
One trace is all it takes: Machine Learning-based

Side-channel Attack on EdDSA

Léo Weissbart1,2, Stjepan Picek1, and Lejla Batina2

1 Delft University of Technology, The Netherlands
2 Digital Security Group, Radboud University, The Netherlands

Abstract. Profiling attacks, especially those based on machine learn-
ing proved as very successful techniques in recent years when consider-
ing side-channel analysis of block ciphers implementations. At the same
time, the results for implementations of public-key cryptosystems are
very sparse. In this paper, we consider several machine learning tech-
niques in order to mount a power analysis attack on EdDSA using the
curve Curve25519 as implemented in WolfSSL. The results show all con-
sidered techniques to be viable and powerful options. Especially convo-
lutional neural networks (CNNs) are effective as we can break the im-
plementation with only a single measurement in the attack phase while
requiring less than 500 measurements in the training phase. Interestingly,
that same convolutional neural network was recently shown to perform
extremely well for attacking the implementation of the AES cipher. Our
results show that some common grounds can be established when using
deep learning for profiling attacks on distinct cryptographic algorithms
and their corresponding implementations.

1 Introduction

Cryptographic algorithms ensure the security of a system (e.g., communication
on a network or payment with a smartcard), by providing security features
(e.g., authenticity and non-repudiation). However, implementations of those al-
gorithms can fail during the engineering process and present flaws, leaking secret
information over side-channels, even for the strongest protocols. Side-channel
analysis (SCA) designates a set of signal processing techniques targeting the
execution of cryptographic implementations, evaluating a system’s security.

Since Differential Power Analysis by Kocher et al. [16], many other pow-
erful SCAs have been successfully used to break all cryptographic algorithms,
including recent machine learning approaches, on both symmetric key cryptog-
raphy [9,14,15,18,20,27,28,31] and public-key cryptography [21,30]. Among all
SCAs, profiling attacks are the most powerful provided that the attacker has
access to a clone device with full control that can be profiled offline, to later use
this knowledge on another device during the attack phase. Template attack [9]
has been the most popular instance of profiling attacks, but in recent years, new
techniques based on machine learning were able to outperform template attack
and break implementations protected with countermeasures. However, most of

2

those results are obtained on block ciphers implementations (and more precisely
on AES) and there are almost no results considering machine learning (deep
learning) on public-key cryptography.

In this paper, we attack the digital signature algorithm Ed25519 as imple-
mented in WolfSSL on an STM32F4 microcontroller and we also compare the
results obtained from different profiling attacks. To that end, we consider several
machine learning techniques (i.e., Random Forest, Support Vector Machines, and
Convolutional Neural Network) that have been proved strong in related work
(albeit mostly on block ciphers) and template attack, which we consider the
standard technique and a baseline setting.

1.1 Related Work

Template attacks (TAs) have been introduced by Chari et al. in 2003 [9] as
the most powerful SCA in the information-theoretic point of view and became
a standard tool for profiling SCA. As straightforward implementations of TA
can lead to computationally intensive computation, one option for more efficient
computation is to use only a single covariance matrix, and is referred as the so-
called pooled template attack presented by Choudary and Kuhn [10] where they
were able to template a LOAD instruction and recover all 8 bits treated with a
guessing entropy of 0. Several works applied machine learning methods to SCA
of block ciphers because of their resemblance to general profiling techniques.
Two methods stand out particularly in profiling SCA, namely Support Vector
Machines (see, e.g., [28,20,33,18]) and Random Forest (see, e.g., [14,27,33]). With
the general evolution in the field of deep learning, more and more works deal
with neural networks for SCA and often show top performance. There, most
of the research concentrated on either multilayer perceptron or convolutional
neural networks [20,29,7,11].

There is a large portion of works considering profiling techniques for block
ciphers but there is much less for public-key cryptography. Lerman et al. con-
sidered template attack and several machine learning techniques to attack RSA.
However, the targeted implementation was not secure, which makes the com-
parison with non-machine learning techniques less favorable [18]. Nascimento et
al. applied a horizontal attack on ECC implementation for AVR ATmega micro-
controller targeting the side-channel leakage of cmov operation. Their approach
to side-channel is similar to ours but they don’t use deep learning in the analy-
sis [23]. Poussier et al. used horizontal attacks and linear regression to conduct
an attack on ECC implementations but their approach cannot be classified as
deep learning [30]. Carbone et al. used deep learning to attack a secure imple-
mentation of RSA [8]. Previous work has shown TA to be efficient for attacking
SPA-resistant ECDSA with P192 NIST curve on 32-bit microcontroller [21].

1.2 Contributions

There are two main contributions of this paper:

3

1. We present a comprehensive analysis of several profiling attacks by exploring
different sets of hyper-parameters that permit to obtain the best results for
each method. This evaluation can be helpful when deciding on an optimal
strategy for machine learning and in particular, deep learning attacks on
implementations of public-key cryptography.

2. We consider elliptic curve cryptography (actually EdDSA using curve Curve25519)
and profiling attacks where we show that such techniques, and especially the
convolutional neural networks can be extremely powerful attacks.
Besides those contributions, we also present a publicly available dataset we

developed for this work. We aim to make our results more reproducible but also
motivate other researchers to publish their datasets for public-key cryptography.
Indeed, while the SCA community realizes the lack of publicly available datasets
for block ciphers (and tries to improve it), the situation for public-key cryptog-
raphy seems to attract less attention despite even worse availability of codes,
testbeds, and datasets.

