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One-Step Piecewise Polynomial Galerkin

Methods for Initial Value Problems*

By Bernie L. Hulme

Abstract. A new approach to the numerical solution of systems of first-order ordinary

differential equations is given by finding local Galerkin approximations on each subinterval

of a given mesh of size h. One step at a time, a piecewise polynomial, of degree n and class

C°, is constructed, which yields an approximation of order 0(A*") at the mesh points and

0(A"+1) between mesh points. In addition, the y'th derivatives of the approximation on

each subinterval have errors of order 0(An_'+1), 1 £ j £ n. The methods are related to

collocation schemes and to implicit Runge-Kutta schemes based on Gauss-Legendre quad-

rature, from which it follows that the Galerkin methods are /4-stable.

1. Introduction. In this paper, we show how Galerkin's method can be em-

ployed to devise one-step methods for systems of nonlinear first-order ordinary

differential equations. The basic idea is to find local nth degree polynomial Galerkin

approximations on each subinterval of a given mesh and to match them together

continuously, but not smoothly.

For each /i _ 1, a method is defined (Section 2) which uses an n-point Gauss-

Legendre quadrature formula to evaluate certain inner products in the Galerkin

equations. For sufficiently small step size h, a unique numerical solution exists and

may be found by successive substitution (Section 3). After showing that these Galerkin

methods are also collocation methods (Section 4) and implicit Runge-Kutta methods

(Section 5), we show that the mesh point errors are of the order 0(h2n), and the

global errors are of the order 0(hn+1) for the approximate solution and 0(h"~'+1),

1 ^ j ^ n, for its yth derivatives (Section 6). A proof of the ^-stability of the methods

is given in Section 7, and numerical results are presented in Section 8.

Discrete one-step methods based on quadrature, other than the classical Runge-

Kutta methods, have been studied by several authors, including the explicit schemes

in [12, p. 101], [13], [14], [22] and the implicit schemes in [1], [2], [3], [6, Chapters 4,

9], [10], [12, p. 159]. Also, discrete block implicit methods are given in [21], [24], [25].

The methods of this paper, however, yield continuous piecewise polynomial ap-

proximations with the inherent benefit of derivative approximations. Earlier uses

of piecewise polynomials may be found in [4], [5], [11], [15], [16], [17], [26].

Finally, we remark that recent "semidiscrete" Galerkin methods [7], [9Jj [18],

[19], [23] reduce initial-boundary value problems to systems of ordinary differential

equations. When combined with such methods, our techniques open the possibility

of "fully discrete" Galerkin methods for these problems.
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416 BERNIE L. HULME

2. Piecewise Polynomial Galerkin Methods. We consider the numerical solu-

tion of only a single nonlinear ordinary differential equation

(1) u'(t) - f(t, u(t)),      t0 = t,

(2) «(f0) = «0

on a finite interval [t0, tN], although the results carry over to systems of such equations.

We assume that f(t, x) E C2" in [/0, tN] X (— 00, °°), so that the exact solution tdj) £

C2n+1[f0, tN], n 1, and we also assume that / has a Lipschitz constant Z, in this

same region.

Let it: ti = /0 + *«, 0 g / S§ TV, be a uniform mesh for the sake of simplicity. (It

will be seen that our arguments do not depend crucially on this assumption since

our method is a one-step method and step size changes are easy.) Then, we may ap-

proximate «(/) on each subinterval by an nth degree polynomial

n+l

(3) y(t) = Z *"W<(0.      U = / g f,+1, OSfSJV-1,
i-l

where ¥>,+,(/) are basis functions which are nth degree polynomials on each [/,, *,+J.

For example, might be the nth degree 2?-spline basis functions of Schoenberg

[20] or some other piecewise polynomial basis. Since the bs may change from one

subinterval to the next, y(J) need not be as smooth as the <pk(t).

