ−

Π+
−e

BΛ+

)−1, K− := (I− − Π+
−e

BΛ+

Π−
+e

BΛ−

)−1. (5.20)

Proof. The first equation is a consequence of (5.14). The second equation follows

by a coupling argument. Consider the two-sided reflection R̃(t) of (−X(t), J(t))

in [0, B]. Assuming X(0) = 0 and X̃(0) = B it is easy to see that

P(R(t) ≤ x|J(t)) = P(R̃(t) ≥ B − x|J(t)).

Letting t → ∞ we obtain P̂(R∗ ≤ x|J∗) = P̂(R̃∗ ≥ B − x|J∗). Note that Λ+,Π+

become Λ−,Π−, because the MMBM (−X(t), J(t)) is used to construct (R̃, J).

Note that the two equations in Theorem 5.9 lead to two different representations

of the density P̂(R∗ ∈ dx|J∗). In addition, one easily obtains the point masses at

0 and B:

P̂(R∗ = 0|J∗)⊤ = (Π− − Π+Π−
+)eBΛ−

K−
1,

P̂(R∗ = B|J∗)⊤ = (Π+ − Π−Π+
−)eBΛ+

K+
1.
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Finally, Π+
+ = I

+ and Π−
− = I

− and hence R∗ has no mass at 0 (respectively B)

given J∗ is in E+ (respectively E−), which is intuitively clear.

The distribution at an exponential epoch

The above ideas can be used to get insight into the transient behavior of the

reflected process. More precisely, one can identify the distribution of the reflected

process at an independent exponential time, that is, Pi(R(eq) ≤ x, J(eq) = j)

given X(0) ∈ {0, B}. It is important that X starts at a boundary. If this is not

the case the distribution of R(eq) may not have an explicit form. Then one has to

resort to the Laplace transform method as in Section 5.2.

An inspection of the proof of Asmussen [2003, Prop. 3.7, Ch. XIV] reveals that

a representation similar to (5.18) holds true for a finite time T :

Pi(R(T ) ≥ x|J(T ) = j) = P̂j(τ[x−B,x) ≤ T,X(τ[x−B,x)) ≥ x|J(T ) = i),

where we assumed that X(0) = 0. Note that πiPi(J(T ) = j) = πjP̂j(J(T ) = i) to

arrive at the following equation

P̂i(R(eq) ≥ x, J(eq) = j) = Pj(τ
+
x < eq, τ

+
x < τ−B−x, J(eq) = i)

πj
πi
,

which in matrix form can be written as

P̂(R(eq) ≥ x, J(eq))
⊤ = ∆πP

q(τ+
x < τ−B−x, J(τ+

x ))P+(J(eq))∆
−1
π ,

where P
q denotes the law of (X,J) killed at rate q > 0. Noting that P(J(eq)) =

q(qI −Q)−1 we find

P̂(R(eq) ≥ x, J(eq))
⊤ = q∆π(Π+exΛ

+

−Π−e(B−x)Λ−

Π+
−e

BΛ+

)K+[(qI−Q)−1]+∆−1
π
,

where x ∈ (0, B] and all the occurrences of matrices Λ± and Π± refer to the q-killed

versions. Finally, one can derive a symmetric equation for the case X(0) = B.

5.5 On alternative approaches

Consider an MMBM reflected to stay in a strip and its stationary distribution.

The problem of characterizing this distribution received some attention in the

literature, where a number of different approaches can be found. Some methods are

based on the theory of generators of Markov processes, and require solving second-

order differential equations. The main work in this direction is Rogers [1994]. A

similar method is contained in Karandikar and Kulkarni [1995], which was later
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extended to the case of two barriers in Ang and Barria [2000]. Alternatively,

one can determine the Laplace transform of the stationary distribution. This

transform was determined in Asmussen and Kella [2000] up to two vectors of

unknown constants. These loss vectors are obtained in Section 5.2, completing the

analysis. Finally, one can use time reversal as has been done in Section 5.4. The

use of a time reversal argument is also suggested in Asmussen [2003, Sec. XIV.3].

Below we examine the first method, which is based on differential equations, and

related results in more detail. We are interested in connecting those results with

the statement of Theorem 5.9. Throughout it is assumed that κ 6= 0.

Differential equations

The drawback of this method lies in the fact that the differential equations are

derived under the assumption that the stationary density is smooth enough. One

has to check that the resulting solution is, indeed, a density. This technical problem

is mentioned in Rogers [1994], though positivity of the solution is not established

there. This point is not addressed in Karandikar and Kulkarni [1995], nor in Ang

and Barria [2000].

Importantly, the second-order differential equations corresponding to our prob-

lem are associated to the second-order matrix polynomial F̂ (α), where F̂ (α) is the

matrix exponent of the time-reversed process. This naturally leads to the theory of

matrix polynomials and generalized Jordan chains, see Gohberg et al. [1982]. Let

a column vector p(x) denote a vector of densities P(R∗ ∈ dx|J∗ = i). Assuming

that all the N+ +N− zeros of det(F̂ (α)) in C are distinct, it is shown in Ang and

Barria [2000] that

p(x) =

N++N−
∑

i=0

cie
−λixvi, (5.21)

where F̂ (λi)vi = 0. It is argued that the constants ci could be determined using

the boundary conditions. It is, though, not shown that the corresponding equations

lead to a unique solution. Finally, we note that Equation (5.21) follows trivially

from Theorem 5.9 using Representation (5.1).

Let us now consider the results presented in Rogers [1994, Section 7]. It is

assumed there that the fluid evolves as an independent sum of a Markov modu-

lated linear drift and a standard Brownian motion. At first sight, this is a rather

special case of an MMBM. Note, however, that the process (X(t), J(t)) can be

time-changed without changing the distribution of (R∗|J∗) in the following way.

We scale time by ci > 0 while J(t) is in state i, that is, we consider a new
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MMBM specified by the transition rate matrix ∆−1
c
Q and parameters σ2

i /ci, ai/ci.

It is easy to see that this new MMBM leads to the same distribution of (R∗|J∗).

Hence, Rogers [1994], in fact, does not assume more than this: all the variance

parameters are strictly positive. In other words E+ = E− = E and hence Π± = I.

Under this assumption the first equation of Theorem 5.9 results in the following:

p(x) = −(exΛ̂
+

Λ̂+ + e(B−x)Λ̂−

Λ̂−eBΛ̂+

)(I − eBΛ̂−

eBΛ̂+

)−1
1,

which is (7.13) of Rogers [1994] up to the minus sign. Here Λ̂± = Γ̂∓, because of

the different definition of time-reversal (3.3) of Rogers [1994]. The missing minus

sign is a consequence of a mistake in a normalization in Rogers [1994].



Chapter 6

MMBM in a strip: inverse of a

regulator

Consider an MMBM reflected to stay in a strip [0, B] as defined in Section 5.2.

This chapter is devoted to the study of the transient behavior of the corresponding

processes (t,X(t), J(t), R(t), L(t), U(t)). More concretely, we characterize the joint

law of these processes at inverse local times τLx , x ≥ 0 and τUx , x ≥ 0, where

τLx = inf{t ≥ 0 : L(t) > x} and τUx = inf{t ≥ 0 : U(t) > x} (6.1)

for any x ≥ 0. In particular, by considering the model at τU0 we obtain impor-

tant identities for the first passage of the process reflected at 0 over the level B.

This chapter is essentially independent from Chapter 5, apart from some basic

definitions given in Section 5.1.

The results of this chapter, see Theorem 6.1, allow us to answer a number

of important questions. In queueing terminology some of these questions are the

following. Given X(0) ∈ [0, B] and J(0) ∈ E, when does the buffer become

empty for the first time and what is the state of J(t) at this time? What is the

amount of lost fluid until then? Mathematically speaking, we are interested in

(τL0 , J(τL0 ), U(τL0 )). What is the length of an arbitrary busy period? What is the

amount of lost fluid during a busy period given there was a loss? Moreover, we

condition on the state i of J(t) right before this busy period starts and the state j

at which it finishes. These quantities are described by the jumps of τLx and U(τLx )

given there is a corresponding transition of J(τLx ).

This chapter is organized as follows. First, we present our main result, The-
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orem 6.1, and then give a proof of it. As a simple application of Theorem 6.1,

we show that the loss vectors can be easily obtained from this general result; by

doing so we recover Corollary 5.6. Finally, we consider a special case of a simple

Brownian motion and recover the results from Williams [1992], where as an easy

consequence an asymptotic variance of the overflow process is obtained. It should

be mentioned that some related results can be found in Asmussen et al. [2004] and

in the recent paper Breuer [2011].

The analysis of the two-sided reflection problem, compared to the one-sided

one, is considerably harder. The main problem lies in the fact that there are two

regulators, which are interrelated in an intricate way. The crucial idea is to study

the set of points x ≥ 0 such that X(τLx ) = y for a fixed y ∈ R, see Lemma 6.3.

This idea in a simpler form also appears in Rogers [1994, Section 5], where it was

used to derive the point masses of R(t) at 0 and B in stationarity.

6.1 Main results

We start by making the following observations:

• τLx and hence also J(τLx ), X(τLx ), U(τLx ) are right-continuous in x;

• L(τLx ) = x by the continuity of L(t);

• R(τLx ) = 0, because τLx is a point of increase of L(t);

• U(τLx ) is piece-wise constant;

• X(τLx ) = U(τLx ) − x is piece-wise linear.

Moreover, the strong Markov property of (X(t), J(t)) implies that (X(τLx ), J(τLx ))

is a MAP, and in particular J(τLx ) is a Markov chain. Note also that J(τLx ) is an

irreducible Markov chain taking values in E−. The additive component X(τLx ) has

no negative jumps, and hence there exists a N− ×N− matrix function FL(α) for

all α ∈ C
Re≤0, such that

E−[eαX(τL
x );J(τLx )] = eF

L(α)x. (6.2)

Clearly, similar statements hold true with respect to τUx .

Consider the reflected system under the time change t = τLx (and similarly

t = τUx ) and note, using the above observations, that it is enough to characterize the

trivariate process (τLx , X(τLx ), J(τLx )). This process is a MAP with 2-dimensional

additive component, and hence is uniquely specified by the following quantity:

Ex0
[eαX(τL

x )−qτL
x ;J(τLx )] = Ex0

[eαX(τL
0 )−qτL

0 ;J(τL0 )]eF
L(α,q)x, (6.3)
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where Ex0 [e
αX(τL

0 )−qτL
0 ;J(τL0 )] describes the initial distribution, and FL(α, q) is

the corresponding matrix exponent. Note that q ≥ 0 can be seen as the rate of an

independent exponential killing of the original process. Formula (6.3) generalizes

(6.2) by allowing for arbitrary q ≥ 0, X(0) = x0 ∈ [0, B] and J(0) ∈ E. In

the following we do not explicitly write the killing rate q in order to simplify the

notation.

As it was shown above, the joint law of (t,X(t), J(t), L(t), U(t)) observed at

t = τLx , x ≥ 0 is uniquely characterized by the quantities Ex0 [e
αX(τL

0 );J(τL0 )] and

FL(α) (q is implicit here). Hence our goal is to determine these quantities, as well

as those corresponding to τUx . Define N ×N− and N ×N+ dimensional matrices

ML(α) and MU (α) through

ML(α) = Ex0
[eαX(τL

0 );J(τL0 )](FL(α))−1,

MU (α) = Ex0
[eαX(τU

0 );J(τU0 )](FU (α))−1

for those values of q ≥ 0 and α ≤ 0 for which the inverses are well-defined.

Letting x0 = 0 and restricting the rows of ML(α) to E− we get (FL(α))−1.

Hence Ex0
[eαX(τL

0 );J(τL0 )] and FL(α) are readily obtained from ML(α) (a similar

statement is true with respect to τUx ). We, therefore, aim to determine the matrices

ML(α) and MU (α).

Let ρ+, ρ− and kL(α), kU (α) be the Perron-Frobenius eigenvalues of Λ+,Λ−

and FL(α), FU (α) respectively. Observe that ρ+, ρ− ≤ 0, see Appendix A.4. If

q > 0, then the inequalities are strict. If q = 0 and κ 6= 0 then one of the

inequalities is strict depending on the sign of κ. In the following we exclude the

delicate case when q = 0 and κ = 0. We are ready to present our main result,

which will be proven in Section 6.2.

Theorem 6.1. Let α ∈ (ρ−,−ρ+). Then kL(α), kU (α) < 0 and ML(α),MU (α)

are uniquely specified by

[ML(α),MU (α)]

(

I
− −Π+

−e
BΛ+

−Π−
+e

BΛ−

I
+

)

= [Π−(Λ− − αI
−)−1ex0Λ

−

,Π+(Λ+ + αI
+)−1e(B−x0)Λ

+

]. (6.4)

We make some comments concerning this theorem. Firstly, kL(α) < 0 and

kU (α) < 0 ensure that the matrices ML(α) and MU (α) are well-defined. Secondly,
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a simple algebraic manipulation shows that (6.4) can be equivalently rewritten as

ML(α) =
(

Π−(Λ− − αI
−)−1ex0Λ

−

+ Π+(Λ+ + αI
+)−1e(B−x0)Λ

+

Π−
+e

BΛ−
)

K−,

MU (α) =
(

Π+(Λ+ + αI
+)−1e(B−x0)Λ

+

+ Π−(Λ− − αI
−)−1ex0Λ

−

Π+
−e

BΛ+
)

K+,

(6.5)

where K− and K+ are given in the statement of Theorem 5.9 and are well-defined

unless q = κ = 0, which was excluded from our consideration.

Remark 6.2. Theorem 6.1 can be rewritten in a very concise way using the

spectral pair (V,Γ) of F (α), see Definition 5.2. It follows from (5.1) that

[ML(α),MU (α)]

(

−V−

V+e
BΓ

)

= [V (αI − Γ)−1ex0Γ].

This expression may be used in practice when one is interested in computing the

matrices ML(α) and MU (α).

6.2 Proof of Theorem 6.1

The crucial idea of the proof of Theorem 6.1 is to consider the points x ≥ 0 such

that X(τLx ) = y for a fixed y ∈ R. Hence we define x(0) = inf{x ≥ 0 : X(τLx ) = y}

and x(n) = inf{x > x(n−1) : X(τLx ) = y} for n ≥ 1. Recall that X(τLx ) = U(τLx )−x

is piecewise linear with slope −1, so x(n) is strictly larger than x(n−1). Equivalently,

we can look at the time points t ≥ 0, such that the regulator L is increasing

and X is at a fixed level y at the time t. The following lemma provides the

connection between the above mentioned points and some quantities which are

easily computable.

Lemma 6.3. Let

ςy = inf{t > τ+
B+y : X(t) < y}.

It holds a.s. that

τLx(0) =







τ−|y| if y ≤ 0,

ςy if y > 0.

Moreover, for y = 0 and X(0) = 0, J(0) ∈ E− it holds a.s. that

τLx(1) = ς0.
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y

B + y

ςy

x0

Figure 6.1 A sample path of X(t).

Let us provide some explanation of this result, see also Figure 6.1. If y ≤ 0,

then the first passage time of the level y must be a point of increase of L(t), as

otherwise R(t) becomes negative. If y > 0 then the first passage time of the level

y may not be a point of increase of L(t). It is necessary that the buffer is empty

when X(t) passes level y, which is only possible if an overflow has occurred before.