The rest of this paper is organized as follows. In Section 2, we give relevant
background on elliptic curve scalar multiplication, Ed25519 algorithm, and pro-
filing attack techniques. In Section 3, we explain the way an attacker can exploit
this implementation of Ed25519. In Section 4, we present our testbed and data
collection strategy. In Section 5, we give the results of the hyper-parameter tun-
ing phase, dimensionality reduction, and profiling results. Finally, in Section 6,
we conclude the paper and give some possible future research directions.

2 Background

In this section, we start by introducing the elliptic curve scalar multiplication
operation and EdDSA algorithm. Afterward, we discuss profiling attacks that
we use in our experiments.

2.1 EdDSA

In the context of public-key cryptography, one important feature is the authen-
tication of a message between two parties. This feature ensures to party B that
party A has indeed sent a message M and that this message is original and
unaltered. Message authentication can be performed by Digital Signature Algo-
rithms (DSA). DSA creates a signature pair (R,S) for proving that a message M
was emitted by the known party A, unaltered and that A cannot repudiate. For
security reasons and computational speed, public-key cryptography has turned
toward Elliptic Curves based cryptography (ECC) as it tends to become the
successor of RSA for public-key cryptography because it can meet higher secu-
rity levels with smaller key lengths. ECC is based on the Elliptic Curve Discrete
Logarithm Problem (ECDLP), which states that it is easy and hence efficient to
compute Q = k · P , but it is difficult to find k knowing Q and P .

EdDSA [3] is a variant of the Schnorr digital signature scheme [34] using
Twisted Edward Curves, a subgroup of elliptic curves that uses unified formu-
las, enabling speed-ups for specific curve parameters. This algorithm proposes

4

a deterministic generation of the ephemeral key, different for every different
message, to prevent flaws from a predictable random number generator. The
ephemeral key r is made of the hash value of the message M and the auxiliary
key b, generating a unique ephemeral public key R for every message.

EdDSA, when using parameters of Curve25519 is referred to as Ed25519
(domain parameters are given in Appendix A) [2]. EdDSA scheme for signa-
ture generation and verification is described in Algorithm 1, where the notation
(x, . . . , y) denotes the concatenation of the elements. The notation used in Al-
gorithm 1 is given in Table 1.

After the signature generation, party A sends (M,R, S), i.e., the message
along with the signature pair (R,S) to B. The verification of the signature is
done by B with Steps 10 to 11. If the last equation is verified, it represents a
point on the elliptic curve and the signature is correct, ensuring that the message
can be trusted as an authentic message from A.

Table 1: Notation for EdDSA
Name Symbol

Private key k
Private scalar a (first part of H(k)).
Auxiliary key b (last part of H(k)).
Ephemeral key r
Message M

Algorithm 1 EdDSA Signature generating and verification

Keypair Generation (k, P): (Used once, first time private key is used.)
1: Hash k such that H(k) = (h0, h1, . . . , h2u−1) = (a, b)
2: a = (h0, . . . , hu−1), interpret as integer in little-endian notation
3: b = (hu, . . . , h2u−1)
4: Compute public key: P = aB.

Signature Generation:

5: Compute ephemeral private key r = H(b,M) .
6: Compute ephemeral public key R = rB.
7: Compute h = H(R,P,M) mod l.
8: Compute: S = (r + ha) mod l.
9: Signature pair (R,S)

Signature Verification:

10: Compute h = H(R,P,M)
11: Verify if 8SB = 8R + 8hP holds in E

5

2.2 Elliptic Curve Scalar Multiplication

The security of ECC algorithms depends on the ability to compute a point mul-
tiplication and the presumed inability to reverse the computation to retrieve the
multiplicand given the original and product points. This security is strengthened
with a greater prime order of the underlying finite field. In our attack, we aim
to extract the ephemeral key r from its scalar multiplication with the Elliptic
Curve base point B (see step 5 in Algorithm 1). To understand how this attack
works, we decompose this computation as implemented in the case of WolfSSL
Ed25519.

The implementation of Ed25519 in WolfSSL is based on the work of Bernstein
et al. [3]. The implementation of elliptic curve scalar multiplication is a window-
based method with radix-16, making use of a precomputed table containing
results of the scalar multiplication of 16i|ri| · B, where ri ∈ [−8, 7] ∩ Z and
B is the base point of Curve25519 (see Appendix B). This method is popular
because of its trade-off between memory usage and computation speed, but also
because the implementation is time-constant and does not feature any branch
condition nor array indices and hence is presumably secure against timing attack.
Leaking information from the corresponding value loaded from the memory with
a function ge select is used here to recover e and hence can be used to easily
connect to the ephemeral key r. More details are given in the remainder of this
paper.

2.3 Profiling Attacks

In this work, we consider several machine learning techniques that showed very
good performance when considering side-channel attacks on block ciphers. Be-
sides, we briefly introduce the template attack, which serves as a baseline to
compare the performance of algorithms.

Random Forest. Random Forest (RF) is a well-known ensemble learning
method consisting of a number of decision trees [6]. Decision trees consist of
combinations of Boolean decisions on a different random subset of attributes of
input data (called bootstrap sampling). For each node of each tree, the best split
is taken among these randomly chosen attributes. RF is a stochastic algorithm
because of its two sources of randomness: bootstrap sampling and attribute se-
lection at node splitting. The most important hyper-parameter to tune is the
number of trees in the forest (we do not limit the tree size nor use pruning
methods.)

