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Abstract

The recent explosive growth in convolutional neural net-

work (CNN) research has produced a variety of new archi-

tectures for deep learning. One intriguing new architec-

ture is the bilinear CNN (B-CNN), which has shown dra-

matic performance gains on certain fine-grained recogni-

tion problems [15]. We apply this new CNN to the chal-

lenging new face recognition benchmark, the IARPA Janus

Benchmark A (IJB-A) [12]. It features faces from a large

number of identities in challenging real-world conditions.

Because the face images were not identified automatically

using a computerized face detection system, it does not

have the bias inherent in such a database. We demonstrate

the performance of the B-CNN model beginning from an

AlexNet-style network pre-trained on ImageNet. We then

show results for fine-tuning using a moderate-sized and

public external database, FaceScrub [17]. We also present

results with additional fine-tuning on the limited training

data provided by the protocol. In each case, the fine-tuned

bilinear model shows substantial improvements over the

standard CNN. Finally, we demonstrate how a standard

CNN pre-trained on a large face database, the recently

released VGG-Face model [20], can be converted into a

B-CNN without any additional feature training. This B-CNN

improves upon the CNN performance on the IJB-A bench-

mark, achieving 89.5% rank-1 recall.

1. Introduction

Since the introduction of the Labeled Faces in the Wild

(LFW) database [9], there has been intense interest in the

problem of unconstrained face verification. In this problem,

the goal is to determine whether two face images represent

the same individual or not. From initial recognition rates in

the low seventies [18], recent algorithms are achieving rates

of over 99% using a variety of different methods [24, 25,

28].

While face verification has been an interesting research

problem, a protocol more closely aligned with real-world

applications is face identification, also known as one-to-

many or 1:N face recognition [7]. In this scenario, visual

information is gathered about a set of known subjects (the

gallery), and at test time, a new subject (the probe) is pre-

sented. The goal is to determine which member of the

gallery, if any, is represented by the probe. When the tester

guarantees that the probe is among the gallery identities,

this is known as closed set identification. When the probes

may include those who are not in the gallery, the problem is

referred to as open set identification.

Since verification accuracy rates on LFW are rapidly

approaching 100%, there has been strong demand for

a new identification protocol that can push face recog-

nition forward again. The new IARPA Janus Bench-

mark A (IJB-A) is designed to satisfy this need. The IJB-A

is presented in a CVPR paper that describes the database,

gives detailed information about proper protocols for use,

and establishes initial baseline results for the defined proto-

cols [12].

In this paper, we present results for IJB-A using the bilin-

ear convolutional neural network (B-CNN) of Lin et al. [15]

after adapting it to our needs and making some minor tech-

nical changes. In order to make use of images from multiple

perspectives, we also investigate a technique suggested by

Su et al. [23] that pools images at the feature level, rather

than pooling classification scores. We follow the open-set

1:N protocol and report both cumulative match characteris-

tic (CMC) and decision error trade-off (DET) curves, fol-

lowing the best practice described in the 2014 Face Recog-

nition Vendor Test [7] and suggested in the IJB-A pa-

per [12].

We report results on a baseline network, a network fine-

tuned with a publicly available face database (FaceScrub)

and also a network further fine-tuned using the IJB-A train

set. Since IJB-A contains multiple images per probe, we

explore two pooling strategies as well. We show that for

the fine-tuned networks, and for both pooling strategies, the

B-CNN architecture always outperforms the alternative, of-

ten by a large margin.

Finally, we demonstrate how a pre-trained CNN can be

converted into a B-CNN without any additional fine tuning

of the model. The “VGG-Face” CNN from Parkhi et al. [20]



was trained on a massive face data set which, at the time

of publication, was not publicly available. However, the

simplicity of the bilinear architecture allows the creation of

a B-CNN from the pre-trained CNN architecture without

the need for retraining the network.

In the next subsection, we detail some important proper-

ties of the IJB-A benchmark.

