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Abstract

Local quasi-likelihood estimation is a useful extension of the least-squares method, but its

computation cost and algorithmic convergence problems make the procedure less appealing, par-

ticularly when it is iteratively used in the methods such as back�tting algorithm, cross-validation

and bootstrapping. A one-step local quasi-likelihood estimator is introduced to overcome com-

putational drawbacks of the local quasi-likelihood method. We demonstrate that as long as

initial estimators are reasonably good, the one-step estimator has the same asymptotic behavior

as the local quasi-likelihood method. Our intensive simulation shows that the one-step estima-

tor performs at least as well as the local quasi-likelihood method for a wide range of choices

of bandwidths. A data-driven bandwidth selector is proposed for the one-step estimator based

on the pre-asymptotic substitution method of Fan and Gijbels (1995). It is then demonstrated

via intensive simulation that the data-driven one-step local quasi-likelihood estimator performs

as well as the maximum local quasi-likelihood estimator using the asymptotic optimal band-

width. In other words, the one-step procedure reduces computation cost of the maximum local

quasi-likelihood estimator without downgrading its performance.

Keywords and Phrases. Nonparametric regression, bandwidth selection, one-step estimation, quasi-
likelihood, generalized linear models.
Abbreviated title: One-step local estimator.
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1 Introduction

Generalized additive models (Hastie and Tibshirani, 1990) are very useful extensions of a popular

family of models, Generalized Linear Models (GLIM, McCullagh and Nelder, 1989). They allow

one to explore possible nonlinearity while avoid so-called \curse of dimensionality". A popular

algorithm for �tting the generalized additive models is back�tting algorithm, which iteratively uses

univariate nonparametric smoothing as its building blocks. Thus, it is very important to have data-

driven univariate smoothers that possess computational expediency and high statistical e�ciency.

One-step local quasi-likelihood estimators introduced in this paper have these two advantages.

The basic smoothing method used in this paper is local polynomial �t (Fan and Gijbels, 1996).

It possesses nice statistical properties. In particular, it has high minimax e�ciency, copes very

well with various design densities and corrects automatically edge e�ects. See Cleveland (1979),

Cleveland et al. (1992), Fan (1992, 1993), Hastie and Loader (1993), Ruppert and Wand (1994),

Wand and Jones (1995), Fan and Gijbels (1996), Jones (1997) and references therein. To deal with

a wider class of stochastic models such as those in the GLIM, maximum local likelihood or its

generalization local quasi-likelihood method was introduced to replace the least-squares method.

See for example Tibshirani and Hastie (1987), Severini and Staniswalis (1994) and Hunsberger

(1994), and Aragaki and Altman (1997). It was shown by Fan, Heckman and Wand (1995) that the

local polynomial quasi-likelihood method inherits good statistical properties of the local polynomial

least-squares approach. Carroll, Ruppert and Welsh (1996) and Fan, Farmen and Gijbels (1996)

propose methods for selecting bandwidth and constructing con�dence intervals for the local quasi-

likelihood method.

Maximum local quasi-likelihood estimator is implicitly de�ned. Computing such an estima-

tor requires an iterative algorithm such as the Newton-Raphson or Fisher's scoring method. This

can be very time consuming and issues on the convergence of the algorithm arise. These make

the maximum local quasi-likelihood method less appealing, particularly when the method is it-

eratively used such as in the back�tting algorithm, cross-validation or bootstrapping. A simple

way out is to use the one-step local quasi-likelihood estimator introduced in this paper. The ba-

sic idea is simple. Given a good initial estimator such as those from the least-squares method,

iterate the Newton-Raphson equation once and the resulting new estimator is the one-step local

quasi-likelihood estimator. See for example Bickel (1975) for a similar idea. This new estimator

clearly admits an explicit form and shares the same computational expediency as the least-squares

polynomial �tting.
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We will demonstrate that the one-step local quasi-likelihood estimator has the same asymptotic

behavior as the maximum local quasi-likelihood estimator, as long as the initial estimators are

reasonably good. In other words, the one-step estimator reduces computational burden of the

maximum local quasi-likelihood estimator without down grading its performance. Thus, the one-

step estimator truly inherits all good properties of the least-squares local polynomial �tting, in

terms of both statistical e�ciency and computation cost.

To verify the above asymptotic results at �nite samples, we have conducted intensive simula-

tions to compare the relative e�ciency between the one-step method and the fully-iterative method,

namely the maximum local quasi-likelihood estimators. For a wide range of bandwidths, we demon-

strate that the one-step method performs at least as well as the fully-iterative method. Indeed,

for small bandwidths, the one-step method tends to perform even better than the fully iterative

method, and for moderate and large bandwidths both methods have about the same performance.

Choices of bandwidth are important to virtually all nonparametric smoothing problems. Var-

ious data-driven bandwidth selection techniques have been proposed, particularly in the density

estimation setting. For a survey, see Jones, Marron and Sheather (1996). For local polynomial

�tting, several useful bandwidth selection methods have been developed recently. They include

the pre-asymptotic substitution method of Fan and Gijbels (1995), the plug-in bandwidth selector

of Ruppert, Sheather and Wand (1995), the empirical-bias bandwidth selector of Ruppert (1995)

and the generalized pre-asymptotic substitution method of Fan, Farmen and Gijbels (1996). In

particular, Fan, Farmen and Gijbels (1996) outline a general method, based on a pre-asymptotic

substitution idea, to assess the bias and variance of local maximum likelihood estimators. That

general method can also be applied to the maximum local quasi-likelihood estimation discussed in

this paper. However, the method is somewhat sophisticated, demanding intensive computation. In

Section 6, we propose a less sophisticated bandwidth selection method that uses the bandwidth

selection techniques in the least-squares setting as building blocks. One advantage is computational

saving and another is that a wealth of least-squares bandwidth selection methods, such as those

mentioned above, can be used.

