
Predictive tracking refers to the process of predicting the

future object position [1]. Robust predictive control is required

in vision robot tracking [2], wireless sensor networks (WSNs)

[3], power grids [4], and smart sensing [5]. It is also provided

under missing data caused by latency and propagation losses

[6], [7] and in different kinds of industrial motors to enhance

robustness against parameter perturbations [8].

To organize prediction, one can employ an estimate x̂k at

discrete time index k and project it ahead using the system

matrix F as x̂k+1 = F x̂k that yields an accurate estimate

under the unknown future noise [9]–[12], When some data

are temporary unavailable, then future observation yk+1 can

be predicted as yk+1 = HFx̂k, where H is the observation

matrices. A drawback is that recursive forms available for

white noise (diagonal error matrices) produce more errors than

batch estimators operating with full error matrices [13]–[20]

.

An advantage of FIR structures is the bounded input bounded

output stability [16]. A disadvantage is the computational

complexity O(N2) inherent to batch estimators. However

,

unlike in Kalman’s days, the computational complexity is not

already an issue for modern computers [21].

The recursive H2 approach was extensively investigated in

[22]–[27] and generalized in [28]–[30]. Since the H2 problem

is convex, it has a closed form solution resulting in the KF

under Gaussian noise [29]. It worth noting that, as argued

in [20], the RH H2 FIR filter can perform similarly to the

RH H∞ filter. Even so, the standard H2 FIR approach [16]

has two critical drawbacks: 1) the squared Frobenius norm is

minimized unweighted and 2) data errors and initial errors are

ignored. That requires further investigations.

In this paper, we derive a one-step H2 optimal FIR (H2-

OFIR) predictor for robust predictive tracking under persistent

disturbances, data errors, and initial errors. By simulations and

experimentally, we show that the H2-OFIR predictor operating

with full error matrices is a more robust estimator than the

Kalman predictor (KP) and unbiased FIR (UFIR) predictor

[32], [33].

Consider a process represented in discrete-time state-space

with the following linear equations

xk+1 = Fxk + Euk +Bwk , (1)

yk = Hxk +Dwk + vk , (2)

where xk ∈ R
K , uk ∈ R

L, yk ∈ R
P , F ∈ R

K×K ,

H ∈ R
P×K , E ∈ R

K×L, B ∈ R
K×M , and D ∈ R

P×M .

Vector wk ∈ R
M represents a disturbance and vk ∈ R

P

is a measurement error; both zero mean, bounded, and with

uncertain distributions and covariances.

Expand model (1) and (2) on a horizon [m, k] of N points,

where m = k −N + 1, as

xk+1 = FNxm + S̄NUm,k + D̄NWm,k , (3)

Ym,k = HNxm + LNUm,k + TNWm,k + Vm,k , (4)

where Um,k = [uTm uTm+1 . . . u
T
k ]T , Wm,k =

[wT
m wT

m+1 . . . w
T
k ]T , Vm,k = [ vTm vTm+1 . . . v

T
k ]T ,

Ym,k = [ yTm yTm+1 . . . y
T
k ]T , and HN = H̄NFN ,

LN = H̄NSN , TN = GN + T̄N , GN = H̄NDN ,

FN =
[

I FT . . . FN−2T FN−1T
]T

,

SN =












0 0 . . . 0 0 0
E 0 . . . 0 0 0
FE E . . . 0 0 0

...
...

. . .
...

...
...

FN−3E FN−4E . . . E 0 0
FN−2E FN−3E . . . FE E 0












,

2. State Space Model 

1. Introduction 
 

One-Step Predictive H2 FIR Tracking under 

Persistent Disturbances and Data Errors 
 

OSCAR IBARRA-MANZANO, JOSE ANDRADE-LUCIO, YURIY S. SHMALIY 
Department of Electronics Engineering, University of Guanajuato Salamanca, 36885, MEXICO 

 
YUAN XU 

School of Electrical Engineering, University of Jinan, Jinan 250022, CHINA  

Abstract—Information loss often occurs in industrial processes under unspecified impacts and data errors. 
Therefore robust predictors are required to assure the performance. We design a one-step H2 optimal finite 
impulse response (H2-OFIR) predictor under persistent disturbances, measurement errors, and initial errors by 
minimizing the squared weighted Frobenius norms for each error. The H2-OFIR predictive tracker is tested by 
simulations assuming Gauss-Markov disturbances and data errors. It is shown that the H2-OFIR predictor has 
a better robustness than the Kalman and unbiased FIR predictor. An experimental verification is provided based 
on the moving robot tracking problem.  

