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One-step Generalized Likelihood Ratio Test for

Subpixel Target Detection in Hyperspectral Imaging
François Vincent and Olivier Besson

Abstract—One of the main objectives of hyperspectral image
processing is to detect a given target among an unknown
background. The standard data to conduct such a detection is
a reflectance map, where the spectral signatures of each pixel’s
components, known as endmembers, are associated with their
abundances in the pixel. Due to the low spatial resolution of
most hyperspectral sensors, such a target occupies a fraction of
the pixel. A widely used model in case of subpixel targets is the
replacement model. Among the vast number of possible detectors,
algorithms matched to the replacement model are quite rare. One
of the few examples is the Finite Target Matched Filter, which is
an adjustment of the well-known Matched Filter. In this paper,
we derive the exact Generalized Likelihood Ratio Test for this
model. This new detector can be used both with a local covariance
estimation window or a global one. It is shown to outperform
the standard target detectors on real data, especially for small
covariance estimation windows.

Index Terms—Hyperspectral, Detection, Subpixel, Replace-
ment Model, GLRT, Kelly.

I. INTRODUCTION

Human vision is sensitive to a reduced part of the whole

solar irradiance (wavelengths between 0.4 and 0.7µm), and

samples this spectrum through three bands to get colour

information. Other animal species have developed a better

adaptation to their environment, with a thinner spectrum

sampling and a larger bandwidth sensitivity (such as the

Mantis shrimp, for instance). Hyperspectral imaging systems

aim at improving our vision in order to better analyze

our environment. Indeed, hyperspectral cameras collect the

reflected radiance from the surrounding objects, through a

large number (more than a hundred) of narrow bands from

a large spectrum (usually from the near ultraviolet to the

short or medium infra-red). As this spectral response is

deeply related to the physical nature of each material, such

systems bring unique information to the detection of objects

or the identification of substances. Thereby, hyperspectral

imaging is a useful tool in many domains, including earth

observation and remote sensing [1], astronomy [2], defense

[3], mine detection [4] [5], gas detection [6], food safety [7],

or medicine [8].

Because of the non-uniform sun power-spectral density

and the atmospheric interactions, the first step of most

hyperspectral processing systems consists in a spectral

radiance correction conducting to reflectance measurements,

which are intrinsic features of the materials composing the

picture. Each of the elementary components of the scene

François Vincent and Olivier Besson are with University of Toulouse,
ISAE-SUPAERO, Toulouse, France, francois.vincent@isae-supaero.fr,
olivier.besson@isae-supaero.fr

is then characterized by its spectral reflectance, known as

an endmember. The popular Linear Mixing Model (LMM)

assumes that the global reflectance response from a given

pixel is the weighted sum of each endmember associated

with its proportion, known as abundance. This simple and

widely used model does not consider multiple light reflections

between these different components, that can lead to more

complicated Non-Linear Mixture Models (NLMM) [9].

Depending on the application, different objectives are pursued,

such as unmixing or classification. In this paper, we focus on

the detection problem. In this case, two kinds of algorithms

are usually considered; target detection, when one is looking

for a known target signature different from the background

(such as a known man-made object in a natural environment,

for instance), or anomaly detection, when the target signature

is not known a priori.

For target detection purposes, many algorithms developed for

other applications (such as radar or array processing) have

been adapted to the hyperspectral context. This is for instance

the case of the generalized likelihood ratio test (GLRT)

first developed by Kelly [10], the adaptive matched filter

(AMF) [11] and the adaptive coherent/cosine estimator (ACE)

[12], originally derived for radar applications. Algorithms

developed for the hyperspectral imagery scenario include the

matched filter (MF) [13] and constrained energy minimization

(CEM) [14] which have similar linear filter outputs and

only differ from the presence or not of the signal of interest

in the covariance matrix used to whiten the data. Another

well-known detector, the Orthogonal Subspace Projection

(OSP) [15], has an equivalent formulation since the projection

on the subspace orthogonal to the endmembers is a high SNR

approximation of the inverse of the covariance matrix. The

above detectors have been obtained assuming a multivariate

Gaussian distribution for the background, but the AMF was

extended to elliptical distributions in [16], leading to the

so-called EC-GLRT.

As stated before, all these widely used algorithms have

been developed for different signal processing applications

where the model at hand is the standard additive model. That

is to say, considering that we have the same background

signal whether the target is present or not. In the case

of hyperspectral reflectance measurements, this model is

not fully suitable. Indeed, as the abundances represent the

proportion of the corresponding endmembers, their sum is

always one. This constraint on the abundances leads to the

so-called replacement model as stated in eq. (1), in the next

section. Hence, all these popular algorithms are derived under

assumptions that hold only when the target abundance is
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small.

It has to be noticed that because of the huge number of

spectral bands provided by a hyperspectral camera, these

systems usually have poor spatial resolution compared with

standard cameras. This price to be paid to improve the

spectral selectivity entails, incidentally, the presence of many

subpixel targets, where the replacement model makes sense.