The paper is organized as follows. Section 2 introduces the one-step local quasi-likelihood

estimator and proposes good initial estimators. In Section 3, we study the asymptotic properties of

the one-step estimator. Section 4 gives details on how to implement the one-step estimator for two

important speci�c situations: Logistic and Poisson regression. Performance of the one-step and the

fully-iterative estimator are compared at �nite samples in Section 5. Section 6 gives a simple rule

for bandwidth selection and for estimating standard errors. A few examples are given in Section
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7 to illustrate the proposed method. Concluding remarks are made in Section 8. Technical proofs

are given in the Appendix.

2 One-step local quasi-likelihood estimation

2.1 Quasi-likelihood

Suppose that the observed data (X1; Y1); � � � ; (Xn; Yn) can be regarded as a random sample from a

population (X; Y ) with the conditional mean and conditional variance given by

m(X) = E(Y jX = x); var(Y jX = x) = �2V fm(x)g; (2.1)

for a given function V and unknown scale parameter �2. In (2.1), the relationship between the

conditional mean and the conditional variance are speci�ed. Such a model structure appears quite

often in statistical modeling. For example, Binomial distributions and Poisson distributions admit

the relationship (2.1) with V (t) = t(1 � t) and V (t) = t, respectively. These are just two speci�c

examples of the exponential family of distributions used in the generalized linear models (McCullagh

and Nelder, 1989), under which the conditional density of Y given X = x is assumed to belong to

a canonical exponential family

f(yjx) = exp([�(x)y � bf�(x)g]=a(�) + c(y; �)); (2.2)

for some known functions a(�), b(�) and c(�; �). Here the parameter �(�) is called the canonical

parameter and � is called the dispersion parameter. Under this model, it can easily be shown

(McCullagh and Nelder, 1989) that

m(x) = E(Y jX = x) = b0f�(x)g; var(Y jX = x) = a(�)b00f�(x)g: (2.3)

Thus model (2.2) satis�es the assumption (2.1).

In parametric generalized linear models, the unknown regression function m(x) is modeled

linearly via a known link function g(�):

gfm(x)g = �+ �x: (2.4)

The function g links the regression function to a linear space of the covariate. If g = (b0)�1, then g is

called the canonical link function. The aim of this paper is to estimate the function �(x) = gfm(x)g
nonparametrically. There are several reasons for not estimatingm(�) directly in the current context.
As pointed out in Fan, Heckman and Wand (1995), the range of  (x) is (�1;+1) and hence the
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estimate b (�) is range-preserving; the local log-likelihood (2.8) is concave in � and consequently

computing b�(x) is much easier; the model reduces to the usual parametric model when h is large

{ this provides parsimonious models for the parametric generalized linear models.

Under the model assumption (2.1), the quasi-likelihood method is often used. The quasi-

likelihood function Q(�; y) is de�ned via

@

@�
Q(�; y) =

y � �

V (�)
; (2.5)

and the ith data point contributes Qfm(Xi); Yig to the quasi-likelihood. Thus, for the parametric

model (2.4), one can estimate the parameters � and � via maximizing the quasi-likelihood

nX
i=1

Qfg�1(�+ �Xi); Yig: (2.6)

Note that for the exponential family of models (2.2), the quasi-likelihood (2.6) is just the condi-

tional log-likelihood of (Y1; � � � ; Yn) given (X1; � � � ; Xn). Thus, the quasi-likelihood approach is an

extension of the likelihood method.

2.2 Local quasi likelihood

One can not directly use the quasi-likelihood (2.6) when function �(�) is not parameterized. As-

suming that � is smooth with the (p+ 1)th derivative at a given point x, the following form holds

approximately via Taylor's expansion:

�(z) � �0 + � � �+ �p(z � x)p; (2.7)

for z in a neighborhood of the point x. Following Fan, Heckman and Wand (1995), one can construct

the local quasi-likelihood

`(�) �
nX
i=1

Q[g�1f�0 + : : :+ �p(Xi � x)pg; Yi]Kh(Xi � x); (2.8)

where Kh = K(�=h)=h with K being a kernel function and h a bandwidth. Let b�0; � � � ; b�p maximize

the local quasi-likelihood (2.8). Then, the maximum local quasi-likelihood estimator is

b��(x) = �!b��(x); (2.9)

for �(�)(x); � = 0; � � � ; p with convention b�0(x) = b�(x). Note that the local quasi-likelihood (2.8) is

just a weighted version of the quasi-likelihood (2.6) with weights Kh(Xi � x) used to con�ne the

polynomial model (2.7) being applied locally around the point x.
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The quasi-likelihood (2.8) does not admit an explicit solution unless p = 0. The maximization

is usually carried out via the Newton-Raphson method or its variation { Fisher's scoring method.

For the case p = 0, the solution is nothing but a transform of the Nadaraya-Watson estimator:

b�(x) = gf
nX
i=1

Kh(Xi � x)Yi=
nX
i=1

Kh(Xi � x)g:

This method was studied by Staniswalis (1989) and Severini and Staniswalis (1994). Drawbacks of

the kernel method are that it creates large bias, has serious boundary e�ect and can not cope well

with non-uniform designs. For details, see Wand and Jones (1995), Simono� (1995) and Fan and

Gijbels (1996).

2.3 One-step local quasi-likelihood

The local quasi-likelihood estimation, while inherits many nice statistical properties from the least-

squares local polynomial �tting (see Fan, Heckman and Wand, 1995), involves intensive compu-

tation via iteratively solving linear equations. This can be very time consuming and the issue on

the convergence of the algorithm arises. These make the procedure less attractive. A simple way

out is to employ one-step estimation scheme. See for example Bickel(1975). We now outline the

procedure.

