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Abstract 

The nonlinear modal coupling between the vibration modes of an arch shaped microstructure is 
an interesting phenomenon, which may have desirable features for numerous applications, such 
as vibration-based energy harvesters. This works presents an investigation into the potential 
nonlinear internal resonances of a Microelectromechanical systems (MEMS) arch when excited 
by static (DC) and dynamic (AC) electric forces. The influences of initial rise and mid-plane 
stretching are considered. The cases of one-to-one and three-to-one internal resonances are 
studied using the method of multiple scales and the direct attack of the partial differential 
equation of motion. It is shown that for certain initial rises, it is possible to activate a three-to-
one internal resonance between the first and third symmetric modes. Also, using an anti-
symmetric half-electrode actuation, a one-to-one internal resonance between the first symmetric 
and the second antisymmetric modes is demonstrated. These results can shed light on such 
interactions that are commonly found on micro and nano structures, such as carbon nano tubes.  
 

Keywords: MEMS; Shallow Arch, one-to-one: three-to-one; internal resonance; 

 
 

1. Introduction  

Owing to their attractive features, significant research has been presented in recent years 

on miniaturized structures, such as micro/nano-electromechanical systems (M/NEMS) and 

Micro-Opto-Electro-Mechanical Systems (MOEMS) [1-8]. MEMS devices due to their small-

size and high sensitivities are widely utilized in sensors and actuators [9], miniature gyroscopes 

Journal of Computational and Nonlinear Dynamics. Received November 08, 2016; 

Accepted manuscript posted May 24, 2017. doi:10.1115/1.4036815 

Copyright (c) 2017 by ASME

A
cc

ep
te

d
 M

an
u
sc

ri
p
t 
N

o
t 
C

o
p
ye

d
it
ed

Downloaded From: http://computationalnonlinear.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jcnddm/0/ on 05/31/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



2 
  

[10], micro-satellites [11], accelerometers [12], bio-MEMS [13], chemical sensors [14] and 

many other industrial applications. Among the most practical MEMS structures, arch shaped 

MEMS due to their interesting dynamics have been recently used as optical and digital mirrors, 

micro-relays, mechanical memories, [15] and micro-resonators [16]. These micro-scale 

structures show bi-stable behavior characterized by multi-valued curves in their load-deflection 

diagrams. 

When beams are intentionally fabricated in a curved configuration, the phenomenon of 

snap-through can appear where the curved beam undergoes large deformation. Such structures 

can undergo snap-through behavior with large amplitude oscillation. Internal resonance can also 

interestingly occur in bistable structures with geometrical nonlinearity [17], such as in curved 

beams. Frequency response curves of bistable structures can have two separated multivalued 

ranges with two peaks bending to the left and right, respectively [18]. Das and Batra [19] 

examined the snap-through and the symmetry breaking of an arch shaped MEMS actuated by 

static and dynamic electrostatic forces and obtained the bifurcation diagrams for displacement-

force curves. Ouakad [20] studied the dynamic behavior of a filter based on a doubly-clamped 

MEMS arch and excited the considered structure near its natural frequency by a combined DC 

and AC actuation loads. Alkharabsheh and Younis [21] investigated the influence of axial and 

electric forces on the dynamic response of initially curved MEMS arches and showed that the 

axial forces play an important role for tuning the natural frequency of such structures. By 

employing an analytic approach, Nayfeh and Emam [22] obtained the exact solution for the free 

vibrational behavior of buckled beams. They investigated the appearance of a 1:1 internal 

resonance of buckled beams by plotting the variation of the first natural frequencies versus the 

axial compressive load for the pre-buckled and post-buckled configurations. Nayfeh and 
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Balachandran [23] studied the response of internally resonant, two-degree-of-freedom systems 

coupled through quadratic non-linearity (including shallow arches). They have also considered 

few works on periodic, quasi-periodic and chaotic responses excited by external resonances or 

parametric resonances. The same group [24] have conducted an experimental investigation of the 

modal indications of composite structures and they have detected periodic and modulated 

motions.  

Recent works have examined the impact of geometric and parametric nonlinearities on 

the transient dynamics and frequency response of curved MEMS devices under DC and AC 

actuations. Alkharabsheh and Younis [25] discussed the dynamics of an actuated MEMS shallow 

arches under the influence of flexible supports and examined the stability of the periodic 

responses captured by the Shooting method. Their simulation results experimentally 

demonstrated the existence of superharmonic resonances. Ouakad and Younis [26] presented the 

nonlinear dynamics of shallow arch micro-beams and showing the snap-through phenomenon as 

well as the softening and hardening behaviors near the first and third natural frequencies. By 

using the third-order shear deformation theory, Ghayesh et al. [27] presented the dynamic 

behavior and modal analysis of initially curved micro-plates including the small-scale effects. A 

recent study [28] was presented on the latching condition in electrostatically actuated curved 

beams based on a reduced-order modeling analysis. They demonstrated  trapping the bistable 

beams at the latching point using a finite duration pulse. 