Support Vector Machines. Support Vector Machines (denoted SVM) is a
kernel-based machine learning family of methods that are used to accurately
classify both linearly separable and linearly inseparable data [38]. The idea for
linearly inseparable data is to transform them into a higher dimensional space
using a kernel function, wherein the data can usually be classified with higher

6

accuracy. The scikit-learn implementation we use considers libsvm’s C-SVC clas-
sifier [25] that implements SMO-type algorithm [12]. The multi-class support is
handled according to a one-vs-one scheme. We investigate two variations of SVM:
with a linear kernel and with a radial kernel. Linear kernel-based SVM has the
penalty hyper-parameter C of the error term. Radial kernel-based SVM has two
significant hyper-parameters to tune: the cost of the margin C and the kernel γ.

Fig. 1: Anatomy of a neuron.

x1

x2

x3

. . .

xn

∑
Output

w1

w2

w3

wn

Inputs

Weights Net
Input

function

Activation
function

Convolutional Neural Networks. Convolutional Neural Networks (CNNs)
are a type of neural networks initially designed to mimic the biological process
of animal’s cortex to interpret visual data [17]. CNNs show excellent results
for classifying images for various applications and have also proved to be a
powerful tool to classify time series data such as music or speech [24]. The
VGG-16 architecture introduced in [35] for image recognition was also recently
applied to the problem of side-channel analysis with very good results [15].

From the operational perspective, CNNs are similar to ordinary neural net-
works (e.g., multilayer perceptron): they consist of several layers where each
layer is made up of neurons as depicted in Figure 1. Every neuron in a layer
computes a weighted combination of an input set by a net input function (e.g.,
the sum function in neurons of a fully-connected layer) from which a nonlinear
activation function produces an output. When the output is different from zero,
we say that the neuron activation feeds the next layer as its input. Layers with a
convolution function as the Net Input Function are referred to as convolutional
layers and are the core building blocks in a CNN.

CNNs use three main types of layers: convolutional layers, pooling layers,
and fully-connected layers. Convolution layer computes the output of neurons
from locally sparse combinations of initial raw input features, to reduce the space
volume of information into smaller regions of interest. Pooling layers are used
after a convolution layer to sample down local regions and create spatial regions
of interest. The fully-connected layer at the end of a CNN behaves as a classifier

7

for the extracted features from the inputs. The ReLU activation function will
apply an element-wise activation function, such as the max(0, x) thresholding
at zero.

The architecture of CNN we choose in this paper makes use of some additional
elements: batch normalization is used to normalize the input layer by applying
standard scaling on the activations of the previous layer, using running mean
and standard deviation. Flatten layer transforms input data of rank greater
than two into a one-dimensional feature vector that is used in the fully-connected
layer. Dropout is a regularization technique for reducing overfitting by preventing
complex co-adaptations on training data. The term refers to randomly dropping
out units (both hidden and visible) in a neural network with a certain probability
at each batch.

The architecture of a CNN is dependent on a large number of hyper-parameters
making the choice of hyper-parameters for each different application an engineer-
ing challenge. The choices made in this paper are discussed in Section 5.

Template Attack. The template attack relies on the Bayes theorem and con-
siders the features as dependent. In the state-of-the-art, TA relies mostly on a
normal distribution [9]. Accordingly, TA assumes that each P (X = x|Y = y)
follows a (multivariate) Gaussian distribution that is parameterized by its mean
and covariance matrix for each class Y . The authors of [10] propose to use only
one pooled covariance matrix averaged over all classes Y to cope with statistical
difficulties and thus lower efficiency. In our experiments, we use the version of
the attack with only one pooled covariance matrix.

3 Attacker Model

The general warning for implementations of ECDSA is to select different ephemeral
private keys r for different signature. The flaw of using the same r for different
messages happens since the two corresponding signatures would result in two
signature pairs (R,S) and (R,S′) for messages M and M ′, respectively. Then,
an attacker can use this information to recover r as r = (z− z′)(S−S′)−1 (with
z and z′, few bits of H(M) and H(M ′) interpreted as integers). Finally, to re-
cover the private scalar a required to forge signatures, the attacker can trivially
compute a = R−1(Sr − z).

Here, the aim of the attacker is the same as for every ECDSA attack: re-
cover the secret scalar a. The difference is that the attacker cannot acquire two
signatures with the same random r, but can still recover the secret scalar in
two different ways. One method would consist of attacking the implementation
of the hash function to recover b from the computation of ephemeral private
key [32]. Another method (developed in this paper) attacks the implementation
of the scalar multiplication during the computation of the ephemeral public key.
With this method, the attacker collects side-channel traces of each computation
since r is different in every message. This paper shows that even with a single

8

attack trace, the attacker can recover private scalar with high confidence where
we provide a comparison with different state-of-the-art profiling SCA.

4 Dataset Generation

In this section, we first present the measurement setup and explain the method-
ology for creating a dataset from the power traces obtained with our setup (see
Figure 2).