Hence X(t) should drop by at least B at the time of hitting y, which implies

τL
x(0) = ςy. In order to characterize τL

x(n) , n ≥ 1 we use the strong Markov property.

Hence we only need to consider the case of y = 0 and X(0) = 0, J(0) ∈ E−. In

this case τL
x(0) = 0 and τL

x(1) = ς0 by a similar argument as above. We only present

a rigorous proof of this latter result.

Proof of Lemma 6.3. We assume that y = X(0) = 0, J(0) ∈ E− and let τ :=

τL
x(1) . First, we show that τ < ∞ implies ς0 ≤ τ . Observe that 0 = R(τ) =

X(τ) + L(τ) − U(τ) and so U(τ) = L(τ) > 0, because τ > τ−0 = 0. Hence there

was reflection from above before τ . Let τ̂ = sup{t ∈ (0, τ) : R(t) = B} then

R(τ̂) = B,U(τ) − U(τ̂) = 0 and L(τ) − L(τ̂) ≥ 0, because L is non-decreasing.

Thus B = R(τ̂)−R(τ) = X(τ̂) +L(τ̂)−L(τ) and so X(τ̂) ≥ B. But X(t) cannot

hit B without passing it with probability 1, hence ς0 ≤ τ a.s.

Using the first part, note that if ς0 = ∞ then τ = ∞. Assuming ς0 < ∞ one

can easily see that ς0 is a point of increase of L(t). But X(ς0) = 0 so by the

definition of τ we have τ ≤ ς0, which concludes the proof.

Observe that

P(J(τ−|y|)) = Π−e(x0−y)Λ
−

if y ≤ 0,

P(J(ςy)) = Π+e(B+y−x0)Λ
+

Π−
+e

BΛ−

if y ≥ 0,

where x0 ∈ [0, B]. Moreover, K− defined in (5.20) can be written in the following
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way:

K− =
∞
∑

n=0

(

Π+
−e

BΛ+

Π−
+e

BΛ−
)n

.

These facts and the strong Markov property lead to the following corollary.

Corollary 6.4. It holds that

E

∑

x≥0

1{X(τL
x )=y,J(τL

x )} = Π−e(x0−y)Λ
−

K−, y ≤ 0,

E

∑

x≥0

1{X(τL
x )=y,J(τL

x )} = Π+e(B+y−x0)Λ
+

Π−
+e

BΛ−

K−, y > 0.

The final step of the proof is given in the following lemma, which states that

we can interchange the ‘integrals’.

Lemma 6.5. For any measurable non-negative function f it holds a.s. that
∫ ∞

0

f(X(τLx ))1{J(τL
x )=j}dx =

∫ ∞

−∞

f(y)
∑

x≥0

1{X(τL
x )=y,J(τL

x )=j}dy.

Proof. Recall that X(τLx ) = U(τLx ) − x and U(τLx ) is piecewise constant. Suppose

U(τLx ) = C for all x ∈ [S, T ) then it is immediate that
∫ ∞

−∞

f(y)
∑

x∈[S,T )

1{C−x=y,J(τL
x )=j}dy

=

∫ ∞

−∞

f(y)1{(C−y)∈[S,T ),J(τL
C−y

)=j}dy =

∫ T

S

f(C − x)1{J(τL
x )=j}dx.

Summing over all such intervals yields the statement of the lemma.

Proof of Theorem 6.1. Apply Lemma 6.5 with f(y) = eαy to Corollary 6.4 to

obtain
∫ ∞

0

E[eαX(τL
x );J(τLx )]dx

= Π−

∫ ∞

0

ey(Λ
−−αI

−)dyex0Λ
−

K− + Π+

∫ ∞

0

ey(Λ
++αI

+)dye(B−x0)Λ
+

Π−
+e

BΛ−

K−.

Consider the MMBM (−X(t), J(t)) started in B − x0 to find that
∫ ∞

0

E[eαX(τU
x );J(τUx )]dx

= Π+

∫ ∞

0

ey(Λ
++αI

+)dye(B−x0)Λ
+

K+ + Π−

∫ ∞

0

ey(Λ
−−αI

−)dyex0Λ
−

Π+
−e

BΛ+

K+.

The integrals on the right hand sides converge if ρ+ +α < 0 and ρ− −α < 0, that

is α ∈ (ρ−,−ρ+). Hence the left hand sides converge for such α. Use (6.3) to see

that kL(α) < 0, kU (α) < 0 and (6.5) holds.
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6.3 Back to the loss vectors

In this section we reconsider the loss vectors ℓ− and u+ defined in Section 5.2.

Our objective is to show that the loss vectors can be easily obtained from The-

orem 6.1; by doing so we recover Corollary 5.6. Recall that J(τLx ) and J(τUx )

are irreducible recurrent Markov chains. Denote the corresponding stationary

distributions through πL and πU . Define limt→∞ L(t)/t = κL and similarly

limt→∞ U(t)/t = κU , which do not depend on the initial distribution of (X(0), J(0)).

Using the change of variable s = τLx we write

κLπLi = lim
t→∞

1

t

∫ L(t)

0

1{J(τL
x )=i}dx = lim

t→∞

1

t

∫ t

0

1{J(s)=i}dL(s) = li, (6.6)

i.e., one can interpret the vectors κLπL and κUπU as the mean unused capacity

and the mean overflow in a unit of time in stationarity.

In the rest of this section we show that Corollary 5.6, which identifies the loss

vectors when κ 6= 0, is an easy consequence of Theorem 6.1. It is noted that the

loss vectors for an arbitrary MAP are considered in Asmussen and Pihlsgård [2007].

The results of this paper, however, depend on the stationary distribution, which

has no explicit solution in most cases. Moreover, the authors make a restrictive

assumption about the number of roots of a certain equation.

Without loss of generality we assume that κ ≥ 0. Firstly, observe that

−ML(0) =

∫ ∞

0

P(τLx < eq, J(τLx ))dx = E

∫ L(eq)

0

1{J(τL
x )}dx.

Noting that qeq is an exponential random variable of rate 1 and using (6.6) we get

lj = − lim
q↓0

q
[

ML(0)
]

ij
for any i ∈ E, j ∈ E−.

A similar identity holds true for J(τUx ), and, moreover, for J(τ+
x ). That is,

−Π+(Λ+)−1 =

∫ ∞

0

P(τ+
x < eq, J(τ+

x ))dx = E

∫ X(eq)

0

1{J(τ+
x )}dx.

It is well-known that limt→∞X(t)/t = κ, which then implies

κ(πΛ+)j = lim
t→∞

1

t

∫ X(t)

0

1{J(τ+
x )=j}dx = − lim

q↓0
q[Π+(Λ+)−1]ij

for any i ∈ E, j ∈ E+. Finally, consider (6.4) with q > 0 and α = 0, multiply both

sides by q, and let q ↓ 0 to obtain

(ℓ−,u+)

(

I
− −Π+

−e
BΛ+

−Π−
+e

BΛ−

I
+

)

= (0−, κπΛ+),

which can be easily rewritten to match Corollary 5.6.
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6.4 Special cases

An important special case arises when E− = E+ = E, that is there are no

states when the process evolves deterministically (a Brownian component is al-

ways present). In this special case Π− = Π+ = I and hence (6.5) reduces to

ML(α) =
(

(Λ− − αI)−1ex0Λ
−

+ (Λ+ + αI)−1e(B−x0)Λ
+

eBΛ−
)(

I − eBΛ+

eBΛ−
)−1

.

Letting x0 = 0 and taking the inverse we obtain

FL(α) =
(

e−BΛ−

− eBΛ+
)(

(Λ− − αI)−1e−BΛ−

+ (Λ+ + αI)−1eBΛ+
)−1

. (6.7)

Moreover, observing that X(τL0 ) = U(τL0 ) we find from (6.5) that

Ex0=B [eαU(τL
0 )−qτL

0 ;J(τL0 )] (6.8)

=
(

(Λ− − αI)−1 + (Λ+ + αI)−1
)

(

(Λ− − αI)−1e−BΛ−

+ (Λ+ + αI)−1eBΛ+
)−1

=
(

Λ− − αI
)−1 (

Λ+ + Λ−
)

(

e−BΛ−

(Λ+ + αI) + (Λ− − αI)eBΛ+
)−1

(

Λ− − αI
)

,

where in the last step we used the fact that (Λ+ + αI)−1 and eBΛ+

commute. A

number of other useful transforms can be found using similar algebraic manipula-

tions.

Next, we restrict ourself to the case of a single state, that is, we consider a

Brownian motion with variance σ2 and drift µ. Without real loss of generality

it is assumed that σ2 = 1. According to Corollary 4.15, λ = Λ± is a solution of

1/2λ2 ∓ µλ− q = 0. Moreover, Λ± is negative unless q = 0 and ±µ ≥ 0, in which

case it is 0. Thus Λ+ = µ− γ and Λ− = −µ− γ, where γ =
√

µ2 + 2q. Now the

right side of (6.8) reduces to −2γ/[eB(µ+γ)(µ+ α− γ) − eB(µ−γ)(µ+ α+ γ)] and

so

EB [eαU(τL
0 )−qτL

0 ] =
e−Bµ

cosh(Bγ) − µ+α
γ sinh(Bγ)

, (6.9)

where α ∈ (−µ−γ,−µ+γ) according to Theorem 6.1. Fix q > 0 for a moment, so

that γ > 0. Multiply both sides of the equation by the denominator in the right

hand side and observe that the Laplace transform is analytic in Re(α) < −µ+ γ.

Thus the latter equality holds in this domain. This shows that (6.9) holds for all

q > 0, α ≤ 0. By symmetry we obtain

E0[e
−αL(τU

0 )−qτU
0 ] =

eBµ

cosh(Bγ) + µ+α
γ sinh(Bγ)

, q > 0, α ≥ 0,
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which is Equation (7) in Williams [1992]. Taking limits on both sides we show that

this equation holds true also for q = 0, unless µ = 0, in which case Ee−αL(τU
0 ) =

1/(1+αB) by L’Hôpital’s rule. It is noted that in Williams [1992] a very different

approach is used. It uses stochastic integration and relies on a sophisticated guess

of the right form of a certain function. Our approach, however, is direct and is

based on simple probabilistic arguments.

Let us conclude by making some additional comments about the Brownian

motion with two reflecting barriers. Firstly, the strong Markov property of X(t)

implies that the nondecreasing piecewise constant process U(τLx ) has memory-less

jumps and inter-arrival times, implying that it is a Poisson process with exponential

jumps. Let us confirm this and find the corresponding rates. Note that (6.7) can

be rewritten as

FL(α, q) =
2( 1

2α
2 + µα− q)

γ coth(Bγ) − (µ+ α)
.

Hence if µ 6= 0, then

log EeαU(τL
1 ) = FL(α) + α =

−αµ(coth(µB) + 1)

α− µ(coth(µB) − 1)
,

which implies that U(τLx ) jumps with rate µ(coth(µB)+1) = 2µ/(1−e−2µB), and

the jumps are exponential of rate µ(coth(µB)− 1) = 2µ/(e2µB − 1). If µ = 0 then

log EeαU(τL
1 ) = α/(1 − αB), that is, both rates become 1/B.



Chapter 7

The scale matrix

Let (X, J) be a spectrally negative MAP as defined in Section 2.2. This chapter

is devoted to the study of the two-sided exit problem. That is, for a, b ≥ 0 with

a+b > 0 we aim to determine the probability thatX, started at 0, exits the interval

[a,−b] through a. In fact, we will refine this result to include the transform of the

exit time and the state of J at this time. The key role in this study is played

by a matrix-valued function W , which is a generalization of the scale function of

a spectrally negative Lévy process. Hence we call W a scale matrix. It is noted

that Kyprianou and Palmowski [2008] claimed the existence of W , but did not

succeed in determining its transform. The corresponding theory in the case of

Lévy processes can be found in Bertoin [1996, Ch. VII] and Kyprianou [2006,

Ch. 8].

Recall that the first passage times are defined through

τ±x = inf{t ≥ 0 : ±X(t) > x}

for all x ≥ 0. Let us immediately formulate one of the main results.

Theorem 7.1. Assume that N = N+. Then for all q ≥ 0 there exists a unique

continuous function W q : [0,∞) → R
N×N such that W q(x) is invertible for all

x > 0,

E[e−qτ
+
a ; τ+

a < τ−b , J(τ+
a )] = W q(b)W q(a+ b)−1 for all a, b ≥ 0 with a+ b > 0,

and
∫ ∞

0

e−αxW q(x)dx = (F (α) − qI)−1

for all α > η(q) := max{Re(z) : z ∈ C,det(F (z) − qI) = 0}.

74
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It is noted that the parameter q ≥ 0 arises from the exponential killing of the

process (X, J). In the following we often suppress the killing rate q ≥ 0, where it

does not cause confusion; see Remark 2.18.

Remark 7.2. The proof of Theorem 7.1 establishes some additional properties of

W (x). In the first place, W q(x) is continuous in q ≥ 0 for every x ≥ 0. Moreover,

W (x) = e−ΛxL(x), where the entries of N × N matrix L(x) are non-negative

increasing functions of x ≥ 0. These entries can be interpreted as expected local

times at 0 up to the first passage time over x, which is made precise in Section 7.3.

In addition, later in this chapter we generalize Theorem 7.1 to allow N+ < N ,

see Theorem 7.20. This more general result is, however, less clean. It is noted that

one may often eliminate the states in E↓, see Section 7.1, to avoid the need in this

extra generality.

The two-sided exit problem becomes considerably more intricate in the MAP

setting compared to the case of a Lévy process. The crucial ideas used in the latter

case fail to work. This chapter presents a number of novel ideas and relations,

which lead to the construction of the scale matrix, and allow to establish some

important properties. Let us illustrate some of the problems faced. In the case of

a Lévy process W (x) is taken to be proportional to P(X ≥ −x), which is essential

to obtain the transform of W , see Bertoin [1996, Ch. VII] and Kyprianou [2006,

Ch. 8]. This kind of probabilistic construction (or its variations) does not work

in the MAP setting. A much more elaborate object is used instead, see (7.7).

The transform is then obtained using occupation densities. Furthermore, W is

a non-negative increasing function in the case of a Lévy process, which allows to

apply the extended continuity theorem for Laplace transforms to treat the delicate

case when q = 0. In the MAP setting the best we can show is that the entries of

eΛxW (x) are non-negative increasing functions. In addition, invertibility of W (x)

is a non-trivial issue. Finally, a MAP can evolve as a CPP in some time intervals.

It is well known that CPPs exhibit uncommon behavior as far as path properties

are concerned. This leads to a number of complications in the analysis of such

MAPs.

This chapter is organized as follows. We start by presenting an auxiliary MAP

obtained by collapsing certain states of the Markov chain J . Then we discuss some

important path properties of certain Lévy processes in Section 7.2. In particular,

we review so-called occupation densities, and present some properties of hitting

times. Occupation densities are then generalized to the MAP case in Section 7.3.

In addition, we define some fundamental objects and obtain important relations

in the same section. In Section 7.4 we reconsider the two-sided exit problem and
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construct a candidate for the scale matrix. The proof of Theorem 7.1 is given in

Section 7.5. This result is then generalized in Section 7.6. Finally, we present some

examples in Section 7.7.

Before we proceed let us define the first hitting time of a set. For any open or

closed Borel set B ⊂ R we define

τB = inf{t > 0 : X(t) ∈ B}.