Keywords: Industrial errors, object tracking, H2 FIR predictor, Kalman predictor, unbiased FIR predictor.
Received: February 7, 2021. Revised: July 30, 2021. Accepted: August 16, 2021. Published: September 5, 2021. 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING 

DOI: 10.37394/232014.2021.17.12

Oscar Ibarra-Manzano, 

Jose Andrade-lucio, Yuriy S. Shmaliy, Yuan Xu

E-ISSN: 2224-3488 87 Volume 17, 2021



T̄N = diag(D D . . . D
︸ ︷︷ ︸

N

), and H̄N = diag(H H . . . H
︸ ︷︷ ︸

N

).

Matrix DN is equal to matrix SN if we substitute E with

B, S̄N is the last row vector in SN and so is D̄N in DN .

To derive a batch H2-OFIR predictor, we refer to (4) and

define the FIR predicted estimate as

x̂k+1 = HNYm,k +Hf
NUm,k ,

= HNHNxm + (HNLN +Hf
N )Um,k

+HNTNWm,k +HNVm,k , (5)

where HN is the fundamental gain and Hf
N is the forced gain.

The unbiasedness condition E{xk+1} = E{x̂k+1} applied to

(3) and (5) yields the unbiasedness constraints

I = HNCN , (6)

Hf
N = S̄N −HNLN , (7)

where CN = HNF
−(N−1). We next define the prediction

error as εk+1 = xk+1 − x̂k+1 and introduce the bias error

residual matrix BN , system error residual matrix WN , and

observation error residual matrix VN as

BN = FN −HNHN , (8)

WN = D̄N −HNTN , (9)

VN = HN (10)

to represent the prediction error εk+1 as

εk+1 = BNxm + (S̄N −HNLN −Hf
N )Um,k

+WNWm,k − VNVm,k , (11)

which, subjected to (7), can finally be generalized with

εk+1 = εx(k+1) + εw(k+1) + εv(k+1) , (12)

where the sub-errors are given by εx(k+1) = xm − x̂m =
BNxm, εw(k+1) = WNWm,k, and εv(k+1) = −VNVm,k.

The H2 performance is guaranteed by minimizing the

trace of the squared Frobenius norm ‖T (z)‖2F of the transfer

function T (z) averaged over all frequencies [28]. That means

minimizing effects of the xm-to-εk+1 transfer function Tx(z),
wk-to-εk+1 transfer function Tw(z), and vk-to-εk+1 transfer

function Tv(z) at the estimator output.

Since the initial state error εx(k+1) goes to εk+1 directly,

then it follows that

Tx(z) = I . (13)

The wk-to-εk+1 transfer function Tw(z) can be found by

representing Wm,k as [16], [24]

Wm,k = AwWm−1,k−1 +Bwwk , (14)

where the strictly sparse block matrices are constructed as

Aw =










0 I 0 . . . 0
0 0 I . . . 0
...

...
...
. . .

...

0 0 0 . . . I
0 0 0 . . . 0










, Bw =










0
0
...

0
I










. (15)

Then the transform applied to (14) yields w(z) = (Iz −
Aw)

−1Bww(z) and the transform applied to error εw(k+1) =
(D̄N −Hh

NTN )wm,k results in the transfer function

Tw(z) = WN (Iz −Aw)
−1Bw . (16)

Similarly, the transfer function of Vm,k can be found to be

Tv(z) = VN (Iz −Aw)
−1Bw . (17)

To minimize the prediction error, effects of the transfer

functions (13), (16), and (17) must be minimized in the

predictor error (12) as will be shown next.

We now introduce a product T (z)̟k of T (z) and some

proper vector ̟k. The weighted squared Frobenius norm can

be defined by averaging over both variables z and k as [34]

‖T (z)‖2F = Ez{Ek{tr[T (z)̟k̟
∗

kT
∗(z)]}}

=
1

2π

∫ 2π

0

tr [T (ejωT )E{̟k̟
∗

k}

×T ∗(ejωT )] dωT , (18)

where T ∗(z) is a conjugate transpose of T (z) and E{̟k̟
∗
k}

for each error can be assigned as

BNχmBT
N = BNχmBT

N , (19)

QN = E{Wk,mW
T
k,m} , (20)

RN = E{Vk,mV
T
k,m} , (21)

where χm = E{xmxTm}. If we now combine (19) and (18)

and provide the averaging over ωT , then the weighted norm

Tx can be significantly simplified and written as

‖Tx(z)‖
2
F = BNχmBT

N . (22)

Next, the weighted norm of Tw can be written using (20) as

‖Tw(z)‖
2
F =

1

2π

∫ 2π

0

tr
[
Tw(e

jωT )QN

× T ∗

w (e
jωT )

]
dωT . (23)

To arrive at a closed form of (23), we first suppose that QN =
I and transform (23) to ‖Tw(z)‖2F = tr(WNPWT