Modes interaction represents an important topic for the dynamics of continuous systems, 

such as beams and plates. This phenomenon can be the consequence of the coupling between the 

system vibrational modes, therefore generating an internal resonance and energy exchange 

between the modes [29]. Such nonlinear interactions have been studied in numerous systems 
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ranging from macro, micro, and nano-scale [30-34]. These micro/nano structures have been 

shown to exhibit two-to-one [30-32], three-to-one [33], and one-to-one [34] internal resonances. 

More importantly, it has been proven that shallow arches allow the first and third frequencies to 

approach to each other as varying the initial curvature. Several groups have reported internal 

resonances of type one-to-one [35-37], two-to-one [38], and three-to-one [39, 40] for shallow 

arches and buckled beams. 

One can note that few research efforts have methodically addressed the problem of 

internal resonances for MEMS arches under the nonlinear actuation electric forces. This 

investigation aims to thoroughly study the theoretical aspects of the one-to-one and three-to-one 

internal resonances for micromachined shallow arches, which can be found in many practical 

MEMS applications using MEMS arch configuration as its main moving structure. 

2. Problem formulation 

In this section, we define the problem governing the in-plane static and dynamic 

structural behavior of an electrically actuated shallow arch, Fig.  1a. Hereafter, (ˆ) denotes 

dimensional quantities. We consider a flexible doubly-clamped prismatic microbeam, Fig.  1b, of 

initial shape 0ˆ ˆ ˆ( ) [1 (2 / )] / 2ow x b cos x L  , where 
ob  is the initial rise, of cross-section area A , 

and a second moment area ˆˆyyI I . The beam is actuated by an electrostatic force assumed to 

have only a ẑ -component by a grounded electrode located underneath it and with an initial gap 

distance d  in the ẑ  direction, Fig.  1b. It is assumed to be made of homogeneous isotopic elastic 

material with mass density  , Young’s modulus E  and Poisson’s ratio  . Since the width of 

microbeam is assumed larger than its thickness, we assume an effective modulus of 

elasticity 2/ 2(1 )eE E   .  
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DCV

ACV

 
                                                     (a)                                                                                                                           (b) 

Fig. 1. (a) A 3-D and (b) a 2-D schematic of an electrically actuated MEMS shallow arch. 

 

In this problem formulation, we assume a shallow arch, in which 0 1ŵ  , where the “' ” 

denotes the derivative with respect to x̂ . Hence, when actuated by electrostatic forces, the 

parallel-plates assumption can be considered valid. In another word, the axial component of the 

electrostatic force, due to the upper deformed electrode (the arch), is assumed negligible. This 

assumption, however, may not be valid for deep arches. The shallow arched microbeam is free to 

deflect in the ˆ ˆ( , )x z  plane, while its clamped ends are constrained in both the lateral ẑ  and axial 

x̂  directions by the fixed anchors. Therefore, assuming an Euler-Bernoulli beam model, the 

nonlinear equation of motion governing the transverse deflection  ˆˆ ˆw x,t  of the arch of width b , 

thickness h , and length L  can be expressed as [29] 

 

ˆ

24 2 2 2
0 0

4 2 2 2

0

ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ2 , , ,
ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2

L

e electric DC AC

w w w E A w w w w w
E I A c dx F w V V

x t t x x x x xL


 
                                          

 





    (1) 

where the function  ˆ ˆ , , ,electric DC ACF w V V  represents the distributed electrostatic force per unit 

length arising between the two parallel electrodes, the curved microbeam and its lower stationary 

actuating electrode, respectively. Neglecting the electric fringing-fields effect, the electrostatic 

force per unit length of the beam can be approximated as [42, 43] 
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( )
( )

( )

2

0

2

ˆcos( )
ˆ ˆ , ,

ˆ ˆˆ2 ( , )

DC AC

elect DC

b V V t
F w V

W x t

e + W
=


                                      (2) 

where 0
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , )W x t d w x w x t= + + , and where 12 -1

0 8.854 10  F.m ,    is the permittivity of 

free space and DCV  and ACV  are the DC static and AC harmonic voltages, respectively, applied 

between the moving arched electrode and its stationary lower electrode, both initially separated 

by a gap distance of 0ˆ ˆ( )d w x+ .  

The respective boundary conditions are: 

( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ ˆˆ ˆ0, 0,     0, 0,    , 0,   , 0,
ˆ ˆ

w w
w t t w L t L t

x x

¶ ¶
= = = =

¶ ¶
                          (3)     

For convenience, we introduce the following nondimensional variables: 

0
0

ˆˆˆ ˆ
,            ,            ,           ,

ww x t
w w x t

d d L T
                                  (4) 

where T is a time constant defined by 4
eT AL E I . 