Denote by q`(x; y) = (@`=@x`)Qfg�1(x); yg. Let `0(�) and `00(�) be respectively the gradient

vector and the Hessian matrix of the function `(�). Namely

`0(�) = n�1
nX
i=1

q1(�0 + : : :+ �p(Xi � x)p; Yi)Kh(Xi � x)Xi (2.10)

and

`00(�) = n�1
nX
i=1

q2(�0 + : : :+ �p(Xi � x)p; Yi)Kh(Xi � x)XiX
T
i ; (2.11)

where Xi = (1; Xi� x; � � � ; (Xi � x)p)T .

Let b�MLE be the maximum quasi-likelihood estimator that solves the quasi-likelihood equation

`0(�) = 0, namely

`0(b�MLE) = 0:

Suppose that b�0 is a vector of initial estimators with reasonably good precision. Then by Taylor's

expansion,

0 = `0(b�MLE) � `0(b�0) + `00(b�0)(b�MLE � b�0)
so that b�MLE � b�0 � [`00(b�0)]�1`0(b�0):
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This leads us to de�ning the one-step local quasi-likelihood estimator as

b�OS = b�0 � [`00(b�0)]�1`0(b�0): (2.12)

The one-step estimator clearly inherits the computational expediency from the least-squares poly-

nomial �tting.

We now briey discuss the choice of the initial estimators. An intuitive and explicit method is

based on the substitution of the least-squares local polynomial estimator. Let bm�(x) (� = 0; � � � ; p)
be the local polynomial regression estimator of m(�)(x). Namely, they minimize

nX
i=1

fYi � �0 � � � � � �p(Xi � x)p=p!g2Kh(Xi � x):

Recall that �(x) = gfm(x)g so that

�0(x) = g0(m(x))m0(x); �00(x) = g00(m(x))[m0(x)]2 + g0(m(x))m00(x)

and so on. Substituting the least-squares estimator into the above relationship, we can easily obtain

an initial estimator of �(�)(x) explicitly.

Note that the least-squares estimator is not necessarily range-preserving. Take the logistic

regression in the Bernoulli model with g(t) = logft=(1 � t)g as an example. The mean regression

function m(x) = P (Y = 1jX = x) must fall in [0; 1]. However, the least-squares local polynomial

regression estimator bm(x) is not necessarily in this range and hence g( bm(x)) may not necessarily

well de�ned. This gap can be bridged. See Section 4.1 for details of implementation.

3 Asymptotic properties

In this section, we will derive the asymptotic distribution of the one-step local quasi-likelihood

estimator. We demonstrate that the one-step estimator performs as well as the maximum local

quasi-likelihood (fully-iterative) estimator as long as the initial estimators b�0 in (2.12) are reason-

ably accurate. In other words, the one-step method reduces computational cost of the fully iterative

estimator without downgrading its asymptotic performance.

Denote by �j =
R
ujK(u)du and �j =

R
ujK(u)2du, j = 0; 1; 2; � � �. Let

H = diag(1; h; � � � ; hp); S = (�i+j�2)1�i;j�p+1; S� = (�i+j�2)1�i;j�p+1 (3.1)

be (p+ 1)� (p+ 1) matrices. Let

�0(x) =
�
�(x); �0(x); � � � ; �(p)(x)=p!

�T
7



be the true local parameters. To stress the dependency of b�0 and b�OS on x in (2.12), we write them

as b�0(x) and b�OS(x) in the next theorem. The following theorem describes the joint asymptotic

normality of b�OS(x). The marginal distribution for derivative estimators can easily be obtained.

Theorem 1. Under Conditions (1) { (4) in the appendix,

p
nh

 
Hfb�OS(x)� �0(x)g � �(p+1)(x)

(p+ 1)!
S�1�hp+1 + oP (h

p+1)

!
! N

�
0; v(x)S�1S�S�1=f(x)

�
;

(3.2)

provided that the initial estimation vector satis�es

Hfb�0(x)� �0(x)g = Opfhp+1 + (nh)�1=2g; (3.3)

where � = (�p+1; � � � ; �2p+1)T be a (p+ 1)-vector, and v(x) = [g0fm(x)g]2var(Y jX = x).

Following the theory of local polynomial �tting (see Chapter 3 of Fan and Gijbels, 1996), the

initial estimators discussed at the end of Section 2.3 satisfy condition (3.3).

Comparing with the result of Theorem 1 of Fan, Heckman and Wand (1995), for estimating

�(�), one can easily see that the one-step estimator shares the same asymptotic bias and variance

as the fully-iterative estimator when p� � is odd. Fan, Heckman and Wand (1995) further pointed

out that the local polynomial �tting with p�� even is unappealing and not recommended. For this

reason, we don't pursuit further the results in this direction. Theorem 1 improves the results of

Fan, Heckman and Wand (1995) in two important directions. The quasi-likelihood function Q(�; y)

does not have to be concave with respect to the argument � and the local quasi-likelihood estimator

does not have to exist.

The above discussions reveal that the asymptotic optimal bandwidth, which minimizes the

asymptotic weighted mean integrated squared error, should be the same for both the one-step and

the fully-iterative estimator. Write S�1 =
�
Sij
�
0�i;j�p and let

K�
� (t) = eT�+1S

�1(1; t; � � � ; tp)TK(t) = (
pX

j=0

S�jtj)K(t)

be the equivalent kernel (see Fan and Gijbels 1996). Then, the asymptotic optimal bandwidth for

estimating �(�)(�) is given by

hopt = C�;p(K)

" R
v(x)w(x)=f(x)dxR f�(p+1)(x)g2w(x)dx

#1=(2p+3)
n�1=(2p+3); (3.4)

where w is a weight function and

C�;p(K) =

"
(p+ 1)!2(2� + 1)

R
K�2

� (t)dt

2(p+ 1� �)fR tp+1K�
�(t)dtg2

#1=(2p+3)
:
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An appealing property of the local polynomial �tting is that it copes well with the edge e�ect.

