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Abstract

Currently, researchers have paid great at-

tention to retrieval-based dialogues in open-

domain. In particular, people study the prob-

lem by investigating context-response match-

ing for multi-turn response selection based

on publicly recognized benchmark data sets.

State-of-the-art methods require a response

to interact with each utterance in a context

from the beginning, but the interaction is per-

formed in a shallow way. In this work,

we let utterance-response interaction go deep

by proposing an interaction-over-interaction

network (IoI). The model performs match-

ing by stacking multiple interaction blocks

in which residual information from one time

of interaction initiates the interaction process

again. Thus, matching information within an

utterance-response pair is extracted from the

interaction of the pair in an iterative fashion,

and the information flows along the chain of

the blocks via representations. Evaluation re-

sults on three benchmark data sets indicate that

IoI can significantly outperform state-of-the-

art methods in terms of various matching met-

rics. Through further analysis, we also unveil

how the depth of interaction affects the perfor-

mance of IoI.

1 Introduction

Building a chitchat style dialogue systems in open-

domain for human-machine conversations has at-

tracted increasing attention in the conversational

artificial intelligence (AI) community. Generally

speaking, there are two approaches to implement-

ing such a conversational system. The first ap-

proach leverages techniques of information re-

trieval (Lowe et al., 2015; Wu et al., 2017; Yan

and Zhao, 2018), and selects a proper response

from an index; while the second approach di-

rectly synthesizes a response with a natural lan-
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guage generation model estimated from a large-

scale conversation corpus (Serban et al., 2016; Li

et al., 2017b). In this work, we study the prob-

lem of multi-turn response selection for retrieval-

based dialogue systems where the input is a con-

versation context consisting of a sequence of utter-

ances. Compared with generation-based methods,

retrieval-based methods are superior in terms of

response fluency and diversity, and thus have been

widely applied in commercial chatbots such as the

social bot XiaoIce (Shum et al., 2018) from Mi-

crosoft, and the e-commerce assistant AliMe As-

sist from Alibaba Group (Li et al., 2017a).

A key step in multi-turn response selection is

to measure the matching degree between a con-

versation context and a response candidate. State-

of-the-art methods (Wu et al., 2017; Zhou et al.,

2018b) perform matching within a representation-

interaction-aggregation framework (Wu et al.,

2018b) where matching signals in each utterance-

response pair are distilled from their interaction

based on their representations, and then are ag-

gregated as a matching score. Although utterance-

response interaction has proven to be crucial to the

performance of the matching models (Wu et al.,

2017), it is executed in a rather shallow manner

where matching between an utterance and a re-

sponse candidate is determined only by one step

of interaction on each type or each layer of rep-

resentations. In this paper, we attempt to move

from shallow interaction to deep interaction, and

consider context-response matching with multi-

ple steps of interaction where residual information

from one time of interaction, which is generally

ignored by existing methods, is leveraged for ad-

ditional interactions. The underlying motivation is

that if a model extracts some matching informa-

tion from utterance-response pairs in one step of

interaction, then by stacking multiple such steps,

the model can gradually accumulate useful signals
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for matching and finally capture the semantic rela-

tionship between a context and a response candi-

date in a more comprehensive way.

We propose an interaction-over-interaction net-

work (IoI) for context-response matching, through

which we aim to investigate: (1) how to make in-

teraction go deep in a matching model; and (2) if

the depth of interaction really matters in terms of

matching performance. A key component in IoI is

an interaction block. Taking a pair of utterance-

response as input, the block first lets the utterance

and the response attend to themselves, and then

measures interaction of the pair by an attention-

based interaction function. The results of the in-

teraction are concatenated with the self-attention

representations and then compressed to new rep-

resentations of the utterance-response pair as the

output of the block. Built on top of the interac-

tion block, IoI initializes each utterance-response

pair via pre-trained word embeddings, and then

passes the initial representations through a chain

of interaction blocks which conduct several rounds

of representation-interaction-representation oper-

ations and let the utterance and the response inter-

act with each other in an iterative way. Different

blocks could distill different levels of matching in-

formation in an utterance-response pair. To suffi-

ciently leverage the information, a matching score

is first calculated in each block through aggre-

gating matching vectors of all utterance-response

pairs, and then the block-wise matching scores are

combined as the final matching degree of the con-

text and the response candidate.