Fig. 2: The measurement setup

4.1 Measurement Setup

The device under attack is a Piñata development board developed by Riscure
to perform SCA evaluations 1. The board is based on a 32-bit STM32F4 mi-
crocontroller with an ARM-based architecture, running at the clock frequency
of 168 MHz. The board is modified to perform SCA through power consump-
tion. The target is Ed25519 implementation of WolfSSL 3.10.2. As WolfSSL is
an open-source library written in C, we have a fully transparent and controllable
implementation for the profiling phase.

Power consumption is measured with a current probe 2 placed between the
power source and the board’s power supply source. Power measurements are

1 Pinata Board: https://www.riscure.com/product/pinata-training-target/
2 Current Probe: https://www.riscure.com/product/current-probe/

https://www.riscure.com/product/pinata-training-target/
https://www.riscure.com/product/current-probe/

9

obtained with a Lecroy Waverunner z610i oscilloscope. The measures are per-
formed with a sampling frequency of 1.025 GHz and the trigger is implemented
with an I/O pin of the board around the ge select function (see Algorithm 2) to
retrieve a part of the key e.

4.2 Dataset

To evaluate the attack proposed in this paper and to facilitate reproducible
experiments, we present the dataset we built for this purpose [1]. We follow
the same format for the dataset as in recently presented ASCAD database [31].
For this attack, we profile the EC scalar multiplication with the ephemeral key
with the base point of curve Ed25519 (as explained in Section 3). Regarding the
implementation of this operation for our target, we focus on the profiling of one
function of the operation as it is more challenging by exploiting less information.
We focus on the Lookup Table (LUT) operation used to fetch the precomputed
chunks of the result in a table stored in memory. For speed reasons, the 256 bits
scalar/ephemeral secret key r is interpreted in slices of 4-bits (nibbles) e[i], i ∈
[0, 63], and to compute R = rB, the field multiplication with the base point B, we

would have to compute
∑

63

i=0
e[i]16iB. As multiplication is resource consuming,

the implementation stores the results for every nibble number i and nibble value
e[i] in a precomputed LUT and loads corresponding chunks when needed.

Table 2: Organization of the database.
database

attack traces profiling traces

traces trace 1[1 000]
· · ·

trace na[1 000]

labels label 1[1]
· · ·

label na[1]

traces trace 1[1 000]
· · ·

trace np[1 000]

labels label 1[1]
· · ·

label np[1]

Each trace in the database is represented by a tuple composed of one power
trace and its corresponding label (class). The database is composed of two
groups: the first group is profiling traces, which contains np tuples. The
second group is attack traces, which contains na tuples (see Table 2). In
total, there are 6 400 labeled traces. We divide the traces in 80/20 ratio for pro-
filing/attacking groups, and consequently, have np = 5120 and na = 1280. The
profiling group is additionally divided in 80/20 ratio for training and validation
sets.

A group contains two datasets: traces and labels. The dataset traces

contains the raw traces recorded from different nibbles during the encryption.
Each trace contains 1 000 samples and represents the relevant information of one

10

nibble encryption. The dataset labels contains the correct subkey candidate
for the corresponding trace. In total, there are 16 classes since we consider all
possible nibble values.

To the best of our knowledge, besides the dataset we presented here, there
is only one publicly available dataset for SCA on public-key cryptography on
elliptic curves. Tuveri et al. conducted a side-channel analysis of SM2 (a digital
signature algorithm) public-key cryptography suite where they consider various
side channels [37]. Additionally, the authors published EM side-channel mea-
surements of elliptic curve point multiplication3. We note that due to the choice
of the suite (SM2 is not an international standard), this dataset is difficult to
compare with ours.

5 Experimental Setting and Results

To examine the feasibility and performance of our attack, we present different
settings for power analysis and use two different metrics. We first compare the
performance by using the accuracy metric since it is a standard metric in machine
learning. The second metric we use is the success rate as it is an SCA metric
that gives a more concrete idea on the power of the attacker [36]. Note that we
assume the attacker who can collect as many power traces as she wants and that
the profiling phase is nearly-perfect as also suggested by Lerman et al. [19].

5.1 Hyper-parameters Choice

Here we discuss the choice of hyper-parameters for each method we consider in
this paper.

TA: Classical Template Attack is applied with pooled covariance [10]. Profiling
phase is repeated for a different choice of points of interest (POI).

RF: Hyper-parameter optimization is applied to tune the number of decision
trees used in Random Forest. We consider the following number of trees: 50,
100, 500. The best number of decision trees is 100 with no PCA and 500 when
PCA is applied for 10 and 656 POI.

SVM: For the linear kernel, the hyper-parameter to optimize is the penalty
parameter C. We search for the best C among a range of [1, 105] in logarithmic
space. In the case of the radial basis function (RBF) kernel, we have two hyper-
parameters to tune: the penalty C and the kernel coefficient γ. The search for
best hyper-parameters is done within C = [1, 105] and γ = [−5, 2] in logarithmic
spaces. We consider only those hyper-parameters that give the best scores for
each choice of POI (see Table 3).

