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predictive markers
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Abstract

likelihood ratio and Wald tests.

might be of clinical relevance.

Background: We have observed that the area under the receiver operating characteristic curve (AUC) is
increasingly being used to evaluate whether a novel predictor should be incorporated in a multivariable model to
predict risk of disease. Frequently, investigators will approach the issue in two distinct stages: first, by testing
whether the new predictor variable is significant in a multivariable regression model; second, by testing differences
between the AUC of models with and without the predictor using the same data from which the predictive
models were derived. These two steps often lead to discordant conclusions.

Discussion: We conducted a simulation study in which two predictors, X and X*, were generated as standard
normal variables with varying levels of predictive strength, represented by means that differed depending on the
binary outcome Y. The data sets were analyzed using logistic regression, and likelihood ratio and Wald tests for the
incremental contribution of X* were performed. The patient-specific predictors for each of the models were then
used as data for a test comparing the two AUCs. Under the null, the size of the likelihood ratio and Wald tests
were close to nominal, but the area test was extremely conservative, with test sizes less than 0.006 for all
configurations studied. Where X* was associated with outcome, the area test had much lower power than the

Summary: Evaluation of the statistical significance of a new predictor when there are existing clinical predictors is
most appropriately accomplished in the context of a regression model. Although comparison of AUCs is a
conceptually equivalent approach to the likelihood ratio and Wald test, it has vastly inferior statistical properties.
Use of both approaches will frequently lead to inconsistent conclusions. Nonetheless, comparison of receiver
operating characteristic curves remains a useful descriptive tool for initial evaluation of whether a new predictor

Background

In determining whether a patient does have or will have
a medical condition or outcome - respectively, diagnosis
and prognosis- doctors can generally make use of clini-
cal or laboratory data than are of proven predictive
value. It has been argued that, when evaluating a novel
predictor, the key question is whether it offers superior
predictive accuracy to these established variables [1,2].
For example, the risk of cancer recurrence is known to
be associated with clinical characteristics such as tumor
size, cancer stage, lymph node involvement and possibly
other factors. Any evaluation of the merit of, say, a new
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biomarker needs to take into account the abilities of the
known clinical predictors. An appropriate study of this
issue involves the comparison of the accuracy of a pre-
dictive model including only the established clinical
variables with the accuracy of a model that included
both the established variables and the new marker.

The advent of countless novel biomarkers in medical
research has led to a large literature of studies seeking
to test the value of these new markers as predictors of
medical outcomes. Because of widespread concerns
about the dangers of inappropriate uses of statistical
methods in this setting, many prominent methodologists
and subject matter experts have published articles seek-
ing to provide advice on how to conduct these studies
[1-6]. There is broad agreement that it is of value to
determine incremental discriminative ability of the new
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marker, using comparisons of the area under the recei-
ver operating characteristic (AUC) curve or c-index [1]
of the predictive model with and without the new mar-
ker. Although all of these experts stop short of advocat-
ing that discrimination be compared using widely
available tests for comparing AUCs [7,8], the advocacy
of this type of comparison seems to have led many
investigators to believe that such formal comparisons
are indeed the recommended approach. Our article
addresses the propriety of this strategy.

Discussion

We define r(X) as a predictive model for a disease state
D in which X corresponds to one or more established
clinical and biological markers. If X* designates a new
marker, our goal is to assess whether X* adds to the
predictive accuracy that is already available from X.
Thus, our question about the value of X* involves a
comparison of r(X) to r(X, X*) rather than a comparison
of r(X) to r(X*). That is, we wish to know the incremen-
tal increase in accuracy due to X* The setting in which
one wants to consider the addition of a new marker to
an existing set of markers is known as a nested model.

There are two general approaches that are used fre-
quently to compare the incremental effect of a new pre-
dictor in the context of a nested model. In the first, the
novel marker is added to a regression model that
includes the established markers. The new marker is
accepted as having predictive value if it is significantly
associated with outcome in the multivariable model,
after adjusting for established markers; if so, the marker
is commonly referred to being an “independent” predic-
tor of outcome. In the second approach, the area under
the receiver operating characteristic (ROC) curve (AUC)
or c-index is calculated for each of the two predictive
models, r(X) and r(X, X*), and the two AUC’s compared.
The fact that expert commentaries on this issue advo-
cate this comparison without reference to statistical test-
ing suggest that they have intended the comparison to
represent an informal judgment of the increase in incre-
mental accuracy([2-6], that is, the recommendation is to
use a comparison of AUC’s for estimation. Nonetheless,
there are well known and widely-used statistical tests for
comparing diagnostic accuracy[7,8], and so increasingly
investigators have elected to use these as formal tests
for incremental accuracy in the context of comparing
predictive models[9-14].