We require that y(t) be continuous on [t0, t{A and that it provide a local Galerkin

approximation on each subinterval [r,, ti+1], 0 g i ^ N — 1. Accordingly, on each

subinterval, we write the following n+l equations (one linear, n nonlinear) for

the by\ I<s j £ «1,

(4) = ' = l>

= «o,     i = o,

(5) (/ - fit, y), ?<+»), = 0,      2lS*Si«+l,0^/s; TV - 1,

using the notation

(u, w)< = f     o(t)w(t) dt.
•lit

To obtain a computational form of (4)-(5), we assume that the (<^+), <?,+*)< in

(5) are computed exactly, i.e., analytically or by an exact quadrature formula, while

the inner products (/, tpi+k)i are replaced by the n-point Gauss-Legendre quadrature

formula having the form

(6) f ,+" Kr) dt = hj^ wkv(<Ti.k) + 0(«2"+1),
•Iii k-l

(7) <Xi,k = ti + 9kh,      1 £ * n,

where wt > 0 and 8k are the weights and abscissae for [0, 1]. The result is that (4)-(5)

are replaced by the following set of N systems of n + 1 nonlinear equations to be

solved in succession

(8) Ab<" = c(,,(bm),      0 = i g N - 1,
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ONE-STEP PIECEWISE POLYNOMIAL GALERKIN METHODS 417

where

(9) b"> = ibV\b«\ ■■■ ,b«\}F,

(10) Aki = <Pi*,^ti^'      k = I,

= (<Pi+i, vUdt,      2 g * is n + 1, 1 £ j = n + 1,

c^V") - & - 1,

(U) = « E >v„/U,m, £ ^'Vi.^.jU^.J,      2 g * ^ « 4- 1.
m-l \ j-1 '

We consider only the cases where A is nonsingular. Certainly, A will be nonsingular

when {<Pi+k}nktl span (Pn_,, the class of (n — l)st degree polynomials. For then,

Ab(<) = 0 implies y(t<) = 0 and (/, <?<+*)< = 0, 2 ^ k g n + 1, which, in turn,
imply /sOjsO and b(,) = 0. However, this condition is not necessary, since

A is nonsingular in the case of the cubic (n = 3) 5-spline basis functions used for

the computations given in Section 8, but {<pi+k\t-2 do not span (P2. Since we may

multiply (8) by A-1, our numerical method depends on the solution of

(12) b{° = A'W").      0 g / g TV - 1.

3. Existence and Uniqueness of the Numerical Solution. Having let L denote

the Lipschitz constant for / in [t0, tiA X R, where R = (— <», <»), we use

the /„-norm to show that the right side of (12) is a contraction mapping on R°+1 when

h is sufficiently small. Since

HA-V» - A-'cli)(b*)|U SS IIA-'IU ||c<0(b) - C(<)(b*)|U

and

|!c(i)(b) - c("(b*)|U = hQxL ||b - b*||..

where

i+i

(13) Ö, =   max   X) w» Wi+tt**,m)\ E k>. + ,(°-.-.J|.

it is clear that

||A-V°<M - A-'c'0^*)!!» = hQ2 ||b - b*||„,

where

(.14) Ö, = ß,L IIA-'IU.

Thus, we have a contraction mapping, and (12) has a unique solution which may be

found by successive substitution when

(15) h<Q'2\

4. The Galerkin Method as a Collocation Method. We show here that the

approximate solution y(t) satisfies (1) at the quadrature points in each subinterval.

Using (11), we may write (12) as
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418 bernie l. hulme

n

(16) 6<° = A^y* + E yi.*K°t.m, y(<r,.m)), 1 = j £ n + 1,

where

7,.„ = hwm E ^r.t<p<+»(^i.»).

Then, from substituting (16) into (3), we have at the quadrature points

n

(17) /(ff,,») = a„yi + E P\».*/(*...». Xffi.-)).       1 ^ * = «.

where

n+l

at = AiA<pi+i(<jiik)
i-i

and

n+l

».* = E ti. «*><+/(*<.*)■

In the following, we make use of the fact that whenever / is independent

of u and / £ (P»-i, the exact solution u £ (P„ and y = «. This follows because the

quadrature (6) is exact for v £ (P2„_i, in this case /<p,+t £ (P2n_i, and the exact com-

putation of (/, tpi+k)i means (8) is equivalent to (4)-(5). Since u satisfies (4)-(5) and

y satisfies (8), they satisfy equivalent equations in this case and, by uniqueness,

u = y.