Consequently, the normalized equations of motion and associated boundary conditions 

can be written as: 

 

1
224 2 2

0 0
1 24 2 2 2

0

2 ,e

d w dww w w w w w
c dx F

t x x dxx t x dx
a a

é ù
ì üê úé ù ï ïæ öæ ö¶ ¶ ¶ ¶ ¶ ¶ï ï÷÷ê úççê ú+ + = + + -÷÷í ýçç ÷ê ú÷çê ú ÷çï ïè ø è ø¶ ¶ ¶¶ ¶ ¶ ï ïë û ê úî þê úë û

ó
ôôõ

           

 (5) 

( ) ( ) ( ) ( )0, 0,     0, 0,    1, 0,   1, 0,
w w

w t t w t t
x x

¶ ¶
= = = =

¶ ¶  
                              (6) 

where  
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 

2

0 2

0

2 4 4
40

1 2 3

[ cos( )]
( ) [1 cos(2 )],   ,   

2 1

6 ,   ,   ,   ,   ,
2

o DC AC
e

n e

e n e

b V V t
w x x F

d w w

d bL cL
E I AL c

h E Id E IT



   


 
  

 

       
 

 
                     (7) 

3. Perturbation Analysis 

Internal resonance between two modes occurs when there is an integer relationship 

between their respective natural frequencies. This form of resonance may occur only in multi-

degree-of-freedom systems with some form of nonlinearity [44]. When internal resonance exists 

simultaneously with an external resonance, it is often referred to as autoparametric resonance 

[44, 45]. In some cases this resonance depends on the geometry, composition, and boundary 

conditions of the system. Nayfeh and Mook [46] stated that when internal resonance exists in a 

free system, there often exists some sort of energy exchange among the modes involved in that 

resonance.  

As a case study, we consider a Polysilicon clamped-clamped shallow of L=1000µm, 

h=2.4µm, b=30µm, and initial gap size of d=10.1µm. Since the system under investigation has 

quadratic and cubic nonlinearities, internal resonance can occur. In order to ascertain this 

possibility of mode interactions, we first solve the linear undamped vibration problem of the 

shallow arch under zero actuation and while varying its initial maximum rise value. For this, we 

solve the eigenvalue problem associated with the nonlinear beam equation, Eq. (5) [9]. First, a 

reduced-order model (ROM) of Eq. (5) based on the Galerkin procedure is derived. Then, after 

neglecting damping and the nonlinear electric force, we obtain the Jacobian matrix of the system 

by applying a Taylor series expansion around the equilibrium position. Finally, to calculate the 

natural frequencies of the shallow arch for a given initial rise, we calculate the eigenvalues of the 
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Jacobian Matrix, and then by taking the magnitudes of each individual eigenvalue, we obtain the 

natural frequencies of the system. Figure 2 shows the effect of varying the initial rise of the arch 

on its first three natural frequencies. Looking carefully at Fig.  2, and zooming around the first 

three natural frequencies, we can see clearly the possibility to have a one-to-one internal 

resonance between the first symmetric and second antisymmetric modes at b0=6.32 µm and a 

three-to-one internal resonance between the first symmetric and third symmetric modes at 

b0=3.44 µm. Table 1 shows plots for the modeshapes of the first, second and third natural 

frequencies at selected values of initial rises. One can see that the first and third mode change 

slightly while the second mode remains unchanged with the rise level. A final note to be 

mentioned here is that the first frequency value is almost equal to the second one at around 

b0=6.32 µm offering a possibility of internal resonances between the modes. In addition, at 

around b0=3.44 µm, the first and third mode, both of symmetric shapes, are having their linear 

natural frequencies to be almost commensurate ( 3 =127.933≈3* 1 ) and hence suggesting 

another possibility of an internal resonance. 
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Fig.  2: The variation of the first three natural frequencies with the initial rise b0 of the shallow arch and the 
possibility of internal resonances. 
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Table 1: The simulated modeshapes of the first three in-plane modes for various arch initial rise levels 
 

  First Mode Second Mode Third Mode 

b0=0 μm 

1 =22.3734 2 =61.6728 
 

3 =120.903 

b0=2 μm 

1 =31.3389 2 =61.6728 
 

3 =123.18 

b0=3.448 μm

1 =42.6325 2 =61.6728 
 

3 =127.933≈3* 1  

b0=5 μm 

1 =53.919 2 =61.6728 
 

3 =136.372 

b0=6.323 μm

1 =61.67≈ 2  2 =61.6728 
 

3 =146.347 

b0=8 μm 

1 =68.5868 2 =61.6728 
 

3 =161.984 

 
 

 
 

Subsequently, we apply the method of multiple scales with the direct attack of the 

equations of motion, Eqs. (5) and (6) [47]. The details of the procedure can be found in 

Appendix A. To this end, we seek a solution in the form  

     , , ,sw x t w x u x t                                                   (8) 

where sw  is the static component of the arch deflection and u is its dynamic component. 
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For both types of investigated internal resonances, the perturbation analysis yields, to the 

first-order approximation, the following response of the MEMS arch to the DC and AC harmonic 

excitation: 

           , cos cos ...s n n n n m m m mw x t w x a t x a t x                             (9) 

where n , m  and  n x ,  m x
 
are the natural frequencies and corresponding eigenfunctions 

for the n
th and m

th modes, respectively, and na , n , ma , m  are real-valued functions, 

representing, the amplitude and phase of the response of the n
th and m

th mode, respectively, 

which are obtained from the results of the perturbation analysis (see Appendix A). 