We conduct experiments on three benchmark

data sets: the Ubuntu Dialogue Corpus (Lowe

et al., 2015), the Douban Conversation Corpus

(Wu et al., 2017), and the E-commerce Dialogue

Corpus (Zhang et al., 2018b). Evaluation results

indicate that IoI can significantly outperform state-

of-the-art methods with 7 interaction blocks over

all metrics on all the three benchmarks. Compared

with deep attention matching network (DAM),

the best performing baseline on all the three data

sets, IoI achieves 2.9% absolute improvement on

R10@1 on the Ubuntu data, 2.3% absolute im-

provement on MAP on the Douban data, and

3.7% absolute improvement on R10@1 on the E-

commerce data. Through more quantitative anal-

ysis, we also show that depth indeed brings im-

provement to the performance of IoI, as IoI with

1 interaction block performs worse than DAM on

the Douban data and the E-commerce data, and on

the Ubuntu data, the gap on R10@1 between IoI

and DAM is only 1.1%. Moreover, the improve-

ment brought by depth mainly comes from short

contexts.

Our contributions in this paper are three-folds:

(1) proposal of a novel interaction-over-interaction

network which enables deep-level matching with

carefully designed interaction block chains; (2)

empirical verification of the effectiveness of the

model on three benchmarks; and (3) empiri-

cal study on the relationship between interaction

depth and model performance.

2 Related Work

Existing methods for building an open-domain di-

alogue system can be categorized into two groups.

The first group learns response generation mod-

els under an encoder-decoder framework. On top

of the basic sequence-to-sequence with attention

architecture (Vinyals and Le, 2015; Shang et al.,

2015; Tao et al., 2018), various extensions have

been made to tackle the “safe response” problem

(Li et al., 2015; Mou et al., 2016; Xing et al., 2017;

Zhao et al., 2017; Song et al., 2018); to gener-

ate responses with specific personas or emotions

(Li et al., 2016a; Zhang et al., 2018a; Zhou et al.,

2018a); and to pursue better optimization strate-

gies (Li et al., 2017b, 2016b).

The second group learns a matching model

of a human input and a response candidate for

response selection. Along this line, the focus

of research starts from single-turn response se-

lection by setting the human input as a single

message (Wang et al., 2013; Hu et al., 2014;

Wang et al., 2015), and moves to context-response

matching for multi-turn response selection re-

cently. Representative methods include the dual

LSTM model (Lowe et al., 2015), the deep learn-

ing to respond architecture (Yan et al., 2016), the

multi-view matching model (Zhou et al., 2016),

the sequential matching network (Wu et al., 2017,

2018b), and the deep attention matching net-

work (Zhou et al., 2018b). Besides model design,

some attention is also paid to the learning prob-

lem of matching models (Wu et al., 2018a). Our

work belongs to the second group. The proposed

interaction-over-interaction network is unique in

that it performs matching by stacking multiple

interaction blocks, and thus extends the shallow

interaction in state-of-the-art methods to a deep
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Figure 1: Architecture of interaction-over-interaction network.

form. As far as we know, this is the first archi-

tecture that realizes deep interaction for multi-turn

response selection.

Encouraged by the big success of deep neural

architectures such as Resnet (He et al., 2016) and

inception (Szegedy et al., 2015) in computer vi-

sion, researchers have studied if they can achieve

similar results with deep neural networks on NLP

tasks. Although deep models have not yet brought

breakthroughs to NLP as they do to computer vi-

sion, they have proven effective in a few tasks such

as text classification (Conneau et al., 2017), natu-

ral language inference (Kim et al., 2018; Tay et al.,

2018), and question answering (Tay et al., 2018;

Kim et al., 2018), etc. In this work, we attempt

to improve the accuracy of multi-turn response se-

lection in retrieval-based dialogue systems by in-

creasing the depth of context-response interaction

in matching. Through extensive studies on bench-

marks, we show that depth can bring significant

improvement to model performance on the task.

