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Abstract

In unsupervised domain mapping, the learner is given two unmatched datasets
A and B. The goal is to learn a mapping GAB that translates a sample in A
to the analog sample in B. Recent approaches have shown that when learning
simultaneously both GAB and the inverse mapping GBA, convincing mappings
are obtained. In this work, we present a method of learning GAB without learning
GBA. This is done by learning a mapping that maintains the distance between
a pair of samples. Moreover, good mappings are obtained, even by maintaining
the distance between different parts of the same sample before and after mapping.
We present experimental results that the new method not only allows for one
sided mapping learning, but also leads to preferable numerical results over the
existing circularity-based constraint. Our entire code is made publicly available
at https://github.com/sagiebenaim/DistanceGAN.

1 Introduction

The advent of the Generative Adversarial Network (GAN) [6] technology has allowed for the
generation of realistic images that mimic a given training set by accurately capturing what is inside
the given class and what is “fake”. Out of the many tasks made possible by GANs, the task of
mapping an image in a source domain to the analog image in a target domain is of a particular interest.

The solutions proposed for this problem can be generally separated by the amount of required
supervision. On the one extreme, fully supervised methods employ pairs of matched samples, one
in each domain, in order to learn the mapping [9]. Less direct supervision was demonstrated by
employing a mapping into a semantic space and requiring that the original sample and the analog
sample in the target domain share the same semantic representation [22].

If the two domains are highly related, it was demonstrated that just by sharing weights between the
networks working on the two domains, and without any further supervision, one can map samples
between the two domains [21, 13]. For more distant domains, it was demonstrated recently that by
symmetrically leaning mappings in both directions, meaningful analogs are obtained [28, 11, 27].
This is done by requiring circularity, i.e., that mapping a sample from one domain to the other and
then back, produces the original sample.

In this work, we go a step further and show that it is possible to learn the mapping between the
source domain and the target domain in a one-sided unsupervised way, by enforcing high cross-
domain correlation between the matching pairwise distances computed in each domain. The new
constraint allows one-sided mapping and also provides, in our experiments, better numerical results
than circularity. Combining both of these constraints together often leads to further improvements.

Learning the new constraint requires comparing pairs of samples. While there is no real practical
reason not to do so, since training batches contain multiple samples, we demonstrate that similar
constraints can even be applied per image by computing the distance between, e.g., the top part of the
image and the bottom part.
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1.1 Related work

Style transfer These methods [5, 23, 10] typically receive as input a style image and a content image
and create a new image that has the style of the first and the content of the second. The problem of
image translation between domains differs since when mapping between domains, part of the content
is replaced with new content that matches the target domain and not just the style. However, the
distinction is not sharp, and many of the cross-domain mapping examples in the literature can almost
be viewed as style transfers. For example, while a zebra is not a horse in another style, the horse to
zebra mapping, performed in [28] seems to change horse skin to zebra skin. This is evident from the
stripped Putin example obtained when mapping the image of shirtless Putin riding a horse.

Generative Adversarial Networks GAN [6] methods train a generator network G that synthesizes
samples from a target distribution, given noise vectors, by jointly training a second network D. The
specific generative architecture we and others employ is based on the architecture of [18]. In image
mapping, the created image is based on an input image and not on random noise [11, 28, 27, 13, 22, 9].

Unsupervised Mapping The work that is most related to ours, employs no supervision except for
sample images from the two domains. This was done very recently [11, 28, 27] in image to image
translation and slightly earlier for translating between natural languages [24]. Note that [11] proposes
the “GAN with reconstruction loss” method, which applies the cycle constraint in one side and trains
only one GAN. However, unlike our method, this method requires the recovery of both mappings and
is outperformed by the full two-way method.

The CoGAN method [13], learns a mapping from a random input vector to matching samples from
the two domains. It was shown in [13, 28] that the method can be modified in order to perform
domain translation. In CoGAN, the two domains are assumed to be similar and their generators (and
GAN discriminators) share many of the layers weights, similar to [21]. As was demonstrated in [28],
the method is not competitive in the field of image to image translation.