i) Three-to-one internal resonance  

For this case, the application of the method of multiple scales yields the following 

modulation equations governing the amplitude and phase of the two involved nth and mth modes: 

 3
1

1
ˆ sin ,

2 8
n

n n m

n

a c a a 

                                                             (10) 

       3 2 3
1 2 1 2 13 3 cos ,

8 8 8
nn nm n

n m n n n m m

n n n

S S
a a a a a a    

  
                           (11) 

   2
1 2

1
ˆ sin sin ,

2 8
m m

m m n m m

m m

f
a c a a a  

 
                                              (12) 

   3 2 2
2 2 1 2cos cos ,

8 8 8
mm mn m m

m m m m m n n m m

m m m m

S S f
a a a a a a a   

   
                    (13) 

where 

1 1 2 2 2 23 ,  and m n m mT T           , 2
13 ,n m      and  2

2m                   (14) 

Sij and Λi represent the modal interaction coefficients, as defined in Eqs. (A29-A31) in Appendix 

A, and the rest of functions, such as the forcing coefficient fi are defined in Eq. (A28) in 

Appendix A. 
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ii) One-to-one internal resonance  

For this case, the application of the method of multiple scales yields the following 

modulation equations governing the amplitude and phase of the two involved nth and mth 

modes: 

   

   

3 21 2
1 1

2 33 4
1 1

ˆ
sin sin

2 8 8

sin 2 sin ;
8 8

n n m n m

n n

m n n

n n

R Rc
a a a a a

R R
a a a

 
 

 
 

     

 
                                           (15) 

     

     

3 2 31
1 2 1 2 1

2 2 332 4
1 1 1

cos
8 8 8

cos cos 2 cos ;
8 8 8

nn nm
n m n n n m m

n n n

n m m n n

n n n

S S R
a a a a a a

RR R
a a a a a

    
  

  
  

       

  
                      (16) 

   

     

3 25 6
1 1

2 37 8
1 1 2

ˆ
sin sin

2 8 8

sin 2 sin sin ;
8 8

m m n m n

m m

m im
n m m m

m m m

R Rc
a a a a a

R R f
a a a

 
 

  
  

     

  
                                 (17) 

   

     

3 2 3 25 6
2 2 1 1

2 27 8
1 1 2

cos cos
8 8 8 8

cos 2 cos cos ;
8 8

mm mn
m m m m m n n m n

m m m m

m im
m n n m m

m m m

S S R R
a a a a a a a a

R R f
a a a a

   
   

  
  

       

  
          (18) 

where: 

1 1 2 2 2 2,       ,m n m mT T              2
1,n m      and  2

2m               (19)                       

Sij and Ri represent the modal interaction coefficients, as defined in Eqs. (A29-A31), and Eq. 

(A44), respectively in Appendix A, and the rest of functions, such as the forcing coefficient fi are 

defined in Eq. (A28) in Appendix A.  
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4. Numerical Results 

Here, we first solve the boundary-value problems, Eqs. (A14)-(A18). Then, we evaluate 

numerically the integrals in Eqs. (A29)-(A31) and Eq. (A44) for the three-to-one and one-to-one 

internal resonance cases, respectively. 

i) Three-to-one internal resonance  

For the case of three-to-one internal resonance, we first compare our results to those 

published in [47] about the possibility of activation of three-to-one internal resonance between 

the first symmetric and second antisymmetric modes for an electrically actuated straight 

microbeam. In Table 2 (for the case of b0=0 µm), we show the results of the computations of the 

interaction coefficients (Λi) for the case study of [47]. We can see clearly that those coefficients 

are identically zero for this case. Hence, even though the ratio between the natural frequencies is 

of three-to-one type, the considered modes suspected to be involved in an internal resonance are 

not coupled in the nonlinear sense and hence cannot exchange energy [44]. 

As a second case, we consider the possibility of three-to-one internal resonance between 

the first symmetric mode and the third symmetric mode of the arch when b0= 3.44 µm, Fig.  2. 

We can see from Table 2, that the interaction coefficients (Λi) are nonzero for this particular case, 

offering the possibility to have nonlinear interaction between the considered modes. 

Table 2: The interaction coefficients Sij and Λi for the case of three-to-one internal resonance between the mth and nth 
modes. 

m n b0 (µm) Smm Snn Smn Snm Λm Λn 

1 3 0 -1.59×103 -2.34×104 -4.04×103 -4.04×103 7.408×10-7 -7.810×10-7

1 3 3.44 9.34×104 1.73×104 3.75×105 3.75×105 -2.51×104 -8.4×103 
 

To simulate the dynamics of the system, a long-time integration of the nonlinear beam 

equation of motion can be used. Nevertheless, this numerical method suffers convergence 

problems essentially in the neighborhood of bifurcations/instabilities and therefore is not 
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considered a robust method for studying nonlinear vibrations. This is one of the motivations to 

use the method of multiple scales. This method can obtain periodic solutions and at the same 

time can analyze the stability of the solutions and identify the types of the bifurcation points. 