3 Problem Formalization

Suppose that there is a conversation data set

D = {(yi, ci, ri)}Ni=1
. ∀i ∈ {1, . . . , N}, ci =

{ui,1, . . . , ui,li} represents a conversation context

with ui,k the k-th turn, ri is a response candidate,

and yi ∈ {0, 1} denotes a label with yi = 1
indicating ri a proper response for ci, otherwise

yi = 0. The task is to learn a matching model

g(·, ·) from D, and thus for a new context-response

pair (c, r), g(c, r) measures the matching degree

between c and r.

In the following sections, we will elaborate how

to define g(·, ·) to achieve deep interaction be-

tween c and r, and how to learn such a deep model

from D.

4 Interaction-over-Interaction Network

We define g(·, ·) as an interaction-over-interaction

network (IoI). Figure 1 illustrates the architecture

of IoI. The model pairs each utterance in a con-

text with a response candidate, and then aggre-

gates matching information from all the pairs as

a matching score of the context and the response

candidate. For each pair, IoI starts from initial rep-

resentations of the utterance and the response, and

then feeds the pair to stacked interaction blocks.

Each block represents the utterance and the re-

sponse by letting them interact with each other

based on the interactions before. Matching signals

are first accumulated along the sequence of the ut-

terances in each block, and then combined along

the chain of blocks as the final matching score. Be-

low we will describe details of components of IoI

and how to learn the model with D.

4.1 Initial Representations

Given an utterance u in a context c and a re-

sponse candidate r, u and r are initialized as Eu =
[eu,1, · · · , eu,m] and Er = [er,1, · · · , er,n] respec-

tively. ∀i ∈ {1, . . . ,m} and ∀j ∈ {1, . . . , n},

eu,i and er,j are representations of the i-th word

of u and the j-th word of r respectively which
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are obtained by pre-training Word2vec (Mikolov

et al., 2013) on D. Eu and Er are then processed

by stacked interaction blocks that model different

levels of interaction between u and r and generate

matching signals.

4.2 Interaction Block

The stacked interaction blocks share the same

internal structure. In a nutshell, each block is

composed of a self-attention module that captures

long-term dependencies within an utterance and

a response, an interaction module that models

the interaction between the utterance and the re-

sponse, and a compression module that condenses

the results of the first two modules into representa-

tions of the utterance and the response as output of

the block. The output is then utilized as the input

of the next block.

Before diving to details of the block, we first

generally describe an attention mechanism that

lays a foundation for the self-attention module and

the interaction module. Let Q ∈ R
nq×d and

K ∈ R
nk×d be a query and a key respectively,

where nq and nk denote numbers of words and d

is the embedding size, then attention from Q to K

is defined as

Q̂ = S(Q,K) ·K, (1)

where S(·, ·) is a function for attention weight cal-

culation. Here, we exploit the symmetric function

in (Huang et al., 2017b) as S(·, ·) which is given

by:

S(Q,K) = softmax(f(QW)Df(KW)⊤). (2)

In Equation (2), f is a ReLU activation function,

D is a diagonal matrix, and both D ∈ R
d×d and

W ∈ R
d×d are parameters to estimate from train-

ing data. Intuitively, in Equation (1), each entry of

K is weighted by an importance score defined by

the similarity of an entry of Q and an entry of K.

The entries of K are then linearly combined with

the weights to form a new representation of Q.