We have observed that it is often the case in such
reports that the novel marker has been found to be sta-
tistically significant in the multivariable model including
established markers, but has been reported to have a
non-significant effect on predictive accuracy on the
basis of tests comparing the two AUCs. For instance,
Folsom et al.[15] looked at various novel markers to
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predict coronary heart disease, and tested whether these
markers added incremental value to a standard predic-
tive model that included age, race, sex, total cholesterol,
high density lipoprotein, blood pressure, antihyperten-
sive medications, smoking status, and diabetes. For each
marker, the authors reported both the p value for
the marker in the multivariable model, and a p value for
the difference in AUC between the standard model and
the standard model plus the new marker. As an exam-
ple, interleukin 6 was reported to be a statistically signif-
icant independent predictor of outcome (p=0.03), but
the increase in AUC, from 0.773 to 0.783 was reported
to be non-significant. Similarly, Gallina and colleagues
[16] investigated whether body mass index could help
predict high-grade prostate cancer. They reported that
although body mass index was statistically significant
(»=0.001) in a multivariable model including clinical
stage, prostate volume, and total and free prostate speci-
fic antigen, the increase in AUC (from 0.718 for the
standard predictors to 0.725 for the standard predictors
plus body mass index) was non-significant (p=0.6).

In considering the contribution of a new marker in
the context of established markers we are interested in
the incremental improvement in predictive accuracy
that the new marker can deliver. What do we mean by
incremental predictive accuracy? A new predictor can
only provide additional information if it is associated
with the outcome, conditional on the existing predictors.
Consequently, we are fundamentally interested in testing
for conditional independence between the new predic-
tor, X* and the outcome, Y, conditional on the estab-
lished predictors, X. If X* and Y are associated,
conditional on X, then there is information that can be
potentially utilized to improve the prediction. In other
words, in constructing a test for incremental informa-
tion, the conceptual null hypothesis is that there is no
useful information in X* for predicting Y once the infor-
mation in X is taken into account.

In the construction of a specific statistical test, the
actual null hypothesis used can differ, even though in
our context all tests are targeted fundamentally at the
preceding conceptual null hypothesis. When we
approach the question of the value of X* using a regres-
sion model, such as logistic regression if the outcome is
a binary event or proportional hazards regression for
survival-type outcomes, we are comparing the fit of the
data to two different models, a null regression model in
which the outcome, after transformation, has a linear
relationship with X versus a model in which the addi-
tion of a linear term involving X* improves the fit. If 8
is the parameter representing the coefficient of X* in
this model, then the null hypothesis is that f=0. This
might lead to a different result from, say, a Mantel-
Haenszel test of association between X* and Y, stratified
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by X. However, both are essentially testing the same
conceptual null hypothesis, the hypothesis that there is
no conditional association between X* and Y, given X,
and thus no potentially useful incremental information
in X* for the purposes of predicting Y.

Consider now approaching this issue in the setting of
an ROC analysis. Again, there are different options for
formulating the null hypothesis. A logical choice is to
construct a test of the hypothesis that the ROC curve
mapped by the predictor from the model r(X) is identi-
cal to the ROC curve mapped by the predictor from the
model r(X, X*). Indeed tests of this nature are available
[17]. However, by far the most common approach is to
focus on the areas under the ROC curves from these
two models [8]. The null hypothesis is that the areas,
denoted AUC(X) and AUC(X,X*), are identical. These
two null hypotheses are not the same, but they both
conform to our conceptual null hypothesis, namely that
X* does not add incremental information to the predic-
tive ability of the model formed using X alone. Investi-
gators who have used this approach have typically taken
the patient-specific risk predictors from the two models,
and used these as data elements both for estimating the
ROC curves and as data for conducting the test compar-
ing ROC areas.