1.1. The IARPA Janus benchmark A

There are four key aspects of IJB-A that are relevant to

this paper:

1. As stated above, it has a protocol for one-to-many clas-

sification, which is what we focus on.

2. It includes a wider range of poses than LFW, made

possible in part by the fact that images were gathered

by hand.

3. The data set includes both video clips and still images.

4. Each “observation” of an individual is dubbed a tem-

plate and may include any combination of still images

or video clips. In particular, a single query or probe

at test time is a template and thus typically consists of

multiple images of an individual.

These aspects raise interesting questions about how to de-

sign a recognition architecture for this problem.

1.2. Verification versus identification

Identification is a problem quite different from verifica-

tion. In verification, since the two images presented at test

time are required to be faces of individuals never seen be-

fore, there is no opportunity to build a model for these indi-

viduals, unless it is done at test time on the fly (an example

of this is the Bayesian adaptation of the probabilistic elastic

parts model [14]). Even when such on-the-fly models are

built, they can only incorporate a single image or video to

build a model of each subject in the test pair.

In identification, on the other hand, at training time the

learner is given access to a gallery of subjects with which

one can learn models of each individual. While in some

cases the gallery may contain only a single image of a sub-

ject, in the IJB-A, there are typically multiple images and

video clips of each gallery subject. Thus, there is an op-

portunity to learn a detailed model (either generative or dis-

criminative) of each subject. Depending upon the applica-

tion scenario, it may be interesting to consider identification

systems that perform statistical learning on the gallery, and

also those that do not. In this work, adaptation to the gallery

is a critical aspect of our performance.

1.3. Pose variability and multiple images

An interesting aspect of IJB-A is the significant pose

variability. Because the images were selected by hand, the

database does not rely on a fully automatic procedure for

mining images, such as the images of LFW, which were

selected by taking the true positives of the Viola-Jones de-

tector.

Handling pose One way to address pose is to build 3D

models [11]. In principle, a set of gallery images can be

used to generate a 3D physical model of a head containing

all of the appearance information about the gallery identity.

Another approach to dealing with large pose variability

is to re-render all faces from a canonical point of view, typ-

ically from a frontal pose. While this frontalization can

be done using the above method of estimating a 3D model

first, it can also be done directly, without such 3D model

estimation, as done by [25]. This strategy has proven ef-

fective for obtaining high performance on face verification

benchmarks like LFW [9]. It is still not clear whether such

approaches can be extended to deal with the significantly

higher variation in head poses and other effects like occlu-

sion that appear in IJB-A.

Averaging descriptors. Building a generic descriptor for

each image, and simply averaging these descriptors across

multiple images in a set (i.e. a “template”) is found to be

surprisingly effective [19], yielding excellent performance

in the case of verification on LFW. However, there are clear

vulnerabilities to this approach. In particular, if a subject

template contains large numbers of images from a partic-

ular point of view, as is common in video, such averaging

may “overcount” the data from one point of view and fail to

incorporate useful information from another point of view

due to its low frequency in a template.

Another intriguing possibility is to build a representa-

tion which, given a particular feature representation, selects

the “best” of each feature across all the images in a tem-

plate. This is an approach used by the multi-view CNN of

Su et al. [23] and applied to the recognition of 3D objects,

given multiple views of the object. We adopt some elements

of this approach and experiment with max-pooling over fea-

ture descriptors to get a single representation from a collec-

tion of images.

1.4. Face identification as fine­grained classification

In assessing architectures for face identification, it seems

natural to consider the subarea of fine-grained classifica-

tion. Fine-grained classification problems are character-

ized by small or subtle differences among classes, and often

large appearance variability within classes. Popular fine-

grained benchmarks include such data sets as the CUB data



set for bird species identification [27], in which each species

is considered a different class. Some pairs of species, such

as different types of gulls for example, have many features

in common and can only be discriminated by subtle differ-

ences such as the appearance of their beaks.