Weakly Supervised Mapping In [22], the matching between the source domain and the target
domain is performed by incorporating a fixed pre-trained feature map f and requiring f -constancy,
i.e, that the activations of f are the same for the input samples and for mapped samples.

Supervised Mapping When provided with matching pairs of (input image, output image) the
supervision can be performed directly. An example of such method that also uses GANs is [9], where
the discriminator D receives a pair of images where one image is the source image and the other is
either the matching target image (“real” pair) or a generated image (“fake” pair); The linking between
the source and the target image is further strengthened by employing the U-net architecture [19].

Domain Adaptation In this setting, we typically are given two domains, one having supervision in
the form of matching labels, while the second has little or no supervision. The goal is to learn to
label samples from the second domain. In [3], what is common to both domains and what is distinct
is separated thus improving on existing models. In [2], a transformation is learned, on the pixel
level, from one domain to another, using GANs. In [7], an unsupervised adversarial approach to
semantic segmentation, which uses both global and category specific domain adaptation techniques,
is proposed.

2 Preliminaries

In the problem of unsupervised mapping, the learning algorithm is provided with unlabeled datasets
from two domains, A and B. The first dataset includes i.i.d samples from the distribution pA and the
second dataset includes i.i.d samples from the distribution pB . Formally, given

{xi}
m
i=1 such that xi

i.i.d
∼ pA and {xj}

n
j=1 such that xj

i.i.d
∼ pB ,

our goal is to learn a function GAB , which maps samples in domain A to analog samples in domain
B, see examples below. In previous work [11, 28, 27], it is necessary to simultaneously recover a
second function GBA, which similarly maps samples in domain B to analog samples in domain A.

Justification In order to allow unsupervised learning of one directional mapping, we introduce
the constraint that pairs of inputs x, x′, which are at a certain distance from each other, are mapped
to pairs of outputs GAB(x), GAB(x

′) with a similar distance, i.e., that the distances ‖x− x′‖ and
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Figure 1: Each triplet shows the source handbag image, the target shoe as produced by Cycle-
GAN’s [28] mapper GAB and the results of approximating GAB by a fixed nonnegative linear
transformation T , which obtains each output pixel as a linear combination of input pixels. The linear
transformation captures the essence of GAB showing that much of the mapping is achieved by a fixed
spatial transformation.

‖GAB(x)−GAB(x
′)‖ are highly correlated. As we show below, it is reasonable to assume that this

constraint approximately holds in many of the scenarios demonstrated by previous work on domain
translation. Although approximate, it is sufficient, since as was shown in [21], mapping between
domains requires only little supervision on top of requiring that the output distribution of the mapper
matches that of the target distribution.

Consider, for example, the case of mapping shoes to edges, as presented in Fig. 4. In this case, the
edge points are simply a subset of the image coordinates, selected by local image criterion. If image
x is visually similar to image x′, it is likely that their edge maps are similar. In fact, this similarity
underlies the usage of gradient information in the classical computer vision literature. Therefore,
while the distances are expected to differ in the two domains, one can expect a high correlation.

Next, consider the case of handbag to shoe mapping (Fig. 4). Analogs tend to have the same
distribution of image colors in different image formations. Assuming that the spatial pixel locations
of handbags follow a tight distribution (i.e., the set of handbag images share the same shapes) and the
same holds for shoes, then there exists a set of canonical displacement fields that transform a handbag
to a shoe. If there was one displacement, which would happen to be a fixed permutation of pixel
locations, distances would be preserved. In practice, the image transformations are more complex.

To study whether the image displacement model is a valid approximation, we learned a nonnegative

linear transformation T ∈ R
64

2
×64

2

+ that maps, one channel at a time, handbag images of size
64× 64× 3 to the output shoe images of the same size given by the CycleGAN method. T ’s columns
can be interpreted as weights that determine the spread of mass in the output image for each pixel
location in the input image. It was estimated by minimizing the squared error of mapping every
channel (R, G, or B) of a handbag image to the same channel in the matching shoe. Optimization
was done by gradient descent with a projection to the space of nonnegative matrices, i.e., zeroing the
negative elements of T at each iteration.