This property is also inherited by the one-step estimator. To describe such a property, we follow

the formulation given in Gasser and M�uller (1979). Assume that the density has a bounded support

[0, 1], say. Consider the one-step �tting scheme at the left-hand point x = ch. Let the matrices Sc

and S�c be de�ned similarly to (3.1) except that the moments are now replaced respectively by

�i+j�2;c =
Z +1

�c
ujK(u)du; �i+j�2;c =

Z +1

�c
ujK2(u)du; for j = 0; 1; 2; � � � :

Then we have the following result (a similar result holds for the right boundary point).

Theorem 2. Assume Conditions (1) { (4) in the appendix hold for the point x = 0+. Then,

at the left-hand boundary point x = ch, we have

p
nh

 
Hfb�OS(ch)� �0(ch)g � �(p+1)(0+)

(p+ 1)!
S�1c �ch

p+1 + oP (h
p+1)

!
! N

�
0; v(0+)S�1c S�cS

�1
c =f(0+)

�
;

provided that the initial estimation vector satis�es

Hfb�0(ch)� �0(ch)g = Opfhp+1 + (nh)�1=2g; (3.5)

where �c = (�p+1;c; � � � ; �2p+1;c)T :

4 Applications to speci�c models

In this section, we will discuss how to implement one-step local quasi-likelihood estimators and local

quasi-likelihood estimators for two important members of the exponential family (2.2), namely, the

Bernoulli model and Poisson model. For simplicity, we use local linear �ts throughout this section;

other orders can be implemented analogously.

4.1 Logistic regression

Given a random sample f(Xi; Yi); i = 1; � � � ; ng from a population (X; Y ) whose conditional distri-

bution is a Bernoulli distribution with P (Y = 1jX = x) = p(x), we are interested in estimating the

logistic regression function

�(x) = log
p(x)

1� p(x)
:

As noted in x2.1, the quasi-likelihood in this case becomes the log-likelihood given by

Q(p(x); y) = log[p(x)yf1� p(x)g1�y] = y�(x)� log[1 + expf�(x)g]:
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Thus, the local quasi-likelihood (2.8) now becomes

`(a; b) =
nX
i=1

Kh(Xi � x)
�
Yifa+ b(Xi � x)g � log[1 + expfa+ b(Xi � x)g]

�
: (4.1)

For the initial estimator (ba0;bb0) of (�(x); �0(x)), the one-step estimator is given by0@ baOSbbOS
1A =

0@ ba0bb0
1A+

0@ un;0 un;1

un;1 un;2

1A�10@ vn;0

vn;1

1A ; (4.2)

where

un;j =
nX
i=1

Kh(Xi � x)(Xi � x)j bpi0(1� bpi0); vn;j =
nX
i=1

Kh(Xi � x)(Xi � x)j(Yi � bpi0)
with bpi0 = expfba0 + bb0(Xi � x)g[1 + expfba0 + bb0(Xi � x)g]�1. The maximum local likelihood

estimation is simply iteratively using equation (4.2).

In practical implementation, the matrix in (4.2) can be singular or nearly singular when the

local data are sparse. A commonly-used technique to deal with this problem is the ridge regression

technique (see e.g. Seift and Gasser, 1996). Then an issue arises how large the ridge parameter

should be used. Note that if hn ! 0 and nhn !1, we have the asymptotic approximation,

un;j � bp0(1� bp0)hj�1 Z ujK(u)duN with bp0 = exp(ba0)
1 + exp(ba0) ;

where N = fnhf(x)g with f being the marginal density of X can intuitively be understood as the

e�ective number of local data points. Replacing un;j by un;j + bp0(1 � bp0)hj�1 R ujK(u) for j = 0

and j = 2 in (4.2) will not alter the asymptotic behavior and will prevent the matrix from nearly

singular when N is small. In other words, we suggest to use ridge parameters

bp0(1� bp0)hj�1 Z ujK(u); for j = 0; 2: (4.3)

These ridge parameters will be used in implementation of the one-step local likelihood estimation.

They will also be used in the implementation of maximum local likelihood estimation, which itera-

tively uses (4.2). Note that the resulting local ridge regression estimator does not alter asymptotic

properties of the one-step estimator and the local likelihood estimator because the ridge parameters

are of smaller order.

We now turn to discussing the use of initial estimator. Following Fan (1992), the least-squares

local linear estimator of the regression function p(x) and its derivative p0(x) are given by0@ bpLS(x)bp0LS(x)
1A =

0@ sn;0 sn;1

sn;1 sn;2

1A�10@ tn;0

tn;1

1A ; (4.4)
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where

sn;j =
nX
i=1

Kh(Xi � x)(Xi � x)j ; tn;j =
nX
i=1

Kh(Xi � x)(Xi � x)jYi:

Again, we use the ridge regression to guard against the possibility of singularity of the matrix in

(4.4). Following the same heuristic as in the last paragraph, the ridge parameters

hj�1
Z
ujK(u); for j = 0; 2: (4.5)

are used, namely replacing sn;j by sn;j + hj�1
R
ujK(u) for j = 0; 2 for the matrix in (4.4).

The estimator bpLS(x) is not necessarily between 0 and 1. This drawback can easily be repaired

via using the estimator

bpLS;1(x) = minfmax(bpLS(x); 0); 1g:
This is still not satisfactory since bp�LS(x) can take value zero or one so that its logit transform does

not exist. To overcome this di�culty, we borrow the idea of Bayesian estimation of proportion with

the uniform prior and suggest to use

bpLS;2 = N

N + 2
bpLS;1(x) + 2

N + 2
� 0:5;

where N is the e�ective number of local data points de�ned by

N =
2nh

Xmax �Xmin

 R
u2K(u)duR
K2(u)du

!1=5

; (4.6)

where Xmax and Xmin are respectively the maximum and minimum order statistic of design points.