Face recognition can also be viewed as a fine-grained

classification problem, in which each individual repre-

sents a different class. Within-class variance is large and

between-class variance is often subtle, making face recogni-

tion a natural member of the fine-grained recognition class

of problems.

Recently, Lin et al. [15] have developed the bilin-

ear CNN (B-CNN) model specifically for addressing fine-

grained classification problems. It thus seems a natural fit

for the one-to-many face recognition (identification) prob-

lem. By applying the B-CNN model to the public IJB-A

data set, starting from standard network structures, we are

able to substantially exceed the benchmark performance re-

ported for the face identification task.

In the next section, we give a brief introduction to con-

volutional neural nets. Then in Section 3, we describe the

bilinear CNN of Lin et al. [15]. In Section 4, we discuss

experiments and results, and we end in Section 5 with some

conclusions and future directions.

2. Introduction to CNNs

Convolutional neural networks (CNNs) are composed

of a hierarchy of units containing a convolutional, pooling

(e.g. max or sum) and non-linear layer (e.g. ReLU max(0,

x)). In recent years deep CNNs typically consisting of the

order of 10 or so such units and trained on massive labelled

datasets such as ImageNet have yielded generic features that

are applicable in a number of recognition tasks ranging from

image classification [13], object detection [6], semantic seg-

mentation [8] to texture recognition [3].

In the domain of fine-grained recognition, such as iden-

tifying the breed of a dog, species of a bird, or the model

of a car, these architectures, when combined with detectors

that localize various parts of the object, have also yielded

state-of-the-art results. Without the part localization, CNNs

typically don’t perform as well since there is a tremendous

variation in appearance due to different poses that instances

of a category can be in. This pose variation overwhelms the

subtle differences across categories, a phenomenon typical

also in the face recognition problem. However, the draw-

back of these approaches is that they require (a) manual

annotation of parts which can be time-consuming, (b) the

detection of parts which can be computationally expensive.

In contrast, models originally developed for texture

recognition such as Bag-of-Visual Words (BoVM) [4] and

their variants such as the Fisher vector [21] or VLAD [10],

have also demonstrated good results on fine-grained recog-

nition tasks. These models don’t have an explicit model-

a.

b.

c.

d.

Figure 1. Filters learned from the bilinear CNN. Each 2x8 group

of image patches shows the top-K patches in the input images that

gave the highest response for a particular ’conv5+relu’ filter of a

symmetric B-CNN, using VGG ’M’ networks and trained on the

FaceScrub dataset [17]. a. The first 4 sets of filter responses show

traditional facial features such as eyes, eyes+eyebrows, partially

open mouth, and noses. b. The B-CNN also learns categories of

features that seem to be related to accessories, such as eyeglasses

and jewelry. c. The features in this row seem to be correlated with

hair (both facial hair and hair on the top of the head). d. Finally,

these features are associated with possibly informative aspects of

the background such as text and spurious lines.

ing of parts, nor do they require any annotations, making

them easily applicable to new domains. Deep variants of

Fisher vectors [3] based on features extracted from the con-

volutional layers of a CNN trained on ImageNet [5] provide

a better alternative to those based on hand-crafted features

such as SIFT [16]. However, pose normalization such as

“frontalization” for faces, or part detection for birds, fol-

lowed by a CNN trained for fine-grained recognition outper-

forms these texture models. See for example DeepFace of

Facebook [25], or pose-normalized CNNs for birds species

identification [1, 30].