Let q(t) £ (P„ be defined by q(tt) = 1, ff'(<7<.*) = 0, 1 =■ A: g n, and let / = q' so

that w' = /, «(*,-) = 1 leads to u = q = y on [r,, r<+l]. Substituting y = fl and / = fl'

into (17) yields

(18) at = 0,      1 Jg * £ b.

Now for each r, 1 | r | o, let or(0 £ (P„ be defined by or(/,) = 0, ffJO7*.*) = 8,.*,

1| H «, and let / = q'r and w(f.) = 0 so that u = qr = y. This time, substituting

y = or and / = q'r into (17) shows that

(19) p\,t = «,.*, Ilr.^n.

Consequently, (17) becomes the collocation equation

(20) y>,.t) - Kffi.k, Kffi.t)),      1 = * £ «.

showing that one-step collocation to (1) at the quadrature points by means of a

continuous piecewise nth degree polynomial is equivalent to the Galerkin method.

Notice that the proof of this collocation property depends on the use of exactly

n points in a quadrature formula (6) which is exact for v £ (P2„-,. The proof would

break down if (6) had more than n points or different weights and abscissae.

5. The Galerkin Method as an Implicit Runge-Kutta Method. Wright [26] has

shown that any one-step collocation method is equivalent to some implicit Runge-

Kutta method. Having already shown that the Galerkin method is equivalent to a
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ONE-STEP PIECEWISE POLYNOMIAL GALERKIN METHODS 419

certain one-step collocation method, we now derive the particular implicit Runge-

Kutta method to which they are both equivalent. Of course, the Galerkin and col-

location methods yield continuous approximations, so "equivalent" here means

"matches the discrete values" of the Runge-Kutta approximation.

From (3) and (16), we have

It

(21) y<+, = ay, + £ *(»«..)).
>»-i

where

n+l

ä = £ Aj\<pi+i(ti+l)

and

ßm  =   £ yi.m<Pi + i(ti + 1).

If we let / = 0, «(/,) = 1 so that u = 1 = y, then substituting y = 1 and / = 0 into

(21) produces

(22) 5=1.

Next, for each r, 1 ^ r ^ «, let qr(t) £ (P„ be defined as in Section 4. Now, sub-

stitution of y = qT and f = q' into (21) leads to

?,(f. + 1) = ßr-

Since the n-point Gauss-Legendre formula (6) is exact for elements of (P„_,, we also

have

9r(f. + i) - /      qXOdt = A £ wtffr'(<r,-.*) = Aw,,
»ii *-i

from which it follows that

(23) 0, = Aw„ lirln,

Together, (21)-(23) imply

n

(24) yf+1 = y, + A £ wm/(o-,,m, y(<ri-m)),
m-l

and this is simply the implicit Runge-Kutta method based on the n-point Gauss-

Legendre formula (6). Again, the proof of (24) depends on the fact that (6) is a

Gauss-Legendre formula with exactly n points.

Thus, each of Butcher's implicit Runge-Kutta methods based on n-point Gauss-

Legendre quadrature [2] has a corresponding "equivalent" Galerkin method using

nth degree piecewise polynomials.

6. Error Bounds. In the following, a technique similar to that used by Shampine

and Watts [21], [25] is employed to obtain asymptotic error bounds for the discrete

values given by an implicit Runge-Kutta method. We view the Galerkin method as
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420 BERNIE L. HULME

a discrete one-step method and use Henrici's theory [12, Chapter 2] of such methods.

Continuous error bounds are then obtained from the discrete ones.