To our knowledge, little work has been done to esti-
mate the power of regression models for detecting
incremental predictive accuracy in comparison to the
power of corresponding tests for the AUCs. We con-
ducted a simulation study in which the two predictors,
X and X*, were generated as standard normal variables
with varying levels of predictive strength, represented by
means that differed depending on the binary outcome
Y. The difference in means between Y = 1 and Y = 0
for X and X* are represented by p and p*respectively
and were varied between 0 (i.e. the null) and 0.3. X and
X* were generated both independently (i.e. with a corre-
lation of p = 0.0) and for the correlations p = 0.1, p =
0.3 and p = 0.5. The data sets were analyzed using
logistic regression, and likelihood ratio and Wald tests
for the incremental contribution of X* were performed.
The patient-specific predictors for each of the models
were then used as data for a test comparing the two
AUCs, using the popular area test proposed by Delong
et al. [8]. The algorithm used for the simulation is pro-
vided in the Appendix. The results for a study with
n=500 and an outcome prevalence of 0.5 are presented
in Table 1. The first set of rows represent test size, i.e.
the setting in which X* contributes no incremental pre-
dictive accuracy (represented by p*=0). Here we see that
both the likelihood ratio and Wald test have test size
close to the nominal 5%. By contrast the DeLong test of
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Table 1 Simulation results for n=500, prevalence at 20%

p* p Test p=0.0 p=0.1 p=0.3 p=0.5
00 00 LRT 0.050 0.048 0.053 0.055
Wald 0.048 0.045 0.052 0.053

AUC 0.004 0.004 0.006 0.003

0.1 LRT 0.059 0.057 0.053 0.052
Wald 0.057 0.055 0.052 0.051

AUC 0.003 0.004 0.002 0.005

02 LRT 0.048 0.054 0.055 0.049
Wald 0.045 0.051 0.054 0.047

AUC 0.002 0.004 0.001 0.000

03 LRT 0.043 0.059 0.052 0.054
Wald 0.043 0.056 0.051 0.051

AUC 0.002 0.001 0.000 0.002

0.1 00 LRT 0217 0.196 0215 0259
Wald 021 0.191 0213 0.253

AUC 0.027 0.025 0.040 0.043

0.1 LRT 0.191 0218 0232 0239
Wald 0.187 0212 0226 0.237

AUC 0.027 0.024 0.029 0.035

02 LRT 0.199 0.203 0.198 0.253
Wald 0.196 0.196 0.195 0.249

AUC 0.021 0.015 0019 0.022

03 LRT 0.179 0.205 0.200 0.259
Wald 0.178 0.205 0.199 0.253

AUC 0.0m 0.013 0.012 0018

02 00 LRT 0613 0615 0.646 0.738
Wald 0.607 0613 0643 0.734

AUC 0.196 0.195 0229 0.294

0.1 LRT 0614 0621 0.650 0.736
Wald 0611 0618 0.644 0.729

AUC 0.167 0.178 0.203 0272

02 LRT 0.604 0.620 0.640 0.740
Wald 0.600 0616 0637 0.735

AUC 0.121 0121 0.141 0.205

03 LRT 0.595 0623 0641 0.696
Wald 0.590 0620 0637 0692

AUC 0.096 0.098 01m 0.153

03 00 LRT 0.908 0926 0.942 0970
Wald 0.908 0925 0941 0.969

AUC 0581 0.586 0622 0.745

0.1 LRT 0918 0915 0939 0973
Wald 0916 0913 0936 0972

AUC 0533 0539 0592 0.699

02 LRT 0910 0925 0933 0971
Wald 0.908 0922 0931 0970

AUC 0414 0432 0496 0627
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Table 1 Simulation results for n=500, prevalence at 20%
(Continued)

03 LRT 0.905 0.900 0.937 0.972
Wald 0.903 0.898 0.936 0.970
AUC 0.359 0.362 0423 0.520

Entries in the table show the power (for p* > 0) and the test size (for p*=0)
for the likelihood ratio (LRT) and Wald tests from logistic regression and the
Delong et al. test comparing the AUCs. Correlation of the new marker and the
existing marker, conditional on the outcome, is represented by p.

the AUCs is exceptionally conservative, with a test size
far below nominal. Power comparisons in the rest of
the table show that the likelihood ratio test and the
Wald test have similar power but both are far superior
to the AUC test. Further, the likelihood and Wald tests
are largely unaffected by the underlying strength of the
baseline predictive model (represented by p), while the
power of the area test diminishes as the underlying
AUC increases (again represented by ). Power for
all tests increases with greater correlation between p
and p*.