3 available at https://zenodo.org/record/1436828#.XRhmfY-xWrw

https://zenodo.org/record/1436828#.XRhmfY-xWrw

11

Table 3: Chosen hyper-parameters for SVM
Number of features Kernel C γ

1 000 linear 1 000 −

rbf 1 000 1
656 linear 1 000 −

rbf 1 000 1
10 linear 1 333 −

rbf 1 000 1.23

Table 4: Architecture of the CNN

Hyper-parameter Value

Input shape (1000, 1)
Convolution layers (8, 16, 32, 64, 128, 256, 512, 512, 512)

Pooling type Max
Fully-connected layers 512

Dropout rate 0.5

CNN: The chosen hyper-parameters for VGG-16 follows several rules that have
been adapted for SCA in [15] or [31] and that we describe here:

1. The model is composed of several convolution blocks and ends with a dropout
layer followed by a fully connected layer and an output layer with the Soft-
max activation function.

2. Convolutional and fully-connected layers use the ReLU activation function.
3. A convolution block is composed of one convolution layer followed by a

pooling layer.
4. An additional batch normalization layer is applied for every odd-numbered

convolution block and is preceding the pooling layer.
5. The chosen filter size for convolution layers is fixed on size 3.
6. The number of filters nfilters,i in a convolution block i keeps increasing ac-

cording to the following rule: nfilters,i = max(2i ·nfilters,1, 512) for every layer
i ≥ 0 and we choose nfilters,1 = 8

7. The stride of the pooling layers is of size 2 and halves the input data for
each block.

8. Convolution blocks follow each other until the size of the input data is reduce
to 1.

The resulting architecture is represented in Table 4 and Figure 3.

5.2 Dimensionality Reduction

For computational reasons, one may want to select points of interest (POI) and
consequently, we explore several different setting where we either use all the fea-
tures in a trace or we conduct dimensionality reduction. Here, for dimensionality

12

Fig. 3: CNN architecture as implemented in Keras. This architecture consists of
9 convolutional layers followed by max pooling layers. For each odd convolutional
layer, there is a batch normalization layer before the pooling layer. At the end
of the network, there is one fully connected layer.

C
o
n
v

1

B
a
tc

h
N

o
rm

M
a
x

P
o
o
l

C
o
n
v

2

M
a
x

P
o
o
l

C
o
n
v

3

B
a
tc

h
N

o
rm

M
a
x

P
o
o
l

C
o
n
v

4

M
a
x

P
o
o
l

C
o
n
v

5

B
a
tc

h
N

o
rm

M
a
x

P
o
o
l

C
o
n
v

6

M
a
x

P
o
o
l

C
o
n
v

7

B
a
tc

h
N

o
rm

M
a
x

P
o
o
l

C
o
n
v

8

M
a
x

P
o
o
l

C
o
n
v

9

B
a
tc

h
N

o
rm

M
a
x

P
o
o
l

D
ro

p
o
u

t

F
la

tt
en

D
en

se

D
ro

p
o
u

t

13

reduction, we use Principal Component Analysis (PCA) [5]. Principal compo-
nent analysis (PCA) is a well-known linear dimensionality reduction method that
may use Singular Value Decomposition (SVD) of the data matrix to project it
to a lower dimensional space. PCA creates a new set of features (called prin-
cipal components) that are linearly uncorrelated, orthogonal, and form a new
coordinate system. The number of components equals the number of original
features. The components are arranged in a way that the first component cov-
ers the largest variance by a projection of the original data and the subsequent
components cover less and less of the remaining data variance. The projection
contains (weighted) contributions from all the original features. Not all principal
components need to be kept in the transformed dataset. Since the components
are sorted by the variance covered, the number of kept components, designated
with L, maximizes the variance in the original data and minimizes the recon-
struction error of the data transformation.

Note, while PCA is meant to select the principal information from a data,
there is no guarantee that the reduced data form will give better results for
profiling attacks than its complete form. We apply PCA to have the least possible
number of points of interest that maximize the score from TA (10 points of
interest) and the number of POI using a Bayesian model selection that estimates
the dimensionality of the data based on a heuristics (see [22]). After an automatic
selection of the number of components to use, we have 656 points of interest.

5.3 Results

In Table 5, we give results for different profiling methods when considering re-
covery of a single nibble of the key. We can see that all profiling techniques reach
very good performance with all accuracy scores above 95%. Still, some differences
can be noted. When considering all available features (1 000), CNN performs the
best and has the accuracy of 100%. Both linear and rbf SVM and RF have the
same accuracy. The performance of SVM is interesting since the same value for
linear and rbf kernel indicates that there is no advantage of going into higher
dimensional space, which means that the classes are linearly separable. Finally,
TA performs the worst of all considered techniques.

Applying PCA to the dataset results in lower accuracy scores. More precisely,
when considering the results with PCA that uses an optimal number of compo-
nents (656), we see that the results for TA slightly improve while the results for
RF and CNN decrease. While the drop in the performance for RF is small, CNN
has a significant performance drop and becomes the worst performing technique.
SVM with both kernels retains the same accuracy level as for the full number of
features. Finally, when considering the scenario where we take only 10 most im-
portant components from PCA, all the results deteriorate when compared with
the results with 1 000 features. Interestingly, CNN performs better with only 10
most important components than with 656 components but is still the worst
performing technique from all the considered ones.

To conclude, all techniques exhibit very good performance but CNN is the
best if no dimensionality reduction is done. There, the maximum accuracy is

14

obtained after only a few epochs (see Figures 5 and 6). If there is dimensionality
reduction, CNN shows a quick performance deterioration. This behavior should
not come as a surprise since CNNs are usually used with the raw features (i.e., no
pre-processing). In fact, applying such techniques could reduce the performance
due to a loss of information and changes in the spatial representation of features.
Interestingly, TA is never the best technique while SVM and RF show good and
stable behavior for all feature set sizes.