The random time τB is a stopping time, which can be shown following the steps

of Bertoin [1996, Cor. I.8]. Moreover, X(τB) ∈ B a.s. on {τB < ∞}. In the

following B will be either a half-interval, e.g. (−∞,−b], or a single point {−b}.

Observe that the first passage times τ+
x and τ−x coincide with τ (x,∞) and τ (−∞,−x)

respectively, where x ≥ 0.

7.1 Auxiliary process

It is sometimes convenient to modify a MAP (X, J) by reducing the set of states

of the background process J . Let Ẽ ⊂ E be a targeted subset of states. The

idea is to construct an auxiliary MAP with the state space Ẽ, so that this process

behaves exactly as (X,J) restricted to the time intervals where J(t) ∈ Ẽ. In

other words, we collapse time intervals where J(t) /∈ Ẽ into single points, so that

each evolution of Xi, i /∈ Ẽ contributes a jump of size Xi(eqi
). If the killing rate

q is non-zero, then such a jump is modified to lead to the absorbing state with

probability P(eqi
> eq). The Laplace transform of such a jump is then given by

E[eαXi(eqi
); eqi

< eq] = Ee(ψi(α)−q)eqi =
qi

qi + q − ψi(α)
.

We use the subscript a to indicate the auxiliary process. It is not that straightfor-

ward to write down the matrix exponent Fa(α) of the auxiliary MAP in terms of

F (α). Note, however, that
∫ ∞

0

Ei[e
αX(t);J(t) = j]dt =

∫ ∞

0

Ei[e
αXa(t);Ja(t) = j]dt

for any i, j ∈ Ẽ. Hence the signs of the Perron-Frobenius eigenvalues are related,

that is, k(α) < 0 if and only if ka(α) < 0, see Lemma A.9. Moreover, for such α it

holds that Fa(α)−1 is equal to F (α)−1 restricted to the rows and columns in Ẽ.

There are two different choices of Ẽ considered in this book. Firstly, Ẽ can

be a set of a single state {i}. The corresponding auxiliary process evolves as Xi

with some additional jumps arriving at rate qi. It is a Lévy process which is equal



7. THE SCALE MATRIX 77

in law to the independent sum of Xi and a CPP. Note that the latter may have

positive jumps. Many properties of a MAP can be understood from the behavior

of this auxiliary process. We present some important properties of such a Lévy

process in Section 7.2.

Another important case arises when Ẽ = E+. That is, we collapse all the states

corresponding to processes Xi with non-increasing paths. Note that this procedure

only produces negative jumps, hence the auxiliary process is again a spectrally

negative MAP. Furthermore, it is a ‘nice’ MAP in the sense that Na = (Na)+. It is

not difficult to see that Λa = Λ; recall that the killing of the original MAP with rate

q > 0 leads to some specific killing of (Xa, Ja). Moreover, Pi(τ
+
a < τ−b ;J(τ+

a ) = j),

where i, j ∈ E+, coincides with the same probability for the auxiliary process.

Hence, one can represent this probability using Theorem 7.1 and the auxiliary

scale matrix Wa. So in fact, the only case not covered by this theorem corresponds

to i ∈ E↓.

7.2 Path properties of certain Lévy processes

In the previous section we mentioned that many path properties of a spectrally

negative MAP can be understood from the behavior of a certain Lévy process. This

Lévy process is obtained by collapsing all the background states of a MAP but a

single one. Let us present some path properties of such a Lévy process. Recall

that this process can be seen as an independent sum of a Lévy process without

positive jumps and an arbitrary CPP. So throughout this section we assume that

X is a Lévy process with ν(0,∞) <∞. (7.1)

Let us recall that a Lévy process characterized by (a, σ, ν) has paths of bounded

variation if and only if σ = 0 and
∫

R
(1 ∧ |x|)ν(dx) <∞. In this case one can talk

about drift. The zero drift case is delicate, and is often treated separately. The

following result is a special case of Theorem 1 in Kesten [1969].

Proposition 7.3. Assume that X is not a process with monotone paths, nor is it

a bounded variation process with zero drift. Then P(τ{x} <∞) > 0 for all x ∈ R.

Consider an open or closed Borel set B, and the probability that X hits B

immediately when started in x: Px(τ
B = 0). According to Blumenthal’s zero-one

law this probability is necessarily 0 or 1. We say that x is irregular for the set

B in the first case, and x is regular for the set B in the second case. If B = {0}

then we simply say that x is (ir)regular without mentioning B. Hence, 0 is said to
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be regular if X returns to the origin immediately. The next result follows directly

from Theorem 8 in Bretagnolle [1971].

Proposition 7.4. Assume that X is not a CPP.

• If X is of unbounded variation then 0 is regular.

• If X is of bounded variation then 0 is irregular.

Occupation densities

In this part of the section we discuss occupation densities of a Lévy process X. It

is assumed that X is not monotone, neither is it a processes of bounded variation

with zero drift. According to Proposition 7.3, P(τ{x} <∞) > 0 for all x ∈ R. This

is sufficient, as stated by Bertoin [1996, Prop. II.16, Thm. V.1], for the existence

of the ‘occupation density’ L(x, t), which we define in the following.

First, suppose X(t) has paths of unbounded variation. In this case 0 is regular

according to Proposition 7.4, and then for every x ∈ R

Lǫ(x, t) =
1

2ǫ

∫ t

0

1{|X(s)−x|<ǫ}ds

converges uniformly on compact intervals of time t, in L2(P) as ǫ ↓ 0, see Bertoin

[1996, Prop. V.2]. This limit is denoted through L(x, t), which consequently is

continuous in t a.s. It can be shown that for each x ∈ R, L(x, ·) is an increasing

Ft-adapted process, which increases only if X = x. Importantly, the process

L(x, t) satisfies the following property.

Proposition 7.5. For every y and every stopping time T with X(T ) = y on

{T < ∞}, the shifted process L(x, T + t) − L(x, T ), t ≥ 0 is independent of FT

under P(·|T <∞), and has the same law as L(x− y, t), t ≥ 0 under P.

Proof. It is enough to note that L(x, t) is the limit of the processes which satisfy

this property, see also Bertoin [1996, Prop. V.4].

The above property shows that L(0, ·), in fact, coincides up to a constant factor

with the local time of X(t) at 0, see Bertoin [1996, Prop. V.4]. We often call L(0, ·)

the local time of X(t) at 0.

Secondly, suppose X(t) has paths of bounded variation a.s. (recall that we

exclude processes with zero linear drift d = 0). In this case 0 is irregular, which

allows us to define

L(x, t) = |d|−1N(x, t),
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where N(x, t) = #{s ∈ [0, t) : X(s) = x}, see also Fitzsimmons and Port [1990].

In this case the strong Markov property immediately shows that Proposition 7.5

still holds. Moreover, for both cases considered above the following is true. For

each t ≥ 0, L(·, t) is measurable and the identity

∫ t

0

f(X(s))ds =

∫

R

f(x)L(x, t)dx (7.2)

holds for all measurable functions f ≥ 0 a.s., see Bertoin [1996, Eqn. V.(2)]. This

identity is called ‘occupation density formula’ and will play a crucial role in the

following.

We conclude this section by a corollary of Proposition 7.5.

Corollary 7.6. It holds that

EL(x,∞) = P(τ{x} <∞)EL(0,∞).

Proof. Observe that L(x, t) has the distribution of 1{τ{x}<t}L̃(0, t − τ{x}), where

L̃(0, ·) is a copy of L(0, ·) independent of τ{x}. Take the expectations and apply

the monotone convergence theorem.

Hitting a level

In this part we present some properties of the first hitting time τ{x}. The next

proposition concerns the following question. Can the first hitting time of a level

be strictly less than the first passage over this level? Note that this question is

different from the question about ‘creeping’, where one asks if a level can be passed

by hitting it.

Proposition 7.7. Assume that X is not a CPP. Then for any x ≥ 0 it holds that

τ+
x ≤ τ{x} and τ−x ≤ τ{−x} a.s.

Proof. We only prove that τ+
x ≤ τ{x} for x ≥ 0. The second claim can be shown

following exactly the same steps. If 0 is regular for (0,∞) then we apply the strong

Markov property at τ{x} on the event {τ{x} <∞} to deduce the result.

In the rest we assume that 0 is irregular for (0,∞). We will rely on the fact

that the local extrema of X are all distinct, except in the CPP case, see Bertoin

[1996, Prop. VI.4]. So τ{0} < τ+
0 cannot hold a.s. We are only left to prove the

claim for x > 0. Since 0 is irregular for (0,∞), it holds that X(t) is a step process,

where the time to the next maximum and the corresponding jump are independent

of the past, and all have the same law. Let us show that X cannot hit a fixed x
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a.s., which would complete the proof. Suppose on the contrary that X hits x with

positive probability. This implies that the jump distribution of X has an atom at

some ǫ > 0.

Consider an independent CPP X−ǫ, which has deterministic jumps of size

−ǫ. Note that this process has exactly one jump before X jumps with positive

probability. Hence the Lévy process X +X−ǫ can achieve its supremum without

immediately passing it with positive probability. But this is only possible for a

CPP. So X would then be a CPP too, which is not the case.

Let us present another result, which is an immediate consequence of Bertoin

[1996, Prop. I.15].

Proposition 7.8. Let an exponential random variable eq be independent of a Lévy

process X. Then X(eq) has no atoms if X is not a CPP.

Proof. We use the notation of Bertoin [1996]. Fix x and let f(y) = 1{y=x}. Then

1

q
P(X(eq) = x) =

∫ ∞

0

e−qtP(X(t) = x)dt

= Uqf(0) =

∫

f(y)Uq(0,dy) = Uq(0, {y}) = 0,

where the last equality follows from Bertoin [1996, Prop. I.15].

The following proposition will only be needed to extend the main result of this

chapter to the case when some Xi are bounded variation processes with zero drift.

Lemma 7.9. Let X be a Lévy process with no positive jumps. Assume X is not

a process with non-increasing paths. Then for any x′ ∈ R\{0} it holds that τ{x} is

continuous at x′ a.s.

Proof. Using quasi-left-continuity, see Bertoin [1996, Proposition I.7], one can show

that X does not jump downwards at a time at which it is about to hit a level x 6= 0

for the first time. To see this use the following sequence of stopping times

Tn = inf{t > 0 : X(t) ∈ (x− 1/n, x+ 1/n)}.

Hence it is enough to consider an arbitrary small time interval centered at τ{x},

and to show that during this time interval X hits all the points in some small

neighborhood of x.

If 0 is regular for (0,∞) then the absence of positive jumps implies that X

does hit the points larger than x in some neighborhood. Moreover, the claim is

also true for points smaller than x, if 0 is regular for (−∞, 0) and also it is regular
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for {0} (so the process has to return and to hit all the points on the way). If

X has paths of unbounded variation then it satisfies the above requirements, see

Proposition 7.4 and Bertoin [1996, p. 167]. So it is left to consider processes of

bounded variation with positive drift. It is enough to show that X cannot hit a

level by jumping onto it. This follows from Proposition 7.7, and the fact that 0 is

irregular for (−∞, 0).

7.3 Occupation densities of a MAP

Let (X, J) be a spectrally negative MAP, such that none of the Xi is a bounded

variation process with zero drift. The structure of MAP allows for immediate gen-

eralization of the concept of occupation densities presented in Section 7.2. Note

that X observed at times when J ∈ j is a Lévy process, which satisfies the as-

sumptions of Section 7.2. Let us define L(x, j, t), the occupation density of (X, J)

at (x, j) up to time t. If Xj is such that 0 is irregular we let

L(x, j, t) =
1

|dj |
#{s ∈ [0, t) : X(s) = x, J(s) = j};

otherwise L(x, j, t) is the limit of

Lǫ(x, j, t) =
1

2ǫ

∫ t

0

1{|X(s)−x|<ǫ,J(s)=j}ds

as ǫ ↓ 0.

Observe that L(x, j, t) is an increasing Ft-adapted process, which increases only

if X = x, J = j. Moreover, Proposition 7.5 reads as follows.

Proposition 7.10. For every y, i and every stopping time T with X(T ) = y on

{J(T ) = i}, the shifted process L(x, j, T + t) − L(x, j, T ), t ≥ 0 is independent of

FT under P(·|J(T ) = i), and has the same law as L(x− y, j, t), t ≥ 0 under Pi.

Finally, the occupation density formula becomes
∫ t

0

f(X(s))1{J(s)=j}ds =

∫

R

f(x)L(x, j, t)dx.

Let us illustrate the use of occupation densities. Let L be a N × N matrix

with (i, j)-th element equal to EiL(0, j,∞). Recall that P(J(t)) denotes an N ×N

matrix with elements Pi(J(t) = j), whereas P+(J(t)) denotes its restriction to the

rows corresponding to E+, see Section 2.2. Using Proposition 7.10 we generalize

Corollary 7.6 to obtain

EL(x, j,∞) = P(J(τ{x}))EL(0, j,∞). (7.3)
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Moreover, observe that L has strictly positive entries. Let us present the following

important result.

Theorem 7.11. For all α ≥ 0, such that k(α) < 0, it holds that

∫

R

eαxP(J(τ{x}))dxL = −F (α)−1.

Proof. Firstly, by the monotone convergence theorem we get

E lim
t→∞

∫ t

0

eαX(s)eJ(s)ds =

∫ ∞

0

eF (α)sds = −F (α)−1,

where we used the fact that the real parts of the eigenvalues of F (α) are all

negative, see also Lemma A.9. Using the occupation density formula we obtain

lim
t→∞

∫ t

0

eαX(s)1{J(s)=j}ds = lim
t→∞

∫

R

eαxL(x, j, t)dx =

∫

R

eαxL(x, j,∞)dx.

Identity (7.3) completes the proof.

It is noted that the theory of occupation densities presented above holds for a

killed MAP as well.

Remark 7.12. If there is an α satisfying the conditions of Theorem 7.11 then

both L and
∫

R
eαxP(J(τ{x})dx must have finite entries. Furthermore, L is then

invertible. This is the case when the killing rate q is strictly positive, because then

k(0) < 0. So q
∫∞

0
e−qtEiL(0, j, t)dt < ∞, where L is the local time in the case

of no killing. This further implies that EiL(0, j, t) < ∞ for any deterministic t.

Recall that X drifts to ∞ or −∞ if κ 6= 0. Using the regenerative structure of L, it

is not difficult to show that L has finite entries also in the case of no killing when

κ 6= 0; an argument of this type will also be used in the proof of Proposition 7.13.

In the rest of this section we assume that N = N+. Let us introduce another

matrix L(x), x ≥ 0, which will play an important role in the study of the scale

matrix. Let

Lij(x) = EiL(0, j, τ+
x )

for x > 0. That is, L(x) is the expected local time at 0 up to the first passage

time over x. In view of Proposition 7.10 the matrix L(x), x > 0 can be expressed

as

L(x) = L − P(J(τ+
x ))P(J(τ{−x}))L, (7.4)
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given that L has finite entries. In addition, we would like to define L(0) so that

the Identity (7.4) holds true for x = 0 when L has finite entries. Note that τ+
0 = 0

and use the definition of the first hitting time τ{0} to see that L(0) is given by

Lij(0) = EiL(0, j, 0+) =







1/di if i = j and Xi is of bounded variation,

0 otherwise.
(7.5)

The second equality follows from the construction of the occupation density, see

Section 7.3. It is also noted that di > 0 for a Lévy process Xi of bounded variation,

because of the assumption that N = N+. Observe also that the entries of L(x)

are non-negative and increasing in x.