Compared to the large number of algorithms and their

variants developed for the additive model, detectors assuming

a replacement model are rare. The most popular one is

the so-called Finite Target Matched Filter (FTMF) [17],

which is the adaptation of the MF to the replacement model

for a Gaussian distributed background. It consists of a

two-step GLRT, where the mean and covariance matrix of

the background are supposed to be known from secondary

data. This detector is shown to have a better target selectivity

than the standard MF, i.e. it reduces the false alarms due to

the presence of unwanted targets, by naturally taking into

account the target abundance [17]. This target selectivity

improvement is of utmost importance in geological remote

sensing applications when searching for a specific material.

Indeed, the correlation between different kinds of targets

can be high in hyperspectral detection, inducing a dramatic

increase of the so-called false-positives. The FTMF has

been extended recently in [18] to handle backgrounds with

elliptically contoured distributions, yielding the EC-FTMF.

Nevertheless and as for most two-step detectors, the

performance of this replacement algorithm is strongly related

to the accuracy of the covariance matrix estimated from

the secondary data. Covariance matrix estimation is the

central point in many signal processing applications, and here

we have to deal with the compromise between choosing a

large secondary window to reduce the estimation errors and

the need to stay close to the PUT to get a representative

covariance matrix. Even if one reduces the dimensionality of

the data using, for instance, a Principal Components Analysis

(PCA), the amount of secondary pixels needed to mitigate

the performance loss could be large. Many regularization

techniques exist to improve the covariance matrix inversion

[19], but this wider issue being out of the scope of our paper,

we only consider here the sample covariance matrix estimated

from local or global windows.

In this paper, we derive the exact, i.e. the one-step GLRT,

that fits the replacement model. To the best of the authors’

knowledge, the expression of this direct GLRT is not

available in the literature. We refer to it as Adaptive Cell

Under Test Estimator (ACUTE), as it allows the detection

of small targets and does not use only the target signature

and the background covariance matrix, but also adapts to the

background abundance estimated in the cell under test. This

detector, which is the counterpart of Kelly’s GLRT for the

replacement model, is shown to outperform most standard

detectors, on real data detection experiments. The proposed

algorithm is shown to be much more powerful than both the

standard and the replacement Matched Filters, demonstrating

higher selectivity and robustness.

The paper is organized as follows. We first describe the

replacement model and introduce the detection problem, in

Section II. Two kinds of GLRT can then be used, namely

the two-step GLRT, considering that the background statistics

are known from the secondary data, and the one-step GLRT

which assumes that the background statistics have to be

estimated during the detection step. As stated before, the

two-step GLRT, known as FTMF has been presented in [17].

But as this reference is difficult to find in the open literature,

we will recall the derivation of the FTMF in Section III.

Section IV is devoted to the computation of the new one-step

GLRT algorithm (ACUTE). This new detector is compared

to the standard detectors using some real data benchmarking,

in Section V. Finally concluding remarks end this paper in

Section VI.

II. THE REPLACEMENT MODEL

As stated in [19], the replacement model writes

y = αt+ (1− α)b (1)

where

• y represents the spectral vector of the pixel under test,

composed of N components,

• t represents the endmember we are looking for

• 0 ≤ α ≤ 1 is the unknown abundance of the variety

characterized by t also known as the fill factor and

• b is the background spectral signature, assumed to be

Gaussian distributed with mean µ and covariance matrix

R, which we denote as b ∼ N (µ,R)

Moreover, we suppose that one has access to target-free data

zk (referred to as secondary data) assumed to be distributed as

zk ∼ N (µ,R). The target signature t is usually known from

laboratory measurements [1] and we will consider its spectral

signature as deterministic, even if there exists, in practice, an

unknown spectral variability between the laboratory measure-

ment and the actual one.

The detection problem aims at choosing between H0(α = 0)
and H1(α 6= 0). This detection problem is not standard, as the

background power varies between the two hypotheses. In our

case, we observe a noise proportion decrease when the target

is present. This model is akin to the detection problem tackled

in [20], where the noise power and the target amplitude were

not linked together, unlike in the present replacement model.

III. TWO-STEPS GLRT (FTMF)

As stated in the introduction, we propose first to recall the

derivations leading to the so-called FTMF, corresponding to

the two-step GLRT.

The log-likelihood under H1 is shown to be

L1 =−
1

2
log(|R|)−N log((1− α))

−
1

2

(y − αt− (1− α)µ)TR−1(y − αt− (1− α)µ)

(1− α)2

or

L1 = −
1

2
log(|R|)−N log((1− α))−

1

2

(ỹ − αt̃)T (ỹ − αt̃)

(1− α)2
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where ỹ = R−1/2(y − µ), t̃ = R−1/2(t − µ) are whitened

variables.