This method will be used in conjunction with the Jacobian matrix stability theory to study the 

stability of the captured periodic orbits. It is worth mentioning here that the stability of each 

solution obtained using the method of multiple scales is determined by examining the 

eigenvalues of the Jacobian matrix of Eqs. (A32)-(A35), for the case of three-to-one internal 

resonance, and Eqs. (A39)-(A42), for the case of one-to-one internal resonance, evaluated in 

both cases at each corresponding solution [48]. 
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Fig.  3: Variation of the amplitudes a1 and a3 with the detuning parameter 2  for b0=3.44µm, VDC=10 Volt, VAC=5 

Volt,  =0.01, and 1 =0: (a) and (b) using the perturbation method, and (c) and (b) using the long-time integration. 
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Next, we generate the variation of the modal amplitudes curves while varying the 

detuning parameter  2  near the first mode at VDC=10 Volt. Note that at this specific DC load, 

the ratio between 1  and 3 is still around to 3. Figures 3a and 3b shows the variation of both 

first and third modes amplitude with the detuning parameter, using the method of multiple scales, 

for an AC load of 5 Volt. One can see clearly that the considered modes are behaving both 

linearly with an amplitude dominance of the first mode. Figures 3c and 3d compare the obtained 

frequency-response curves using the perturbation technique to those using a direct numerical 

integration of the ROM differential equations assuming four mode shapes. We notice excellent 

agreement between both approaches for the cases of Figs. 3a and 3c for the first mode 

amplitudes and Figs. 3b and 3d for the third mode amplitudes.  
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Fig.  4: Variation of the amplitudes a1 and a3 with the detuning parameter 2  for b0=3.44µm, VDC=10 Volt, VAC=30 

Volt,  =0.01, and 1 =0. 

Increasing further the AC load to 30 Volt, the dominant mode (first mode), Fig.  4a, starts 

to behave nonlinearly and is affected by the behavior of the other mode (the third mode), Fig.  

4b, which has now a linear and a nonlinear part in its frequency response curve. The nonlinear 

part is created due to the nonlinear interaction between the modes, even though it turns out to be 
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weak due to the dominance in the amplitude of the first mode, as depicted in Fig.  3. This is an 

indication of internal resonance activation in the third mode. 

 

ii) One-to-one internal resonance 

Now, we focus on the one-to-one internal resonance case between the first symmetric and 

the second antisymmetric mode of the arch, which may occur when b0= 6.32 µm, Fig.  2. We can 

see from Table 3 that the interaction coefficients (R3 and R8) are nonzero for this particular case, 

offering the possibility to have nonlinear interaction between the considered modes. 

Table 3: The interaction coefficients Sij and Ri for the case of one-to-one internal resonance between the mth and nth 
modes. 

m n b0 Smm Snn Smn Snm R3 R8 

1 2 6.32 -1.32×104 -1.25×104 -2.57×104 -2.57×104 -1.32×104 -1.25×104

 
Next, we show the variation of the modal amplitudes curves while varying the detuning 

parameter  2  near the first mode at VDC=5 Volt. Note here that we used an antisymmetric 

distribution of the electric load (half electrode configuration) since the considered modes are of 

antisymmetric type. We did this by multiplying the forcing term by u(x-0.5) where u is the unit-

step function. Figure 5 shows the results for an AC load of 30 Volt and 0.01 damping ratio. 

Looking carefully at the perturbation method results, Figures 5a and 5b, we cannot recognize any 

possibility of internal resonance being activated since the considered modes are behaving both 

linearly with a dominance of the first mode amplitude. In the same figure, we compare the 

obtained frequency-response curves using the perturbation technique to those using a direct 

numerical time integration of the ROM differential equations assuming four mode shapes. We 

notice excellent agreement between both approaches for the cases of Figs. 5a and 5c for the first 

mode amplitudes and Figs. 5b and 5d for the second mode amplitudes.  

Next, decreasing further the damping ratio to 0.001, we see that both modes start to 

interact nonlinearly, Fig.  6. Each curve has now linear and nonlinear part. Again, this is due to 
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the existence of multiple solutions, which leads to several jumps phenomena that could occur 

here for both modes while interacting. As 2  is swept gradually from negative values, the 

amplitude of the first mode starts to increase. As 2  approached zero, we have a linear increase 

for both modes, indicating resonance for both of them with slight amplitude dominance for the 

first mode. When 2 reaches values between 0.3 and 0.5, we see a drop for both amplitudes but 

with dominance of the second mode. Finally, as 2  passes 0.5, we see a nonlinear part being 

created for both resonances, which is due to the nonlinearity of the system indicating a possible 

activation of the one-to-one internal resonance. 