Proposition 7.13. For any u > 0 it holds that
∫∞

0
e−uxL(x)dx <∞.

Proof. Let eu be an exponential random variable of rate u independent of every-

thing else. It is enough to show that EL(eu) < ∞. Note that EL(eu) is the

expected local time at 0 up to hitting the random level eu. Hence the correspond-

ing entries of EL(eu) are bounded from above by the entries of L. In view of

Remark 7.12 we only need to consider the case of no killing with κ = 0.

Our problem can be reduced to the same problem for a Lévy process by re-

stricting attention to only those intervals of time where J = j, see Section 7.2.

The reasoning below can be also used in the context of MAPs; in the case of

Lévy processes, however, the notation is much simpler. In the following X is a

Lévy process obtained from the original MAP, and L(0, t) is the local time of X

at 0 up to time t. Similarly to Remark 7.12 we can show that EL(0, t) < ∞ for

any deterministic t. Let τ = inf{s ≥ t : X(s) = 0} be the first hitting time of

zero after time t. Let also p = P(τ+
eu
> τ) be the probability that the level eu is

not reached before τ . The regenerative structure of L(0, ·), see Proposition 7.5,

implies that EL(eu) ≤ EL(0, τ)
∑∞
i=0 p

i. The proof is completed by noting that

EL(0, τ) = EL(0, t) < ∞ and p < 1, because κ = 0 implies that every level is

reached a.s., see Proposition 2.15.

7.4 Two-sided exit

This section presents some of the basic ideas in constructing the scale matrix.

Firstly, we show that the event {τ+
a < τ−b } is closely related to {τ+

a < τ{−b}}.

Secondly, using the strong Markov property we obtain a key representation of the

latter event through the first hitting times.
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Lemma 7.14. For any a, b ≥ 0 such that a + b > 0 the events {τ+
a < τ (−∞,−b]}

and {τ+
a < τ{−b}} coincide a.s.

Proof. It is only required to show that τ+
a < τ{−b} implies τ+

a < τ (−∞,−b]. Suppose

on the contrary it holds that τ (−∞,−b] ≤ τ+
a < τ{−b}. Observe that X(τ (−∞,−b]) ≤

−b, but then X should hit level −b before reaching a, because of absence of positive

jumps.

The following lemma will allow us to include and exclude boundary points of

the interval [a,−b] in most cases when considering the two-sided exit problem.

Lemma 7.15. For any x ≥ 0 it holds Pi − a.s. that τ+
x = τ [x,∞) and τ−x =

τ (−∞,−x], unless Xi is a CPP.

Proof. We only need to show that the events {τ{x} < τ+
x } and {τ{−x} < τ−x } have

probability 0. Consider the first event together with J(τ{x} = j). Suppose it has

a positive probability. Then {τ{x} < τ+
x } is also true for a Lévy process obtained

by observing X only at time intervals where J = j. This is impossible according

to Proposition 7.7 unless Xj is a CPP. Assume that Xj is a CPP and j is not the

starting index: i 6= j. The distribution of X at the time of the first jump of J is

diffuse according to Proposition 7.8. Therefore, X cannot hit any fixed level while

J is in state j.

Let us now introduce the basic representation of the probability of the event

{τ+
a < τ{−b}}. Pick arbitrary a, b ≥ 0 such that a + b > 0 and consider the

following equations, which are an immediate consequence of the strong Markov

property:

P(J(τ+
a )) = P(τ+

a < τ{−b};J(τ+
a )) + P(τ{−b} < τ+

a ;J(τ{−b}))P(J(τ+
a+b)),

P(J(τ{−b})) = P(τ{−b} < τ+
a ;J(τ{−b})) + P(τ+

a < τ{−b};J(τ+
a ))P+(J(τ{−a−b})).

Using the relation P(J(τ+
a )) = ΠeΛa we get

P(τ+
a < τ{−b};J(τ+

a ))(P+(J(τ{−a−b}))ΠeΛ(a+b) − I
+)

= P(J(τ{−b}))ΠeΛ(a+b) − ΠeΛa.

Right-multiply by e−Λ(a+b) and note that Π+ = I
+ to arrive at

P(τ+
a < τ{−b};J(τ+

a ))W̃+(a+ b) = W̃ (b), (7.6)

where we define W̃ (x) for all x ≥ 0 through

W̃ (x) = Πe−Λx − P(J(τ{−x}))Π. (7.7)
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Note that the above calculations are still valid in the case of a killed MAP. In that

case the first term of (7.6) should be read as E[e−qτ
+
a ; τ+

a < τ{−b}, J(τ+
a )].

We finish this section by making a note on how (7.7) simplifies in the case of a

simple Lévy process. Recall that X denotes the all time infimum of X. Suppose

that κ > 0 then Λ = 0 and hence W̃ (x) = 1 − P(τ{−x} <∞) = Px(X > 0), which

is the same as Px(X ≥ 0) by Proposition 7.7. Exactly this construction is found

in Kyprianou [2006, Ch. 7].

7.5 The scale matrix and its transform

In this section we present a proof of Theorem 7.1. Throughout this section we

assume that N+ = N , that is, none of the processes Xi is non-increasing. This

excludes processes of bounded variation with zero drift, which are special in many

ways. Note that (7.7) becomes W̃ (x) = e−Λx−P(J(τ{−x})), where the killing rate

q ≥ 0 is implicit. Moreover, Lemma 7.14 and Lemma 7.15 allow to rewrite (7.6)

as follows

P(τ+
a < τ−b , J(τ+

a ))W̃ (a+ b) = W̃ (b).

Note that this identity is preserved if W̃ (x) is multiplied on the right by a constant

matrix.

Assume for a moment that the killing rate is strictly positive: q > 0. We keep

q implicit where it does not cause too much confusion. Recall also the definition

of η as given in Theorem 7.1.

Lemma 7.16. For q > 0 and α > η it holds that
∫ ∞

0

e−αxW̃ (x)dxL = F (α)−1.

Proof. Using (7.7) we write
∫ ∞

0

e−αxW̃ (x)dx =

∫ ∞

0

e(−Λ−αI)xdx−

∫ ∞

0

e−αxP(J(τ{−x}))dx.

Recall that the set of eigenvalues of −Λ coincides with the set of zeros of det(F (α))

in C
Re>0. Hence the first integral on the right converges absolutely and is equal

to (αI + Λ)−1 for α > η, see also Lemma A.9. In addition, Theorem 7.11 gives

− F (α)−1 =

∫ ∞

0

eαxP(J(τ{x}))dxL +

∫ ∞

0

e−αxP(J(τ{−x}))dxL (7.8)

for α ≥ 0 with k(α) < 0. Note that k(α) is the Perron-Frobenius eigenvalue of

F (α). So for q > 0 we have that k(0) < 0. Then the continuity of k(α) implies
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that there exists ǫ > 0 such that k(α) < 0 for all α ∈ [0, ǫ). Remark 7.12 shows

that L has finite entries. Furthermore, Equation (7.8) can be rewritten as

−

∫ ∞

0

e−αxP(J(τ{−x}))dxL = F (α)−1 − (αI + Λ)−1L

for α ∈ [0, ǫ), because the real parts of all the eigenvalues of (αI +Λ) are negative.

The proof is complete as soon as we show that the latter identity can be continued

to α > η. To see this, multiply both sides by F (α) from the right and by (αI + Λ)

from the left. Then both sides are analytic for α ∈ C
Re>0, see also Section A.7.

Hence the equality holds for these α.

Lemma 7.16 shows that we can define W (x) = W̃ (x)L when q > 0. Using the

matrix L(x) this can be further rewritten as follows

W (x) = W̃ (x)L = e−Λx[L − P(J(τ+
x ))P(J(τ{−x}))L] = e−ΛxL(x), (7.9)

see Section 7.3. Representation (7.9) of W (x) in terms of L(x) is essential. The

matrix L(x) has many nice properties, which allow to derive further properties

of W (x). In particular, the entries of L(x) are positive and increasing in x ≥ 0.

Moreover, e−ΛxL(x) is continuous in q ≥ 0. Hence this expression can be used to

define W (x) corresponding to q = 0. On the contrary, if κ = 0 then W̃ (x) becomes

singular and the elements of L tend to ∞ as q ↓ 0.

Definition 7.17. If N = N+ then the scale matrix is defined through W q(x) =

e−Λ(q)xLq(x) for all x, q ≥ 0.

Observe that

E[e−qτ
+
a ; τ+

a < τ−b , J(τ+
a )]W q(a+ b) = W q(b)

for all q ≥ 0 as required. Next we consider the transform of W q(x).

Lemma 7.18. For any q ≥ 0 and α > η(q) it holds that

∫ ∞

0

e−αxW q(x)dx = (F (α) − qI)−1.

Moreover, W q(x) is continuous in x ≥ 0 and hence is uniquely identified by its

transform.

Proof. Continuity of W q(x) in x follows from the continuity of Lq(x). The latter

is true, because τ+
x is continuous at a fixed x ≥ 0 with probability 1. In view of

Lemma 7.16 it is only left to identify the transform for q = 0.
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From the definition of Lq(x) it follows that 0 ≤ Lq(x) ≤ L0(x). Moreover,

according to Lemma A.12 there exists λ > 0 such that for all small enough q ≥ 0

the elements of the matrix e−λxe−Λ(q)x, x ≥ 0 are bounded. Proposition 7.13

allows to apply the dominated convergence theorem to finish the proof for large α.

Finally, observe that for all α > η(0) it holds that ‖e−αxe−Λ(0)x‖∞ is bounded by

a constant, which can be shown similarly to the proof of Lemma A.9. This fact

and Proposition 7.13 allow to extend the result to α > η(0), see Appendix A.7.

Proof of Theorem 7.1. In view of Lemma 7.18 it only remains to show that W (x)

is invertible for any x > 0; q ≥ 0 is implicit here. It is enough to establish that

L(x) is invertible. For this observe that

L(x+ y) = L(x) + P(J(τ+
x ))P(τ{−x} < τ+

y , J(τ{−x}))L(x+ y).

Notice that the matrix I − P(J(τ+
x ))P(τ{−x} < τ+

y , J(τ{−x})) is invertible for any

x > 0, because it is irreducibly diagonally dominant, see Appendix A.1. So if for

any x > 0 there is a vector v, such that L(x)v = 0 then L(y)v = 0 for all y > 0.

But then F (α)−1v = 0 for large enough α according to Lemma 7.18, which is a

contradiction.

Let us conclude with a lemma, which identifies W q(0). The corresponding

result for a Lévy process is given in Kyprianou [2006, Lem. 8.6].

Lemma 7.19. For all q ≥ 0 it holds that the (i, j)-th entry of W q(0) is 0 unless

i = j and Xi is a bounded variation process. In the latter case the corresponding

entry is 1/di, where di is the drift of Xi.

Proof. Observe that W q(0) = Lq(0) and use (7.5).

7.6 The general case

Theorem 7.1 is stated under the assumption that N+ = N . In this section we

generalize this result by allowing N+ < N . We write

(

I
+

O

)

to denote an N ×N+

matrix, whose restriction to the rows in E+ and E↓ is equal to I
+ and O respec-

tively.

Theorem 7.20. For all q ≥ 0 there exists a unique càdlàg function W q : [0,∞) →

R
N×N+

such that the restriction W q
+(x) is invertible for all x > 0,

E[e−qτ
+
a ; τ+

a < τ−b , J(τ+
a )] = W q(b)W q

+(a+ b)−1 for all a, b ≥ 0 with a+b>0,
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and
∫ ∞

0

e−αxW q(x)dx = (F (α) − qI)−1

(

I
+

O

)

for all α > η(q). The function W
(q)
ij (x) is continuous in x ≥ 0 unless Xi is a CPP,

whose distribution of jumps has atoms.

The proof of this theorem is split into two parts presented in the following two

subsections. First, we assume that none of the Xi is a process of bounded variation

with zero drift, which allows to use the results of Section 7.3. In the second part

we use a limiting argument to conclude the proof. An important role in this proof

is played by an auxiliary MAP, which is obtained by restricting (X, J) to the time

intervals when J ∈ E+. Then the results of Section 7.5 can be used with respect

to this auxiliary process.

Part I

Throughout this part we assume that none of the Xi is a process of bounded

variation with di = 0. Recall the definition of W̃ (x) given in Section 7.4: W̃ (x) =

Πe−Λx−P(J(τ{−x}))Π. The above assumption allows us to generalize Lemma 7.16

to get
∫ ∞

0

e−αxW̃ (x)dx = F (α)−1L−1Π (7.10)

for q > 0 and α > η. Here we used [Π(Λ + αI)−1,O]Π = Π(Λ + αI)−1, as well as

Remark 7.12 to claim invertibility of L.

Let us now construct an auxiliary MAP, which behaves exactly as (X, J) re-

stricted to the time intervals where J(t) ∈ E+, see Section 7.1. We use the sub-

script a to refer to the auxiliary MAP. Recall that (Xa, Ja) is a spectrally negative

MAP with Na = (Na)+, so Theorem 7.1 applies. In addition, Fa(α)−1 is equal

to F (α)−1 restricted to the rows and columns in E+. Moreover, Λ = Λa. Many

other relations between (X, J) and (Xa, Ja) hold true. Note that P+(J(τ{−x}))Π

coincides with Pa(J(τ{−x})), and so W̃+(x) = W̃a(x). With respect to the matrix

L we have the following identity:

ΠLa = L

(

I
+

O

)

, and so L−1Π =

(

I
+

O

)

L−1
a .

This is to be expected in view of (7.10) and the relation between W̃ (x), F (α) and

W̃a(x), Fa(α).
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Next we can define W (x) = W̃ (x)La to get W+(x) = Wa(x) and

∫ ∞

0

e−αxW (x)dx = F (α)−1

(

I
+

O

)

(7.11)

for q > 0 and α > η. Observe also that

W q(x) = E[e−qτ
+
y ; τ+

y < τ−x , J(τ+
y )]W q

+(y + x), (7.12)

which converges as q ↓ 0, because so does W q
+(y + x) = W q

a (y + x). This limit

defines W 0(x), x ≥ 0. Identity (7.11) can be extended to q = 0 by taking the limit

as q ↓ 0. Here we use (7.12) with y = 0 and x > 0 to show that the dominated

convergence theorem applies here; it does so for
∫∞

0
e−αxWa(x)dx, see the proof

of Lemma 7.18.

Let us conclude the proof of Theorem 7.20 under the assumption that none of

the Xi is a process of bounded variation with zero drift. Recall that W+(x) =

Wa(x) for all x ≥ 0. Hence W+(x) is invertible for x > 0 and continuous at

x ≥ 0, which is immediate from Theorem 7.1. Finally, the continuity of W (x),

x ≥ 0 follows from the continuity of the first term on the right of (7.12), see also

Lemma 7.15.

Part II

This part presents a limiting argument which finishes the proof of Theorem 7.1. It

is a rather tedious and technical argument. Hence we only provide a sketch of it.

Consider the case when some Xi are bounded variation processes with di = 0.

As before we can still define W+(x) = Wa(x). Then we use (7.12) with y = 0 to

define W (x) for x > 0. Observe that for a ≥ 0 and b > 0 it holds (as is required)

that

P(τ+
a < τ−b , J(τ+

a )) = P(τ+
0 < τ−b , J(τ+

0 ))Wa(b)Wa(a+ b)−1 = W (b)W+(a+ b)−1.