N), where

matrix P is a solution to the Lyapunov equation

P = AwPA
T
w +M , (24)

in which M is allowed to be any positive definite matrix. We

thus assign M = BwQNB
T
w and represent a solution to (24) as

P =
∑∞

i=0A
i
wBwQNB

T
wA

T i

w [35] that, for Aw and Bw given

3.2. H2-OFIR Predictor 

3.1. Disturbance-to-Error Transfer Function 

3. Optimal H2 FIR Predictor 
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by (15), readily becomes P = QN . Consequently, ‖Tw(z)‖
2
F

transforms to

‖Tw(z)‖
2
F = tr(WNQNWT

N ) . (25)

The weighted norm of Tv can be found similarly as

‖Tv(z)‖
2
F = tr(VNRNVT

N ) (26)

and the trace of the error matrix P = E{εkε
T
k } for mutually

uncorrelated errors becomes

trP = E{(εx(k+1) + εw(k+1) + εv(k+1))
T (. . . )}

= tr(BNχmBT
N +WNQNWT

N

+VNRNVT
N ). (27)

Because the H2 problem is convex [35], find the gain HN

using (27) by considering the cost function

J = argmin
HN

trP (HN ) . (28)

By setting the derivative ∂
∂HN

J to zero, come up with

0 = −2(FNχmH
T
N + D̄NQNG

T
N )

+2HN(HNχmH
T
N +GNQNG

T
N +RN ) (29)

that results in the H2-OFIR predictor gain

HN = (FNχmH
T
N + D̄NQNG

T
N )

×(HNχmH
T
N +GNQNG

T
N +RN )−1 , (30)

where the error matrix QN is computed by (21), RN by (22),

and other block matrices are defined after (4).

It can now be shown that the H2-OFIR predictor generalizes

the OFIR predictor in a special case of Gaussian processes in

the following batch estimate

x̂k+1 = HNYm,k + (S̄N −HNLN)Um,k , (31)

where HN is specified by (30). The error matrix Pk+1 =
E{εk+1ε

T
k+1} of the H2-OFIR predictor can be shown to be

Pk+1 = BNχmBT
N +WNQNWT

N + VNRNVT
N , (32)

where the error residual matrices are defined above.

To investigate the H2-OFIR predictor properties, we will

think that the robot dynamics and measurements are corrupted

by colored noise. Accordingly, we represent the robot and

its observation along a coordinate x with a two-state space

tracking model

xk+1 = Fxk +Bwk , (33)

wk = φwk−1 + ζk , (34)

vk = ψvk−1 + ξk , (35)

yk = Hxk + vk , (36)

where matrices are assigned as

F =

[
1 τ
0 1

]

, B =

[
τ/2
1

]

, H =
[
1 0

]

TABLE I
RMSES UNDER THE GAUSS-MARKOV DISTURBANCES

Nopt, φ, ψ RMSE, m

H2-OFIR UFIR KF

26, 0, 0 4.1818 4.1802 4.0482

10, 0.95, 0 6.4169 6.5657 9.1782

55, 0, 0.95 37.433 34.836 33.574

3, 0.95, 0.95 37.167 36.187 48.870

Fig. 1. Estimation errors produced by the H2-OFIR, UFIR, and Kalman
predictors in Gaussian environments: (a) φ = ψ = 0, (b) φ = 0.95 and
ψ = 0, and (c) φ = 0 and ψ = 0.95.

with τ = 0.5 s. Vectors wk and vk are chosen to be stable

Gauss-Markov processes (34) and (35) with the scalar factors

0 6 φ < 1 and 0 6 ψ < 1. The white Gaussian driving

sources are set as ζk ∼ N (0, σ2
ς ) and ξk ∼ N (0, σ2

ξ ), The

goal is to learn effects produced by the colored process noise

(CPN) and colored measurement noise (CMN) on the H2-

OFIR predictor performance.

The case of Gaussian errors is favorable for KP. To compare

the root mean square errors (RMSEs) under the Gauss-Markov

disturbances, we set σζ = 0.3m/s and σξ = 10m, simulate

the processes for extreme values of φ and ψ, measure the

optimal horizon Nopt for the UFIR predictor [33], compute

full block error matrices QN and RN , set Q = (QN )1,1
and R = (RN )1,1 to the KP, run the algorithms, and list

the RMSEs in Table I, where the minimum errors are bolded.

Examples of the estimation errors are sketched in Fig. 1.