Sample mappings by the matrix T are shown in Fig. 1. As can be seen, the nonnegative linear
transformation approximates CycleGAN’s multilayer CNN GAB to some degree. Examining the
elements of T , they share some properties with permutations: the mean sum of the rows is 1.06 (SD
0.08) and 99.5% of the elements are below 0.01.

In the case of adding glasses or changing gender or hair color (Fig 3), a relatively minor image
modification, which does not significantly change the majority of the image information, suffices
in order to create the desired visual effect. Such a change is likely to largely maintain the pairwise
image distance before and after the transformation.

In the case of computer generated heads at different angles vs. rotated cars, presented in [11],
distances are highly correlated partly because the area that is captured by the foreground object is
a good indicator of the object’s yaw. When mapping between horses to zebras [28], the texture
of a horse’s skin is transformed to that of the zebra. In this case, most of the image information
is untouched and the part that is changed is modified by a uniform texture, again approximately
maintaining pairwise distances. In Fig 2(a), we compare the L1 distance in RGB space of pairs
of horse images to the distance of the samples after mapping by the CycleGAN Network [28] is
performed, using the public implementation. It is evident that the cross-domain correlation between
pairwise distances is high. We also looked at Cityscapes image and ground truth label pairs in
Fig 2(c), and found that there is high correlation between the distances. This is the also the case in
many other literature-based mappings between datasets we have tested and ground truth pairs.

While there is little downside to working with pairs of training images in comparison to working with
single images, in order to further study the amount of information needed for successful alignment,
we also consider distances between the two halves of the same image. We compare the L1 distance
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(a) (b)

(c) (d)

Figure 2: Justifying the high correlation between distances in different domains. (a) Using the
CycleGAN model [28], we map horses to zebras and vice versa. Green circles are used for the
distance between two random horse images and the two corresponding translated zebra images.
Blue crosses are for the reverse direction translating zebra to horse images. The Pearson correlation
for horse to zebra translation is 0.77 (p-value 1.7e−113) and for zebra to horse it is 0.73 (p-value
8.0e−96). (b) As in (a) but using the distance between two halves of the same image that is either a
horse image translated to a zebra or vice-versa. The Pearson correlation for horse to zebra translation
is 0.91 (p-value 9.5e−23) and for zebra to horse it is 0.87 (p-value 9.7e−19). (c) Cityscapes images
and associated labels. Green circles are used for distance between two cityscapes images and the
two corresponding ground truth images The Pearson correlation is 0.65 (p-value 6.0e−16). (d) As in
(c) but using the distance between two halves of the same image. The Pearson correlation is 0.65
(p-value 1.4e−12).

between the left and right halves as computed on the input image to that which is obtained on the
generated image or the corresponding ground truth image. Fig. 2(b) and Fig. 2(d) presents the results
for horses to zebras translation and for Cityscapes image and label pairs, respectively. As can be seen,
the correlation is also very significant in this case.

From Correlations to Sum of Absolute Differences We have provided justification and empirical
evidence that for many semantic mappings, there is a high degree of correlations between the
pairwise distances in the two domains. In other words, let dk be a vector of centered and unit-variance
normalized pairwise distances in one domain and let d′k be the vector of normalized distances obtained
in the other domain by translating each image out of each pair between the domains, then

∑
dkd

′

k
should be high. When training the mapper GAB , the mean and variance used for normalization in
each domain are precomputed based on the training samples in each domain, which assumes that the
post mapping distribution of samples is similar to the training distribution.

The pairwise distances in the source domain dk are fixed and maximizing
∑

dkd
′

k causes pairwise
distances dk with large absolute value to dominate the optimization. Instead, we propose to minimize
the sum of absolute differences

∑
k |dk − d′k|, which spreads the error in distances uniformly. The

two losses −
∑

dkd
′

k and
∑

k |dk − d′k| are highly related and the negative correlation between them
was explicitly computed for simple distributions and shown to be very strong [1].
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3 Unsupervised Constraints on the Learned Mapping

There are a few types of constraints suggested in the literature, which do not require paired samples.
First, one can enforce the distribution of GAB(x) : x ∼ pA, which we denote as GAB(pA), to
be indistinguishable from that of pB . In addition, one can require that mapping from A to B and
back would lead to an identity mapping. Another constraint suggested, is that for every x ∈ B
GAB(x) = x. We review these constraints and then present the new constraints we propose.