A residual connection (He et al., 2016) and a

layer normalization (Ba et al., 2016) are then ap-

plied to Q̂ as Q̃. After that, Q̃ is fed to a feed

forward network which is formulated as

ReLU(Q̃W1 + b1)W2 + b2, (3)

where W{1,2} ∈ R
d×d and b{1,2} are parame-

ters. The output of the attention mechanism is de-

fined with the result of Equation (3) after another

round of residual connection and layer normaliza-

tion. For ease of presentation, we denote the entire

attention mechanism as fATT (Q,K).
Let Uk−1 and Rk−1 be the input of the k-th

block where U0 = Eu and R0 = Er, then the

self-attention module is defined as

Ûk = fATT(U
k−1,Uk−1), (4)

R̂k = fATT(R
k−1,Rk−1). (5)

The interaction module first lets Uk−1 and Rk−1

attend to each other by

U
k
= fATT(U

k−1,Rk−1), (6)

R
k
= fATT(R

k−1,Uk−1). (7)

Then Uk−1 and Rk−1 further interact with U
k

and R
k

respectively, which can be formulated as

Ũk = Uk−1 ⊙U
k
, (8)

R̃k = Rk−1 ⊙R
k
, (9)

where ⊙ denotes element-wise multiplication. Fi-

nally, the compression module updates Uk−1 and

Rk−1 to Uk and Rk as the output of the block.

Suppose that eku,i and ekr,i are the i-th entries of

Uk and Rk respectively, then eku,i and ekr,i are cal-

culated by

eku,i = ReLU(wp









ek−1

u,i

êku,i
eku,i
ẽku,i









+ bp) + ek−1

u,i , (10)

ekr,i = ReLU(wp









ek−1

r,i

êkr,i
ekr,i
ẽkr,i









+ bp) + ek−1

r,i , (11)

where wp ∈ R
4d×d and bp are learnable projec-

tion weights and biases, êk{u,r},i, e
k
{u,r},i, ẽ

k
{u,r},i,

and ek−1

{u,r},i are the i-th entries of {Û, R̂}k,

{U,R}k, {Ũ, R̃}k, and {U,R}k−1, respectively.

Inspired by Huang et al. (2017a), we also intro-

duce direct connections from initial representa-

tions to all their corresponding subsequent blocks.

4.3 Matching Aggregation

Suppose that c = (u1, . . . , ul) is a conversation

context with ui the i-th utterance, then in the k-

th interaction block, we construct three similarity
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matrices by

Mk
i,1 =

Uk−1

i · (Rk−1)⊤√
d

,

Mk
i,2 =

Ûk
i · (R̂k)⊤√

d
,

Mk
i,3 =

U
k

i · (R
k
)⊤√

d
,

(12)

where Uk−1

i and Rk−1 are the input of the k-th

block, Ûk
i and R̂k are defined by Equations (4-5),

and U
k

i and R
k

are calculated by Equations (6-7).

The three matrices are then concatenated into a 3-

D matching tensor Tk
i ∈ R

mi×n×3 which can be

written as

Tk
i = Mk

i,1 ⊕Mk
i,2 ⊕Mk

i,3, (13)

where ⊕ denotes a concatenation operation, and

mi and n refer to numbers of words in ui and r

respectively.

We exploit a convolutional neural net-

work (Krizhevsky et al., 2012) to extract matching

features from Tk
i . The output of the final feature

maps are flattened and mapped to a d-dimensional

matching vector vk
i with a linear transformation.

(vk
1
, · · · ,vk

l ) is then fed to a GRU (Chung et al.,

2014) to capture temporal relationship among

(u1, . . . , ul). ∀i ∈ {1, . . . , l}, the i-th hidden state

of the GRU model is given by

hk
i = GRU(vk

i ,h
k
i−1), (14)

where hk
0

is randomly initialized. A matching

score for context c and response candidate r in the

k-th block is defined as

gk(c, r) = σ(hk
l ·wo + bo), (15)

where wo and bo are parameters, and σ(·) is a sig-

moid function. Finally, g(c, r) is defined by

g(c, r) =

L
∑

k=1

gk(c, r), (16)

where L is the number of interaction blocks in

IoI. Note that we define g(c, r) with all blocks

rather than only with the last block. This is mo-

tivated by (1) only using the last block will make

training of IoI difficult due to the gradient van-

ishing/exploding problem; and (2) different blocks

may capture different levels of matching informa-

tion in (c, r), and thus leveraging all of them could

enhance matching accuracy.

5 Learning Methods

We consider two strategies to learn an IoI model

from the training data D. The first strategy es-

timates the parameters of IoI (denoted as Θ) by

minimizing a global loss function that is formu-

lated as

−
N
∑

i=1

[

yi log(g(ci, ri))+(1−yi) log(1−g(ci, ri))
]

.