First, we need to define an increment function. Since, from (20), y'(t) interpolates

/(r, yit)) at <7,,t, 1 I fc I «, the Lagrangian representation for y'(t) is

(25) y'(f) = Z «f)/(<r,..t, y(«rj>t)), ^ t I r<+J,

where

mo- n <'~ry},. i^$>.
,-1 (<^i.t  — ffi.tJi

Integrating (25) leads to

(26) - * + Z /(»<.*, Xff*.*)) /   «*) fi £ ' ^ +
* -1 t i

Using (26), we now may write the Runge-Kutta form of the Galerkin method (24),.

in terms of an increment function <£,

(27) yi+1 = yi + mti, yi'.h),      0 = / g TV — 1,

where $ satisfies

(28) <i>(r<( y4; h) = £ H>mg„(fi, y,; «)
m-l

and

gm(fi, y<; h) m /(<r,,m, y(o-,-,„))

= /(<< + 9mht y, + Z g*(t<. y<; «) '*(*) <&) 1 < m < n.

In order for Henrici's theory to apply, we must show that 3> is^Lipschitz continuous

with respect to y in Q =. [7„, tN]X B X [0, ha]. If, for any i, 0 g f j£ ]V — 1, and any

y* G -R, y*(0 is the Galerkin approximate solution to w' = /(?, w), u(t{) = jrt, /, |

r I f<+„ then (26) holds for y*

(26')       j>*(f) = yf 4- £ /(*..*. y*(ffi,*)) I Ms) ds,      tt £ t £ f<+1.

Letting B0 be a constant such that

(30) Z   max     /   Mi) ds

and subtracting (26) and (26') leads to

I hB0,      (J £ i £ N — 1,

(31) max   \y(t) - y*(t)\ ^-—j \y{ - y* |,      0 ^ / — TV — 1,

where 0 g h £ h0 < (BqL)'1. The Lipschitz condition then follows from (28), (29)

and (31) since, for 0 g h | h0 and 0 | i | TV - 1,
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one-step piecewise polynomial galerkin methods 421

|*(ff. y{; h) -       y*; h)\ ££ w„ |*„(r(,     A) - *„(*,-, y*; A)|
m-1

n

(32) Sil». - >*(»*.-)!
m-1

- 1 - Ao5oL      ~ ^

where £i-i w„ = 1.

Now, we may prove

Theorem 1. Assume that f(t, x) E C2" /'« [/0. '*] X R so that u(t) E C2n+1[t0, tN],

and denote by L the Lipschitz constant for f in this region. Let the Galerkin method be

defined as in Section 2 for some piecewise polynomial basis functions of degree n ^ 1

and the n-point Gauss-Legendre quadrature formula (6). If Q2 and B0 are defined by

(14) and (30), respectively, and 0 < h £ h0 where 0 < h0 < min (Q-\ (B0L)~l), then

there exists a constant M such that

(33) \u, - yA I Mh  ,       0 g i I N.

Proof. The local truncation error r, is defined from (24) by

+ 1 = h, + A £ wwftr,.*, «(<t,,J) + t<.
m-1

Thus,

t, =  /      j(t, «(/)) rff - A Z wJ(<Ti.m, u(<7,,j)
J (i m= 1

and, from (6), |r,| i£ Kh2"*1, where A' is a constant depending on the maximum

of «<2n+n(r) on [t0, Ia-J, The bound (33) follows immediately from Henrici's Theorem

2.2 [12]. Q.E.D.
The discrete error bounds (33) agree with those for Butcher's methods [2].

We obtain continuous error bounds in

Theorem 2. Let the hypotheses of Theorem 1 hold. Then there exist constants

Ej, ® £ j {£ n, such that

(34) . max   \u(t) - y(t)\ £ E0hn+1,

and

(35) max    |«(,''(0 - /"(Ol I E,hn~l+1,      I £ j> £ n, 0 g / £ JV - i.
US'SM-H

Proo/. We write «(/) in the same form as X0 m (26) by using the M-point Lagran-

gian quadrature found there

„(/) = u. -f J   f(s, «($)) ds
(36)

= Hi + Z /(ff.-,*, H(<r.-.t)) /   /t(i)     + /?„(/), ((iliW
i-l -Mi
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422 BERNIE L. HULME

where Rn(t) = 0(n"+Subtracting from (26), we find that

max    \u(t) - y(t)\ £-\—r \u,:- yt\ + 0(/T+l),      0 £ / g N - 1;

and (34) follows from (33). If we differentiate (26) and (36) / times using R(J\t) =

OfA'-'*1) and subtract, we can show that

max    \uu>(t) - yu\t)\ £ LB, max |«(cr...t) - X»*.*)! + 0(«*~m),
KSISK+I ISiSn

for 1 $ ,/ g n, 0 £ I £ N - 1, where

„
£   max    I/''-"«)! ^

Then (35) follows from (34). Q.E.D.