3. Bilinear CNNs

The bilinear CNN model, originally introduced by

Lin et al. [15], bridges the gap between the texture mod-

els and part-based CNN models. It consists of two CNNs

whose convolutional-layer outputs are multiplied (using

outer product) at each location of the image. The result-

ing bilinear feature is pooled across the image resulting in



an orderless descriptor for the entire image. This vector can

be normalized to provide additional invariances. In our ex-

periments we follow the same protocol as [15] and perform

signed square-root normalization (y ← sign(x)
√

|x|) and

then ℓ2 normalization (z← y/‖y‖).
If one of the feature extractors was a part detector and the

other computed local features, the resulting bilinear vector

can model the representations of a part-based model. On

the other hand, the bilinear vector also resembles the com-

putations of a Fisher vector, where the local features are

combined with the soft membership to a set of cluster cen-

ters using an outer product (to a rough approximation, see

[15] for details).

A key advantage is that the bilinear CNN model can be

trained using only image labels without requiring ground-

truth part-annotations. Since the resulting architecture is

a directed acyclic graph (DAG), both the networks can be

trained simultaneously by back-propagating the gradients

of a task-specific loss function. This allows us to initial-

ize generic networks on ImageNet and then fine-tune them

on face images. Instead of having to train a CNN for

face recognition from scratch, which would require both a

search for an optimal architecture and a massive annotated

database, we can use pre-trained networks and adapt them

to the task of face recognition.

When using the symmetric B-CNN (both the networks

are identical), we can think of the bilinear layer being sim-

ilar to the quadratic polynomial kernel often used with

Support Vector Machines (SVMs). However, unlike a

polynomial-kernel SVM, this bilinear feature is pooled over

all locations in the image and can be trained end-to-end.

4. Experiments

In our experiments section, we first describe the various

protocols and datasets used in training our models and eval-

uating our approach. In particular, the open-set protocol for

face identification and the various metrics used in the IJB-A

benchmark are explained briefly. Next, we describe the var-

ious experimental settings for our methods. This includes

details on data pre-processing, network architectures, fine-

tuning procedure and using pre-trained models.

4.1. Datasets and protocols

The IJB-A face recognition protocol [12] provides three

sets of data for each of its 10 splits. Models can be learned

on the train set, which contains 333 persons with varying

number of images, including video frames, per person. The

gallery set consists of 112 persons. The probe set is com-

prised of imagery from 167 persons, 55 of whom are not

present in the gallery (known as “distractors” or “impos-

2We use the sample image on the FaceScrub website http://

vintage.winklerbros.net/facescrub.html

Figure 2. Sample images from the FaceScrub2(top) and IJB-A

(bottom) datasets.

tors”). It follows the open-set protocol in its identification

task.

The IJB-A benchmark comprises both a one-to-many

recognition task (identification) and a verification task. We

focus in this paper on the identification task. The details

of the identification protocol and reporting of results can be

found in the NIST report by Grother et al. [7]. To eval-

uate the performance of a system in correctly matching a

probe template to its identity (from among the identities

present in the gallery set), the Cumulative Match Character-

istic (CMC) curve is used. This summarizes the accuracy on

probe templates that have a match among the gallery iden-

tities at various ranks. The rank-1 and rank-5 values are

individual points on this curve, which usually reports recall

from ranks 1 to 100.

In the open-set protocol, two particular scenarios may

arise as follows: firstly, the “non-match” or “impostor” tem-

plates might be wrongly classified as a gallery identity, if

the classifier score from the one-versus-rest SVM for that

identity is above some threshold (false alarms). Secondly, a

template that is genuinely from among the gallery identities

may be wrongly rejected if all the SVM scores for it are be-

low some threshold (misses). The Decision Error Trade-off

(DET) curve plots false alarm rate or false positive identi-

fication rate (FPIR) and miss rate or false negative identifi-

cation rate (FNIR) by varying this threshold, capturing both

of the scenarios mentioned above. As specified in the IJB-A

benchmark, we report FNIR at FPIR’s of 0.1 and 0.01.