The �rst factor is the e�ective number of data points under the uniform design with the standard

uniform kernel and the second factor is used to standardize the kernel (see Marron and Nolan,

1988 for the idea of canonical kernel). Note that we de�ne N to be independent of x [instead

of N =
Pn

i=1Kh(Xi � x0)=Kh(0)] so that all estimates are pulled the same amount towards 0.5.

Otherwise, the sparse region will be pulled more and this can create some artifacts (An arti�cial

dip can occur for large x in Figure 7 if we use the non-constant N).

With this modi�cation, following the idea outlined at the end of Section 2, we de�ne the initial

estimator as

ba0(x) = log
bpLS;2(x)

1�bpLS;2(x) ; bb0(x) = bp0

LS;2
(x)bpLS;2(x)f1�bpLS;2(x)g : (4.7)

4.2 Poisson regression

We now consider the Poisson regression model, with conditional probability as

P (Y = kjX = x) = expf��(x)g�(x)k=k!; for k = 0; 1; � � �

11



The canonical link function is g1(t) = log t and the canonical function �(x) = logf�(x)g is of

interest. The quasi-likelihood in this case is the log-likelihood and is given by

`(a; b) =
nX
i=1

Kh(Xi � x)[Yifa+ b(Xi � x)g � expfa+ b(Xi � x)g]:

The one-step estimator is given similarly to (4.2) except now that

un;j =
nX
i=1

Kh(Xi � x)(Xi � x)jb�i0 vn;j =
nX
i=1

Kh(Xi � x)(Xi � x)j(Yi � b�i0);
where b�i0 = expfba0+bb0(Xi�x)g with (ba0;bb0) being an initial estimator. Using the same arguments

as in x4.1, the ridge parameters

b�0hj�1 Z ujK(u) with b�0 = exp(ba0); for j = 0; 2 (4.8)

are used to guard against the singularity of the matrix in (4.2). As noted in x4.1, the maximum local

likelihood estimation is simply iteratively using equation (4.2) and hence a similar ridge regression

strategy is employed.

The least-squares local linear estimator of the regression function �(x) and its derivative �0(x)

are still given by the right hand side of (4.4). Again, the ridge parameters (4.5) are used. We

denote the resulting estimators by b�LS(x) and b�0LS(x). The estimator b�LS(x) is not necessarily
positive. A simple modi�cation is to use

b�LS;1(x) = maxfb�LS(x); 0g+ 0:2N�1

where N is given by (4.6). Clearly this modi�cation does not alter the asymptotic property ofb�LS(x). Following the recipe given at the end of x2.3, initial estimators are de�ned as

ba0(x) = logfb�LS;1(x)g; bb0(x) = b�0LS(x)=b�LS;1(x): (4.9)

With this initial estimator, one can calculate the one-step estimator (4.2).

5 Comparisons with local quasi-likelihood method

In this section, we compare �nite sample performance of the one-step local quasi-likelihood esti-

mators with the local quasi-likelihood estimators via simulations. The purpose is to examine if

the two types of estimators perform comparably at �nite sample with a wide range of choices of

bandwidths. Logistic regression and Poisson regression models will be used.
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In the implementation, we employed the local linear �t with the Epanechnikov kernel K(t) =

0:75(1 � t2)+. Let hopt be the asymptotic optimal bandwidth given by (3.4) with the uniform

weight. The bandwidths h = hopt=2; hopt and 2hopt are used. This range is wide enough to cover

most of practical applications.

The performance of each given estimator b�(x) is assessed via the square-Root of Average Square
Errors (RASE):

RASE =

0@n�1grid ngridX
j=1

fb�(xj)� �(xj)g2
1A1=2

; (5.1)

where fxj ; j = 1; � � � ; ngridg are the grid points at which the function � is estimated. For complete-

ness, we also compute the RASE of the initial estimator based on the least-squares method. We will

call such an initial estimator of � as a (modi�ed) least-squares estimator. For the logistic regression

and Poisson regression models, the least-squares estimator of �(x) is ba0(x) given respectively by

(4.7) and (4.9).

5.1 Logistic regression

We now use the simulation models from Fan, Farmen and Gijbels (1997) as testing examples. The

design density is the uniform distribution on [�2; 2] and logit regression function is given by

Example 1. �(x) = 3 sin(2x)

Example 2. �(x) = 7[expf�(x+ 1)2g+ expf�(x� 1)2g]� 5:5

Example 3. �(x) = 2� x2:

These curves appear as the solid line in part (c) of Figures 1-3 and the asymptotic optimal band-

widths hopt for n = 250; 500; 1000 were given in Table 1 of Fan, Farmen and Gijbels (1997).

For each of the above examples, we conducted 400 simulations with sample size n = 250; 500; 1000.

The results for n = 500 and n = 1000 are basically the same as those for n = 250 and hence are

omitted except for Example 1. For each given sample, we computed the ratio of the RASE of

b�LS(x) (the least-square method) to that of b�MLE(x) (the maximum local likelihood method), and

the ratio of RASE of b�OS(x) (the one-step local likelihood estimator) to that of b�MLE(x).