Moreover, W+(x) is continuous. It is not difficult to see that W (x) is a càdlàg func-

tion. This can be further used to define W (0), and to show that the above identity

holds true for a > 0 and b = 0.

In the following we sketch a limiting argument, which shows that the transform

of W (x) is as given in Theorem 7.20. We add some small negative drift d < 0 to all

of the processes with di = 0, and then let d ↑ 0. Firstly, this modification changes

the auxiliary process Xa by perturbing its jumps at transition epochs of Ja. Using

Lemma 7.9 observe that eΛax and La(x) converge as d ↑ 0 to the corresponding

objects associated with d = 0. Hence so does Wa(x).
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It is not hard to see that P(τ+
0 < τ (−∞,−x], J(τ+

0 )) converges as d ↑ 0 to

the corresponding probability for d = 0. This probability coincides with P(τ+
0 <

τ−x , J(τ+
0 )) for d 6= 0, see Lemma 7.15. So P(τ+

0 < τ−x , J(τ+
0 )) and hence W (x)

converge for at least those x > 0, for which τ−x and τ (−∞,−x] coincide a.s. for the

original model, that is, when d = 0. Use Lemma 7.15 to see that these stopping

times coincide Pi-a.s. for every x > 0, unless Xi is a CPP, whose distribution of

jumps has atoms. In the latter case the above claim holds for every x > 0 apart

from a countable set.

In any case, it is sufficient to show that the limit and the integral can be in-

terchanged when considering the transform of W (x) as d ↑ 0. This is done using

the generalized dominated convergence theorem, see Kallenberg [2002, Thm. 1.21],

where the bound depends on d as well. Here we rely on the fact that for u > 0

the transform
∫∞

0
e−uxLa(x)dx converges as d ↑ 0 to the transform correspond-

ing to d = 0, which is shown using the extended continuity theorem for Laplace

transforms, see Appendix A.7.

7.7 First examples

A scale matrix is a fundamental object appearing in various identities concerning

path properties of a spectrally negative MAP. Theorem 7.1 uniquely identifies the

scale matrix of a MAP through its transform. Inversion of this transform is not

a trivial task. So, for example, numerical inversion may exhibit slow convergence

in practice. It is thus important to have some explicit examples of scale matrices.

Even in the setting of Lévy processes there is a very limited number of known

examples of scale functions, see Kyprianou and Hubalek [2011] and Kuznetsov

et al. [2011]. Moreover, the scale functions of the underlying Lévy processes of a

MAP do not immediately yield the scale matrix.

A scale matrix can be constructed explicitly in the case of MMBM. In the

following we use the notation of Chapter 5. If it is not the case that q = 0 and

κ = 0 then the scale matrix is given by

Π+e−Λ+x − Π−eΛ
−xΠ+

− (7.13)

up to a multiplication from the right with a constant invertible matrix. Before

we address this question in more detail let us comment on the following. Recall

that a spectrally negative MAP with phase-type jumps can be reduced to an

MMBM without losing any information, see Section 2.7. This observation can

be used to construct a scale matrix for such a MAP. One only needs to restrict
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the rows of the auxiliary scale matrix (the scale matrix of the MMBM) to those

corresponding to the original process. Hence the form of this scale matrix very

much resembles (7.13). It should also be noted that the entries of the scale matrix

of an MMBM have rational transforms according to Theorem 7.1. So one can

alternatively invert these transforms using partial fractions. These observations

agree with the results of Asmussen et al. [2004], where a Lévy process with phase-

type jumps in both directions is considered.

In the rest of this chapter we consider an MMBM. In this case many identities

can be written explicitly. In particular, Section 5.3 presents a solution to the two-

sided exit problem. In the following we exclude the delicate case when q = 0 and

κ = 0. If q > 0 and none of the Xi is identically 0 then the construction of the scale

matrix presented in the current chapter shows that W (x) = W̃ (x)La, where W̃ (x)

is given in (7.13). In fact, these assumptions are unnecessary. That is, W (x) has

the same form unless q = 0 and κ = 0. This follows from the continuity arguments

used in Section 7.6.

Alternatively, we can just evaluate the transform of W̃ (x). Observe that for

α > η it holds that
∫ ∞

0

e−αxW̃ (x)dx = Π+(αI + Λ+)−1 + Π−(Λ− − αI)−1Π+
−.

In addition, Corollary 4.15 shows that

1

2
∆2

σ
Π+(Λ+)2 − ∆µΠ+Λ+ +QΠ+ = O.

This immediately yields

1

2
∆2

σ
Π+(Λ+ − αI)(Λ+ + αI) − ∆µΠ+(Λ+ + αI) = −F (α)Π+,

which is used to express Π+(αI + Λ+)−1. Similarly, one obtains Π−(Λ− − αI)−1.

This leads to
∫ ∞

0

e−αxW̃ (x)dx = F (α)−1Ξ,

with

Ξ = [∆µ(Π+ − Π−Π+
−) −

1

2
∆2

σ
(Π+(Λ+ − αI) + Π−(Λ− + αI)Π+

−)].

Let us examine the matrix Ξ. The i-th row of Ξ is

• Ξi = − 1
2σ

2
i (Λ

+
i + Λ−

i Π+
−), if σi > 0;

• Ξi = µi(e
⊤
i − Π−

i Π+
−), if σi = 0 and µi > 0;
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• Ξi = 0
⊤, if σi = 0 and µi ≤ 0.

So, indeed, Ξ does not depend on α and Ξ↓ = O, which proves that W̃ (x) is given

by (7.13). Moreover, La = (Ξ+)−1.



Chapter 8

Further exit problems

We have solved two fundamental exit problems for a general spectrally negative

MAP. Firstly, the theory of the first passage over a positive level was presented

in Chapter 4. Secondly, it served as a basis to construct a scale matrix and

to solve the problem of the exit from an interval over the upper boundary in

Chapter 7. Using these results in the present chapter we address further exit

problems. Throughout this chapter we assume that N+ = N . This simplifies

notation and allows to avoid certain technicalities, which can be rather unpleasant

to deal with as is demonstrated in Section 7.6. It is noted that the scale matrix

defined in Theorem 7.1 plays a fundamental role in what follows.

Let us give a brief outline of this chapter. Section 8.1 addresses exit problems

over a negative level, including the exit from an interval over the lower boundary.

In both cases we are interested in the passage time jointly with the corresponding

overshoot. In this context it is convenient to define a second scale matrix denoted

by Z. Section 8.2 considers the first passage process killed upon arrival of an

excursion from the maximum exceeding height B > 0. This object is known to

play an important role in different problems concerning Lévy processes, see, for

example, Pistorius [2004] and Avram et al. [2007], Loeffen [2008], where reflected

processes and the dividend problem are considered respectively. In Section 8.3 we

extend the results of Chapter 6, and characterize the two-sided reflection at inverse

local times at the upper boundary. Using these results in Section 8.4 we solve the

first passage problem for reflected processes.

The level crossing problem for reflected processes is important in applications.

For example, it arises in queueing theory when one considers a Markov-modulated

93
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queue with a finite buffer. Another example is the dividend problem mentioned in

the Introduction. The corresponding results for spectrally positive and spectrally

negative Lévy processes were obtained in Avram et al. [2004] and Pistorius [2004]

respectively. See also Korolyuk [1974] for an early work on CPPs, and Doney

[2005] for an alternative proof. Finally, Kyprianou [2006, Sec. 8.5] provides a

textbook introduction to the problem. The proofs of these results rely on Itô’s

excursion theory, stochastic integration and martingale calculations. It is far from

straightforward to generalize these proofs to the MAP setting. In fact, the author

did not succeed in doing so. We use an alternative approach based on a number of

easy to understand observations in line with the ideas presented in Ivanovs [2011]

for the case of a Lévy process. This simplicity allows us to solve the problem for

MAPs in a very similar fashion.

8.1 First passage over a negative level

Let us start by defining the matrix function:

Zq(α, x) = eαx
(

I −

∫ x

0

e−αyW q(y)dy(F (α) − qI)

)

for α, q, x ≥ 0.

This matrix, also called second scale matrix, appears in a number of exit iden-

tities along with the matrix W q(x). Note that Zq(α, x) is continuous in x with

Zq(α, 0) = I, and is analytic in α ∈ C
Re>0. In the case of a single background

state we obtain Zq(0, x) = 1 + q
∫ x

0
W q(y)dy, which is a common definition of the

Z function corresponding to a spectrally negative Lévy process, see, for example,

Definition 3 in Avram et al. [2004].

Let us illustrate this with the following proposition, which identifies the trans-

form of the first passage over −x and the corresponding overshoot.

Proposition 8.1. Let Υq = ∆−1
π

Λ̂(q)⊤∆π. Then for all x, α ≥ 0 and q > 0, such

that Υq(α) is non-singular, it holds that

E[e−qτ
−
x +α(X(τ−

x )+x);J(τ−x )] = Zq(α, x) −W q(x)(Υq + αI)−1(F (α) − qI).

Proof. Let us compute the transform of E[e−qτ
−
x +αX(τ−

x );J(τ−x )] for α ≥ 0, q > 0.

A similar computation can be also found in Kyprianou and Palmowski [2008].

First, observe that

E[eαX(eq);X(eq) < −x, J(eq)] = E[eαX(τ−
x ); τ−x < eq, J(τ−x )]E[eαX(eq);J(eq)].
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Taking transforms on both sides yields for θ ≥ 0

∫ ∞

0

e−θxE[e−qτ
−
x +αX(τ−

x );J(τ−x )]dxE[eαX(eq);J(eq)]

= E[(

∫ −X(eq)

0

e−θxdx)eαX(eq);J(eq)]

=
1

θ
(E[eαX(eq);J(eq)] − E[eθX(eq)+αX(eq);J(eq)]).

Note that E[eαX(eq);J(eq)] = −q(F (α)− qI)−1 for small enough α ≥ 0. Moreover,

according to Corollary 4.21, see also Remark 4.22, it holds for small enough α ≥ 0

that

E[eθX(eq)+αX(eq);J(eq)] = −q(F (α+ θ) − qI)−1(I + θ(Υq + αI)−1).

Hence
∫ ∞

0

e−θxE[e−qτ
−
x +αX(τ−

x );J(τ−x )]dx

=
1

θ
I − (F (α+ θ) − qI)−1(

1

θ
I + (Υq + αI)−1)(F (α) − qI).

But for large enough θ ≥ 0 the above expression coincides with

∫ ∞

0

e−θxe−αx[Zq(α, x) −W q(x)(Υq + αI)−1(F (α) − qI)]dx.

The latter computation is based on Fubini’s theorem and Theorem 7.1. This proves

the result for small α ≥ 0, see also Section A.7. Use analyticity to extend the result

to all α ≥ 0.

Recall that for a fixed x ≥ 0 the matrix W q(x) is continuous in q ≥ 0. This can

be used to show that Zq(α, x) is continuous in q ≥ 0 as well. Hence the result of

Proposition 8.1 can be extended to q = 0 by taking the limit as q ↓ 0. Moreover,

it is noted that (Υq + αI)−1(F (α) − qI) reduces to (ψ(α) − q)/(α − Φ(q)) in the

Lévy case. This leads to the known identity for a Lévy process:

Ee−qτ
−
x = Zq(0, x) −

q

Φ(q)
W q(x),

see Kyprianou [2006, Thm. 8.1].

The following corollary identifies the transform of the first passage over −b and

the corresponding overshoot on the event that the process has not been above a.

This result complements the other exit problem, see Theorem 7.1.
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Corollary 8.2. For any q ≥ 0 and α, a, b ≥ 0 with a+ b > 0 it holds that

E[e−qτ
−
b

+α(X(τ−
b

)+b); τ−b < τ+
a , J(τ−b )] = Zq(α, b)−W q(b)W q(a+ b)−1Zq(α, a+ b).

Proof. Using the strong Markov property observe that

E[e−qτ
−
b

+α(X(τ−
b

)+b); τ−b < τ+
a , J(τ−b )] = E[e−qτ

−
b

+α(X(τ−
b

)+b);J(τ−b )]

− E[e−qτ
+
a ; τ+

a < τ−b , J(τ+
a )]E[e−qτ

−
a+b

+α(X(τ−
a+b

)+a+b);J(τ−a+b)].

Use Theorem 7.1 and Proposition 8.1 to get the result for q > 0. Let q ↓ 0 to

obtain the result for q = 0.

8.2 Arrival of the first excursion exceeding a cer-

tain height

The Markov chain J(τ+
x ), x ≥ 0, whose transition rate matrix we denote by Λ,

plays a fundamental role in the study of MAPs. In this section we introduce an

important class of Markov chains, which contains the above one as a boundary

element. The idea is to kill J(τ+
x ) upon arrival of the first excursion of X from

the maximum exceeding a certain height B > 0. This idea is best illustrated using

the concept of reflection, see Section 2.8.

Let R be the reflection of X corresponding to (−∞, 0]. That is, R(t) = X(t)−

U(t), where U(t) = X(t) is the upper regulator at 0. The process U is often called

the local time at the maximum. Let also τRB = inf{t ≥ 0 : R(t) < −B} be the first

passage time of R over level −B. Then

ζB = U(τRB )

is the (local) time of the arrival of the first excursion (from the maximum) with

height exceeding B. The strong Markov property implies that J(τ+
x ) sent to the

absorbing state ∂ at x = ζB is a Markov chain. We denote its transition rate

matrix through ΛB . Hence

P(x < ζB , J(τ+
x )) = eΛ

Bx for all x ≥ 0. (8.1)

The following proposition identifies ΛB in terms of the scale matrix.

Proposition 8.3. It holds that W ′(B+) = limǫ↓0(W (B+ǫ)−W (B))/ǫ exists and

ΛB = −W ′(B+)W (B)−1.
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Proof. Observe that for any 0 < ǫ < δ it holds that

P(ǫ < ζB , J(τ+
ǫ )) ≤ P(τ+

ǫ < τ−B , J(τ+
ǫ )) ≤ P(ǫ < ζB+δ, J(τ+

ǫ )).

Subtract I, divide by ǫ and let ǫ ↓ 0 to obtain in view of (8.1) the bounds

ΛB ≤ lim
ǫ↓0

(W (B)W (B + ǫ)−1 − I)/ǫ ≤ ΛB+δ.

It is only left to show that ΛB+δ → ΛB as δ ↓ 0, because then the result follows from

the continuity of W (x). But eΛ
B+δx = P(x < ζB+δ, J(τ+

x )) → P(x < ζB , J(τ+
x )) =

eΛ
Bx converges for every x, which concludes the proof in view of Proposition A.11.

Let us comment on the existence of W ′(B−).

Remark 8.4. Similarly, one can kill the Markov chain J(τ+
x ) upon arrival of the

first excursion with height ≥ B. The corresponding transition probability matrix

is given by ΛB−. Moreover, we can mimic the proof of Proposition 8.3 to get

P(ǫ < ζB−δ, J(τ+
ǫ )) ≤ P(τ+

ǫ < τ−B−ǫ, J(τ+
ǫ )) ≤ P(ǫ < ζB−, J(τ+

ǫ )),

where we used Lemma 7.15. This further shows that W ′(B−) exists and ΛB− =

−W ′(B−)W (B)−1. Finally, W ′(B+) and W ′(B−) coincide if so do ΛB and ΛB−.

For this it is sufficient to require that every Xi is of unbounded variation. Then

for every i the point 0 is regular for (−∞, 0) for Xi, which implies ΛB = ΛB−. On

the contrary, if one of the Xi is the sum of a positive drift and a CPP with jumps

of size −B then W ′(B−) 6= W ′(B+).