(17)

In the second strategy, we construct a local loss

function for each block and minimize the summa-

tion of the local loss functions. By this means,

each block can be directly supervised by the la-

bels in D during learning. The learning objective

is then defined as

−
L
∑

k=1

N
∑

i=1

[

yi log(g
k(ci, ri))

+ (1− yi) log(1− gk(ci, ri))
]

.

(18)

We compare the two learning strategies through

empirical studies, as will be reported in the next

section. In both strategies, Θ are optimized using

back-propagation with Adam algorithm (Kingma

and Ba, 2015).

6 Experiments

We test the proposed IoI on three benchmark data

sets for multi-turn response selection.

6.1 Experimental Setup

The first data we use is the Ubuntu Dialogue Cor-

pus (Lowe et al., 2015) which is a multi-turn En-

glish conversation data set constructed from chat

logs of the Ubuntu forum. We use the version

provided by Xu et al. (2017). The data contains

1 million context-response pairs for training, and

0.5 million pairs for validation and test. In all the

three sets, positive responses are human responses,

while negative ones are randomly sampled. The

ratio of the positive and the negative is 1:1 in the

training set, and 1:9 in both the validation set and

the test set. Following Lowe et al. (2015), we em-

ploy recall at position k in n candidates (Rn@k)

as evaluation metrics.

The second data set is the Douban Conversation

Corpus (Wu et al., 2017) that consists of multi-

turn Chinese conversations collected from Douban

group1. There are 1 million context-response pairs

1https://www.douban.com/group

https://www.douban.com/group
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for training, 50 thousand pairs for validation, and

6, 670 pairs for testing. In the training set and the

validation set, the last turn of each conversation

is taken as a positive response and a negative re-

sponse is randomly sampled. For each context in

the test set, 10 response candidates are retrieved

from an index and their appropriateness regard-

ing to the context is annotated by human labelers.

Following Wu et al. (2017), we employ Rn@ks,

mean average precision (MAP), mean reciprocal

rank (MRR) and precision at position 1 (P@1) as

evaluation metrics.

Finally, we choose the E-commerce Dialogue

Corpus (Zhang et al., 2018b) as an experimen-

tal data set. The data consists of multi-turn real-

world conversations between customers and cus-

tomer service staff in Taobao2, which is the largest

e-commerce platform in China. It contains 1 mil-

lion context-response pairs for training, and 10
thousand pairs for validation and test. Positive re-

sponses in this data are real human responses, and

negative candidates are automatically constructed

by ranking the response corpus based on conver-

sation history augmented messages using Apache

Lucene3. The ratio of the positive and the neg-

ative is 1:1 in training and validation, and 1:9 in

test. Following (Zhang et al., 2018b), we employ

R10@1, R10@2, and R10@5 as evaluation metrics.

6.2 Baselines

We compare IoI with the following models:

Single-turn Matching Models: these models,

including RNN (Lowe et al., 2015), CNN (Lowe

et al., 2015), LSTM (Lowe et al., 2015), BiL-

STM (Kadlec et al., 2015), MV-LSTM (Wan et al.,

2016) and Match-LSTM (Wang and Jiang, 2016),

perform context-response matching by concate-

nating all utterances in a context into a single long

document and calculating a matching score be-

tween the document and a response candidate.

Multi-View (Zhou et al., 2016): the model cal-

culates matching degree between a context and

a response candidate from both a word sequence

view and an utterance sequence view.

DL2R (Yan et al., 2016): the model first refor-

mulates the last utterance with previous turns in

a context with different approaches. A response

candidate and the reformulated message are then

represented by a composition of RNN and CNN.

2https://www.taobao.com
3http://lucene.apache.org/

Finally, a matching score is computed with the

concatenation of the representations.

SMN (Wu et al., 2017): the model lets each ut-

terance in a context interact with a response can-

didate at the beginning, and then transforms inter-

action matrices into a matching vector with CNN.

The matching vectors are finally accumulated with

an RNN as a matching score.