In part (a) of Figures 1{3, we summarize the marginal distributions of the ratios for three

di�erent choices of bandwidths. From these �gures, it is clear that for h = hopt=2 the one-step

local quasi-likelihood estimator is the best and even the least-squares method performs somewhat

better the maximum local quasi-likelihood approach (which will also be called as \fully-iterative

approach"). For bandwidths h = hopt and 2hopt, both the one-step and the fully-iteratively method

13
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Figure 1: Simulation results for Example 1. The top panel is for n = 250 and the bottom panel
is for n = 500. (a) Boxplot for the ratios of RASE of the least-squares method and one-step local
likelihood approach to that of the local likelihood estimator, using bandwidths (from left to right)
hopt=2; hopt; 2hopt (b) The scatter plot the ratios of RASE of the least-squares method versus those
of the one-step local quasi-likelihood approach. (c) A typical estimate with bandwidth hopt. Solid
curve | true function. Dash curves (from shortest to longest dash) are the least-squares, one-step
and local likelihood estimate.

perform comparably and both methods outperform the least-squares method. This is consistent

with the asymptotic theory in Section 3.

In part (b) of Figures 1 { 3, we depict the joint behavior of the three estimation methods using

h = hopt. For each given sample, the ratio of RASE of b�LS(x) to that of b�MLE(x) is plotted against

the ratio of RASE of b�OS(x) to that of b�MLE(x). The horizontal dash line marks the positions

where b�OS(x) and b�MLE(x) perform equally well and the slope dashed line marks the position where

b�LS(x) and b�OS(x) have the same performance. A similar remark can be made for the horizontal

dashed lines. For example, Figure (1b) indicates that b�OS almost always outperforms b�LS . From
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Figure 2: Simulation results for Example 2 with n = 250. Similar captions to Figure 1 are used.
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Figure 3: Simulation results for Example 3 with n = 250. Similar captions to Figure 1 are used.

these �gures, one can see that the local one-step estimator performs better than the least-squares

method, and is even somewhat better than the fully-iterative method in the sense the ratios have

heavier tail on the small side than the large side. Take the lower panel of Figure 1(b) as an example.

There are quite some points with ratios smaller than 0:8 but there are only a few points with the

ratio higher than 1=0:8 = 1:25.

In part (c) of Figures 1 { 3, we took a random sample and computed the estimates for each of

the three methods. This gives us visual impression how well each method performs.

5.2 Poisson regression

We now test our asymptotic results in the Poisson regression setting. The design density is

15



n 250 500 1000

Example 4 .369 .321 .279
Example 5 .349 .301 .264
Example 6 .599 .521 .453

Table 1: Asymptotic optimal bandwidth (3.4) for Poisson models with uniform weight function

again the uniform distribution on [�2; 2] and the function �(x) = logf�(x)g is given by

Example 4. �(x) = 1:5 sin(2x) + 1:25

Example 5. �(x) = 3:5[expf�(x+ 1)2g+ expf�(x� 1)2)g]� 1:5

Example 6. �(x) = 2:0� 0:5x2:

These functions are respectively a rescaling (linear transform) of the functions given in Examples

1 { 3 so that the signal to noise ratios are between 2 and 2.5 under the Poisson distributions. For

these Poisson models, the asymptotic optimal bandwidths hopt with the uniform weight function

on [�2; 2] are summarized in Table 1 for n = 250; 500 and 1; 000.

Figures 4(a){(c) compare the performance of the least-squares, the one-step, and the local

likelihood estimator using bandwidths h = hopt=2; hopt and 2hopt under the Poisson models. Only

the results for n = 250 are presented here; others are similar and hence are omitted. Figures 4

(d){(f) present a typical estimated curve using h = hopt respectively for Examples 4 { 6.

Figure 4 reveals the fact that for small bandwidths, the one-step estimator and the least-squares

estimator tend to perform better than the local likelihood estimator and for large bandwidths the

one-step estimator and the local likelihood estimator perform about equally well. This is consistent

with our asymptotic theory.

6 Bandwidth selection and estimation of standard error

The one-step estimator and the local quasi-likelihood estimator share the same asymptotic band-

width. Hence, one can apply the sophisticated bandwidth selection rule proposed in Fan, Farmen

and Gijbels (1996) to the one-step estimator. However, this will increase signi�cantly computation

cost. In this section, we make a simple connection for the bandwidth selection problem between

the local least-squares method and the local quasi-likelihood method. The bene�t of this is that

a wealth of bandwidth selectors for the local least-squares method can be applied to the local

maximum quasi-likelihood estimation and the local one-step quasi-likelihood estimation.

16



1.
0

1.
5

2.
0

2.
5

LS onestep LS onestep LS onestep

(a)

Ex 1: Performance comparisons

0.
6

0.
8

1.
0

1.
2

1.
4

LS onestep LS onestep LS onestep

(b)

Ex 2: Performance comparisons

0.
5

1.
0

1.
5

2.
0

LS onestep LS onestep LS onestep

(c)

Ex 3: Performance comparisons

(a)

-1 0 1

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Ex 1: Typical estimated curves

(b)

-1 0 1

0.
5

1.
0

1.
5

2.
0

Ex 2: Typical estimated curves

(c)

-1 0 1
0.

5
1.

0
1.

5
2.

0

Ex 3: Typical estimated curves

Figure 4: Simulation results for Poisson models with n = 250. Top panel compares the performance
for the least-squares estimator, the one-step estimator and the local likelihood estimator. Similar
captions to Figure 1 (a) are used. The bottom summarizes typical performance of the estimators
using bandwidth hopt. Similar captions to Figure 1(c) are used.

For a given estimator bm, let b�(x) = gf bm(x)g. Then by the mean-value theorem, we have

b�(x)� b�(x) � g0f bm(x)gf bm(x)�m(x)g:

Therefore, the Integrated Square Error (ISE) for b�(�) is approximately the same as weighted ISE

for bm(�). More generally,Z nb�(x)� b�(x)g2w0(x)dx �
Z
f bm(x)� bm(x)g2g0f bm(x)g2w0(x)dx; (6.1)

where w0 is a given weight function.