Adversarial constraints Our training sets are viewed as two discrete distributions p̂A and p̂B that
are sampled from the source and target domain distributions pA and pB , respectively. For the learned
network GAB , the similarity between the distributions GAB(pA) and pB is modeled by a GAN. This
involves the training of a discriminator network DB : B → {0, 1}. The loss is given by:

LGAN(GAB , DB , p̂A, p̂B) =ExB∼p̂B
[logDB(xB)] + ExA∼p̂A

[log(1−DB(GAB(xA))]

This loss is minimized over GAB and maximized over DB . When both GAB and GBA are learned
simultaneously, there is an analog expression LGAN(GBA, DA, p̂B , p̂A), in which the domains A and
B switch roles and the two losses (and four networks) are optimized jointly.

Circularity constraints In three recent reports [11, 28, 27], circularity loss was introduced for
image translation. The rationale is that given a sample from domain A, translating it to domain B and
then back to domain A should result in the identical sample. Formally, the following loss is added:

Lcycle(GAB , GBA, p̂A) = Ex∼p̂A
‖GBA(GAB(x))− x‖1

The L1 norm employed above was found to be mostly preferable, although L2 gives similar results.
Since the circularity loss requires the recovery of the mappings in both directions, it is usually
employed symmetrically, by considering Lcycle(GAB , GBA, p̂A) + Lcycle(GBA, GAB , p̂B).

The circularity constraint is often viewed as a definite requirement for admissible functions GAB and
GBA. However, just like distance-based constraints, it is an approximate one. To see this, consider
the zebra to horse mapping example. Mapping a zebra to a horse means losing the stripes. The
inverse mapping, therefore, cannot be expected to recover the exact input stripes.

Target Domain Identity A constraint that has been used in [22] and in some of the experiments
in [28] states that GAB applied to samples from the domain B performs the identity mapping. We
did not experiment with this constraint and it is given here for completeness:

LT-ID(GAB , p̂B) = Ex∼p̂B
‖x−GAB(x)‖2

Distance Constraints The adversarial loss ensures that samples from the distribution of A are
translated to samples in the distribution of B. However, there are many such possible mappings.
Given a mapping for n samples of A to n samples of B, one can consider any permutation of the
samples in B as a valid mapping and, therefore, the space of functions mapping from A to B is very
large. Adding the circularity constraint, enforces the mapping from B to A to be the inverse of the
permutation that occurs from A to B, which reduces the amount of admissible permutations.

To further reduce this space, we propose a distance preserving map, that is, the distance between two
samples in A should be preserved in the mapping to B. We therefore consider the following loss,
which is the expectation of the absolute differences between the distances in each domain up to scale:

Ldistance(GAB , p̂A) = Exi,xj∼p̂A
|
1

σA
(‖xi − xj‖1 − µA)−

1

σB
(‖GAB(xi)−GAB(xj)‖1 − µB)|

where µA, µB (σA, σB) are the means (standard deviations) of pairwise distances in the training sets
from A and B, respectively, and are precomputed.

In practice, we compute the loss over pairs of samples that belong to the same minibatch during
training. Even for minibatches with 64 samples, as in DiscoGAN [11], considering all pairs is feasible.
If needed, for even larger mini-batches, one can subsample the pairs.

When the two mappings are simultaneously learned, Ldistance(GBA, p̂B) is similarly defined. In both
cases, the absolute difference of the L1 distances between the pairs in the two domains is considered.
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In comparison to circularity, the distance-based constraint does not suffer from the model collapse
problem that is described in [11]. In this phenomenon, two different samples from domain A are
mapped to the same sample in domain B. The mapping in the reverse direction then generates an
average of the two original samples, since the sample in domain B should be mapped back to both the
first and second original samples in A. Pairwise distance constraints prevents this from happening.