Differentiating with respect to α, we have

∂L1

∂α
=

N

(1− α)

−
1

2

−2t̃T (ỹ − αt̃)(1− α)2 + 2(1− α)(ỹ − αt̃)T (ỹ − αt̃)

(1− α)4

so that α which maximizes the log-likelihood is given by

N(1− α)2 (2)

= −t̃T (ỹ − αt̃)(1− α) + (ỹ − αt̃)T (ỹ − αt̃)

= (ỹ − αt̃)T ((ỹ − αt̃)− (1− α)t̃))

= (ỹ − αt̃)T (ỹ − t̃)

= (ỹ − αt̃)T δ̃

where δ̃ = ỹ− t̃ is the difference between the whitened PUT

spectral signature and the target one.

α is then the solution of the following 2nd-order equation

Nα2 + α(−2N + t̃T δ̃) + (N − ỹT δ̃) = 0 (3)

The roots of (3) are

α̂ = 1−
t̃T δ̃

2N
∓

√

(t̃T δ̃)2 + 4N δ̃
T
δ̃

2N

and the only valid solution to get α ∈ [0, 1] is

α̂ = max



0,



1−
t̃T δ̃

2N
−

√

(t̃T δ̃)2 + 4N δ̃
T
δ̃

2N









Now, the GLRT writes

TFTMF = 2 log(
p(y|H1)

p(y|H0)
)

= −N log(1− α̂)2 + ỹT ỹ −
(ỹ − α̂t̃)T (ỹ − α̂t̃)

(1− α̂)2

From (2), we have

N =
(ỹ − αt̃)T δ̃

(1− α)2

=
(ỹ − αt̃)T (ỹ − αt̃)

(1− α)2
−

(ỹ − αt̃)T t

(1− α)

=
(ỹ − αt̃)T (ỹ − αt̃)

(1− α)2
−

δ̃
T
t̃

(1− α)
− t̃T t̃

So that the GLRT can also be written as

TFTMF = −2N log(1− α̂) + ỹT ỹ −N −
δ̃
T
t̃

(1− α̂)
− t̃T t̃

with

1− α̂ = min



1,
1

2





t̃T δ̃

N
+

√

(
t̃T δ̃

N
)2 + 4

δ̃
T
δ̃

N









completing the formulation of the FTMF that can be found in

[17].

IV. ONE-STEP GLRT (ACUTE)

Following Kelly’s approach [10], we now consider the

direct (one-step) GLRT, i.e. considering that the background

characteristics (mean and covariance matrix) are not a

priori known. Hence, we assume that we have access to K

secondary data zk, k = 0..., (K − 1), free from the target

endmember t - i.e. zk ∼ N(µ,R).

The likelihood under H0 is shown to be

p0 =
1

√

(2π)N |R|
e−

1
2 (y−µ)TR−1(y−µ)

×
K−1
∏

k=0

1
√

(2π)N |R|
e−

1
2 (zk−µ)TR−1(zk−µ)

=
1

[(2π)N |R|]
K+1

2

e−
1
2Tr{R

−1Σ0}

where Σ0 = ΣK−1
k=0 (zk − µ)(zk − µ)T + (y − µ)(y − µ)T .

The mean and covariance matrix that maximize this

likelihood are shown to be respectively µ̂0 = Kz̄+y

K+1

and R̂0 = 1
K+1 [ZZ

T + yyT − (K + 1)µ̂0µ̂
T
0 ], where

Z = [z0...zK−1], z̄ = 1
KZ.1 and 1 is a column vector

composed of 1.

After maximization with respect to µ and R the likelihood

under H0 becomes

p0 =
1

[(2π)N |R̂0|]
K+1

2

e−
N(K+1)

2

where R̂0 can be written as follows

R̂0 =
1

K + 1
[ZZT −Kz̄z̄T +

K

K + 1
(y − z̄)(y − z̄)T ]

The likelihood under H1 is

p1 =
1

√

(2π)N |(1− α)2R|

× e
− 1

2(1−α)2
(y−αt−(1−α)µ)TR−1(y−αt−(1−α)µ)

×
K−1
∏

k=0

1
√

(2π)N |R|
e−

1
2 (zk−µ)TR−1(zk−µ)

=
1

(1− α)N [(2π)N |R|]
K+1

2

e−
1
2Tr{R

−1Σ1}

where

Σ1 =

K−1
∑

k=0

(zk − µ)(zk − µ)T

+
[y − µ− α(t− µ)][y − µ− α(t− µ)]T

(1− α)2

Differentiating the log likelihood with respect to µ leads to

R−1
K−1
∑

k=0

(zk − µ) +
1

1− α
R−1(y − αt− (1− α)µ) = 0
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so that

µ̂1 =
1

K + 1
(
K−1
∑

k=0

zk +
y − αt

1− α
)

or

µ̂1 =
1

K + 1
(Kz̄+ ỹ)

with z̄ = 1
K

∑K−1
k=0 zk and ỹ = y−αt

1−α .