The relation (6.1) suggests a simple, rule of thumb, bandwidth selection rule. Use an estimated

optimal bandwidth for the least-squares local polynomial estimator bmLS with weight g0f bmg2w0 as

the bandwidth for the local one-step estimator b�OS with weight w0.
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Theorem 1 gives a simple formula for estimating the standard errors of the one-step estimatorb�(x). Let bv(x) be a consistent estimate of v(x) de�ned in Theorem 1. Then the covariance matrix

of the one-step estimator b�OS(x) can simply be estimated by

bv(x) nX
i=1

Kh(Xi � x)XiX
T
i

!�1  nX
i=1

K2
h(Xi � x)XiX

T
i

! 
nX
i=1

Kh(Xi � x)XiX
T
i

!�1
(6.2)

or by

[bv(x)]�1 nX
i=1

q2(X
T
i
b�0; Yi)Kh(Xi � x)XiX

T
i

!�1  nX
i=1

K2
h(Xi � x)XiX

T
i

!

�
 

nX
i=1

q2(X
T
i
b�0; Yi)Kh(Xi � x)XiX

T
i

!�1
; (6.3)

for some consistent estimate b�0. Note that the �rst and the last matrix in (6.3) is the same as that

given in the de�nition of the one-step estimator (2.12). In the implementation, we use expression

(6.3) to save computation. For the logistic regression and Poisson regression, v(x)�1 = p(x)q(x)

and v(x)�1 = �(x), respectively.

The bias vector can also be assessed via the ideas outlined in Fan, Farmen and Gijbels (1996).

We omit the detail here.

7 Examples

We now illustrate our bandwidth selection rules via both simulations and real data examples.

7.1 Simulations

To examine the e�cacy of the above bandwidth selection rule, we revisit Examples 1 { 6 with sample

size n = 250 (The results for n = 500; 1000 are similar and hence omitted). We take the weight

function w0 to be the indicator function on the interval [�2; 2] where the curve to be estimated and

employ the pre-asymptotic substitution bandwidth selection method of Fan and Gijbels (1995).

For a given sample, we compute the RASE de�ned by (5.1) for the one-step estimator b�OS using

the bandwidth selection rule given in Section 6 and for the maximum local likelihood estimator

b�MLE using the asymptotic optimal bandwidth hopt. The latter estimator can be regarded as an

ideal estimator and serves as a benchmark. The ratios of RASE of b�OS to that of b�MLE are depicted

in Figure 5 (a). It demonstrates clearly that our data-driven one-step estimator performs as well as

the ideal estimator. Figures 5 (b) { (c) show a typical estimated curve by using the data-driven one-

step estimator and the ideal estimator: The sample is chosen such that the resulting data-driven

18
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Figure 5: Comparisons of the data-driven one-step estimator with the ideal estimator for logistic
regression model. (a) Boxplot of the ratios of the RASE of the data-driven one-step estimator to
that of the ideal estimator. (b), (c) and (d). A typical estimate curve by using the data-driven
one-step estimator (long-dashed curve) and the ideal estimator (short-dashed curve).

one-step estimator has the median performance among 400 samples. Once the sample is selected,

the data-driven one-step estimator and the ideal estimator are applied to the same sampled data

and the resulting curves are depicted in Figure 5.

Figure 6 summarizes similar results for the Poisson models given in Examples 4 { 6 with sample

size n = 250. For larger sample sizes (n = 500 and n = 1000), the results are very similar and hence

are omitted. Figure 6 shows that the one-step estimator with the proposed bandwidth selection

rule performs comparably with the ideal estimator.
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Figure 6: Comparisons of the data-driven one-step estimator with the ideal estimator for Poisson
regression model. Similar captions to Figure 5 are used.

7.2 Applications to an environmental dataset

The data set used here consists of a collection of daily measurements of pollutants and other envi-

ronmental factors in Hong Kong between January 1, 1994 and December 31, 1995. Of particular

interest is to study the association between levels of pollutants and number of daily hospital ad-

missions for circulation and respiration. The data were kindly provided by Professor T.S. Lau of

the Chinese University of Hong Kong. It is known that measurements on pollutants are highly

correlated. As an example, we consider how the probability of high level Sulphur Dioxide SO2

(with values > 20�g=m3) is associated with level of pollutant Nitrogen Dioxide NO2 (in �g=m3).

Figure 7 gives the estimated conditional probability and its logit-transform which is monotone in

the most part of the region except a dip occurs around 45. The bandwidth h = 10:1 was chosen by

our software. The dashed lines are the estimated function plus (or minus) two estimated standard
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Figure 7: Logistic regression of the status of high level SO2 on the level of NO2. (a) Estimated logit
function of the conditional probability. (b) Estimated probability function and observed data.

errors at each given points. They give us rough ideas of the estimation error. The estimates are ob-

tained by using the one-step local quasi-likelihood method with bandwidth selected automatically

by data.

We now study how the number of hospital admissions depend on time and the level of NO2.

The model used here is the Poisson distribution. Figures 8 (a) and (b) depict how the number of

hospital admissions changes over time. Seasonal patterns can be observed. The bandwidth h = 29:5

was selected. We have also plotted the level of NO2 against the time variable and found a similar

seasonal pattern. This motivates us to examine the relationship between the number of hospital

admissions and the level of NO2. The results are depicted in Figure 8 with bandwidth h = 17:9. The

�gures show an increasing trend and indicates the extent to which the level of pollutant NO2 a�ects

the number of hospital admission. It is reasonable to think that the daily number of admissions

is correlated and that it takes some time for pollutants to a�ect the circulatory and respiratory

system. These aspects have not yet addressed in the above preliminary analyses.