8.3 Two-sided reflection

In this section we reconsider reflection of X and alter it by placing a lower barrier

at the level −B. That is, we put R(t) = X(t)+L(t)−U(t), where L and U are the

regulators at −B and 0 respectively, see Section 2.8. This model (up to translation

by B) in the case of MMBM is considered in Chapter 6. The aim of this section

is to generalize the results in that chapter.

The process U can be seen as the local time of R at 0. Note that U is

non-decreasing and continuous. Hence its inverse τUx satisfies U(τUx ) = x and

R(τUx ) = 0. Then the strong Markov property shows that (L(τUx ), J(τUx )) is a MAP

itself. As before we observe that, in fact, (L(τUx ), J(τUx )) is a Markov-modulated
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CPP, because it has no jumps in some interval with positive probability. We

denote its matrix exponent through FB(α), that is, for α ≥ 0 it holds that

E[e−αL(τU
x );J(τUx )] = eF

B(α)x.

Theorem 8.5. For all α ≥ 0 and x0 ∈ [−B, 0] it holds that Z(α,B) is invertible

and

FB(α) = W (B)F (α)Z(α,B)−1 − αI,

Ex0
[e−αL(τU

0 );J(τU0 )] = Z(α,B + x0)Z(α,B)−1.

The following lemma will play a crucial role in the proof of Theorem 8.5.

Lemma 8.6. It holds for q > 0 and small enough α ≥ 0 that

∫ ∞

x

e−αyP(J(τ{−y}))dy

= −F (α)−1L−1 + (Λ + αI)−1e−(Λ+αI)x +

∫ x

0

e−αyW (y)dyL−1,

where L is defined in Section 7.3.

Proof. The construction of W (x), see Section 7.5, shows that

∫ x

0

e−αyP(J(τ{−y}))dy = (Λ + αI)−1(I − e−(Λ+αI)x) −

∫ x

0

e−αyW (y)dyL−1

for small enough α ≥ 0. Letting x→ ∞ we obtain
∫ ∞

0

e−αxP(J(τ{−x}))dx = −F (α)−1L−1 + (αI + Λ)−1.

Combine these equalities to complete the proof.

Proof of Theorem 8.5. A number of arguments in this proof are taken from the

proof of Theorem 6.1. Hence we only present a sketch. It is implicitly assumed

that the killing rate q > 0 is positive. Letting Ny be a matrix with (i, j)-th

component specified by

Ny = #{t ≥ 0 : X(t) = y, t = τUx , x ≥ 0, J(t) = j} given J(0) = i,

we find that

Ex0Ny = (1{y≥0}Px0
(J(τ+

y )) + 1{y<0}CB−y+x0
)

∞
∑

i=0

(CB)i,
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where Cx = P(J(τ{−x}))P(J(τ+
B )). This readily leads to

∫

R

eαyEx0
Nydy

=

(∫ ∞

0

eαyeΛ(y−x0)dy +

∫ 0

−∞

eαyP(J(τ{−B+y−x0}))dyeΛB
)

(I − CB)−1.

The first term inside the large brackets is −(Λ + αI)−1e−Λx0 for small enough

α ≥ 0. The second term is eα(B+x0)
∫∞

B+x0
e−αyP(J(τ{−y}))dyeΛB . Use Lemma 8.6

to show that the expression in the brackets is equal to

eα(B+x0)

(

∫ B+x0

0

e−αyW (y)dy − F (α)−1

)

L−1eΛB .

Finally, the construction of W (x) shows that I − CB = W (B)L−1eΛB , see Sec-

tion 7.5. This immediately yields
∫

R

eαyEx0
Nydy = −Z(α,B + x0)F (α)−1W (B)−1.

Observe that X(τUx ) = x−L(τUx ) is piecewise constant with slope 1, so we have
∫

R

eαyEx0Nydy =

∫ ∞

0

Ex0 [e
αX(τU

x );J(τUx )]dx

= Ex0
[e−αL(τU

0 );J(τU0 )]

∫ ∞

0

eαxeF
B(α)xdx.

But the last integral is −(FB(α)+αI)−1. The result now follows for small enough

α ≥ 0 and q > 0 by noting that τU0 = 0 a.s. when x0 = 0. Use analyticity in α > 0

and continuity in q ≥ 0 to complete the proof.

8.4 Exit of the reflected process

In this section we consider the processes X and −X reflected at 0, and determine

their first passage times over level B. In fact, for each reflected process we are

interested in the joint Laplace transform of the first passage time, the overshoot,

and the corresponding value of the regulator. Furthermore, it is assumed that the

initial value of the process is shifted to an arbitrary r0 ∈ [0, B].

It is crucial to note that these problems can be reformulated in terms of two-

sided reflection discussed in Section 8.3. Considering X reflected at 0, observe

that its first passage over B and the corresponding value of the regulator are

exactly τU0 and L(τU0 ) given x0 = r0 − B; the overshoot is clearly 0. Hence
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Ex0 [e
−qτU

0 −αL(τU
0 );J(τU0 )] is the required transform, which was identified in Theo-

rem 8.5. Consider −X reflected at 0. Its first passage over level B, the overshoot,

and the corresponding value of the regulator are exactly τL0 , L(τL0 ), and U(τL0 )

given x0 = −r0. Hence we need to identify

Ex0
[e−qτ

L
0 −θU(τL

0 )−αL(τL
0 );J(τL0 )] for q, θ, α ≥ 0,

which we do in the rest of this section. As before, we do not write the killing rate

q ≥ 0 explicitly in what follows.

Before we proceed let us present a result on a Markov-modulated CPP, which

we need in the analysis of a reflected MAP. We exclude the process identical to 0.

Lemma 8.7. Let (X, J) be a Markov-modulated CPP without negative jumps, such

that E[e−αX(t);J(t)] = eF (α)t. Let also T = {t ≥ 0 : X(t) 6= 0} be the epoch of the

first jump of X. Then for q > 0 and α ≥ 0 it holds that

E[e−qT−αX(T );J(T )] = I − (F (∞) − qI)−1(F (α) − qI).

Proof. Using the strong Markov property and memoryless property of eq we write

E[e−αX(eq);J(eq)] = P(eq < T, J(eq))+E[e−αX(T ); eq > T, J(T )]E[e−αX(eq);J(eq)].

Note that E[e−αX(eq);J(eq)] = q
∫∞

0
e(F (α)−qI)tdt, which converges and is equal to

−q(F (α) − qI)−1 for all q > 0 and α ≥ 0. In addition,

P(eq < T, J(eq)) = P(X(eq) = 0, J(eq)) = lim
α→∞

E[e−αX(eq);J(eq)],

which completes the proof.

Let ζ be the epoch of the first jump of L(τUx ), that is,

ζ = inf{x ≥ 0 : L(τUx ) > 0}.

Assume for a moment that x0 = 0. Then ζ is exactly ζB , the (local) time of

the arrival of the first excursion with height exceeding B, because one-sided and

two-sided reflections coincide before an arrival of such an excursion. Moreover,

L(τUx ), x ≥ 0 is a Markov-modulated CPP with matrix exponent FB(α), which is

identified in Theorem 8.5. So we can write

lim
α→∞

eF
B(α)x = P0(L(τUx ) = 0, J(τUx )) = P0(x < ζ, J(τ+

x )) = eΛ
Bx,

which implies that FB(∞) = ΛB , see Proposition A.11. Lemma 8.7 then shows

that

E0[e
−θζ−αL(τU

ζ );J(τUζ )] = I − (ΛB − θI)−1(FB(α) − θI) (8.2)
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for all θ > 0 and α ≥ 0.

Let x0 be an arbitrary number in [−B, 0]. It is important to understand the

meaning of τUζ . It is the first time the reflected process R(x) hits the upper barrier

at 0 after it has hit the lower barrier at −B. So τL0 < τUζ and ζ = U(τL0 ), but then

the strong Markov property implies

Ex0
[e−θζ−αL(τU

ζ );J(τUζ )] = Ex0
[e−θU(τL

0 )−αL(τL
0 );J(τL0 )]E−B [e−αL(τU

0 );J(τU0 )].

Alternatively, this expectation can be computed by considering the event

{τ+
0 < τ−B } and its complement:

Ex0 [e
−θζ−αL(τU

ζ );J(τUζ )] = Px0(τ
+
0 < τ−B , J(τ+

0 ))E0[e
−θζ−αL(τU

ζ );J(τUζ )]

+Ex0 [e
−αL(τU

0 ); τ−B < τ+
0 , J(τU0 )].

The last term reduces to Ex0
[e−αL(τU

0 );J(τU0 )] − Px0
(τ+

0 < τ−B , J(τ+
0 )). Use the

last three displays to express Ex0
[e−θU(τL

0 )−αL(τL
0 );J(τL0 )]. Finally, note that

Z(α, 0) = I and apply Theorem 7.1, Theorem 8.5, and Lemma 8.7 to get the fol-

lowing result.

Theorem 8.8. It holds for θ, α ≥ 0 and x0 ∈ [−B, 0] that

Ex0 [e
−θU(τL

0 )−αL(τL
0 );J(τL0 )]

= Z(α,B + x0) +W (B + x0)[W
′(B) + θW (B)]−1[W (B)F (α) − (α+ θ)Z(α,B)].

It is noted that the killing rate q ≥ 0 is implicit in this theorem, which adds

−qτL0 to the transform.

In the final part of this section we compare our result, given in Theorem 8.8, to

the result of Avram et al. [2004], concerning reflection of a spectrally positive Lévy

process. Let R(t) be the reflection of −X(t) at 0, where X is a spectrally negative

Lévy process with Laplace exponent ψ(α). Assume that R(0) = r0 ∈ [0, B] and

consider the first passage time of R over level B, which we denote by τ . Then

according to [Avram et al., 2004, Theorem 1] one has

E[e−qτ−αR(τ)] = e−αr0
(

Z∗(B − r0) −W∗(B − r0)
(q − ψ(α))W∗(B) + αZ∗(B)

W ′
∗(B) + αW∗(B)

)

,

where W∗(x) = e−αxW q(x) and Z∗(x) = 1 + (q − ψ(α))
∫ x

0
e−αyW q(y)dy =

e−αxZq(α, x). This formula can be rewritten in the following form

E[e−qτ−α(R(τ)−B)] = Zq(α,B − r0) +
W q(B − r0)

(W q(B))′
[W q(B)(ψ(α) − q) − αZq(B)].

Note that R(τ)−B is the overshoot of R over level B at first passage. So, indeed,

this formula coincides with the statement of Theorem 8.8 with θ = 0 and x0 = −r0.



Appendix

A.1 Location of eigenvalues

Most of the concepts and facts from linear algebra used in the present book can

be found in Horn and Johnson [1985]. Let A ∈ C
n×n be an n × n matrix with

complex elements aij . Define

ai =
∑

j 6=i

|aij |, Di = {z ∈ C : |z − aii| ≤ ai}.

The following is the celebrated Gershgorin’s theorem. It states that the eigenvalues

of a matrix lie in the union of certain disks in the complex plane, see Horn and

Johnson [1985, Thm. 6.1.1].

Theorem A.1 (Gershgorin). The eigenvalues of A lie in ∪ni=1Di. Moreover, if

m of the disks Di are isolated from the other n−m disks, then there are precisely

m eigenvalues of A in their union.

Next we discuss irreducibility. Let Γ be a directed graph on n nodes induced

by A, where the arc between i and j is present iff aij 6= 0.

Definition A.2. A matrix A is said to be irreducible if Γ is strongly connected,

that is, for every i and j there is a directed path from i to j.

Let us present the concept of diagonal dominance.

Definition A.3. A matrix A is said to be diagonally dominant if |aii| ≥ ai for

all i. It is strictly diagonally dominant if the above inequality is strict for all i.

Finally, A is irreducibly diagonally dominant if
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• A is irreducible,

• A is diagonally dominant,

• for at least one i it holds that |aii| > ai.

The following theorem can be found in Horn and Johnson [1985], see Thm. 6.1.10

and Thm. 6.2.27.

Theorem A.4. Strictly diagonally dominant and irreducibly diagonally dominant

matrices are invertible.

The spectral radius of A is defined through

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

The Perron-Frobenius theory is summarized by the following theorem, see Horn

and Johnson [1985, Thm. 8.4.4].

Theorem A.5 (Perron-Frobenius). Let A be an irreducible matrix with non-

negative elements. Then

• ρ(A) is a simple eigenvalue of A,

• there is a strictly positive (in every element) eigenvector x corresponding to

ρ(A): Ax = ρ(A)x.

A.2 Jordan normal form

Every square matrix can be reduced to an ‘almost diagonal’ matrix by a similarity

transform, see Horn and Johnson [1985, Thm. 3.1.11]. A Jordan block Γk(λ) is a

k × k matrix with λ on the diagonal, 1 on the upper diagonal, and 0 everywhere

else.

Theorem A.6. Let A ∈ C
n×n be a given complex matrix. There is an invertible

matrix V such that A = V ΓV −1, where Γ = diag(Γk1(λ1), . . . ,Γkm
(λm)) is a block-

diagonal matrix, and λ1, . . . , λm are the eigenvalues of A (not necessarily distinct).

The Jordan matrix Γ is unique up to permutations of the diagonal Jordan blocks.

If A is a real matrix with only real eigenvalues, then the similarity matrix V can

be taken to be real.

Let us discuss the structure of a Jordan matrix. Consider an arbitrary Jordan

block Jk(λ), and let v1, . . . ,vk be the corresponding columns of V . Then it holds
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that Av1 = λv1 and Avi = λvi + vi−1 for 1 < i ≤ k. A sequence of vectors

satisfying this property is called a Jordan chain corresponding to an eigenvalue λ.

The matrix A is diagonalizable iff m = n, that is, all the Jordan blocks are scalars.

The number of Jordan blocks corresponding to a given eigenvalue λ is the geometric

multiplicity λ, which is the dimension of the null space of A−λI. The sum of orders

ki of the Jordan blocks corresponding to λ is the algebraic multiplicity of λ, which

is the multiplicity of λ as a zero of the characteristic polynomial det(A− λI).

Finally, a real symmetric matrix has a very special Jordan form, see Horn and

Johnson [1985, Thm. 4.1.5].

Theorem A.7. If A is a real symmetric matrix then Γ is a real diagonal matrix

and V can be taken to be a real orthonormal matrix: V TV = I.

An immediate consequence of the above theorem is that all the eigenvalues of

a real symmetric matrix are real with algebraic and geometric multiplicities being

the same.

A.3 Matrix norms and convergence

Consider a vector norm on C
n. The most frequent examples are the Euclidean

norm ‖v‖2 =
(
∑

|vi|
2
)1/2

and the max norm ‖v‖∞ = max{|vi|}. The following

result, see also Horn and Johnson [1985, Cor. 5.4.5], shows that all vector norms

(on a finite-dimensional real or complex vector space) are equivalent. That is,

convergence with respect to one norm implies convergence with respect to any

other norm. This allows to talk about convergence without mentioning a specific

norm.

Lemma A.8. Let ‖ · ‖α and ‖ · ‖β be two vector norms, then there exist finite

positive constants C1 and C2 such that C1‖v‖α ≤ ‖v‖β ≤ C2‖v‖α for all v ∈ C
n.