Then, the covariance matrix that maximizes this likelihood is

shown to be R̂1 = Σ1(µ̂1)
K+1 , so that the likelihood under H1

becomes

p1 =
1

(1− α)N [(2π)N |R̂1|]
K+1

2

e−
N(K+1)

2

Taking the logarithm of this last expression, we have

L1 = log(p1) = −N log(1− α)−
K + 1

2
log(|R̂1|) + const.

where

(K + 1)R̂1 =

ΣK−1
k=0 (zk − µ̂1)(zk − µ̂1)

T + [ỹ − µ̂1][ỹ − µ̂1]
T

= ZZT −Kz̄µ̂T
1 −Kµ̂1z̄

T +Kµ̂1µ̂
T
1

+ ỹỹT − ỹµ̂T
1 − µ̂1ỹ

T + µ̂1µ̂
T
1

= ZZT + ỹỹT − (K + 1)µ̂1µ̂
T
1

= ZZT + ỹỹT −
1

K + 1
(Kz̄+ ỹ)(Kz̄+ ỹ)T

= ZZT −
K2

K + 1
z̄z̄T +

K

K + 1
(ỹỹT − ỹz̄T − z̄ỹT )

= ZZT −Kz̄z̄T +
K

K + 1
(ỹ − z̄)(ỹ − z̄)T

so that

|R̂1| =
1

(K + 1)N
|S|

× [1 +
K

K + 1
(ỹ − z̄)TS−1(ỹ − z̄)]

where S = ZZT −Kz̄z̄T = (Z− z̄1T )(Z− z̄1T )T .

Differentiating the log-likelihood with respect to α, we

obtain

∂L1

∂α
=

N

1− α

−
K + 1

2

2K
(K+1)(1−α)2 (y − t)TS−1(ỹ − z̄)

[1 + K
K+1 (ỹ − z̄)TS−1(ỹ − z̄)]

= 0

so that the Maximum Likelihood (ML) of α satisfies

N [1 +
K

K + 1
(ỹ − z̄)TS−1(ỹ − z̄)] (4)

=
K

(1− α)
(y − t)TS−1(ỹ − z̄)

or equivalently

N [(1− α)2 +
K

K + 1
(ȳ − αt̄)TS−1(ȳ − αt̄)]

= K(y − t)TS−1(ȳ − αt̄)

with ȳ = y − z̄ and t̄ = t− z̄.

As ȳ − αt̄ = d+ (1− α)t̄, with d = (y − t), we have

(1− α)2N [1 +
K

K + 1
t̄TS−1t̄] (5)

+ (1− α)(
2NK

K + 1
−K)[dTS−1t̄]

+ (
KN

K + 1
−K)[dTS−1d] = 0

This is a quadratic equation in (1 − α), where the product

of the two roots is negative. Indeed the coefficient of

(1−α)2 is positive and the constant term is negative, because

N < K + 1, to ensure the invertibility of S. Hence, the only

valid solution is the positive one provided that is lower than

1, otherwise α̂ = 1.

Furthermore, using the fact that |R̂0| = 1
(K+1)N

|S|[1 +
K

K+1 ȳ
TS−1ȳ], the GLRT is shown to be

TACUTE =
|R̂0|

K+1
2

(1− α̂)N |R̂1|
K+1

2

=
(1 + K

K+1 ȳ
TS−1ȳ)

K+1
2

(1− α̂)N [1 + K
K+1 (ỹ − z̄)TS−1(ỹ − z̄)]

K+1
2

Now, from eq. (4), we have

|R̂1| =
1

(K + 1)N
|S|

× [
K

N(1− α̂)2
dTS−1(d+ (1− α̂)t̄)]

so that the one-step GLRT can also be written as follows

TACUTE =

(1 + K
K+1 ȳ

TS−1ȳ)
K+1

2

(1− α̂)(N−K−1)[KN (dTS−1d+ (1− α̂)dTS−1t̄)]
K+1

2

with (1− α̂) given from eq. (5).

It has to be noticed that the computational load of the

proposed scheme is equivalent to that of the standard

detectors as the main contribution in the computation comes

from the sample matrix inversion, a common step for all local

covariance based detectors.

V. REAL DATA ASSESMENT

Since many assumptions may not hold in a real environment

(especially the Gaussian hypothesis or possible target signature

mismatches), we propose, in this last section, to assess the

performance of the new detector through two different real

data experiments. Moreover, real data can lead to selectivity

problems. Indeed, unlike in a simulated environment where a

small number of background endmembers are generated, the

diversity and number of materials is much more important in a

real image, leading to possible highly correlated false targets.