Self-distance Constraints Whether or not the distance constraint is more effective than the circu-
larity constraint in recovering the alignment, the distance based constraint has the advantage of being
one sided. However, it requires that pairs of samples are transfered at once, which, while having little
implications on the training process as it is currently done, might effect the ability to perform on-line
learning. Furthermore, the official CycleGAN [28] implementation employs minibatches of size one.
We, therefore, suggest an additional constraint, which employs one sample at a time and compares
the distances between two parts of the same sample.

Let L,R : Rh×w → R
h×w/2 be the operators that given an input image return the left or right part of

it. We define the following loss:

L self-
distance

(GAB , p̂A) = Ex∼p̂A
|
1

σA
(‖L(x)−R(x)‖1 − µA)

−
1

σB
(‖L(GAB(x))−R(GAB(x))‖1 − µB)| (1)

where µA and σA are the mean and standard deviation of the pairwise distances between the two
halves of the image in the training set from domain A, and similarly for µB and σB , e.g., given the
training set {xj}

n
j=1 ⊂ B, µB is precomputed as 1

n

∑
j ‖L(xj)−R(xj)‖1.

3.1 Network Architecture and Training

When training the networks GAB , GBA, DB and DA, we employ the following loss, which is
minimized over GAB and GBA and maximized over DB and DA:

α1ALGAN(GAB , DB , p̂A, p̂B) + α1BLGAN(GBA, DA, p̂B , p̂A) + α2ALcycle(GAB , GBA, p̂A)+

α2BLcycle(GBA, GAB , p̂B) + α3ALdistance(GAB , p̂A) + α3BLdistance(GBA, p̂B)+

α4ALself-distance(GAB , p̂A) + α4BLself-distance(GBA, p̂B)

where αiA, αiB are trade-off parameters. We did not test the distance constraint and the self-distance
constraint jointly, so in every experiment, either α3A = α3B = 0 or α4A = α4A = 0. When
performing one sided mapping from A to B, only α1A and either α3A or α4A are non-zero.

We consider A and B to be a subset of R3×s×s of images where s is either 64, 128 or 256, depending
on the image resolution. In order to directly compare our results with previous work and to employ
the strongest baseline in each dataset, we employ the generator and discriminator architectures of
both DiscoGAN [11] and CycleGAN [28].

In DiscoGAN, the generator is build of an encoder-decoder unit. The encoder consists of convolu-
tional layers with 4× 4 filters followed by Leaky ReLU activation units. The decoder consists of
deconvolutional layers with 4× 4 filters followed by a ReLU activation units. Sigmoid is used for
the output layer and batch normalization [8] is used before the ReLU or Leaky ReLU activations.
Between 4 to 5 convolutional/deconvolutional layers are used, depending on the domains used in
A and B (we match the published code architecture per dataset). The discriminator is similar to the
encoder, but has an additional convolutional layer as the first layer and a sigmoid output unit.

The CycleGAN architecture for the generator is based on [10]. The generators consist of two 2-
stride convolutional layers, between 6 to 9 residual blocks depending on the image resolution and
two fractionally strided convolutions with stride 1/2. Instance normalization is used as in [10].
The discriminator uses 70× 70 PatchGANs [9]. For training, CycleGAN employs two additional
techniques. The first is to replace the negative log-likelihood by a least square loss [25] and the second
is to use a history of images for the discriminators, rather then only the last image generated [20].
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Table 1: Tradeoff weights for each experiment.

Experiment α1A α1B α2A α2B α3A α3B α4A α4B

DiscoGAN 0.5 0.5 0.5 0.5 0 0 0 0
Distance→ 0.5 0 0 0 0.5 0 0 0
Distance← 0 0.5 0 0 0 0.5 0 0
Dist+Cycle 0.5 0.5 0.5 0.5 0.5 0.5 0 0
Self Dist→ 0.5 0 0 0 0 0 0.5 0
Self Dist← 0 0.5 0 0 0 0 0 0.5

Table 2: Normalized
RMSE between the angles
of source and translated
images.

Method car2car car2head

DiscoGAN 0.306 0.137
Distance 0.135 0.097
Dist.+Cycle 0.098 0.273
Self Dist. 0.117 0.197

Table 3: MNIST clas-
sification on mapped
SHVN images.