The FaceScrub dataset [17] is an open-access database

of face images of actors and actresses on the web, provided

as hyperlinks from where the actual images can be down-

loaded. It contains 530 persons with 107,818 still images

in total. There are on average 203 images per person. In



an additional experiment, we use this external data to first

fine-tune the networks, before subsequent fine-tuning on the

IJB-A train data. All overlapping identities between the two

datasets are removed from FaceScrub before training the

networks on it. As some of the download links provided

in FaceScrub were broken (and after overlap removal) we

finally train the networks on 513 identities, having a total of

89,045 images. We keep a third of the images in each class

as validation sets and use the rest for training the networks.

4.2. Methods

Pre-processing

The bounding boxes provided in the IJB-A metadata were

used to crop out faces from the images. The images are re-

sized according to the normalization parameters specified in

the architecture details of a particular network (see below).

This resizing does not maintain the aspect ratio.

Network architectures

As a baseline for deep models, we use the Imagenet-

pretrained “M-net” model from VGG’s MatConvNet [26].

All results using this network architecture are hereafter re-

ferred to as “CNN”. We consider the network outputs of the

fully-connected layer after rectification, i.e. layer-19 (‘fc7’

+ ‘relu7’) to be used as the face descriptor. An input im-

age is resized to 224 × 224 following the way the network

had been initially trained on Imagenet, resulting in a 4096-

dimensional feature vector.

We use a symmetric bilinear-CNN model, denoted from

now on as “B-CNN”, that has both Network A and Net-

work B set to the “M-net” model. Similar to the procedure

followed in [15], the bilinear combination is done by tak-

ing the rectified outputs of the last convolutional layer in

each network, i.e. layer-14 (‘conv5’ + ‘relu5’). We chop off

both the networks at layer 14, add the bilinear combination

layer, a layer each for square-root and L2 normalization,

and then a softmax layer for classification. For this archi-

tecture, the image is upsampled to be 448 × 448, resulting

in a 27 × 27 × 512 output from each network at layer-14

(27 × 27 are the spatial dimensions of the response map

and 512 denotes the number of CNN filters at that layer).

The bilinear combination results in a 512× 512 output, and

its vectorization (followed by the normalization layers men-

tioned earlier) gives us the final face descriptor.

Network fine-tuning

The models described in this set of experiments were

trained initially for large-scale image classification on the

Imagenet dataset. Fine-tuning the networks for the specific

task of face recognition is expected to significantly boost

performance. We consider three different scenarios with re-

spect to fine-tuning:

• no-ft: No fine-tuning is done. We simply use the

Imagenet-pretrained model without any retraining on

face images as a baseline for our experiments.

• FaceScrub: The Imagenet-pretrained network is fine-

tuned on the FaceScrub dataset by replacing the last

layer with a softmax regression and running back-

propagation with dropout regularization of 0.5 for 30

epochs. We begin fine-tuning with a learning rate of

0.001 for the lower layers and 0.01 for the last layer

and divide them both by 10 if the validation error rate

does not change. The stopping time is determined

when the validation error remains constant even after

learning rate is changed. The B-CNN is similarly fine-

tuned for 70 epochs on FaceScrub data.

• FaceScrub+Train: The FaceScrub data provides a

good initialization for the face identification task to the

networks, following which we fine-tune on the IJB-A

train set for 30 epochs in case of the regular CNN

and 50 epochs for the B-CNN. The fine-tuning on

FaceScrub gives us a single model each for CNN and

B-CNN. In the current setting, we take this network

and further fine-tune it on each of the train sets pro-

vided in the 10 splits of IJB-A. This setting considers

fine-tuning the network on images that are closer in ap-

pearance to the images it will be tested upon, i.e., the

train set of IJB-A, being drawn from the same pool of

imagery as the probe and gallery sets, is more similar

to the test images than FaceScrub images.

Classifiers and pooling

One-versus-rest linear SVM classifiers are trained on the

gallery set for all our experiments. We do not do any form of

template-pooling at this stage and simply consider each im-

age or video frame of a person as an individual sample. The

weight vectors of the classifiers are rescaled such that the

median scores of positive and negative samples are +1 and

-1. Since all evaluations on this protocol are to be reported

at the template level, we have the following straightforward

strategies for pooling the media (images and video-frames)

within a template at test time:

• Score pooling: We use the max operation to pool the

SVM scores of all the media within a probe template.