More precisely, we first test our scheme on two data bench-

marks, namely the Rochester Institute of Technology (RIT)

experiment [21] and the airborne Viareggio 2013 trial [22].
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Then, as the number of targets provided by these two ex-

periments is too small to get statistical results, we provide a

second kind of validation by introducing controlled targets into

the real map. Indeed, we numerically introduce a real target

signature from the Viareggio open data into the map, in order

to compute Receiver Operating Characteristics (ROC), giving

the Probability of Detection Pd as a function of the Probability

of False Alarms Pfa.

A. RIT Experiment

First, we consider the RIT open data experiment, as it has

been specially designed for target detection purposes, and was

largely used in the literature [23]–[32], allowing us to easily

benchmark with other algorithms. Indeed, this benchmarking

hyperspectral detection project provides a corrected and geo-

registred reflectance map so that the detection performance

will be independent from any pre-processing step. Besides

the standard self test, the RIT provides a blind test where

the target positions are unknown to prevent ad-hoc algorithms.

Fig. 1. Complete RGB view of the RIT test scene

The 800 × 280 pixel image (see Fig. 1), composed of

N = 126 bands was collected in 2006, around the small town

of Cooke City, Montana, USA. The data were obtained by

the HyMap sensor on-board a plane flying at about 1.4 km

altitude, resulting in a terrain resolution of about 3×3 meters.

4 kinds of fabric panels and 3 kinds of civilian cars were used

as targets in this map. For each target, a reference spectrum

signature obtained from a laboratory spectrophotometer is

provided. Moreover, the targets’ map positions are also given

for the self test (see Fig. 1). It should be noted that the spatial

resolution of the map is of the same order of magnitude as

the target sizes, so that they will usually behave as subpixel

targets [23], [33].

From the three cars proposed as targets, we have chosen to

consider only the so-called V1 and V3 [21], as vehicle V2 is

a pick-up composed of two different signatures, namely the

one corresponding to the cabin and the one corresponding

to the back. Besides these two vehicles, a third detection

experiment will be conducted on the so-called F2 target,

corresponding to a 3 × 3 meter yellow nylon fabric panel.

The F1 panel being easily detectable, it is not discriminant

for our benchmark so that we have chosen not to consider

it. Moreover, panels F3 and F4 being multiple targets with

different sizes, are difficult to take into account in a simple

detection scoring.

The mean and the covariance matrix of the background are

both estimated from an identical window whose size varies

from 15 × 15 pixels, corresponding to the smallest number

of secondary pixel to get an invertible covariance matrix, to

the complete map, as specified in table I. It should be noted

that some authors recommend using a shorter window to

estimate the background mean, as this last vector is supposed

to change more rapidly than the covariance matrix [34].

But, as the algorithms considered in this paper have been

derived considering the same number of secondary data,

both for the mean and the covariance matrix, we chose to

use a unique window size. Moreover, given the size of the

targets, we consider a 5 × 5 pixel guard window around the

PUT, corresponding to 15× 15 ground meters, to exclude the

signature of a possible target in the background estimation

process.

The performance of each benchmarked algorithm is assessed

calculating the number of pixels having their detector’s

output strictly higher than the one for the target pixel. This

number can be seen as a false alarm number with an optimal

thresholding. The proposed ACUTE scheme is compared with

standard Gaussian detectors, namely the MF, Kelly’s detector,

ACE, and the FTMF which is the only one also designed for

the replacement model. We have also added the EC-FTMF

for comparison, as it is a rare example of a detector exploiting

the replacement model, even if it assumes a non-Gaussian

background. In order to differentiate EC-FTMF from FTMF,

we chose a small number of degrees of freedom for the

assumed Student background probability density function

(pdf) (ν = 3). The false alarm scores, calculated as described

above are presented in Tables II, III and IV, for the 3
different targets, and for different secondary data window

sizes. Moreover, the results for the global version of each

detector, i.e. considering all the pixels as secondary data, is

also included in the tables.

TABLE I
COVARIANCE WINDOW SIZES AND THE CORRESPONDING RELATIVE

NUMBER OF SECONDARY PIXELS

Window Size 15 17 19 21 23 25 Global
K

N
1.71 2.22 2.8 3.43 4.13 4.89 1778

TABLE II
FALSE ALARMS RIT SCORE FOR V1 TARGET

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

1778 399 398 16 32 15 32

4.89 253 70 19 117 14 33

4.13 196 39 8 84 6 23

3.43 188 30 9 86 8 19

2.8 337 50 33 154 25 33

2.22 183 10 8 90 6 9

1.71 74 1 1 37 1 1

First of all we can see that the False Alarm scores are very

different for the 3 kinds of target, while they are approximately

of the same size. Thus we can expect that V3 probably gets

a spectral signature closer to background components. The

ability of a given detector to mitigate the false alarms due to
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TABLE III
FALSE ALARMS RIT SCORE FOR V3 TARGET