Method Accuracy

CycleGAN 26.1%
Distance 26.8%
Dist.+Cycle 18.0%
Self Dist. 25.2%

Table 4: CelebA mapping results using the VGG face descriptor.

Male→ Female Blond→ Black Glasses→Without

Method Cosine Separation Cosine Separation Cosine Separation
Similarity Accuracy Similarity Accuracy Similarity Accuracy

DiscoGAN 0.23 0.87 0.15 0.89 0.13 0.84
Distance 0.32 0.88 0.24 0.92 0.42 0.79
Distance+Cycle 0.35 0.87 0.24 0.91 0.41 0.82
Self Distance 0.24 0.86 0.24 0.91 0.34 0.80

———— Other direction ————
DiscoGAN 0.22 0.86 0.14 0.91 0.10 0.90
Distance 0.26 0.87 0.22 0.96 0.30 0.89
Distance+Cycle 0.31 0.89 0.22 0.95 0.30 0.85
Self Distance 0.24 0.91 0.19 0.94 0.30 0.81

4 Experiments

We compare multiple methods: the DiscoGAN or the CycleGAN baselines; the one sided mapping
using Ldistance (A → B or B → A); the combination of the baseline method with Ldistance; the
self distance method. For DiscoGAN, we use a fixed weight configuration for all experiments, as
shown in Tab. 1. For CycleGAN, there is more sensitivity to parameters and while the general pattern
is preserved, we used different weight for the distance constraint depending on the experiment, digits
or horses to zebra.

Models based on DiscoGAN Datasets that were tested by DiscoGAN are evaluated here using this
architecture. In initial tests, CycleGAN is not competitive on these out of the box. The first set of
experiments maps rotated images of cars to either cars or heads. The 3D car dataset [4] consists of
rendered images of 3D cars whose degree varies at 15◦ intervals. Similarly, the head dataset, [17],
consists of 3D images of rotated heads which vary from −70◦ to 70◦. For the car2car experiment,
the car dataset is split into two parts, one of which is used for A and one for B (It is further split
into train and test set). Since the rotation angle presents the largest source of variability, and since
the rotation operation is shared between the datasets, we expect it to be the major invariant that the
network learns, i.e., a semantic mapping would preserve angles.

A regressor was trained to calculate the angle of a given car image based on the training data. Tab. 2
shows the Root Mean Square Error (RMSE) between the angle of source image and translated image.
As can be seen, the pairwise distance based mapping results in lower error than the DiscoGAN
one, combining both further improves results, and the self distance outperforms both DiscoGAN
and pairwise distance. The original DiscoGAN implementation was used, but due to differences
in evaluation (different regressors) these numbers are not compatible with the graph shown in
DiscoGAN.

For car2head, DiscoGAN’s solution produces mirror images and combination of DiscoGAN’s
circularity constraint with the distance constraint produces a solution that is rotated by 90◦. We
consider these biases as ambiguities in the mapping and not as mistakes and, therefore, remove the
mean error prior to computing the RMSE. In this experiment, distance outperforms all other methods.
The combination of both methods is less competitive than both, perhaps since each method pulls
toward a different solution. Self distance, is worse than circularity in this dataset.
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Another set of experiments arises from considering face images with and without a certain property.
CelebA [26, 14] was annotated for multiple attributes including the person’s gender, hair color, and
the existence of glasses in the image. Following [11] we perform mapping between two values of each
of these three properties. The results are shown in the supplementary material with some examples
in Fig. 3. It is evident that the DiscoGAN method (using the unmodified authors’ implementation)
presents many more failure cases than our pair based method. The self-distance method was
implemented with the top and bottom image halves, instead of left to right distances, since faces are
symmetric. This method also seems to outperform DiscoGAN.

In order to evaluate how well the face translation was performed, we use the representation layer of
VGG faces [16] on the image in A and its output in B. One can assume that two images that match
will have many similar features and so the VGG representation will be similar. The cosine similarities,
as evaluated between input images and their mapped versions, are shown in Tab. 4. In all cases, the
pair-distance produces more similar input-output faces. Self-distance performs slightly worse than
pairs, but generally better than DiscoGAN. Applying circularity together with pair-distance, provides
the best results but requires, unlike the distance, learning both sides simultaneously.