7. ^-Stability of the Galerkin Methods. Dahlquist [8] defines v4-stability as
follows.

Definition. A fc-step method is called A-stable, if all its solutions tend to zero,

as / —> co; when the method is applied with fixed positive h to any differential equation

of the form u' = \w, where X is a complex constant with negative real part.

Butcher's implicit Runge-Kutta methods based on Gauss-Legendre quadrature

[2] have been shown by Ehle [10] to be y4-stable. Ehle observed that the n-stage method,

applied to u' = \u, yields yi+1 = Pn„(X/z)y„ where 7>n„(XA) is the nth diagonal Pade

rational approximation to exp (\h). ^-stability follows from the fact that |.P„„(X«)| < 1

for Re (X/r) < 0. Our Galerkin methods, which from (24) give discrete values yt

identical to those of Butcher's methods [2], are therefore /l-stable.

We should remark that Axelsson [1] has used similar properties of subdiagonal

and diagonal Pade rational approximations to prove ^-stability for implicit Runge-

Kutta methods based on Radau and Lobatto quadratures. It is natural then to ask

whether a Galerkin method which uses these quadratures rather than Gauss-Legendre

would yield corresponding "equivalent" methods. The answer is no. If (6) were an

n-point Radau formula with er,,n = ti+i, it would be exact only for c G (P2„-2. The

quadratures for (/, (P<+»), would not be exact for / E <PK-i, y would not be exact for

" E (P», (24) would not hold, and the order of the Galerkin method would be OQi"'1),

whereas Axelsson [1] and Butcher [3] have shown that an n-stage implicit Runge-

Kutta method based on Radau quadrature has the order 0(n2n_1). Similar results

are true of Lobatto quadrature;

8. Numerical Examples. In this section, we give numerical results of an Te-

stable piecewise cubic (n = 3) Galerkin scheme of order 6. We have employed Schoen-

berg's [20] cubic i?-spline basis functions where <pi+i has its support on [/i+,_4, /,+,].

The calculations were performed on a CDC 6600, which has about 14 decimal digits,

using a successive substitution iteration at each step to solve (12).

First, we consider problems for single equations.

Problem 1. u' = -2tu\ u(0) = 1, «(r) = 1/(1 4- t2), 0 S 1.
Problem 2. u' = 1/(1 + tan2 w), w(0) = 0, u(t) = arctan *, 0 £ ? £ 1.
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Problem 3. u' = u -(2t/u), u(0) = 1, «(0 = (It + 1)1/2,

Problem 4. w' = h, «(0) = 1, w(r) = e',0|/g 10.

Several uniform meshes are used for each problem. Tables 1-4 are designed to

Table 1

Error Norms for Problem 1

h \W,h)\\' \\e'(r,h)\Y \\e"(f, h)\\' \\e"Xf, h)\\'

1
2-1

2-2

2~3

2"*
2"8

3.55(10)"
8.54(10)"
1.18(10)"
1.79(10)"
2.81(10)"
3.45(10)"

6 (5.38)

7 (6.18)

9 (6.04)

11 (6.00)

13 (6.35)

7.94(10)"2

1.30(10)-2(2.61)
2.65(10)"3 (2.30)

3.75(10)-" (2.82)
4.83(10)"5 (2.96)
6.09(10)"6 (2.99)

8.20(10)-'
3.36(10)-' (1.29)
1.29(10)"' (1.38)
3.61(10)-2 (1.84)
9.29(10)"3 (1.96)
2.34(10)-3 (1.99)

3.49(10)°
4.10(10)° (-0.23)
2.71(10)° (0.60)
1.46(10)° (0.89)
7.45(10)-' (0.97)
3.74(10)-' (0.99)