8 Concluding remarks

Local maximum quasi-likelihood estimation is a useful technique for nonparametric �tting of gen-

eralized linear models. The computation cost and issues of algorithmic convergence make the pro-

cedure less appealing, particularly when the procedure is iteratively used such as in the back�tting
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Figure 8: Regression of number of hospital admissions on time and level of NO2. (a) Estimated
log-regression function of number of admissions given time. (b) Estimated regression function of
number of admissions given time. The points are the raw data. (c) and (d). Similar captions to
(a) and (b) are used. The dashed lines are the estimated function plus (or minus) twice estimated
standard error at each given points.

algorithm, cross-validation and bootstrapping. One simple approach to overcoming these problems

is the one-step local quasi-likelihood estimation. In light of the asymptotic theory and numerical

examples given in Sections 5 and 6, one can conclude that the one-step procedure performs at least

as well as the fully iterative local maximum quasi-likelihood method. In other words, the one-step

procedure reduces the computation burden of the fully-iterative method without deteriorating its

performance. The idea outlined in this paper should be applicable in other context.

In the implementation of local linear regression smoother, ridge regression techniques are often

employed to avoid singularities of design matrices. In light of examples in Sections 5 and 6, we

conclude that our choice of ridge parameters is simple and useful.
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Appendix: Proofs of Theorems 1 and 2

Theorem 2 can be proved similarly to as Theorem 1. For brevity, we only outline the proof of

Theorem 1.

For each given point x, the following conditions are needed:

(1) The functions f(:); �(p+1)(:); V 0(m(:)), g0(m(:)) exist and are continuous at the point x and

f(x) > 0;

(2) E(Y 2+"jX = :) for some " > 0 is bounded in a neighborhood of the point x;

(3) K has a bounded support;

(4) h! 0 and nh!1.

Note that the set of conditions is weaker than that given in Fan, Heckman and Wand (1995). In

particular, we do not require Q(x; y) be concave in x and do not impose conditions on V 00; g000 and

E(Y 4jX = :) . Condition (3) is imposed for technical convenience and can be removed at lengthier

proofs via imposing some tail conditions on K and functions �; f; V and g.
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Proof of Theorem 1. For simplicity, we will drop the dependency of �0(x); b�0(x) and b�OS(x)
on x. In the sequel, we will show that

H�1`00(b��)H�1 = �a(x)S + op(1) (A.1)

for any b�� satisfying H(b�� � �0) = op(1), where

a(x) =
f(x)

V (m(x))g0(m(x))2
;

and that
p
nhH�1f`0(�0)� E`0(�0)g ! N(0; b(x)S�) (A.2)

with

b(x) =
var(Y jX = x)f(x)

V (m(x))2g0(m(x))2
;

and that

H�1E`0(�0) = c(x)�hp+1 + o(hp+1) (A.3)

where

c(x) =
�p+1(x)f(x)

V (m(x))g0(m(x))2(p+ 1)!
:

Assume that (1)-(3) hold. Then, by Taylor's expansion

`0(b�0) = `0(�0) + `00(b��)(b�0� �0) (A.4)

where b�� lies between �0 and b�0 and hence satis�es

H(b�� � �0) = Opfhp+1 + (nh)�
1

2 g (A.5)

according to (3.3). Combination of (A.1) and (A.4) leads to

b�OS � �0 = a(x)�1H�1fS�1 + op(1)gH�1`0(�0) + op(b�0 � �0):
Using this and (A.2), we obtain

H(b�OS � �0) = a(x)�1S�1H�1`0(�0) + opfhp+1 + (nh)�
1

2 g:

Therefore, by (A.3) we have

H(b�OS � �0)� a(x)�1c(x)S�1�hp+1

= a(x)�1S�1H�1f`0(�0)�E`0(�0)g+ opfhp+1 + (nh)�
1

2 g: (A.6)
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The conclusion follows from (A.2) and (A.6).

We now establish results (A.1)-(A.3). Note that a typical element in the matrix H�1`00(b��)H�1

is

S�n;k = n�1
nX
i=1

q2(b��0 + � � �+ b��p(Xi � x)p; Yi)Kh(Xi � x)
�
Xi � x
h

�k
To prove (A.1), we need only to show that

S�n;k = �a(x)�k + op(1); for k = 0; 1; : : : ; 2p: (A.7)

By Conditions (1) {(4), one can easily show that

S�n;k = n�1
nX
i=1

q2(�(x); Yi)Kh(Xi � x)

�
Xi � x

h

�k
+ op(1):

Let d(x) =
�
g�1(x)=V fg�1(x)g�0. Then, by calculating the mean and variance of the leading term

in the above expression, one can obtain

S�n;k = Eq2(�(x); Y )Kh(X � x)

�
X � x
h

�k
+ op(1):

= E

�
[m(X)�m(x)]d(m(x))� 1

V (m(x))g0(m(x))2

�
Kh(X � x)

�
X � x

h

�k
+ op(1)

= �a(x)�k + op(1):

This proves (A.7) and hence (A.1).

The result (A.2) follows from the multivariate central limit theorem and is established in Lemma

2 of Fan, Heckman and Wand (1995). To prove (A.3), we need only to show that

En�1
nX
i=1

q1(��(Xi); Yi)Kh(Xi � x)(
Xi � x

h
)k

= c(x)�k+p+1h
p+1 + o(hp+1) for k = 0; 1; : : : ; p; (A.8)

where ��(Xi) = �0 + � � �+ �p(Xi � x)p: Indeed, the right hand side of (A.8) is given by

E
g�1(�(X))� g�1(��(X))

V (g�1(��(X)))

1

g0(g�1(��(X)))
Kh(X � x)

�
X � x
h

�k
and by the mean-value theorem, it is equal to

E
�(X)� ��(X)

g0(g�1(�))V (g�1(��(X)))

1

g0(g�1(��(X)))
Kh(X � x)(

X � x

h
)k:

where � lies between �(X) and ��(X). By using Taylor's expansion and continuity assumptions, one

can easily show that the last expectation is given by

c(x)�k+p+1h
p+1 + o(hp+1):

This proves (A.8) and completes the proof of Theorem 1.
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