While we create images that better match in the face descriptor metric, our ability to create images
that are faithful to the second distribution is not impaired. This is demonstrated by learning a linear
classifier between the two domains based on the training samples and then applying it to a set of
test image before and after mapping. The separation accuracy between the input test image and the
mapped version is also shown in Tab. 4. As can be seen, the separation ability of our method is
similar to that of DiscoGAN (it arises from the shared GAN terms).

We additionally perform a user study to asses the quality of our results. The user is first presented
with a set of real images from the dataset. Then, 50 random pairs of images are presented to a user for
a second, one trained using DiscoGAN and one using our method. The user is asked to decide which
image looks more realistic. The test was performed on 22 users. On shoes to handbags translation,
our translation performed better on 65% of the cases. For handbags to shoes, the score was 87%.
For male to female, both methods showed a similar realness score (51% to 49% of DiscoGAN’s).
We, therefore, asked a second question: given the face of a male, which of the two generated female
variants is a better fit to the original face. Our method wins 88% of the time.

In addition, in the supplementary material we compare the losses of the GAN discriminator for the
various methods and show that these values are almost identical. We also measure the losses of the
various methods during test, even if these were not directly optimized. For example, despite this
constraints not being enforced, the distance based methods seem to present a low circularity loss,
while DiscoGAN presents a relatively higher distance losses.

Sample results of mapping shoes to handbags and edges to shoes and vice versa using the DiscoGAN
baseline architecture are shown in Fig. 3. More results are shown in the supplementary. Visually, the
results of the distance-based approach seem better then DiscoGAN while the results of self-distance
are somewhat worse. The combination of DiscoGAN and distance usually works best.

Models based on CycleGAN Using the CycleGAN architecture we map horses to zebras, see
Fig. 4 and supplementary material for examples. Note that on the zebra to horse mapping, all methods
fail albeit in different ways. Subjectively, it seems that the distance + cycle method shows the most
promise in this translation.

In order to obtain numerical results, we use the baseline CycleGAN method as well as our methods
in order to translate from Street View House Numbers (SVHN) [15] to MNIST [12]. Accuracy is
then measured in the MNIST space by using a neural net trained for this task. Results are shown in
Tab. 3 and visually in the Supplementary. While the pairwise distance based method improves upon
the baseline method, there is still a large gap between the unsupervised and semi-supervised setting
presented in [22], which achieves much higher results. This can be explained by the large amount of
irrelevant information in the SVHN images (examples are shown in the supplementary). Combining
the distance based constraint with the circularity one does not work well on this dataset.

We additionally performed a qualitative evaluation using FCN score as in [28]. The FCN metric
evaluates the interoperability images by taking a generated cityscape image and generating a label
using semantic segmentation algorithm. The generated label can then be compared to the ground
truth label. FCN results are given as three measures: per-pixel accuracy, per-class accuracy and Class
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Figure 3: Translations using various methods on the celebA dataset: (a,b) Male to and from Female.
(c,d) Blond to and from black hair. (e,f) With eyeglasses to from without eyeglasses.
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Figure 4: (a,b) Handbags to and from shoes. (c,d) Edges to/from shoes. (e,f) Horse to/from zebra.

IOU. Our distance GAN method is preferable on all three scores (0.53 vs. 0.52, 0.19 vs. 0.17, and
0.11 vs 0.11, respectively). The paired t-test p-values are 0.29, 0.002 and 0.42 respectively. In a user
study similar to the one for DiscoGAN above, our cityscapes translation scores 71% for realness
when comparing to CycleGAN’s. When looking at similarity to the ground truth image we score
68%.

5 Conclusion

We have proposed an unsupervised distance-based loss for learning a single mapping (without its
inverse), which empirically outperforms the circularity loss. It is interesting to note that the new
loss is applied to raw RGB image values. This is in contrast to all of the work we are aware of that
computes image similarity. Clearly, image descriptors or low-layer network activations can be used.
However, by considering only RGB values, we not only show the general utility of our method, but
also further demonstrate that a minimal amount of information is needed in order to form analogies
between two related domains.
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