As expected, the KP performs better when φ = ψ = 0,

although the difference with other predictors appears to be

insignificant (Table I). A situation changes dramatically under

the sever disturbance with φ = 0.95. Here all FIR structures

perform very consistently, while the KP produces of about

30% larger errors. An explanation to this results can be found

in the nonzero components of the error matrix QN when φ =
0.95 and the fact that the KP discards the cross components,

which become nonzero when noise is not white. An example

4. Simulations 
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Fig. 2. RMSEs produced by the H2-OFIR, UFIR, and Kalman estimators
with ψ = 0 as functions of factor φ under the Gauss-Markov disturbances.

Fig. 3. RMSEs produced by the H2-OFIR, UFIR, and Kalman estimators
with φ = 0 as functions of factor ψ of the Gauss-Markov disturbance.

of matrix QN measured for N = 5 and φ = 0.95,

QN =









1.0882 1.0425 0.9990 0.9575 0.9169
1.0425 1.0895 1.0436 1.0001 0.9584
0.9990 1.0436 1.0904 1.0446 1.0009
0.9575 1.0001 1.0446 1.0914 1.0453
0.9169 0.9584 1.0009 1.0453 1.0920









,

reveals even more: all of the components are of the same

order of magnitude and thus neglecting the cross components

will cause errors. The effect is negligible when φ is small

and it becomes brightly pronounced when φ approaches unity

(Fig. 2). However, this inference does not hold for the Gauss-

Markov disturbances (Fig. 3), in which case all the predictors

produce consistent error, although the H2-OFIR predictor still

performs better. We explain it by the observation that the

disturbed state is required to be tracked, while the Gauss-

Markov noise needs to be filtered out that is better provided

by other algorithms [36], [37]. A conclusion one can arrive

at is that the H2-OFIR and UFIR predictors are more robust

trackers than the KP.

Fig. 4. UWB-based measurement data of a robot travelling along a planned
path (dashed) in the indoor environment with four reference nodes deployed
as RN1...RN4.

To verify the H2-OFIR predictor performance, we have

organized an experimental set and conducted measurements

of a moving robot platform in the indoor environment of the

Machine Building of the University of Jinan, Jinan, China.

Data were obtained with τ = 0.05 s using the ultra wide band

(UWB) technology as described in [38].

Four reference nodes (RNs) were deployed with known

coordinates as shown in Fig. 4: RN1 (−9.4,−3)m, RN2

(−9.4, 11.78)m, RN3 (2.63, 11.78)m, and RN4 (2.63,−3)m.

The planned path trajectory along the east coordinate x is

shown in Fig. 5 together with the UWB data. It is seen that

some data jump from one point to another, while some others

are reminiscent of the Gaussian and uniformly-distributed

noise. There are also several outliers associated with the

Cauchy noise. We therefore model data errors as the Gauss-

Markov disturbance, compute the difference with the planned

path, and measure the full error matrix RN . The robot

velocity in this experiment is about 0.4m/s and we accept

σw = 0.1m/s, set Q = 0.01m/s, specify the diagonal matrix

QN with all components equal to Q, and measure Nopt = 30.

That allows evaluating the estimator robustness against the

CMN and CPN.

The RMSEs of predictive tracking are sketched in Fig. 6 for

the initial path of 1100 points. It is seen that the KP and UFIR

predictor perform consistently with the RMSEs of 0.1268m
(UFIR) and 0.1270m (KP) and demonstrate the well-known

transient effects [33] around k = 500. In turn, the H2-OFIR

estimator operating with full matrix RN produces smaller

5. Robot Predictive Tracking 
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Fig. 5. The planned path along the coordinate x of a robot moving in an indoor
environment and measurement data provided using the UWB technology with
four RNs.

Fig. 6. Measurement data and predictive tracking estimates produced by the
H2-OFIR, UFIR, and Kalman predictors at the beginning of the planned path
(dashed) trajectory shown in Fig. 5.

RMSEs of 0.0665m and ranges closer to the planned path.

This gives an evidence of a better accuracy and robustness of

the batch H2-OFIR predictor.

The H2-OFIR predictor derived in this paper under bounded

industrial persistent disturbances, data errors, and initial errors

has demonstrated a better performance and robustness than

the KP and UFIR predictor. Namely, the H2-OFIR predictor

operating with full error matrices has appeared to be more

robust than the Kalman and UFIR predictors. The effect has

been achieved by improving the derivation procedure and

minimizing the squared weighted Frobenius norms at the

predictor output. The performance of the H2-OFIR predictor

was investigated by simulating the Gauss-Markov environment

associated with industrial operation conditions. Thereby, it has

been confirmed that the derived predictor is more robust than

the KP and UFIR predictor. An experimental verification was

provided for a moving robot travelling along a planned path

in an indoor environment using the UWB technology.

We are now working on a more general H2-OFIR predictor

for uncertain industrial processes observed under the distur-

bances, data errors, and initial errors and plan to report the

results in near future.
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