-5 0 5
0

0.005

0.01

0.015

0.02

0.025


2

a
1

 

 

-5 0 5
0

1

2

3

4

5

6
x 10

-4


2

a
2

 

 

 
                                                                   (a)                                                                                                (b) 

-5 0 5
0

0.005

0.01

0.015

0.02

0.025


2

a
1

 

 

-5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-4


2

a
2

 

 

 
                                                                  (c)                                                                                                 (d) 

Fig.  5: Variation of the amplitudes a1 and a2 with the detuning parameter 2  for b0=6.32 µm, VDC=5 Volt, VAC=30 

Volt,  =0.01, and 1 =0: (a) and (b) using the perturbation method, and (c) and (d) using the long-time integration. 
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Fig.  6: Variation of the amplitudes a1 and a2 with the detuning parameter 2  for b0=6.32 µm, VDC=5 Volt, VAC=30 

Volt,  =0.001, and 1 =0. 

 
 

5. Conclusions 

The possible activation of three-to-one and one-to-one internal resonances arising from 

the nonlinear modal interaction of arch shaped MEMS actuator was studied. The perturbation- 

technique of the method of multiple scales was employed to derive the nonlinear relation 

between the amplitude and exciting frequency and extract the complex dynamic behavior of the 

system. It was demonstrated that the energy can be interestingly exchanged between the 

successive modes of the structure for some values of initial rise. The theoretical methodology 

presented here can be potentially useful for a wide variety of applications employing internal 

resonances. 
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Appendix A 

In this Appendix, we provide details on the applications of the method of multiple scales 

of the equations of motion, Eqs. (5) and (6) using the direct attack approach [47]. To this end, we 

define the following variables for the time scale ( iT) and its derivative: 

2
0 0 1 1 2 2

0 1 2

, ,      , ,      , ,T t D T t D T t D
T T T

   
     

  
             (A1) 

Next, we scale the damping coefficient c and the forcing amplitude ACV  so that the 

nonlinearity balances their effects in the modulation equations [47], hence 

2 ,c c       3
AC AC ,V V                                               (A2) 

where   is a bookkeeping parameter. We seek a solution in the following form  

     
       2 3

1 0 2 2 0 2 3 0 2

, , ,

, , , , , , ...,

s

s

w x t w x u x t

w x u x T T u x T T u x T T



  

 

    
            (A3) 

where sw  is the static component of the arch deflection and u is its dynamic component. 

For simplicity, we define 

        
1

0

, ,p x g x p x g x dx                                          (A4) 

 

Substituting Eqs. (A1)-(A5) into Eqs. (5)-(6) and equating like powers of  , we obtain: 

 Order 
0 : (the static equation)  

( ) ( )
( )

( ) ( ) ( ) ( )

2
2

1 0 0 2

0

, 2 , ,
1

0 1 0,       0 1 0,

iv DC
s s s s s

s

s s s s

V
w w w w w w w

w w

w w w w

a
a é ùé ù¢¢ ¢¢= + G + G -ë û ë û + +

¢ ¢= = = =

                   (A5) 
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 Order 
1 : 

 1 0,u L

                                                                                                                          

(A6) 

where:      

           

 

2
1 0 1 1 1 0 1 1 0 1 0 1

2
2 DC

13

0

, 2 , 2 , ,

2
,

1

iv

s s s s s

s

u D u u w w w w u w w w u w u

V
u

w w

 



                   


 

L

 

 Order 
2 : 

        
 

2
22 DC

2 1 1 1 0 1 0 1 1 1 14
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3
, 2 , , ,

1
s s

s

V
u u u w w w u w u u u

w w

             
L               (A7) 

 Order 
3 :  

        
     

 
     

3 1 1 2 0 1 1 0 1 2

1 2 0 2 1 1 1 1 1 0 2 1 0 1

2 2
2 DC AC 32 DC 2 DC

1 2 12 4 5
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2 , 2 , ,

2 , , , 2

2 cos 6 4
,

1 1 1
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s

s s s
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w u w u u u u u D D u cD u

V V t V V
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 
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         
         


  

     

L

   

                  (A8) 

Because we suspect the activation of internal resonances for the investigated MEMS 

arch, we seek a second order uniform expansion for the solution of Eq. (A6) in the following 

form: 

   0 0

1 0 2 2 2( , , ) ( ) ( ) ,n mi T i T

n n m mu x T T A T e x A T e x cc
                                (A9) 

where 2( )nA T  and 2( )mA T  are complex-valued functions, n , m  and  n x ,  m x
 
are the 

natural frequencies and corresponding eigenfunctions respectively, and where the subscripts m 

and n indicate the modes involved in the internal resonance. " "cc  in Eq. (A9) stands for the 

complex conjugates terms. Substituting Eq. (A9) into Eq. (A7), we obtain 
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       
      

0 0

0 0

2 22 2
2 1 1 1 1( )

,

n m

n m n m

i T i T

n n m m n n n m m m

i T i T

n m n m nm

u A e h x A e h x A A h x A A h x

A A e A A e H x cc
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  

L
                          (A10) 

where 

     
2
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1 1 0 1 04
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2 ( , ) ( , ) ( , ) ,

(1 )
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V
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                 
 

               (A11) 
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1 04
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6
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DC
ij i j s i i j

s

s j j i i j s

V
H x w w

w w

w w w w

     