DUA (Zhang et al., 2018b): the model considers

the relationship among utterances within a context

by exploiting deep utterance aggregation to form

a fine-grained context representation. Each re-

fined utterance then matches with a response can-

didate, and their matching degree is finally calcu-

lated through an aggregation on turns.

DAM (Zhou et al., 2018b): the model lets each

utterance in a context interact with a response can-

didate at different levels of representations ob-

tained by a stacked self-attention module and a

cross-attention module.

For the Ubuntu data and the Douban data, since

results of all baselines under fine-tuning are avail-

able in Zhou et al. (2018b), we directly copy the

numbers from the paper. For the E-commerce

data, Zhang et al. (2018b) report performance of

all baselines except DAM. Thus, we copy all avail-

able numbers from the paper and implement DAM

with the published code4. In order to conduct sta-

tistical tests, we also run the code of DAM on the

Ubuntu data and the Douban data.

6.3 Implementation Details

In IoI, we set the size of word embedding as 200.

For the CNN in matching aggregation, we set the

window size of convolution and pooling kernels as

(3, 3), and the strides as (1, 1) and (3, 3) respec-

tively. The number of convolution kernels is 32 in

the first layer and 16 in the second layer. The di-

mension of the hidden states of GRU is set as 200.

Following Wu et al. (2017), we limit the length of

a context to 10 turns and the length of an utterance

(either from a context or from a response candi-

date) to 50 words. Truncation or zero-padding is

applied to a context or a response candidate when

necessary. We gradually increase the number of

interaction blocks (i.e., L) in IoI, and finally set

L = 7 in comparison with the baseline models. In

optimization, we choose 0.2 as a dropout rate, and

50 as the size of mini-batches. The learning rate

is initialized as 0.0005, and exponentially decayed

4 https://github.com/baidu/Dialogue

https://www.taobao.com
http://lucene.apache.org/
https://github.com/baidu/Dialogue
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Models

Metrics Ubuntu Corpus Douban Corpus

R2@1 R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5

RNN (Lowe et al., 2015) 0.768 0.403 0.547 0.819 0.390 0.422 0.208 0.118 0.223 0.589

CNN (Lowe et al., 2015) 0.848 0.549 0.684 0.896 0.417 0.440 0.226 0.121 0.252 0.647

LSTM (Lowe et al., 2015) 0.901 0.638 0.784 0.949 0.485 0.527 0.320 0.187 0.343 0.720

BiLSTM (Kadlec et al., 2015) 0.895 0.630 0.780 0.944 0.479 0.514 0.313 0.184 0.330 0.716

DL2R (Yan et al., 2016) 0.899 0.626 0.783 0.944 0.488 0.527 0.330 0.193 0.342 0.705

MV-LSTM (Wan et al., 2016) 0.906 0.653 0.804 0.946 0.498 0.538 0.348 0.202 0.351 0.710

Match-LSTM (Wang and Jiang, 2016) 0.904 0.653 0.799 0.944 0.500 0.537 0.345 0.202 0.348 0.720

Multi-View (Zhou et al., 2016) 0.908 0.662 0.801 0.951 0.505 0.543 0.342 0.202 0.350 0.729

SMN (Wu et al., 2017) 0.926 0.726 0.847 0.961 0.529 0.569 0.397 0.233 0.396 0.724

DUA(Zhang et al., 2018b) - 0.752 0.868 0.962 0.551 0.599 0.421 0.243 0.421 0.780

DAM (Zhou et al., 2018b) 0.938 0.767 0.874 0.969 0.550 0.601 0.427 0.254 0.410 0.757

IoI-global 0.941 0.778 0.879 0.970 0.566 0.608 0.433 0.263 0.436 0.781

IoI-local 0.947 0.796 0.894 0.974 0.573 0.621 0.444 0.269 0.451 0.786

Table 1: Evaluation results on the Ubuntu data and the Douban data. Numbers in bold mean that the improvement

to the best performing baseline is statistically significant (t-test with p-value < 0.05).