This is done after SVM scores are computed for each

individual image or frame that comprises a template.

• Feature pooling: The max operator is applied on the

features this time to get a single feature vector for a

template. Thus, the SVM is run only once per probe

template.



Conversion of a pre-trained CNN to a B-CNN

In addition to the Imagenet-pretrained networks de-

scribed above, we also ran experiments in modifying

a standard CNN, trained on a large face database, to

convert it into a B-CNN. We use the VGG-Face

model from Parkhi et al. [20]3 where they trained the

imagenet-vgg-verydeep-16 network [22] to do

face identification using a large data set of faces which con-

tained no overlap in person identities with IJB-A. This deep

network architecture, pre-trained on such a large database

of 2.6 million images, produced very high results on IJB-A

(see results section).

We replicated this network to form a symmetric B-CNN,

as described in Section 4.2, and for each of the 10 splits

in IJB-A, trained SVMs on the output features for each

gallery identity. Note that this “gallery training” does not

change the parameters of the original core CNN network or

the B-CNN produced from it.

5. Results

We report two main sets of results. The first set of experi-

ments shows that B-CNNs consistently outperform standard

CNNs when fine-tuned on generic face data and also when

adapted further to the specific data set at hand. The sec-

ond set of results, using the pre-trained VGG-Face network,

shows that even in a scenario when such massive training

data is not readily available to the end user, a B-CNN can

be constructed, without further network training, that im-

proves the final accuracy of the network.

For both sets of results, we evaluate the task of open-set

identification on this dataset, also referred to as the “1:N

identification task” in the IJB-A benchmark report [12]. We

include the cumulative match characteristic (CMC) curve

plots which summarizes the accuracy of the model over a

range of ranks from 1 to 100.

5.1. Fine­tuned networks

Comparison of fine-tuning methods

The various fine-tuning settings that are used here and the

performance of the models at rank-1 and rank-5 are shown

in the rows of Table 1. Performance across ranks is shown

in the CMC curves in Figure 3.

Without any fine-tuning, the Imagenet-pretrained net-

works give low accuracy in both models — 28.9% for the

standard CNN and 31.2% for the bilinear CNN.

Fine-tuning on FaceScrub makes the networks specific

to the task of identifying faces, and we can see highly spe-

cialized filters being learned in the convolutional layer of

the network in Figure 1. Consequently, the performance

3Downloadable from their site http://www.robots.ox.ac.

uk/˜vgg/software/vgg_face/

of both CNNs and B-CNNs improves, as seen in Figure 3.

However, the B-CNN model fine-tuned on FaceScrub out-

performs the CNN by almost 10% (52.5% versus 44.5%).

Rank-1 CNN B-CNN

score pooling feature pooling score pooling feature pooling

no-ft 0.289± 0.028 0.281± 0.023 0.312± 0.029 0.297± 0.037

FaceScrub 0.445± 0.020 0.421± 0.021 0.521± 0.021 0.525± 0.019

FaceScrub+Train 0.536± 0.020 0.526± 0.019 0.579± 0.014 0.588± 0.020

Rank-5

no-ft 0.519± 0.026 0.490± 0.022 0.517± 0.029 0.500± 0.022

FaceScrub 0.684± 0.024 0.658± 0.024 0.732± 0.017 0.729± 0.019

FaceScrub+Train 0.778± 0.018 0.761± 0.018 0.797± 0.018 0.796± 0.017

Table 1. Showing rank-1 and rank-5 retrieval rates of CNN and

B-CNN on the IJB-A 1:N identification task.