      

     
 

        

                      (A12) 

A particular solution of Eq. (A10) can be basically expressed as: 
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0 0

2 22 2
2 0 2 1 2 1 2

3 2 2 4 2 2

2 2 2 2 2 2

( , , ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

n m

n m n m

i T i T

n n m m

i T i T

n m n m

n n n m m m

u x T T x A T e x A T e

x A T A T e x A T A T e

x A T A T x A T A T cc

 

   

 

 

 

 

 

 

  

              (A13) 

where  

    1 1, 2 ,i i iH x h x                                                      (A14) 

    2 1,0 ,i iH x h x                                                      (A15) 

    3 , ,n m nmH x H x                                                 (A16) 

    4 , ,n m nmH x H x                                                 (A17) 

and where the operator H is defined by the following equation: 

       

   
 

2
1 0 0

2
2

1 0 3

0

, 2 , ,

2
, 2 , ,

1

iv

s s

DC
s s s

s

H f f f w w f w f w

V
w w w w f f

w w

  



         

        

                          (A18) 

Next we obtain the perturbation solutions for two different cases of internal resonances: three-

too-one and one-to-one cases. 
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i) Three-to-one internal resonance case ( 3n m  ) 

Substituting Eqs. (A9) and (A13) into Eq. (A8) and considering the case where 

3n m  and  or n m   , we obtain 

         
       

       

0

0

00 0

2
3 1

2
1

233 2
5 6

ˆ2

ˆ2

,

n

m

n mm

i T

n n n n n n n nm n m m

i T

m m m m m m m mn m n n

i Ti T i T

m n m

u i A cA x x A A x A A A e

i A cA x x A A x A A A e

x A e x A A e F x e cc NST





 

   

   

   

      
      

    

L

            (A19) 

where " "NST  refers for non-secular terms, and where the forcing term F  is defined by  

 
 

2 DC AC
2

0

2
,

1 s

V V
F x

w w


 

 
                                                (A20) 

and where: 

  

           
     
     

     

1 1 1 0 1 2 0 2

1 0 1 2

1 1 2 0

2 2 2
32 DC 2 DC 2 DC

1 25 4 4

0 0 0

3 , 2 , 2 , 4 , 4 ,

2 , 4 ,

2 2 , ,

12 6 12
,

1 1 1

i i i i s i i s i i

s i i i i

i i i s i

i i i i i

s s s

x w w w w

w w

w w

V V V

w w w w w w

        

    

    

    

            
         
        

  
     

              (A21) 

           

     
       
     

   

1 0 3 3 0 4 4

1 0 2 2

1 0 3 4 2

1 3 4 0

1 2 0

2
2 DC

0

4 , 2 , 2 , 2 , 2 ,

2 , 4 , 4 ,

2 , 2 , 4 ,

2 , ,

4 , ,

24

1

ij j i j s s

i j j j s j

s j j i j

j s j

j i s i

x w w w w

w w

w w

w w

w w

V

w w

        

     

      

    

  



           
       

         
      

      


    

 
2

2 2 DC
3 4 25 4

0

6
2 ,

1
i j j j j i

s s

V

w w

        
 

              (A22)  

           

   
   

5 1 0 1 1 1 0 1

2 2
32 DC 2 DC

1 1 0 15 4

0 0

, 2 , 2 , 2 ,

4 6
2 , , ,

1 1

m m m m s m s m m

m m m s m m m

s s

x w w w w

V V
w w

w w w w

         

      

            

           

            (A23)  
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       
     

         
   

   

6 1 0 4 4

1 0 1 1

1 0 1 4 1 4 0

1 1 0

2 2
22 DC 2 DC

45 4

0 0

2 , 2 , 2 ,

, 2 , 2 ,

2 , 2 , 2 , 2 ,

2 , 2 ,

12 6

1 1

m n m s

n m m m s m

s n m m m m s

m n n s

n m m

s s

x w w

w w

w w w w

w w

V V

w w w w

      

     

       

  

    

        
        
                
      

  
     

2
2 DC

14

0

6
,

1
n m

s

V

w w

 
 

            (A24)  

Next, to describe the nearness of n  to 3 m  and   to either m , we introduce the 

following detuning parameters 1  and 2  defined by 

2
13 ,n m      and  2

2 ,m                                             (A25) 

Because the homogeneous problem governing 3u , Eq. (A19), has a nontrivial solution, 

the corresponding nonhomogeneous problem has a solution only if the right-hand side of Eq. 