We repeated our analyses varying the prevalence (0.2
and 0.05) and sample size (n=100). Our results were
essentially unaffected. Lowering the sample size or pre-
valence reduced power for all analyses, but the Wald
and likelihood ratio tests always had far superior power
to the AUC test.

Summary

We have shown that a test of a new marker in a predic-
tion regression model and a test of prediction accuracy
constructed from a comparison of ROC AUCs are
designed to test the same conceptual null hypothesis,
the hypothesis that the new marker possesses no incre-
mental predictive information. The use of two tests side
by side to address the same hypothesis is not logical,
and if we require both tests to be significant such a
strategy necessarily has the effect of decreasing the
power for detecting an improvement in predictive accu-
racy. We have also shown that testing ROC areas gener-
ated from nested models is an approach with serious
validity problems.

What is the correct approach? In our opinion, investi-
gators should select a single test for assessing incremen-
tal predictive accuracy. The choice of test depends on
the data context, but tests of the incremental predictive
information in the new marker in the context of the
regression model, such as the likelihood ratio test and
the Wald test, have well understood and valid statistical
properties under the defined sampling properties of the
model. Likewise, the area test of Delong et al. [8] has
been shown to have valid statistical properties in the
context for which it was developed, that is, the compari-
son of two dependent diagnostic markers[17]. But ROC
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analysis was not developed for the purpose of testing
new predictors in nested models. ROC analysis was cre-
ated as a technique to appropriately calibrate compari-
sons of the accuracy of two or more ordinal diagnostic
procedures [18]. In this setting, where the empirical
classification points for each of the tests are not under
the control of the analyst, ROC methods are needed to
extrapolate the results of each of the diagnostic (or pre-
dictive) tests to permit a calibrated comparison. The use
of ROC AUCs is a natural outgrowth of this work, in
that the AUC is summary measure that is inherently
calibrated for comparison purposes [19]. Subsequent
work generalized these methods to incorporate compari-
sons of continuous (rather than ordinal) tests, such as
two distinct laboratory tests[20].

However, we have shown that ROC methods are not
appropriate for testing the incremental value of new
predictors in the presence of established predictors (i.e.
in a “nested” setting) where the patient-specific predic-
tors from the model are used as the data for the ROC
analysis. There are several possible reasons why the area
test is so inferior in this context. Our intuition is that a
principal reason is that the use of patient-specific pre-
dictors from the estimated model as data ensures that
the estimated ROC curve is biased upwards [21]. This is
a well-known phenomenon that had led to the wide-
spread recognition that predictive models need to be
validated in independent test sets, or minimally by using
cross-validation techniques. Since the bias is strongly
correlated in the two nested models the validity of the
test is further compromised.

Naturally, novel ROC methods might be developed
that overcome the problems associated with the De
Long et al. test in this context. Such novel methods
could be formally evaluated in future research. Nonethe-
less, the validity or otherwise of these methods would
not affect our main conclusion that using both an ROC
test and a test of a new marker in a predictive model is
double-testing the same conceptual null hypothesis and
that, accordingly, investigators should select a single test
for assessing incremental predictive accuracy.

Several previous authors have pointed out that AUC
comparisons are underpowered. Pencina, for example,
states that “very large ‘independent’ associations of the
new marker with the outcome are required to result in
a meaningfully larger AUC”[22]. Indeed, this observation
was the motivation for the novel ‘net reclassification
index’ method. Similarly, in a comprehensive review,
Cook argued that the AUC is “insensitive” and “can
erroneously eliminate important clinical risk predic-
tors”[23]. These considerations appear to be based lar-
gely on practical experience and case studies. Previous
authors made no formal investigations of the statistical
properties of area tests nor documented clearly that
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comparison of ROC areas for nested models is highly
conservative. We believe that the huge power and size
deficiencies of the AUC test in this context, demon-
strated in our simulations, are not widely known to
methodologists.

The ROC curve, a descriptive tool, adds insight in that
it allows one to identify and compare the sensitivities of
the predictive models at chosen specificities, and vice
versa, and for gauging the magnitude of any apparent
increase in accuracy. ROC curves are useful for charac-
terizing the predictive accuracy of competing predictive
models, even nested models, as numerous commenta-
tors have advocated. But its role in this setting is
descriptive, and it is imperative that cross-validated data
or independent data from external data sets be used for
this purpose. Elsewhere it has been argued that ROC
curves are inadequate for assessing prediction models,
including the question of whether new markers are
informative [6,24]. Simple, decision analytic approaches
have also been advocated [25-27]. Such positions are
not inconsistent with our advice here. We suggest a
staged approach, with analysis of the value of a new pre-
dictor first involving assessment of independent statisti-
cal significance of the predictor within a predictive
model, then increment in AUC and, finally, impact on
decision making[6].