The final fine-tuning setting takes the FaceScrub trained

networks and further fine-tunes them on the train set of

IJB-A. Unsurprisingly, using training data that is very close

to the distribution of the test data improves performance

across ranks, as is shown in Figure 3. The CNN perfor-

mance at rank-1 improves from 44.5% to 53.6%, while

the B-CNN performance rises from 52.5% to 58.8%. The

IJB-A train set images are very similar to the type of images

in the gallery and probe test sets. This effect is also more

prominent given that the original training dataset, Face-

Scrub, is not very extensive (530 celebrities, 107,818 still

images) compared to the large degree of variations possible

in faces and may not cover the type of images (low reso-

lution, motion blurs, video frames) seen in IJB-A (see the

sample images in Figure 2). However, even without de-

pending upon the IJB-A train set for further fine-tuning, the

performance of B-CNN using only the single external Face-

Scrub dataset substantially improves over the reported base-

lines on IJB-A (52.5% versus 44.3% as shown in Table 2).

In Figure 4, we can see the consistent and large improve-

ment in relative performance by using the bilinear CNN ver-

sus the regular CNN over the entire range of ranks. The

B-CNN also outperforms the highest baseline on IJB-A,

“GOTS” by a large margin.

Comparison of template-pooling methods

We also evaluate two pooling schemes in Table 1 at score

and feature level using rank-1 and rank-5 retrieval rates. For

the CNN network, the two pooling schemes achieve almost

the same accuracy, while feature pooling either outperforms

score pooling or has negligible difference when using fine-

tuned B-CNN models. The reason for the preference of fea-

ture pooling on B-CNN is that the model learns good se-

mantic part filters by fine-tuning (see Figure 1) and feature

pooling combines the part detections which might be invisi-

ble from a particular viewpoint by taking the maximum part

detection response across views when a sequence of faces

(with different views) is provided. The impact of feature-

pooling becomes less evident at higher ranks.



Rank

10
0

10
1

10
2

R
e
tr

ie
v
a
l 
R

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CNN no-ft

CNN FaceScrub

CNN FaceScrub+Train

Rank

10
0

10
1

10
2

R
e
tr

ie
v
a
l 
R

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B-CNN no-ft

B-CNN FaceScrub

B-CNN FaceScrub+Train

Figure 3. CMC curves showing the effect of fine-tuning on the standard CNN (left) and B-CNN (right) models, evaluated on the IJB-A

dataset using feature pooling of templates. Both models show a large improvement when fine-tuned on FaceScrub when compared to the

performance of Imagenet-pretrained networks without fine-tuning. Further fine-tuning on the IJB-A train set after fine-tuning on FaceScrub

increases performance in both the models as the test and training domains are now more similar.
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Figure 4. CMC curves comparing the standard CNN and the B-CNN models evaluated on IJB-A with feature-pooling of templates; left:

models fine-tuned on FaceScrub; right: the FaceScrub models are fine-tuned further on IJB-A train set. The B-CNN does better than the

CNN and also outperforms the “GOTS” baseline method [12] by a large margin.

Comparison with IJB-A benchmark

Table 2 shows performance on IJB-A with respect to the

published benchmark. The best-performing B-CNN model,

which is trained on both FaceScrub and subsequently on

IJB-A train set data, exceeds the IJB-A baselines [12] by a

large margin — 58.8% versus 44.3% at rank-1 and 79.6%

versus 59.6% at rank-5, when compared against the highest

performing GOTS (government off-the-shelf) baseline.

At FPIR’s of 0.1 and 0.01, the FNIR of B-CNN versus

GOTS is 65.9% versus 76.5% and 85.7% versus 95.3%,

respectively. The DET curves for the bilinear and regu-

lar CNN models are shown in Figure 5. Our system, us-

ing learned bilinear features followed by the one-versus-rest

linear SVMs trained on the gallery identities, is robust to the

impostor probes without adversely affecting recognition of

matching probe templates.