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

1778 9635 9633 3848 3653 1663 3652

4.89 22695 16710 7766 10605 3792 7891

4.13 12107 7255 3448 5765 1698 3489

3.43 16938 9833 6000 8212 2907 4786

2.8 7956 3754 3047 3907 1471 1870

2.22 1409 112 65 726 35 64

1.71 4086 923 922 2042 441 468

TABLE IV
FALSE ALARMS RIT SCORE FOR F2 TARGET

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

1778 0 0 3 0 3 0

4.89 0 0 0 0 0 0

4.13 0 0 0 0 0 0

3.43 1 0 0 0 0 0

2.8 1 0 0 0 0 0

2.22 1 0 0 0 0 0

1.71 4 1 1 1 1 1

target-like background is referred to as selectivity. The replace-

ment model-based detectors are known to increase selectivity,

as they cross-check the target fill factor and the background

attenuation in the PUT. This selectivity improvement was in

fact the starting point for the development of the replacement

model-based FTMF [17]. On the other hand, the one-step

approaches (Kelly, ACE and ACUTE) seem to be more robust

to a small number of secondary pixels, as can be observed in

the last two cells of tables II and III, where they belong to the

best methods. We can notice a very good performance from

the EC-FTMF, but it is difficult to draw any conclusions as it is

the only one assuming a fat tail background distribution. The

proposed detector ACUTE possesses the two features: it is a

one-step approach and it is based on the replacement model.

Thus it behaves all the better as the secondary window size

decreases and if selectivity issues exist in the map. This can

be observed in Table III, even if we can notice a very good

performance from ACE too.

B. Viareggio Experiment

The second experiment we have chosen is the airborne

Viareggio 2013 trial [22], as we have access here to the

raw data. This way, we can control the pre-processing steps.

Moreover, the spatial resolution of the map is thinner than

for the RIT experiment, leading to more full-pixel targets and

larger target abundances. This benchmarking hyperspectral

detection campaign took place in Viareggio (Italy), in May

2013, where an aircraft flying at 1200 meters, acquired 3
[450 × 375] pixels maps of the same area. Two of them

correspond to a cloudy day, whereas the last one was acquired

during clear weather. Each pixel is composed of 511 samples

in the Visible Near InfraRed (VINR) band (400 − 1000nm).
The spatial resolution is about 0.6 meters.

Different kinds of vehicles as well as coloured panels served

as known targets. For each of these targets, a spectral signature

obtained from ground spectroradiometer measurements is

available as well as the ground truth position. Moreover, a

black and a white cover, serving as calibration targets, were

also deployed. Indeed, these two calibrated targets, can be

used to convert the raw Digital Numbers (DN) measurements

into a reflectance map, using for instance the Empirical Line

Method (ELM) [35] [36].

Fig. 2. Complete RGB view of the D1F12H1 Viareggio test scene

Fig. 3. Complete RGB view of the D1F12H2 Viareggio test scene

The 3 experiments have been conducted with different target

configurations, as represented in Figs. 2, 3 and 4. The scene

is composed of parking lots, roads, buildings, sport fields and

pine woods. The black and white calibration panels are clearly

visible, around positions [70, 330] and [250, 150] respectively.

Moreover, the targets are composed of 5 vehicles (mentioned

with a V) and 1 panel (mentioned with a P). As for the RIT

experiment, we have excluded the so-called P1 panel as it is

composed of 3 distinct pieces.

The first step of the processing aims at converting the raw

measurements into a reflectance map, for which the unitary

constraint on the abundances is supposed to be verified. To

this end, we use the ELM, considering the black and white
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Fig. 4. Complete RGB view of the D2F12H2 Viareggio test scene

calibration panels. Then spectral binning [37] is performed to

reduce the vector size dimension to N = 32.

Tables VI- XVII present the false alarm scores, computed as

for the RIT experiment, for the different detectors, for the

different targets, the different maps and different window sizes.

For this benchmark, we have chosen a guard window size of

9×9 pixels, in order to avoid the presence of target signature in

the covariance matrix estimation window. The correspondence

between the covariance window sizes and the relative number

of secondary pixels, namely k
N is presented in table V.