In Figure 4, we give the success rate with orders up to 10 for all profiling
methods on the dataset without applying PCA. Note, a success rate of order o is
the probability that the correct subkey is ranked among the firsts o candidates
of the guessing vector. While CNN has a hundred percent success rate of order
1, other methods achieve the perfect score only for orders greater than 6.

Table 5: Accuracy for the different methods obtained on the attacking dataset.
Algorithm 1 000 features 656 PCA components 10 PCA components

TA 0.9977 0.9984 0.9830
RF 0.9992 0.9914 0.9937
SVM (linear) 0.9992 0.9992 0.995
SVM (rbf) 0.9992 0.9992 0.995
CNN 1.00 0.95 0.96

Fig. 4: Success rate results.

1 2 3 4 5 6 7 8 9 10
Order

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Su
cc

es
s r

at
e

Success Rate for different methods

SVM(rbf)
SVM(linear)
TA
RF
CNN

15

The results for all methods are similar in the recovery of a single nibble from
the key. If we want to have an idea of how good these methods are for the
recovery of a full 256-bit key, we must apply the classification on the successive
64 nibbles. We can have an intuitive glimpse of the resulting accuracy Pc with
the cumulative probability of the probability of one nibble Ps : Pc = Π64Ps (see
Table 6). The cumulative accuracy obtained in such a way can be interpreted as
the predictive first-order success rate of a full key for the different methods in
terms of a security metric.

From these results, we can observe that the best result is obtained with CNN
when there is no dimensionality reduction. Other machine learning methods and
TA are nonetheless powerful profiling attacks with up to 95 and 90% performance
to recover the full key on the first guess with the best choice of hyper-parameters
and dimensionality reduction. Note the low accuracy value for CNN when using
656 PCA components: this result is obtained as the accuracy of CNN for a
single nibble raised to the power of 64 (since now we consider 64 nibbles). When
considering the results after dimensionality reduction, we see that SVM is the
best performing technique, which is especially apparent when using only 10 PCA
components. Finally, we observe again that TA is never the best performing
technique.

Table 6: Cumulative probabilities of the profiling methods.
Algorithm 1 000 features 656 PCA components 10 PCA components

TA 0.86 0.90 0.33
RF 0.95 0.57 0.66
SVM (linear) 0.95 0.95 0.72
SVM (rbf) 0.95 0.95 0.72
CNN 1.00 0.03 0.07

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Training Accuracy

No PCA
656 POI
10 POI

(a) Training Accuracy

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
0.75

0.80

0.85

0.90

0.95

1.00
Validation Accuracy

No PCA
656 POI
10 POI

(b) Validation Accuracy

Fig. 5: Accuracy of the CNN method over 100 epochs

16

As it can be observed from Figures 5 and 6, both scenarios without dimen-
sionality reduction and dimensionality reduction to 656 components, reach the
maximal performance very fast. On the other hand, the scenario with 10 PCA
components does not seem to reach the maximal performance within 100 epochs
since we see that the validation accuracy does not start to decrease. Still, even
longer experiments do not show further improvement in the performance, which
indicates that the network simply learned all that is possible and that there is
no more information that can be used to further increase the performance.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Training Loss

No PCA
656 POI
10 POI

(a) Training Loss

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
0.0

0.5

1.0

1.5

2.0

Validation Loss
No PCA
656 POI
10 POI

(b) Validation Loss

Fig. 6: Loss of the CNN method over 100 epochs.

Choosing the Minimum Number of Traces for Training on CNN. As
it is possible to obtain a perfect profiling phase on our dataset using CNN, we
focus here on finding the smallest training set that gives a success rate of 1. More
precisely, we evaluate the attacker in a more restricted setting [26]. To do so, we
first reduce the size of the training set to k number of traces per class (to always
have a balanced distribution of the traces) and then we gradually increase it to
find out when the success rate reaches 1. In Table 7, we give the results obtained
after one hundred epochs.

Table 7: Validation and test accuracy of CNN with an increasing number of
training traces.

Number of traces per class k 10 20 30 50 100 300

Validation accuracy 0.937 1.0 1.0 1.0 1.0 1.0

Testing accuracy 0.992 0.992 1.0 1.0 1.0 1.0

Interestingly, it turns out that 30 traces per class for training the CNN is
enough to reach the perfect profiling of this dataset. At the same time, the

17

additional experiments did not show good enough behavior with a lower number
of traces per class. Note the scenario with only 10 traces per class where the
validation accuracy is lower than the testing accuracy. This happens since we
use only 20% of the training set for the validation, which results in an extremely
small validation set and consequently, less reliable results.

6 Conclusions and Future Work

In this paper, we consider a number of profiling techniques to attack the Ed25519
implementation in WolfSSL. The results show that although several techniques
perform well, convolutional neural networks are the best if no dimensionality
reduction is done. In fact, in such a scenario, we can obtain the accuracy of
100%, which means that the attack is perfect in the sense that we obtain the
full information with only a single trace in the attack phase. What is especially
interesting is the fact that CNN used here is taken from related work (more
precisely, CNN used for profiling SCA on AES) and is not further adapted to the
scenario here. This indicates that CNNs can perform well over various scenarios
in SCA. Finally, to obtain such results, we require only 30 measurements per
class, which results in less than 500 measurements to reach a success rate of 1
with CNN.