Consider a vector norm ‖ · ‖ on a vector space C
n×n. In this case it is often

useful to add the submultiplicative axiom ‖AB‖ ≤ ‖A‖‖B‖. A norm satisfying this

axiom is called a matrix norm. For example, the Euclidean norm ‖A‖2, the max

norm n‖A‖∞, and sup
v∈Cn{‖Av‖/‖v‖} are all matrix norms. Any matrix norm

‖ · ‖ serves as an upper bound for the spectral radius ρ(A), that is ρ(A) ≤ ‖A‖.

Let A(x) be a matrix-valued function. Assume that each element is measur-

able and consider the (entrywise) integral
∫

A(x)µ(dx). We say that this integral

converges absolutely if
∫

|aij(x)|µ(dx) < ∞ for all i, j. But this is the same as
∫

‖A(x)‖µ(dx) < ∞, because the max norm controls the size of the entries, and
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all the norms are equivalent. Note that any norm applied to A(x) produces a mea-

surable function by continuity of the norm. Suppose now that M(dx) = (µij(dx))

is a matrix where each element is a measure. Then
∫

M(dx)A(x) denotes a ma-

trix with (i, j)-th element being
∑n
k=1

∫

akj(x)µik(dx). We say that it converges

absolutely if
∫

|akj |(x)µik(dx) <∞ for all i, j, k.

Assume f(x) =
∑∞
i=0 aix

i is a power series, which is absolutely convergent

for all |x| < r. Then also f(A) =
∑∞
i=0 aiA

i is absolutely convergent for all A

with ‖A‖ < r for some matrix norm ‖ · ‖, which implies ρ(A) < r. This defines

a mapping from C
n×n to C

n×n. Representing A through its Jordan normal form

A = V ΓV −1 one obtains f(A) = V f(Γ)V −1. Importantly, f(Γ) has a simple

block-diagonal form, where the blocks are given by

f(Γk(λ)) =











f(λ) f ′(λ) . . . f (k−1)(λ)/(k − 1)!

0 f(λ) . . . f (k−2)(λ)/(k − 2)!

. . .

0 0 . . . f(λ)











. (A.1)

Note also that f maps the eigenvalues of A onto the eigenvalues of f(A).

An important example of the above mapping is the matrix exponential eA =
∑∞
i=0A

i/i!, which is absolutely convergent for all A. Note also that eA+B = eAeB

if A and B commute. So eA is non-singular with the inverse given by e−A. Observe

also that λ is an eigenvalue of A of multiplicity m if and only if eλ is an eigenvalue

of eA of multiplicity m. The integral
∫∞

0
eAydy appears often in this book. The

following lemma provides a condition for its absolute convergence.

Lemma A.9. Let ρr(A) = max{Re(λ) : λ is an eigenvalue of A}. Then ρr(A) <

0 is a necessary and sufficient condition for
∫∞

0
eAydy to converge absolutely; its

limit then is −A−1.

Proof. Let A = V ΓV −1, where Γ is a Jordan matrix. Observe that the non-zero el-

ements of eΓy are given by yieλy/i!, where λ is an eigenvalue of A. Hence
∫∞

0
eΓydy

converges absolutely if and only if ρr(A) < 0. But the former is equivalent to the

absolute convergence of
∫∞

0
eAydy. Finally, ∂A−1eAy/∂y = eAy, which shows that

the integral is equal to −A−1.

Proposition A.10. Let A have rank n− 1, and let u be a vector such that uT is

not in the row space of A. If (hi) is a sequence of vectors such that Ahi → v and

uThi → c for all i, then there exists a vector h, such that Ah = v,uTh = c and

hi → h.
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Proof. Choose n − 1 linearly independent rows of the matrix A, and replace the

other one by uT to obtain an invertible matrix A1. So we have A1h
i → v1,

where v1 is the vector obtained from v by replacing a specific entry with c. Define

h = A−1
1 v1 and observe that hi → h to complete the proof.

A.4 Transition rate matrix

Let Q be an n × n transition rate matrix associated to some (continuous-time)

Markov chain. Then it satisfies the following properties:

qij ≥ 0 for all i 6= j, qii ≤ −
∑

j 6=i

qij for all i.

It is said to be recurrent if Q1 = 0 and transient otherwise. See the book Norris

[1998] for a detailed exposition of the theory of Markov chains.

The following properties of Q follow from Appendix A.1. Firstly, Gershgorin’s

theorem shows that all the eigenvalues of Q belong to C
Re<0 ∪ {0}. It is common

to assume that Q is irreducible, which we do in the following. If Q is recurrent

then 0 is an eigenvalue. If Q is transient then Q is irreducibly diagonally dominant

and hence invertible, which implies that all the eigenvalues of Q are in C
Re<0.

Proposition A.11. Let J, Jm,m ≥ 1 be Markov chains on n states with corre-

sponding transition rate matrices Q,Qm. Then Jm converges to J in the sense of

finite-dimensional distributions (for each initial state) if and only if Qm → Q.

Proof. Convergence of finite-dimensional distributions is equivalent to eQmt → eQt

for all t ≥ 0. In the following we prove that the latter happens if and only

if Qm → Q. Use the definition of the matrix exponential and the dominated

convergence theorem to prove the ‘if’ part. Next, assume that eQmt → eQt for

all t ≥ 0. For any q > 0 we have
∫∞

0
e(Qm−qI)tdt = −(Qm − qI)−1 according to

Lemma A.9. But then the dominated convergence theorem applies showing that

(Qm − qI)−1 → (Q− qI)−1, which in turn implies Qm → Q.

Lemma A.12. There exists a constant Cn such that the elements of the matrix

e−λte−Qt are bounded in absolute value by Cn for any t ≥ 0, n× n transition rate

matrix Q, and λ > −
∑n
i=1 qii.

Proof. Let P (t) = eQt, so e−λte−Qt = e−λtP (t)−1. Observe that

det(P (t)) =

n
∏

i=1

eλit = etr(Q)t,
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where λi are the eigenvalues of Q, and tr(Q) is the trace of Q. Moreover, the entries

of transition probability matrix P (t) are bounded by 1, hence the cofactors of P (t)

are bounded by Cn, a constant which only depends on n. According to Cramer’s

rule we get a bound e−(λ+tr(Q))tCn for every element of the matrix e−λte−Qt. The

claim now follows immediately.

A.5 Analytic functions of a complex variable

The basic facts summarized in this section can be found in any standard textbook

on complex analysis, see e.g. Hahn and Epstein [1996]. A complex function f

defined on some neighborhood of a point z0 ∈ C is said to be analytic at z0 if there

exists r > 0 and a power series
∑∞
n=0 an(z − z0)

n, which is absolutely convergent

and equal to f(z) for all |z − z0| < r. Let f be defined on an open set D ⊆ C.

We say that f is analytic on D if it is analytic at every point of D. The function

f is analytic on D if and only if it is complex differentiable on D (holomorphic),

in which case it is infinitely many times differentiable on D. In addition, the

coefficients an of the above power series are given by an = f (n)(z0)/n!.

In the following we assume that f is analytic on an open connected set D ⊆ C.

Let us present some basic properties of the zeros of f . Firstly, if the set of zeros

of f has an accumulation point inside D then f is zero everywhere on D. Hence if

two functions f and g are analytic on D and coincide on a subset S ⊆ D which has

an accumulation point then f and g coincide on the whole of D. This observation

is in the basis of analytic continuation. The next theorem states the so-called

argument principle in the case of no poles.

Theorem A.13 (Argument principle). Let γ be a simple closed curve in D such

that f has no zeros on γ. Then

1

2πi

∮

γ

f ′(z)

f(z)
dz = N,

where N is the number of zeros of f in the interior of γ.

The argument principle provides a tool for studying the behavior of zeros of

a convergent sequence of analytic functions, which is summarized in the following

theorem.

Theorem A.14 (Hurwitz). Let fn be a sequence of analytic functions on D that

converges uniformly to f on compact subsets of D. Then f is analytic on D.

Moreover, if D0 is a disc in D such that f has no zeros on its boundary then the



108 A.6. DIFFERENTIATION UNDER THE INTEGRAL SIGN

functions f and fn have the same number of zeros (counting multiplicities) in D0

for large enough n.

The Hurwitz’s theorem immediately yields the following result concerning con-

vergence of eigenvalues. If a sequence (Ak) of C
n×n matrices converges to A then

the eigenvalues of Ak converge to the eigenvalues of A preserving algebraic multi-

plicities. To see this consider the functions det(Ak − zI).

A.6 Differentiation under the integral sign

Consider an integral of the form
∫

f(t, x)µ(dx). When differentiating this integral

with respect to t, it is often possible to bring the differential operator inside the

integral. Legitimacy of doing so is well established in many cases, as for example

in the case of the Laplace transform, see Appendix A.7. Sometimes the dominated

convergence theorem provides an easy proof of such a result. Otherwise, we use

the following proposition, which is based on the fundamental theorem of calculus,

see also Williams [1991, A16].

Proposition A.15. Let µ be a sigma-finite measure on (R,B(R)). Let f : [a, b]×

R → R be a function measurable in the second argument. If f ′(t, x), the derivative

in t, is continuous on [a, b] and
∫

|f ′(t, x)|µ(dx) < C for some C > 0 and all

t ∈ [a, b], then

∂

∂t

∫

f(t, x)µ(dx) =

∫

f ′(t, x)µ(dx)

for t ∈ (a, b).

We remark that a similar result holds true for f : C × R → C and complex

derivative. Let us demonstrate the applicability of Proposition A.15. Consider the

Laplace exponent ψ(α) of a Lévy process without positive jumps as given in (2.1).

Let us show that ψ(α) is analytic in C
Re>0 by proving the following identity for

α ∈ C
Re>0:

∂

∂α

∫ 0

−∞

(eαx − 1 − αx1{x>−1})ν(dx) =

∫ 0

−∞

(xeαx − x1{x>−1})ν(dx).

It is only required to show that
∫ 0

−∞
|xeαx−x1{x>−1}|ν(dx) < C for all α in some

disc in C
Re>0. But this follows from the requirement that

∫ 0

−∞
(1∧x2)ν(dx) <∞,

see also Lemma A.19.
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A.7 The Laplace transform

Let µ be a sigma-finite measure on (R,B(R)). First, assume that µ is concentrated

on [0,∞). Consider the integral

f(s) =

∫ ∞

0

e−sxµ(dx)

for s ∈ R, where the interval of integration is closed. Observe that if f(r) < ∞

for some r ∈ R then f(s) < ∞ for all s ≥ r. It is assumed in the following that

such r exists. Note that if µ is a finite measure then f(s) < ∞ for all s ≥ 0. The

function f(s) defined for all s ≥ r is called Laplace transform of the measure µ. If

µ has a density m then f(s) =
∫∞

0
e−sxm(x)dx is also called the ordinary Laplace

transform of m. As usual we stretch the language and speak about ‘the Laplace

transform of a random variable X’, meaning Ee−sX . We often deal with negative

random variables, e.g. jumps of a MAP, in which case we mean EesX .

It is known that a measure is uniquely determined by its Laplace transform.

Moreover, convergence of measures is closely related to the convergence of the

corresponding Laplace transforms, see also Feller [1966, Thm. 2a, p. 410].

Theorem A.16 (Extended continuity theorem). Let µn be a measure with Laplace

transform fn. If fn(s) → f(s) for all s > r, then f is the Laplace transform of a

measure µ, and µn → µ. Conversely, if µn → µ and the sequence fn(r) is bounded,

then fn(s) → f(s) for all s > r.

Let us discuss the analytic character of the Laplace transform. Observe that

if f(r) < ∞ then
∫∞

0
e−sxµ(dx) is absolutely convergent for all complex s with

Re(s) ≥ r. In fact, if X is a non-negative random variable with law µ, then picking

s = −θi we obtain the characteristic function of X, that is f(−θi) = EeiθX . Define

r = inf{s ∈ R : f(s) <∞}, which is assumed to belong to [−∞,∞). This number

r is called abscissa of convergence. It is easy to see using Proposition A.15 that f(s)

is analytic on the half-plane specified by Re(s) > r, and f ′(s) = −
∫∞

0
xe−sxµ(dx)

for s in this half-plane. The following proposition, see Theorem 5b in Widder

[1941, Ch. II], allows to apply analytic continuation to Laplace transforms.

Proposition A.17. If r is the abscissa of convergence of
∫∞

0
e−sxµ(dx) then f(s)

cannot be analytic at r. That is, r is a singularity of f(s).

Let us demonstrate analytic continuation at work. Suppose we can establish

that
∫∞

0
e−sxµ(dx) = g(s) for all s > r0. Assume there exists r < r0 such that

g(s) is analytic on Re(s) > r. According to Proposition A.17 the number r is
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not smaller then the corresponding abscissa of convergence. So the transform is

analytic on Re(s) > r. This further implies that the above equality holds true for

all s with Re(s) > r, see Appendix A.5.

It was assumed above that the measure µ is concentrated on [0,∞). If this is

not the case then one speaks about bilateral Laplace transform defined by

f(s) =

∫ ∞

−∞

e−sxµ(dx).

The region of convergence (its interior) of this integral is given by a strip Re(s) ∈

(r1, r2). This and many other facts can be established using unilateral transforms.

Note that the above strip may be an empty set. We exclude this case and assume

that r1 < r2. Then the transform is analytic in this strip. We also note that a

measure is uniquely determined by its (bilateral) Laplace transform given that the

strip of convergence is not empty.

Finally, let us consider the transform f(s) =
∫∞

0
e−sxm(x)dx, where m(x) is

not necessarily non-negative. We assume that m(x) is càdlàg, and consequently

Borel measurable with countably many discontinuities. We are interested in the

domain where the integral converges absolutely, that is,
∫∞

0
|e−sxm(x)|dx < ∞.

As before this domain is a half plane Re(s) > r. It is tacitly assumed that such

r < ∞ exists. The transform f(s) is analytic on this half plane. Moreover,

m(x) is uniquely determined by its Laplace transform. These facts can be found

in Widder [1941, Ch. II]. Finally, we remark that one has to be careful with analytic

continuation of such transforms. It is not the case in general that the abscissa of

absolute convergence is a singularity of f(s), that is, the analog of Proposition A.17

does not hold in general.

A.8 Various relations

Lemma A.18. Fix ǫ > 0 and i ∈ N. Then there exists a constant C > 0 such

that for all x ∈ R and all α = a+ bi, a, b ∈ R it holds that

|xieαx| ≤ e(a−ǫ)x + Ceax + e(a+ǫ)x.

Proof. Pick C0 > 0 large enough so that xi ≤ eǫx for all x > C0 then

|xieαx| = (−x)ieax1{x<−C0} + |x|ieax1{−C0≤x≤C0} + xieax1{x>C0}

≤ e(a−ǫ)x1{x<−C0} + Ci0e
ax1{−C0≤x≤C0} + e(a+ǫ)x1{x>C0}

for any x ∈ R. The result follows with C = Ci0.
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Lemma A.19. There exists a constant C > 0 such that for all z ∈ C
Re≤0 it holds

that

|ez − 1 − z| ≤ C|z|2, |ez − 1| ≤ C|z|.

Proof. We only show the first bound. If |z| ≥ 1 then |ez − 1 + z| ≤ 2 + |z| ≤

3|z| ≤ 3|z|2. If, however, |z| < 1 then using a power series expansion we have

|ez − 1− z| = |z2/2!+ z3/3!+ . . . | ≤ |z|2(1/2!+ 1/3!+ . . .) ≤ 3|z|2. So we can pick

C ≥ 3.