TABLE V
COVARIANCE WINDOW SIZES AND THE CORRESPONDING RELATIVE

NUMBER OF SECONDARY PIXELS

Window Size 11 13 15 17 19 21 Global
K

N
1.25 2.72 4.5 6.5 8.75 11.2 5271

TABLE VI
FALSE ALARMS SCORE FOR V1 TARGET IN THE D1F12H1 VIAREGGIO

OPEN DATA IMAGE

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

5271 3 3 3 2 1 2

11.2 0 0 0 0 0 0

8.75 0 0 0 0 0 0

6.5 0 0 0 0 0 0

4.5 0 0 0 0 0 0

2.75 1 0 0 0 0 0

1.25 19 9 11 8 5 4

As for the RIT experiment, we can observe a good perfor-

mance of the proposed ACUTE especially for small window

sizes, except for the V3 target on the two first images and

the V6 on the last map. Indeed, for these 2 specific targets

we encounter a performance loss with respect to the other

targets, especially when the window size increases. In our

experience this loss can be mitigated using a covariance matrix

regularization scheme. Indeed, we experienced that diagonal

loading of the sample covariance matrix before inversion

can largely improve the performances compared to the other

TABLE VII
FALSE ALARMS SCORE FOR V3 TARGET IN THE D1F12H1 VIAREGGIO

OPEN DATA IMAGE

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

5271 26 26 1 133 1 133

11.2 68 45 49 700 21 454

8.75 68 41 38 801 43 467

6.5 79 54 71 1108 35 677

4.5 110 108 239 2089 70 1003

2.75 143 158 235 2530 78 527

1.25 139 183 289 522 241 489

TABLE VIII
FALSE ALARMS SCORE FOR V4 TARGET IN THE D1F12H1 VIAREGGIO

OPEN DATA IMAGE

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

5271 0 0 0 0 0 0

11.2 0 0 2 0 0 0

8.75 0 0 2 0 0 0

6.5 0 0 2 0 0 0

4.5 0 0 0 0 0 0

2.75 1 0 0 0 0 0

1.25 3 6 19 0 1 1

TABLE IX
FALSE ALARMS SCORE FOR P2 TARGET IN THE D1F12H1 VIAREGGIO

OPEN DATA IMAGE

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

5271 2 2 0 0 0 0

11.2 4 7 10 1 0 1

8.75 7 8 15 6 0 3

6.5 8 9 16 5 0 1

4.5 9 16 24 2 0 2

2.75 9 11 25 4 0 1

1.25 10 18 13 4 3 3

TABLE X
FALSE ALARMS SCORE FOR V1 TARGET IN THE D1F12H2 VIAREGGIO

OPEN DATA IMAGE

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

5271 0 0 1 0 2 0

11.2 12 1 8 3 0 0

8.75 13 2 11 5 0 0

6.5 13 3 12 10 1 1

4.5 14 4 27 15 2 3

2.75 17 6 21 23 3 3

1.25 5070 4105 4225 2914 1479 1538

TABLE XI
FALSE ALARMS SCORE FOR V3 TARGET IN THE D1F12H2 VIAREGGIO

OPEN DATA IMAGE

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

5271 16 16 1 94 5 94

11.2 58 47 79 201 8 119

8.75 39 40 58 250 18 110

6.5 60 47 65 275 33 101

4.5 73 45 76 429 30 126

2.75 219 303 823 1196 21 139

1.25 9684 7391 6297 6401 2323 2507

detectors. This issue is beyond the scope of the present paper

and will be investigated in future work. Once again, we

observe very good performance of the EC-FTMF algorithm,

suggesting a better fit of a fat-tail pdf for the background than
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TABLE XII
FALSE ALARMS SCORE FOR V4 TARGET IN THE D1F12H2 VIAREGGIO

OPEN DATA IMAGE

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

5271 0 0 1 1 1 1

11.2 0 0 6 0 0 0

8.75 0 1 6 0 0 0

6.5 0 0 6 0 0 0

4.5 0 1 4 0 0 0

2.75 0 0 0 0 0 0

1.25 4411 2925 2920 1198 1289 1318

TABLE XIII
FALSE ALARMS SCORE FOR P2 TARGET IN THE D1F12H2 VIAREGGIO

OPEN DATA IMAGE

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

5271 0 0 0 0 0 0

11.2 3 6 11 10 0 6

8.75 6 6 17 11 0 4

6.5 3 6 17 14 0 6

4.5 2 1 4 14 0 4

2.75 2 2 3 5 0 1

1.25 5291 5475 5909 2253 1635 1763

TABLE XIV
FALSE ALARMS SCORE FOR V1 TARGET IN THE D2F12H2 VIAREGGIO

OPEN DATA IMAGE

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

5271 1 1 3 1 2 1

11.2 0 0 0 0 0 0

8.75 0 0 0 0 0 0

6.5 0 0 0 0 0 0

4.5 0 0 0 0 0 0

2.75 0 0 0 0 0 0

1.25 2471 1392 1400 798 760 776

TABLE XV
FALSE ALARMS SCORE FOR V4 TARGET IN THE D2F12H2 VIAREGGIO

OPEN DATA IMAGE

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

5271 0 0 0 1 0 1

11.2 0 0 0 0 0 0

8.75 0 0 0 0 0 0

6.5 0 0 0 0 0 0

4.5 0 0 0 0 0 0

2.75 0 0 0 0 0 0

1.25 2529 1406 1412 720 728 747

TABLE XVI
FALSE ALARMS SCORE FOR V5 TARGET IN THE D2F12H2 VIAREGGIO

OPEN DATA IMAGE

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

5271 0 0 0 0 0 0

11.2 0 0 0 0 0 0

8.75 0 0 0 0 0 0

6.5 1 0 0 0 0 0

4.5 7 0 0 1 0 0

2.75 8 0 0 2 0 0

1.25 2859 1535 1487 1126 773 807

a Gaussian one.