IJB-A OpenBR GOTS B-CNN

rank-1 0.246± 0.011 0.443± 0.021 0.588± 0.020

rank-5 0.375± 0.008 0.595± 0.02 0.796± 0.017

FNIR @ FPIR=0.1 0.851± 0.028 0.765± 0.033 0.659± 0.032

FNIR @ FPIR=0.01 0.934± 0.017 0.953± 0.024 0.857± 0.027

Table 2. We compare the performance of B-CNN model with the

baselines reported on IJB-A [12]. The highest performing bilinear

model (fine-tuned on FaceScrub and IJB-A train set) is considered

for this comparison.

Run-time and feature size information

The experiments were run on an NVIDIA Tesla K40 GPU.

The B-CNN encoding time for a single image is roughly

0.0764 seconds. The one-versus-rest SVM training on the

gallery takes around 17 seconds on average for a single per-



son, using the 262,144-dimensional B-CNN features. This

procedure can be easily parallelized for each person en-

rolled in the gallery. The pooling methods depend largely

on the number of images comprising a single template. On

average the feature pooling is 2 times faster than score pool-

ing at negligible difference in accuracy. Fine-tuning the bi-

linear CNN network for 70 epochs on FaceScrub took about

2 days.
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Figure 5. DET curve comparing the best-performing (Face-

Scrub+Train fine-tuned) standard CNN and the B-CNN models

evaluated on IJB-A. The performance of B-CNN is slightly better

than that of CNN (lower values mean better).

5.2. Pre­trained networks

We now demonstrate that the bilinear layer can be ap-

plied out-of-the-box to further boost the high face recog-

nition performance of an existing powerful pre-trained net-

work. We evaluate the VGG-Face network [20] on IJB-A

as a baseline, using one-versus-rest SVM classifiers and no

data augmentation at test time, consistent with the settings

followed in our previous set of experiments. We compare

the performance of a B-CNN built using the pre-trained

VGG-Face network against the CNN baseline (the unmodi-

fied pre-trained network) and the method of Chen et al. [2],

who also use a deep network trained on a large external face

dataset. Table 3 summarizes the results, where we can see

that even without fine-tuning the bilinear model, the B-CNN

(at 89.5%) outperforms both the baseline accuracy of the

pre-trained CNN (89.2%) by a small margin as well as the

method of Chen et al. (86%).

Without training the bilinear model, we see a only a

small improvement over the regular VGG-Face CNN, un-

like the large increase in performance observed in the pre-

vious experiments when fine-tuning of the bilinear model

could be done. This leads us to believe that re-training the

entire bilinear network formed out of VGG-Face on a suit-

ably large dataset is necessary to boost the performance to

a significant level (this is not done in our present work).

IJB-A Chen et al. [2] VGG-Face [20] B-CNN

rank-1 0.86± 0.023 0.892± 0.010 0.895± 0.011

rank-5 0.943± 0.017 0.960± 0.006 0.963± 0.005

Table 3. We compare the performance of the pre-trained VGG-

Face [20] network with B-CNN, regular CNN and the deep CNN

of Chen et al. [2]. Score pooling is used in both methods.

6. Discussion

It is perhaps not surprising that CNN architectures that

have succeeded on other fine-grained recognition problems

also do well at face identification, both after fine-tuning and

also as a simple modification to pre-trained models.

There are a number of directions to continue exploring

these models:

• Re-training the entire model using an objective similar

to the Multi-view CNN objective [23] in which the pa-

rameters of the network are learned under the assump-

tion that the max will be taken across the multiple im-

ages in a template.

• Using datasets much larger than FaceScrub, such as

the CASIA WebFaces [29] (with 10,000 identities and

half-a-million images) to train the network, should fur-

ther improve the performance.

• Training a very deep architecture from scratch on a suf-

ficiently large face dataset, instead of fine-tuning pre-

trained networks.

We believe the success of the B-CNN relative to non-

bilinear architectures makes them a sensible starting point

for a wide variety of continued experiments.
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