Models

Metrics
R10@1 R10@2 R10@5

RNN (Lowe et al., 2015) 0.325 0.463 0.775

CNN (Lowe et al., 2015) 0.328 0.515 0.792

LSTM (Lowe et al., 2015) 0.365 0.536 0.828

BiLSTM (Kadlec et al., 2015) 0.355 0.525 0.825

DL2R (Yan et al., 2016) 0.399 0.571 0.842

MV-LSTM (Wan et al., 2016) 0.412 0.591 0.857

Match-LSTM (Wang and Jiang, 2016) 0.410 0.590 0.858

Multi-View (Zhou et al., 2016) 0.421 0.601 0.861

SMN (Wu et al., 2017) 0.453 0.654 0.886

DUA(Zhang et al., 2018b) 0.501 0.700 0.921

DAM (Zhou et al., 2018b) 0.526 0.727 0.933

IoI-global 0.554 0.747 0.942

IoI-local 0.563 0.768 0.950

Table 2: Evaluation results on the E-commerce data.

Numbers in bold mean that the improvement to the

best performing baseline is statistically significant (t-

test with p-value < 0.05).

during training.

6.4 Evaluation Results

Table 1 and Table 2 report evaluation results on the

three data sets where IoI-global and IoI-local rep-

resent models learned with Objective (17) and Ob-

jective (18) respectively. We can see that both IoI-

local and IoI-global outperform the best perform-

ing baseline, and improvements from IoI-local on

all metrics and from IoI-global on a few met-

rics are statistically significant (t-test with p-value

< 0.05). IoI-local is consistently better than IoI-

global over all metrics on all the three data sets,

demonstrating that directly supervising each block

in learning can lead to a more optimal deep struc-

ture than optimizing the final matching model.

6.5 Discussions

In this section, we make some further analysis

with IoI-local to understand (1) how depth of in-

0.78

0.79

0.80

R 1
0@

1
0.778

0.789
0.793 0.794 0.795 0.795 0.796

0.794

Ubuntu
E-Commerce
Douban

0.45

0.50

0.55

R 1
0@

1

0.467

0.516
0.528 0.537

0.554 0.563 0.563 0.561

1 2 3 4 5 6 7 8
# Interaction Blocks

0.40

0.42

0.44

P@
1

0.402

0.421
0.430 0.432

0.441 0.440 0.444 0.441

Figure 2: Performance of IoI under different numbers

of the interaction blocks.

teraction affects the performance of IoI; (2) how

context length affects the performance of IoI; and

(3) importance of different components of IoI with

respect to matching accuracy.

Impact of interaction depth. Figure 2 illus-

trates how the performance of IoI changes with re-

spect to the number of interaction blocks on test

sets of the three data. From the chart, we ob-

serve a consistent trend over the three data sets:

there is significant improvement during the first

few blocks, and then the performance of the model

becomes stable. The results indicate that depth

of interaction indeed matters in terms of match-

ing accuracy. With shallow interaction (L = 1),

IoI performs worse than DAM on the Douban data

and the E-commerce data. Only after the interac-

tion goes deep (L ≥ 5), improvement from IoI
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Models

Metrics Ubuntu data Douban data E-commerce data

R2@1 R10@1 R10@2 MAP MRR P@1 R10@1 R10@2 R10@5

IoI 0.947 0.796 0.894 0.573 0.621 0.444 0.563 0.768 0.947

IoI-E 0.947 0.794 0.891 0.568 0.616 0.438 0.559 0.762 0.943

IoI-Ê 0.946 0.790 0.888 0.565 0.613 0.433 0.557 0.749 0.941

IoI-E 0.947 0.793 0.890 0.566 0.613 0.439 0.560 0.754 0.943

IoI-Ẽ 0.947 0.795 0.891 0.571 0.616 0.441 0.562 0.740 0.944

IoI-M1 0.946 0.793 0.890 0.568 0.611 0.436 0.557 0.743 0.943

IoI-M2 0.944 0.788 0.886 0.562 0.605 0.427 0.551 0.739 0.942

IoI-M3 0.946 0.793 0.889 0.567 0.615 0.438 0.558 0.748 0.946

Table 3: Evaluation results of the ablation study on the three data sets.