The implementation of Ed25519 we attack in this work does not feature
any countermeasure for SCA (that is, beyond constant-time implementation).
In future work, we plan to evaluate CNN for SCA on Ed25519 with different
countermeasures to test the limits of CNN in the side-channel analysis.

References

1. Database for EdDSA. URL: https://github.com/leoweissbart/

MachineLearningBasedSideChannelAttackonEdDSA

2. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records (2006). URL: http:
//cr.yp.to/papers.html#curve25519. Citations in this document 1(5) (2016)

3. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2(2), 77–89 (2012)

4. Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography, vol. 265. Cam-
bridge university press (1999)

5. Bohy, L., Neve, M., Samyde, D., Quisquater, J.J.: Principal and independent com-
ponent analysis for crypto-systems with hardware unmasked units. In: Proceedings
of e-Smart 2003 (January 2003), cannes, France

6. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

7. Cagli, E., Dumas, C., Prouff, E.: Convolutional Neural Networks with Data Aug-
mentation Against Jitter-Based Countermeasures - Profiling Attacks Without Pre-
processing. In: Cryptographic Hardware and Embedded Systems - CHES 2017 -
19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceed-
ings. pp. 45–68 (2017)

https://github.com/leoweissbart/MachineLearningBasedSideChannelAttackonEdDSA
https://github.com/leoweissbart/MachineLearningBasedSideChannelAttackonEdDSA
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519

18

8. Carbone, M., Conin, V., Cornlie, M.A., Dassance, F., Dufresne, G., Dumas,
C., Prouff, E., Venelli, A.: Deep learning to evaluate secure RSA implemen-
tations. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2019(2), 132–161 (Feb 2019). https://doi.org/10.13154/tches.v2019.i2.132-
161, https://tches.iacr.org/index.php/TCHES/article/view/7388

9. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: International Workshop on
Cryptographic Hardware and Embedded Systems. pp. 13–28. Springer (2002)

10. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Se-
lected Papers. LNCS, vol. 8419, pp. 253–270. Springer (2013)

11. Cid, C., Jr., M.J.J. (eds.): Selected Areas in Cryptography - SAC 2018 - 25th
International Conference, Calgary, AB, Canada, August 15-17, 2018, Revised Se-
lected Papers, Lecture Notes in Computer Science, vol. 11349. Springer (2019).
https://doi.org/10.1007/978-3-030-10970-7

12. Fan, R.E., Chen, P.H., Lin, C.J.: Working Set Selection Using Second Order Infor-
mation for Training Support Vector Machines. J. Mach. Learn. Res. 6, 1889–1918
(Dec 2005), http://dl.acm.org/citation.cfm?id=1046920.1194907

13. FIPS, P.: 180-4. Secure hash standard (SHS), March (2012)
14. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Lightweight ciphers and their

side-channel resilience. IEEE Transactions on Computers PP(99), 1–1 (2017).
https://doi.org/10.1109/TC.2017.2757921

15. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. un-
leashing the power of convolutional neural networks for profiled side-channel anal-
ysis. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(3), 148–179 (May 2019). https://doi.org/10.13154/tches.v2019.i3.148-179,
https://tches.iacr.org/index.php/TCHES/article/view/8292

16. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual International
Cryptology Conference. pp. 388–397. Springer (1999)

17. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks 3361(10) (1995)

18. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: An ap-
proach based on machine learning. Int. J. Appl. Cryptol. 3(2), 97–115
(Jun 2014). https://doi.org/10.1504/IJACT.2014.062722, http://dx.doi.org/

10.1504/IJACT.2014.062722
19. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.: Template

Attacks vs. Machine Learning Revisited (and the Curse of Dimensionality in Side-
Channel Analysis). In: COSADE 2015, Berlin, Germany, 2015. Revised Selected
Papers. pp. 20–33 (2015)

20. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Security, Privacy, and Applied Cryptography
Engineering - 6th International Conference, SPACE 2016, Hyderabad, India, De-
cember 14-18, 2016, Proceedings. pp. 3–26 (2016)

21. Medwed, M., Oswald, E.: Template attacks on ECDSA. In: International Workshop
on Information Security Applications. pp. 14–27. Springer (2008)

22. Minka, T.P.: Automatic choice of dimensionality for PCA. In: Advances in neural
information processing systems. pp. 598–604 (2001)

23. Nascimento, E., Chmielewski, L., Oswald, D., Schwabe, P.: Attacking embedded
ecc implementations through cmov side channels. In: Avanzi, R., Heys, H. (eds.)
Selected Areas in Cryptography – SAC 2016. pp. 99–119. Springer International
Publishing, Cham (2017)

https://doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.13154/tches.v2019.i2.132-161
https://tches.iacr.org/index.php/TCHES/article/view/7388
https://doi.org/10.1007/978-3-030-10970-7
http://dl.acm.org/citation.cfm?id=1046920.1194907
https://doi.org/10.1109/TC.2017.2757921
https://doi.org/10.13154/tches.v2019.i3.148-179
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://doi.org/10.1504/IJACT.2014.062722
http://dx.doi.org/10.1504/IJACT.2014.062722
http://dx.doi.org/10.1504/IJACT.2014.062722