2"6  1.85(10)-'3 (0.90)   7.62(10)-7 (3.00)   5.86(10)-" (2.00)   1.87(10)"1 (1.00)

Table 2

Error Norms for Problem 2

h \\e(t;h)\\' \\e'(f, h)\\' |Je"ft A)||' ||e"'(« A)H'

2.48(10)"5

1.28(10)"7

5.79(10)"9

8.62(10)""
1.34(10)-12

9.24(10)"14

(7.60)
(4.46)
(6.07)
(6.01)
(3.86)

3.04(10)"
4.76(10)-
5.88(10)"
7.64(10)-
9.48(10)"
1.19(10)"

(2.67)
(3.02)
(2.94)
(3.01)
(2.99)

3.62(10)"
1.11(10)"
2.84(10)-
7.30(10)"
1.82(10)-

(1.70)
(1.97)
(1.96)
(2.01)

4.56(10)-" (1.99)

1.62(10)°
6.61(10)-' (1.29)
5.70(10)-' (0.21)
2.85(10)-' (1.00)
1.46(10)"' (0.97)
7.29(10r2 (1.00)

2~6  1.49(10)-'3 (-0.69) 1.49(10)-7 (3.00)  1.14(10)"* (2.00)  3.64(10)"2 (1.00)

Table 3

Error Norms for Problem 3

h       \\e(t;h)\\' \\e'(f, h)\\' \\e"(t; h)\\' \\e'"(f, h)\\'

1 7.08(10)" 2.57(10)" 3.24(10)" 2.43(10)°
2-' 2.22(10)"5 (4.99)   6.03(10)"3 (2.09)    1.50(10)-'(1.11)   1.87(10)° (0.37)
2"2

2"3

2"*
2"5

2-6

4.67(10)"7 (5.57)

8.05(10)-9 (5.86)

1.30(10)"'° (5.96)
2.73(10)"12 (5.57)

1.48(10)"12 (0.88)

1.14(10)"3 (2.40) 5.58(10)"2 (1.42)

1.83(10)-" (2.64) 1.77(10)"2 (1.65)
2.63(10)"5 (2.80) 5.07(10)"3 (1.81)

3.53(10)'6 (2.89) 1.36(10)"3 (1.90)
4.59(10)"7 (2.95) 3.53(10)"" (1.95)

1.26(10)°
7.55(10)"
4.19(10)"
2.21(10)"
1.14(10)"

(0.57)
(0.74)
(0.85)
(0.92)
(0.96)
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Table 4

Error Norms for Problem 4

e(t;h)\\' \\e'(t; h)\\' \\e"(t; h)\\' \\e"'(t; h)\\'

1 2.27(10)° 1.15(10)' 1.48(10)3 5.59(10)3
2"' 3.45(10)"' (6.04) 1.80(10)1 (2.67) 4.49(10)2 (1.72) 3.90(10)3 (0.52)

2'2 5.35(10)-4 (6.01) 2.54(10)° (2.83) 1.24(10)2 (1.86) 2.31(10)3 (0.75)

2-3 8.31(10)"6 (6.01) 3.37(10)-'(2.92) 3.27(10)' (1.93) 1.26(10)3 (0.88)
2~" 9.32(10)-8 (6.48) 4.34(10)"2 (2.96) 8.38(10)° (1.96) 6.59(10)2 (0.94)

2-5 6.23(10)"8 (0.58) 5.52(10)"3 (2.98) 2.12(10)° (1.98) 3.37(10)2 (0.97)
2"9 1.27(10)"7 (-1.03) 6.95(10)-" (2.99) 5.34(10)-'(1.99) 1.70(10)2 (0.98)

illustrate the 0(h*) mesh point accuracy of Theorem 1 as well as the 0(h3), 0(h2)

and 0(h) accuracies of the first three derivatives predicted by Theorem 2. The tables

give the discrete error norms for y(t; h) and its first three derivatives

(37) \\eu\t; h)\\' = max \eu)(ti±; h)\,      0 S j | 3,

where e — u — y and also in parentheses the computed orders of accuracy, based on

successive mesh sizes hu A2,

_ log[|k("a; h,)\\'/\\eu)(t; ft2)|[']