(0, 10] (10, 20] (20, 30] (30, 50]
Average utterance length (words)

0.725

0.750

0.775

0.800

0.825

0.850

R 1
0@

1

DAM
IoI-1L
IoI-7L

(a) R10@1 vs. Average utterance length

[2, 4] [5, 7] [8, 10]
Context length (turns)

0.75

0.76

0.77

0.78

0.79

0.80

0.81

R 1
0@

1

DAM
IoI-1L
IoI-7L

(b) R10@1 vs. Number of turns

Figure 3: Performance of IoI across contexts with different lengths on the Ubuntu data.

to DAM on the two data becomes significant. On

the Ubuntu data, improvement to DAM from the

deep model (L = 7) is more than twice as much as

that from the shallow model (L = 1). The perfor-

mance of IoI becomes stable earlier on the Ubuntu

data than it does on the other two data. This may

stem from the different nature of test sets of the

three data. The test set of the Ubuntu data is in

large size and built by random sampling, while the

test sets of the other two data are smaller and con-

structed through response retrieval.

Impact of context length. Context length is

measured by (1) number of turns in a context and

(2) average length of utterances in a context. Fig-

ure 3 shows how the performance of IoI varies

across contexts with different lengths, where we

bin test examples of the Ubuntu data into buckets

and compare IoI (L = 7) with its shallow version

(L = 1) and DAM. We find that (1) IoI, either in a

deep form or in a shallow form, is good at dealing

with contexts with long utterances, as the model

achieves better performance on longer utterances;

(2) overall, IoI performs well on contexts with

more turns, although too many turns (e.g., ≥ 8) is

still challenging; (3) a deep form of our model is

always better than its shallow form, no matter how

we measure context length, and the gap between

the two forms is bigger on short contexts than it is

on long contexts, indicating that depth mainly im-

proves matching accuracy on short contexts; and

(4) trends of DAM in both charts are consistent

with those reported in (Zhou et al., 2018b), and on

both short contexts and long contexts, IoI is supe-

rior to DAM.

Ablation study. Finally, we examine how dif-

ferent components of IoI affects its performance.

First, we remove ek−1

u,i (ek−1

r,i ), êku,i (êkr,i), eku,i

(ekr,i), and ẽku,i (ẽkr,i) one by one from Equation

(10) and Equation (11), and denote the models as

IoI-E, IoI-Ê, IoI-E, and IoI-Ẽ respectively. Then,

we keep all representations in Equation (10) and

Equation (11), and remove Mk
i,1, Mk

i,2, and Mk
i,3

one by one from Equation (13). The models are

named IoI-M1, IoI-M2, and IoI-M3 respectively.

Table 3 reports the ablation results5. We conclude

that (1) all representations are useful in represent-

ing the information flow along the chain of inter-

action blocks and capturing the matching infor-

mation between an utterance-response pair within

the blocks, as removing any component gener-

5Due to space limitation, we only report results on main
metrics.
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ally causes performance drop on all the three data

sets; and (2) in terms of component importance,

Ê > E > E > Ẽ and M2 > M1 ≈ M3, meaning

that self-attention (i.e., Ê) and cross-attention (i.e.,

E) are more important than others in information

flow representation, and self-attention (i.e., those

used for calculating M2) convey more matching

signals. Note that these results are obtained with

IoI (L = 7). We also check the ablation results

of IoI (L = 1) and do not see much difference

on overall trends and relative gaps among differ-

ent ablated models.

7 Conclusions and Future Work

We present an interaction-over-interaction net-

work (IoI) that lets utterance-response inter-

action in context-response matching go deep.

Depth of the model comes from stacking multi-

ple interaction blocks that execute representation-

interaction-representation in an iterative manner.

Evaluation results on three benchmarks indicate

that IoI can significantly outperform baseline

methods with moderate depth. In the future, we

plan to integrate our IoI model with models like

ELMo (Peters et al., 2018) and BERT (Devlin

et al., 2018) to study if the performance of IoI can

be further improved.
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