In summary, we advise against the use of double-
testing new predictors for predictive accuracy in the
presence of existing predictors. This strategy involves
essentially testing the same conceptual null hypothesis
twice, disrupting the validity of the reported significance
levels. Further, the use of tests based on ROC curves
generated from the estimated patient-specific risk pre-
dictors without cross-validation has been shown to be
technically flawed. However, ROC curves are useful as
tools for describing the rate of false positive and false
negative errors.

Appendix

Simulation approach

Independent Predictors

Simulations were conducted to test the power of the
likelihood ratio test, the Wald test and a comparison of
areas-under-the-curves. In this first set of simulations, X
and X* are independent normal random variables.
Among subjects who experience the outcome (y=1), X
has a normal distribution with mean p and variance 1,
and X* has mean p* and variance 1. Among non-
responders, x and x* are both drawn independently
from a standard N(0,1) distribution. We first determine
1, the overall probability of response (which was set at
0.5 in all our simulations), and n, the total sample size
(which was set at 500).
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Data Generation For each of n patients generate data
as follows:-

1. Generate y: Sample from U(0,1), set y=1 if U

(0,1)<m and set y=0 otherwise.

2. If y=1, sample X from N(i,1) and X* from N(u*, 1).

3. If y=0, sample X from N(0,1) and X* from N(0, 1).
Data Analysis 4. Analyze the restricted model using the

logistic regression logit(y) = By + B, X

5. Use the estimates of By and ; from the model to

calculate , _ 'éo"' :231 x- Note that the true value of

B; = pand By = 0.5 i +log(m + (1-m)).

6. Calculate the area under the ROC curve linking y
and z

7. Analyze the expanded model using the logistic
regression logit(y) = Bo + B,:X + B.X*

8. Calculate a p-value for H: B, = 0 using the likeli-
hood ratio test and the Wald test.

9. Use the estimates of B, B; and B, from the model

to calculate Z:ﬁo"'ﬁlx"'ﬁzx*
10. Calculate the area under the ROC curve linking
y and z
11. Calculate the DeLong et al. p-value comparing
the area estimates from 6 and 10 above.
Simulation
12. Repeat the entire process from 1-11 above 2000
times and compute the relative frequency of signifi-
cant (P < 0.05) p-values.
13. Do this for pu*=0 to estimate the test size, and for
larger values of p* to assess a range of powers.
14. Repeat the process for a range of values of .
Dependent Predictors
In this dependent setting, among subjects who experi-
ence the outcome (y=1), x and x* are both normally dis-
tributed with unconditional variances equal to 1, means
p and p* respectively, and with correlation p. Among
non-responders, the means of both X and X* are zero
and the correlation is p.
Data Generation For each of n patients generate data
as follows:-

1. Generate y: Sample from U(0,1), set y=1 if U(0,1)
<1 and set y=0 otherwise.
2. If y=1, sample X from N(,1) and X* from N(p*
+pX,1-p?).
3. If y=0, sample X from N(0,1) and X* from N(pX,
1-p?).

Data Analysis 4. Analyze the restricted model using the
logistic regression logit(y) = Bo + B X
5. Use the estimates of B and ; from the model to

calculate , _ ’2304_ '[}1 X
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6. Calculate the area under the ROC curve linking y
and z

7. Analyze the expanded model using the logistic
regression logit(y) = Bo + B:X + B.X*

8. Calculate a p-value for H: B, = 0 using the likeli-
hood ratio test and the Wald test.

9. Use the estimates of B¢, B; and B, from the model

to calculate , _ Bo+ﬁlx+ﬁzx*

10. Calculate the area under the ROC curve linking
y and z

11. Calculate the DeLong et al. p-value comparing
the area estimates from 6 and 10 above.

Simulation
12. Repeat the entire process from 1-11 above and
compute the relative frequency of significant (P <
0.05) p-values.
13. Do this for p*=0 to estimate the test size, and for
larger values of p* to assess a range of powers.
14. Repeat the process for a range of values of p.
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