OH* !.; (01 -U-. r :

i.e., \\eU)(t; h)\\' at OQi"1), 0 £ j £ 3.
Next, we present in Table 5 absolute errors e(t; h) and relative errors e(t; h)/u(t)

Table 5

Absolute and Relative Errors for Problem 5

l e(t;\) e(t;\)/u(t) e(t;0.5) e(t; 0.5)/u(t)

1 3.79(10)"6 1.03(10)"' 5.76(10)"8 1.57(10)"7

10 4.68(10)"9 1.03(10)"" 7.11(10)"11 , 1.57(10)"°

20 4.25(10)"13 2.06(10)"" 6.45(10)-'5 ' 3.13(10)-°

40 1.75(10)-21 4.12(10)-" 2.67(10)"23 6 . 26(10)"6

60 5.42(10)"30 6.19(10)"" 8.22(10)"32 9.39(10)"6

80 1.49(10)"38 8.25(10)"" 2.26(10)""° 1.25(10)"5

100 3.83(10)-"7 1.03(10)"3 5.83(10)"" 1.57(10)"5

at selected points r, for h = 1 and 0.5 in

Problem 5. u' = -u, u(0) = 1, u(t) - e~', 0 $ t g 100,
in order to illustrate the stability of the method.

Finally, we give in Tables 6 and 7 the results of the application of our method to
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Table 6

Error Norms for e^t; h) of Problem 6

A         WelnMY           \\e\(f,h)\\'          \\e'/(t; h){\' \\e("(t; h)\\'

1 1.97(10)"3              1.82(10)"2           1.77(10)_1 7.44(10)_1

2T* 2.91(10r5    (6.08) 2.53(10)"3 (2.85)  5.43(10)"'(1.71) 4.95(10)"1 (0.59)
2"2 4.50(10)"7    (6.02) 3.33(10)"4 (2.92)  1.52(10)"2 (1.84) 2.89(10)_1 (0.77)

2"3 7.01(10)"9     (6.00) 4.29(10)"5 (2.96)  4.01(10)"3 (1.92) 1.57(10)"1 (0.88)

2 4 1.08(10)"10 (6.02) 5.45(10)"6 (2.98) 1.03(10)"3 (1.96) 8.16(10)"2 (0.94)

2"5 2.19(10)"12 (5.62) 6.86(10)"7 (2.99) 2.62(10)"4 (1.98) 4.16(10)"2 (0.97)

2"6 2.69(10)"12 (-1.61) 8.61(10)"8 (2.99)  6.59(10)"5 (1.99) 2.10(10)-2 (0.99)

Table 7

Error Norms for e2{t; h) of Problem 6

«          \\e,(f, h)\\'             U(V,h)\\' \\e'2'(f, h)\\' \\e2"(f, h)\\'

1 2.58(10)-4 7.26(10)"3 7.69(10)"2 3.96(10)"1

2"1 3.82(10)"6    (6.08) 9.40(10)-4 (2.95) 2.17(10)-2 (1.82) 2.21(10)"1 (0.84)

2~2 5.91(10)"8    (6.02) 1.23(10)"4 (2.93) 5.82(10)"3 (1.90) 1.18(10)_1 (0.91)

2"3 9.20(10)"10   (6.00) 1.58(10)"6 (2.96) 1.51(10)"3 (1.95) 6.06(10)"2 (0.96)

2"4 1.42(10)""   (6.02) 2.00(10)"6 (2.98) 3.84(10)"" (1.97) 3.08(10)"2 (0.98)

2"5 2.13(10)"13   (6.06) 2.52(10)"7 (2.99) 9.68(10)"5 (1.99) 1.55(10)"2 (0.99)

2"6 7.27(10)"13 (-1.77) 3.17(10)"8 (2.99) 2.43(10)"5 (1.99) 7.78(10)"3 (0.99)

the system of equations in

Problem 6. u[ = u\u2, u'2 = — l/uu m,(0) = 1, u2(0) = 1, uy = e' u2 = e~',0 S

t £ 1.
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