Figure 5 presents the detector outputs for the P2 target and

for a 100×100 pixel zoom around the target. These plots show

the enhanced selectivity of the two replacement model based

TABLE XVII
FALSE ALARMS SCORE FOR V6 TARGET IN THE D2F12H2 VIAREGGIO

OPEN DATA IMAGE

K

N
MF Kelly ACE FTMF ECFTMF ACUTE

5271 42 42 3 1205 0 1205

11.2 151 102 25 75 20 70

8.75 142 99 17 110 9 84

6.5 109 93 28 216 1 163

4.5 147 95 55 284 1 133

2.75 104 97 86 7 1 2

1.25 3598 3200 3543 1101 815 843
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Fig. 5. Outputs of the detectors for P2 target

detectors, namely FTMF and ACUTE. Indeed, for the three

other detectors, in addition to the target peak in the center of

the plots, we can clearly see many interference peaks corre-

sponding to the parking-lot splitters that can be seen in the

top left figure. As stated before, while the detectors designed

for the additive model only measure the matching between

the PUT and the target signature, after background whitening,

FTMF and ACUTE also check the correspondence between

the target abundance, α and the background attenuation. If

the background attenuation does not correspond to (1 − α),
their output should decrease.

To finish with, we have also plotted the estimated target

abundance α both for the FTMF and ACUTE, in figure 6. In

both cases, we see a maximum value in the center of the map,

corresponding to the target position. The target abundance are

respectively estimated at 0.45 and 0.59 for FTMF and ACUTE.

These results are smaller than the supposed target fill factor,

which should be 1 in the center of the map where only the

target is present (full-pixel target). This under-estimation is

probably due to mismatches between the real target signature

and the presumed one, as well as the representativity of the
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Fig. 6. α̂ for FTMF and ACUTE

mean and covariance matrix estimated from the secondary

data.

C. Statistical Experiment

As stated before, we now conduct a statistical experiment

in this last subsection. To this end, we consider the Viareggio

first image and insert a target that is not initially present

in the map. More precisely, we insert the target V5 or V6,

only present in the third Viareggio map, according to the

replacement model with two specific values of the fill factor

α = 0.2 and α = 0.05. This last value corresponds to a

case where the replacement model tends towards the additive

one. For each Monte-Carlo trial the position of the target is

randomly changed and the detector output for the pixel of

interest is recorded to estimate the probability of detection Pd.

The total image without target serves as reference to compute

the probability of false alarm Pfa. Changing the threshold

position, we can plot the receivers operation characteristics

(ROC) as represented on Figs. (7) and (8) for V5 and Figs.

(9) and (10) for V6, for a secondary window size of 13× 13.

This size corresponds to 5 more secondary pixels than the

vector size N . Moving to larger windows does not change

significantly the results presented hereafter.
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Fig. 7. Receivers operation characteristics for V5 with α = 0.2

We can see that the gain using replacement-based algo-

rithms, namely FTMF or ACUTE, can reach two decades

in terms of Pfa for a given Pd, as soon as α reaches 0.2.
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Fig. 8. Receivers operation characteristics for V5 with α = 0.05
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Fig. 9. Receivers operation characteristics for V6 with α = 0.2

This improvement is higher than that observed in the real

data experiment, possibly because here the data have been

generated considering the exact replacement model. Thus, the

two algorithms perfectly match the signal under H1, unlike in

the real data cases, where the data follow, most probably, a

more complicated model, including possible non-linearities or

other mismatches.

To finish with, we compare the estimated values of the fill

factor α given by FTMF, ACUTE and EC-FTMF. Fig. 11

represents the histograms of the 10000 Monte-Carlo trials for

the V6 target with α = 0.2. We can see a good accordance

between the estimated values and the real one for both the 3
algorithms, even if the FTMF and EC-FTMF slightly under-

estimate the actual value of α of 10% in average, unlike for

the ACUTE procedure, which seems to be unbiased.

VI. CONCLUSIONS

In this paper we considered the detection problem of a

subpixel target in an hyperspectral image. The observations
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Fig. 10. Receivers operation characteristics for V6 with α = 0.05

Fig. 11. Histograms of estimated α for V6 with α = 0.2 and 13×13 window

are assumed to follow the so-called replacement model, driven

by the constraint of a unitary sum for the abundances. While

the most frequently used algorithms have been developed for

the approximated additive model, very few procedures rely on

the replacement model. As a completion of the detectors for

Gaussian distributions, we derive the direct GLRT, which is the

counterpart of the popular Kelly’s detector, for the replacement

model case. This detector is shown to rank among the very

best popular algorithms, on real data benchmarking, especially

for small secondary data windows, and when selectivity issues

can occur in the map.
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