19

24. Oord, A.v.d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499 (2016)

25. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

26. Picek, S., Heuser, A., Guilley, S.: Profiling side-channel analysis in the restricted
attacker framework. Cryptology ePrint Archive, Report 2019/168 (2019), https:
//eprint.iacr.org/2019/168

27. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of
class imbalance and conflicting metrics with machine learning for side-channel
evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–
237 (2019). https://doi.org/10.13154/tches.v2019.i1.209-237, https://doi.org/

10.13154/tches.v2019.i1.209-237

28. Picek, S., Heuser, A., Jovic, A., Ludwig, S.A., Guilley, S., Jakobovic, D., Mentens,
N.: Side-channel analysis and machine learning: A practical perspective. In: 2017
International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK,
USA, May 14-19, 2017. pp. 4095–4102 (2017)

29. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: Chattopad-
hyay, A., Rebeiro, C., Yarom, Y. (eds.) Security, Privacy, and Applied Cryptogra-
phy Engineering. pp. 157–176. Springer International Publishing, Cham (2018)

30. Poussier, R., Zhou, Y., Standaert, F.X.: A systematic approach to the side-channel
analysis of ECC implementations with worst-case horizontal attacks. In: Fischer,
W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems – CHES
2017. pp. 534–554. Springer International Publishing, Cham (2017)

31. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. IACR
Cryptology ePrint Archive 2018, 53 (2018)

32. Samwel, N., Batina, L., Bertoni, G., Daemen, J., Susella, R.: Breaking ed25519
in WolfSSL. In: Cryptographers Track at the RSA Conference. pp. 1–20. Springer
(2018)

33. Schindler, W., Huss, S.A. (eds.): Constructive Side-Channel Analysis and Secure
Design - Third International Workshop, COSADE 2012, Darmstadt, Germany,
May 3-4, 2012. Proceedings, LNCS, vol. 7275. Springer (2012)

34. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of cryptology
4(3), 161–174 (1991)

35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

36. Standaert, F.X., Malkin, T., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: EUROCRYPT. LNCS, vol. 5479, pp.
443–461. Springer (April 26-30 2009), Cologne, Germany

37. Tuveri, N., Hassan, S.u., Garcia, C.P., Brumley, B.B.: Side-channel analysis of sm2:
A late-stage featurization case study. In: Proceedings of the 34th Annual Computer
Security Applications Conference. pp. 147–160. ACSAC ’18, ACM, New York, NY,
USA (2018). https://doi.org/10.1145/3274694.3274725, http://doi.acm.org/10.
1145/3274694.3274725

38. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., New York, NY, USA (1995)

https://eprint.iacr.org/2019/168
https://eprint.iacr.org/2019/168
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.1145/3274694.3274725
http://doi.acm.org/10.1145/3274694.3274725
http://doi.acm.org/10.1145/3274694.3274725

20

Appendix

A Ed25519 Domain Parameters

Ed25519 domain parameters:
– Finite field Fq, where q = 2255 − 19 is the prime.
– Elliptic curve E(Fq), Curve25519
– Base point B
– Order of the point B, l
– Hash function H, SHA-512 [13]
– Key length u = 256 (also length of the prime)

For more details on other parameters of Curve25519 and the corresponding curve
equations we refer to Bernstein [2].

B EC Scalar Multiplication

Algorithm 2 Elliptic curve scalar multiplication with base point [4]

Input: R, a with a = a[0] + 256 ∗ a[1] + ... + 25631a[31]
Output: H(a, s,m)
1: for i = 0; i < 32; + + i do
2: e[2i + 0] = (a[i] >> 0&15);
3: e[2i + 1] = (a[i] >> 4)&15;
4: end for

5: carry = 0;
6: for i = 0; i < 63; + + i do
7: e[i]+ = carry;
8: carry = (e[i] + 8);
9: carry >>= 4;

10: e[i]− = carry << 4;
11: end for

12: e[63]+ = carry; ⊲ ∀i < 64, −8 ≤ e[i] ≤ 8
13: ge p3 0(h);
14: for i = 1; i < 64; i+ = 2 do

15: ge select(&t, i/2, e[i]); ⊲ load from precomputed table (e[i] · 16i) ·B in E.
16: ge madd(&r,R,&t); ge p1p1 to p3(R,&r);
17: end for

18: ge p3 dbl(&r,R); ge p1p1 to p2(&s,&r);
19: ge p2 dbl(&r,&s); ge p1p1 to p2(&s,&r);
20: ge p2 dbl(&r,&s); ge p1p1 to p2(&s,&r);
21: ge p2 dbl(&r,&s); ge p1p1 to p3(R,&r);
22: for i = 0; i < 64; i+ = 2 do

23: ge select(&t, i/2, e[i]); ⊲ load from precomputed table (e[i] · 16i) ·B in E.
24: ge madd(&r,R,&t); ge p1p1 to p3(R,&r);
25: end for

	One trace is all it takes: Machine Learning-based Side-channel Attack on EdDSA
	Introduction
	Related Work
	Contributions

	Background
	EdDSA
	Elliptic Curve Scalar Multiplication
	Profiling Attacks

	Attacker Model
	Dataset Generation
	Measurement Setup
	Dataset

	Experimental Setting and Results
	Hyper-parameters Choice
	Dimensionality Reduction
	Results

	Conclusions and Future Work
	Ed25519 Domain Parameters
	EC Scalar Multiplication