Lemma A.20. Let x, y, z0, z1, . . . be real numbers then

r
∑

k=0

(−y)r−k

(r − k)!

k
∑

i=0

1

i!
(x+ y)izk−i =

r
∑

j=0

1

j!
xjzr−j .

Proof. Consider the terms on the left side involving xjzl. These terms sum up to

r
∑

k=l+j

(−y)r−k

(r − k)!

1

(k − l)!

(

k − l

j

)

xjyk−l−jzl,

because the second sum contains only one such term, which corresponds to i = k−l.

This expression simplifies to

1

j!
xjyr−l−jzl

r
∑

k=l+j

(−1)r−k

(r − k)!(k − l − j)!
.

Moreover, the latter sum is
∑s
i=0

(−1)s−i

i!(s−i)! = (1− 1)s/s!, where s = r− l− j. Hence

it is non-zero only if r = l+j, in which case it is 1. Therefore, the above summand

is 1
j!x

jzr−j .
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List of symbols

càdlàg right-continuous with left limits (French "continue à droite,

limitée à gauche")

∧,∨ minimum, maximum: a ∧ b = min(a, b), a ∨ b = max(a, b)

C
Re>0 {z ∈ C : Re(z) > 0}; C

Re≥0,CRe<0,CRe≤0 are defined

similarly

f(t−), f(t+) left and right limits of f at t : lims↑t f(s), lims↓t f(s);

o(f(h)) denotes a real function g(h) such that limh↓0 g(h)/f(h) = 0

Vectors and matrices

1,0 vectors of 1s and 0s respectively

ei coordinate vector with 1 in the i-th position and 0 every-

where else

M⊤ transpose of a matrix M

I,O identity matrix and matrix of 0s of appropriate dimensions

diag(D1, . . . , Dn) (block-)diagonal matrix with Di on the diagonal

∆v diagonal matrix diag(v1, . . . , vn)

[M1, . . . ,M2] matrix obtained by merging the columns of matrices Mi

Γk(λ) Jordan block of size k × k with eigenvalue λ, see Ap-

pendix A.2

A ◦B entrywise (Hadamard) matrix multiplication

Probability

a.s. almost surely

1A indicator of an event A

eq exponential random variable of rate q ≥ 0; e0 = ∞

118
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Lévy processes

ψ Laplace exponent

a, σ, ν(dx) Lévy triple appearing in Lévy-Khintchine formula

Φ right inverse of ψ

d drift of a Lévy process; defined when
∫ 0

−1
|x|ν(dx) <∞

∂ absorbing ‘cemetery’ state

MAPs

(X, J) spectrally negative MAP; J is a Markov chain

Q,π transition rate matrix and the stationary distribution of J

Xi, ψi underlying Lévy process and its Laplace exponent

Uij , Gij jump of X at transition of J from i to j, and its transform

q killing rate

(∂X , ∂J) absorbing ‘cemetery’ state

E state space of J

E+, E↓ partition of E with E↓ = {i ∈ E : Xi is non-increasing}

N,N+, N↓ cardinalities of E,E+, E↓

M+ restriction of a matrix M with N rows to the rows indexed

by E+, see Definition 2.6

I
+ N+ ×N+ identity matrix

Pi,Ei law of (X, J) given {X(0) = 0, J(0) = i}, and the corre-

sponding expectation

E[Z;J ] matrix composed of Ei[Z;J = j]

P(A, J) matrix composed of Pi(A, J = j)

Ex0
[Z;J ] the same as E[Z;J ] with X(0) = x0

F (α) matrix exponent of a MAP: E[eαX(t);J(t)] = eF (α)t

k(α) Perron-Frobenius eigenvalue of F (α)

κ asymptotic drift; defined when Q is recurrent (no killing)

(X̂, Ĵ), P̂ time-reversed MAP and its law

First passage

τx, x ≥ 0 first passage time: inf{t ≥ 0 : X(t) > x}

X(t), X(t) supremum and infimum processes:

X(t) = sup0≤s≤t{X(s)}, X(t) = inf0≤s≤t{X(s)}

X,X X(∞) and X(∞)
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Λ(q) matrix exponent of the first passage process, see Section 2.6

Π(q) matrix of initial distributions of the first passage process

πΛ the stationary distribution of Λ(0); defined when κ ≥ 0

ρ(q) Perron-Frobenius eigenvalue of Λ(q)

(V,Γ) right spectral pair of F (α), see Definition 4.10

MMBM

E−, E↑ partition of E with E↑ = {i ∈ E : Xi(t) = ait, ai ≥ 0}

M± equivalent to an object M for (±X,J); e.g. Λ+ = Λ

M−,M↑ restriction of the rows of M to E− and E↑, see Section 5.1

(V,Γ) spectral pair of F (α), see Definition 5.2

K± matrices defined in (5.20)

Reflection

L(t), U(t) regulators at the lower and the upper barriers

ℓ,u loss vectors corresponding to L(t) and U(t), see Section 5.2

and Section 6.3

R(t) reflection of X(t) : R(t) = X(t) + L(t) − U(t)

(R∗, J∗) refers to the stationary distribution of (R(t), J(t))

τLx , τ
U
x first passage times of L and U over level x ≥ 0, see (6.1)

Scale matrices

τ±x first passage times: inf{t ≥ 0 : ±X(t) > x}

W q(x) scale matrix

Zq(α, x) second scale matrix, see Section 8.1

τB first hitting time of a set B : inf{t > 0 : X(t) ∈ B}

L(x, j, t) occupation density of (X, J) at (x, j) up to time t; also

called local time

L matrix composed of EiL(0, j,∞); i.e. expected local times

at 0

L(x) matrix of expected local times at 0 up to first passage time

over x, see Section 7.3

η(q) max{Re(z) : z ∈ C,det(F (z) − qI) = 0}
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asymptotic drift, 17

background process, 11

bounded variation, 10

càdlàg, 9
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compound Poisson process, 10, 88

CPP, see compound Poisson process

Cramér-Lundberg equation, 10, 35

diagonal dominance, 102

dividend problem, 3, 94

drift, 9, 29, 77, 78, 89
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generalized
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irregular, 77
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queue, 46, 54, 59, 65

martingale calculations, 45, 54, 58

matrix exponent of a MAP, 14, 19, 67,

98

matrix integral equation, 39, 91

matrix norm, 104

matrix polynomial, 34, 52

MMBM, see Markov-modulated Brow-

nian motion

modulation, 1

multiplicity of an eigenvalue, 33, 104

occupation density, 78, 81

optional stopping, 26

overshoot, 3, 93, 95

Perron-Frobenius

eigenvalue, 15

theory, 103

phase-type distribution, 3, 20

points of increase, 23, 47, 69, 78, 81

recurrent, 106

reflection, 3, 22, 46, 54, 65, 97, 99

regime-switching, 1

regular, 77

regulator, 23, 65, 96, 97

restriction, 13

right inverse of the Laplace exponent, 10

scale matrix, 74, 94

Skorokhod problem, 23

spectral pair, 36, 53, 54, 68

spectrally negative, 10, 13

stationary distribution, 24, 47, 54, 59

strong Markov property, 9, 12

supremum, 19, 22, 49

process, 19

time reversal, 18, 25, 49, 59

transient, 106

transition rate matrix, 13, 19, 20, 52, 96,

106

two-sided exit, 3, 57, 74, 83, 96

workload, 3, 46, 59



Summary

Lévy processes, that is, processes with stationary and independent increments,

have become a classical model in applied probability. Their use is widespread,

ranging from biology problems to storage models, insurance risk and financial

mathematics. Many real-world problems, however, exhibit non-stationary behav-

ior in longer time intervals. One may think about seasonality of prices, recurring

patterns of activity, burst arrivals, occurrence of events in phases and so on. This

motivates the interest in regime-switching models, where the process under consid-

eration is modulated by an exogenous background process. Markov Additive Pro-

cesses (MAPs) form a natural generalization of Lévy processes to regime-switching

models.

The focus of this thesis is on the path properties of MAPs. Both MAPs and

their reflections at constant boundaries are considered. We address the basic exit

problems, such as first passage over a level and first exit from an interval. Most of

the results appear in the form of Laplace transforms.

In many applications it is natural to assume that a process of interest jumps

only in one direction, i.e., it is spectrally one-sided. As shown in the recent litera-

ture on path properties of Lévy processes, under this assumption it is often possible

to derive substantially more explicit and transparent results. In this monograph

we restrict ourselves to spectrally one-sided MAPs and generalize some of these

results. Importantly, so-called phase-type distributions fit naturally in the frame-

work of MAPs. Arbitrary phase-type jumps can be added to the model keeping

the analysis tractable. This is achieved by enlarging the number of states of the

background process and replacing phase-type jumps by linear stretches.

This book can be split into three parts. In the first part, Chapter 3 and

Chapter 4, we study the first passage process. We show that the theory of analytic
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matrix functions is a natural tool in the analysis of MAPs. In addition, we consider

the supremum and the infimum processes, which are closely related to the reflection

at zero. The latter process can be used, for example, to model the workload

evolution in a regime-switching queue. We identify the stationary distribution of

the reflected process, which leads to a generalization of the celebrated Pollaczek-

Khintchine formula.

The second part of this book, Chapter 5 and Chapter 6, concerns MAPs without

jumps. Such processes have piecewise Brownian paths with drift and variance

parameters determined by the Markovian background process. Hence they are

called Markov-Modulated Brownian Motions (MMBMs). This special case results

in further substantial simplifications. Consider an MMBM reflected to stay in a

strip [0, B]; one may think about this as a queue with a finite buffer. We determine

the corresponding stationary distribution and the so-called loss vectors. Moreover,

we characterize this model at inverse local times at both barriers, which readily

leads to the solution of the first passage problem for an MMBM reflected at zero.

In the last part, Chapter 7 and Chapter 8, we extend some results on MMBMs

to spectrally one-sided MAPs. In particular, we solve the two-sided exit problem

for such a MAP, and the first passage problem for a MAP reflected at zero. These

results are based on so-called scale matrices. The corresponding theory is given in

the beginning of this part, which includes the construction of a scale matrix and

identification of its transform. We show that a scale matrix is closely related to

expected local times at zero, which enables to prove some essential properties of

the former.

Finally, a newcomer to the theory of MAPs and their path properties may

benefit from reading Chapter 2 on basic theory and the Appendix, where we discuss

fundamental concepts, tools and definitions.



Samenvatting

Lévy-processen vormen een klassiek model uit de toegepaste kansrekening, en wor-

den gekenmerkt door stationaire en onafhankelijke incrementen. Ze kennen vele

toepassingen, bijvoorbeeld bij het modelleren van biologische processen, voor-

raadsystemen, bij risicomanagement van verzekeringen en binnen de financiële

wiskunde in het algemeen. Veel processen uit de praktijk vertonen echter niet-

stationair gedrag, waardoor Lévy-processen hier niet van toepassing zijn. Denk

hierbij bijvoorbeeld aan seizoensafhankelijke prijzen, terugkerende activiteitspatro-

nen, gecorreleerde aankomsten en gefaseerde gebeurtenissen. Dit soort verschijn-

selen vormen de aanleiding tot het bestuderen van zogenaamde regime-switching-

modellen, waarin een bepaald proces wordt gemoduleerd door een zeker achter-

grondproces.

In dit proefschrift bekijken we Markov Additive Processes (MAPs), die be-

schouwd kunnen worden als een natuurlijke uitbreiding van Lévy-processen naar

regime-switching-modellen. De nadruk ligt hierbij op padeigenschappen, waarbij

aandacht wordt besteed aan zowel MAPs als MAPs gereflecteerd op één of twee

vaste randen. We richten ons op de gebruikelijke vraagstukken op het gebied van

bereikingstijden, zoals de tijd die het duurt totdat een bepaald niveau bereikt

wordt, en de tijd die het duurt totdat een interval verlaten wordt. De meeste

resultaten zijn gegeven in de vorm van Laplace-getransformeerden.

Bij veel toepassingen maakt het onderliggende proces sprongen in slechts één

richting; deze processen worden spectraal-eenzijdig genoemd. Voor Lévy-processen

is recentelijk aangetoond dat deze beperking leidt tot expliciete uitdrukkingen.

Wij richten ons dan ook richten op spectraal-eenzijdige MAPs, met als doel re-

sultaten die reeds afgeleid zijn voor Lévy-processen te generaliseren naar MAPs.

We kunnen daarnaast de spectraal-eenzijdige MAPs uitbreiden met zogenaamde
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fase-type verdeelde sprongen. Deze uitbreiding kan worden gedaan door het aantal

toestanden van het achtergrondsproces uit te breiden, en de fase-type sprongen te

vervangen door lineare segmenten.

Dit proefschrift is onderverdeeld in drie stukken. Het eerste onderdeel bestaat

uit hoofdstukken 3 en 4, en betreft het zgn. ‘first-passage proces’. We tonen aan dat

MAPs op natuurlijke wijze kunnen worden bestudeerd aan de hand van analyti-

sche matrix-functies. Daarnaast bekijken we de supremum- en infimum-processen,

welke beide gerelateerd zijn aan de reflectie van het proces op de ondergrens 0.

Dit proces kan onder meer worden gebruikt om het gedrag van het werklastproces

van een wachtrij met verschillende regimes te bestuderen. We bepalen de sta-

tionaire verdeling van het gereflecteerde proces, en generaliseren aldus de bekende

Pollaczek-Khintchine formule.

Het tweede onderdeel bestaat uit hoofdstuk 5 en hoofdstuk 6. Hierin wordt

gekeken naar MAPs zonder sprongen, wat neerkomt op stuksgewijze Brownse

paden met een drift en variantie die afhangen van het achtergrondproces. Deze

processen worden ook wel Markov-Modulated Brownian Motions (MMBMs) ge-

noemd, en geven aanleiding tot een significante vereenvoudiging van de resultaten

op het gebied van spectraal-positieve MAPs. We bekijken een MMBM die wordt

geflecteerd aan de randen van het interval [0, B]; dit model kan gezien worden als

een wachtrij met eindige buffer. We bepalen de stationaire verdeling van dit proces,

en leiden de zogenaamde verliesvectoren af. Daarnaast geven we een beschrijving

van dit proces op ‘inverse local times’ op beide grenzen, wat direct leidt tot de

oplossing van het ‘first passage problem’ voor een MMBM gereflecteerd op 0.

Het laatste deel van dit proefschrift wordt gevormd door hoofdstukken 7 en 8,

waarin enkele resultaten betreffende MMBMs worden uitgebreid naar spectraal-

positieve MAPs. Zo lossen we zowel het ‘two-sided exit problem’ op voor zulke

MAPs, als het ‘first passage problem’ voor een MAP gereflecteerd op 0. De resul-

taten zijn gebaseerd op zogenaamde ‘scale-matrices’; de theorie hierachter wordt

aan het begin van dit onderdeel uiteen gezet. Dit betreft de constructie van een

scale-matrix, maar ook het identificeren van diens getransformeerde. We tonen aan

dat een scale-matrix sterk verband houdt met verwachte local times in 0, waaruit

enkele essentiële eigenschappen van scale-matrices kunnen worden afgeleid.

Hoofdstuk 2 tenslotte biedt lezers die onbekend zijn met MAPs en hun padeigen-

schappen een inleiding tot dit onderwerp. In de bijlage bespreken we enkele fun-

damentele concepten, wiskundige technieken en definities.
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