(A19) is orthogonal to every solution of the adjoint homogeneous problem governing 3u . Since 

this problem is self-adjoint, the adjoints are given by   0ji T

j x e
 

. Requiring that the right-hand 

side of Eq. (A19) be orthogonal to   0ni T

n x e
   and   0mi T

m x e
   and using Eq. (A25), we obtain 

the following solvability conditions for the case of three-to-one internal resonance 

  1 2 2 22 3ˆ2 ,i T i T

n n n nn n n nm n m m n m n ini A cA S A A S A A A A e f e                        (A26) 

  1 2 2 22 2ˆ2 ,i T i T

m m m mm m m mn m n n m n m m imi A cA S A A S A A A A A e f e                   (A27) 

where : 

   
1

0

,k kf F x x dx                                                           (A28) 

    
1

1

0

,kk k kS x x dx                                                          (A29) 
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   
1

0

,   ,jk jk jS x x dx j k                                                    (A30) 

       
1 1

5 6

0 0

,   ,n n m mx x dx x x dx                                          (A31) 

Afterward, we express the iA  in the polar form 2ii

i iA a e
 , where  2i ia a T  and 

 2i i T   are real-valued functions, representing, respectively, the amplitude and phase of the 

response of each iA . Substituting for the expression of iA  into Eqs. (A26) and (A27) and letting 

1 1 2 2 2 23 ,  and m n m mT T           , where  2i ia a T  and  2i i T   are real-valued 

functions, representing, respectively, the amplitude and phase of the response of the ith mode, we 

obtain the following modulation equations governing the modal amplitudes and phases 

respectively:  

 3
1

1
ˆ sin ,

2 8
n

n n m

n

a c a a 

                                                   (A32) 

       3 2 3
1 2 1 2 13 3 cos ,

8 8 8
nn nm n

n m n n n m m

n n n

S S
a a a a a a    

  
                       (A33) 

   2
1 2

1
ˆ sin sin ,

2 8
m m

m m n m m

m m

f
a c a a a  

 
                                      (A34) 

   3 2 2
2 2 1 2cos cos ,

8 8 8
mm mn m m

m m m m m n n m m

m m m m

S S f
a a a a a a a   

   
                    (A35) 

ii) One-to-one internal resonance case ( n m  ) 

Note here that the above analysis of the three-to-one internal resonance up to Eq. (A18) 

holds for the present case. However, instead of Eq. (A19), we have the following solution for the 
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cases of one-to-one internal resonance, assuming considering the case where n m   and 

 or n m   : 

         
       

         

0

0

0 0 0

2
3 1

2
1

2 22 2
6 7

ˆ2

ˆ2

,

n

m

m n n m

i T

n n n n n n n nm n m m

i T

m m m m m m m mn m n n

i T i T i T

m n n m

u i A cA x x A A x A A A e

i A cA x x A A x A A A e

x A A e x A A e F x e cc NST





   

   

   

   

      
      

    

L

             (A36) 

where the functions  1i x ,  ij x , and  6 x  are defined in Eqs. (A21), (A22), and (A24) 

respectively, and where 

       
     

         
   

   

7 1 0 4 4

1 0 1 1

1 0 1 4 1 4 0

1 1 0

2 2
22 DC 2 DC

45 4

0 0

2 , 2 , 2 ,

, 2 , 2 ,

2 , 2 , 2 , 2 ,

2 , 2 ,

12 6

1 1

n n m s

m n n n s n

s m n n n n s

n m m s

m n n

s s

x w w

w w

w w w w

w w

V V

w w w w
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       

  

    

        
        
                
      

  
     

2
2 DC

14

0

6
,

1
m n

s

V

w w

  
 

           (A37) 

Now, to describe the nearness of n  to m and   to m , we introduce the detuning 

parameters 1  and 2  defined by 

2
1,n m      and  2

2 ,m                                          (A38) 

Similar to the three-to-one internal resonance case, we demand that the right-hand side of 

Eq. (A36) be orthogonal to   0ni T

n x e
   and   0mi T

m x e
   and then using Eq. (A38) along with 

the polar form of each iA , we obtain the following modulations equations 

 

   

   

3 21 2
1 1

2 33 4
1 1

ˆ
sin sin

2 8 8

sin 2 sin ;
8 8

n n m n m

n n

m n n

n n

R Rc
a a a a a

R R
a a a

 
 

 
 

     

 
                                           (A39) 
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     

     

3 2 31
1 2 1 2 1

2 2 332 4
1 1 1

cos
8 8 8

cos cos 2 cos ;
8 8 8

nn nm
n m n n n m m

n n n

n m m n n

n n n

S S R
a a a a a a

RR R
a a a a a
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  
  

       

  
                      (A40) 

   

     

3 25 6
1 1

2 37 8
1 1 2

ˆ
sin sin

2 8 8

sin 2 sin sin ;
8 8

m m n m n

m m

m im
n m m m

m m m

R Rc
a a a a a

R R f
a a a

 
 
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  

     

  
                                 (A41) 

   

     

3 2 3 25 6
2 2 1 1

2 27 8
1 1 2

cos cos
8 8 8 8

cos 2 cos cos ;
8 8

mm mn
m m m m m n n m n
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where: 

1 1 2 2 2 2,       ,m n m mT T                                                (A43) 

and: 
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           (A44) 

Finally, and for both types of investigated internal resonances, substituting Eqs. (A9) and 

(A13) into Eq. (A3) and setting 1  , we obtain, to the second-order approximation, the 

following response of the MEMS arch to the DC and AC harmonic excitation: 
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