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Abstract. This paper discusses some simple and natural restrictions of regulated pushdown au-
tomata. Most importantly, it studies one-turn regulated pushdown automata and proves that they
characterize the family of recursively enumerable languages. In fact, this characterization holds
even for atomic one-turn regulated pushdown automata of a reduced size. This result is established
in terms of acceptance by final state and empty pushdown, acceptance by final state, and acceptance
by empty pushdown.
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1. Introduction

Regulated grammars play an important role in the language theory. Recently, this theory has introduced
their machine-based counterpart—pushdown automata regulated by linear languages or, more simply,
regulated pushdown automata, which characterize the family of recursively enumerable languages (see
[5]). The present paper continues with the discussion of these automata. More specifically, it studies
one-turn regulated pushdown automata.

To recall the concept of one-turn pushdown automata (see [2]), consider two consecutive moves made
by a pushdown automaton,

�
. If during the first move

�
does not shorten its pushdown and during the
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second move it does, then
�

makes a turn during the second move. A pushdown automaton is one-turn
if it makes no more than one turn with either of its pushdowns during any computation starting from
an initial configuration. Recall that the one-turn pushdown automata characterize the family of linear
languages (see [2]) while their unrestricted versions characterize the family of context-free languages.
As a result, the one-turn pushdown automata are less powerfull than the pushdown automata.

The present paper demonstrates that one-turn regulated pushdown automata characterize the family
of recursively enumerable languages. Thus, as opposed to the ordinary one-turn pushdown automata,
the one-turn regulated pushdown automata are as powerfull as the regulated pushdown automata that can
make any number of turns. In fact, this equivalence holds even for some restricted versions of one-turn
regulated pushdown automata, including their atomic and reduced versions, which are sketched next.

I. During a move, an atomic one-turn regulated pushdown automaton changes a state and, in addition,
performs exactly one of the following actions:

1. it pushes a symbol onto the pushdown

2. it pops a symbol from the pushdown

3. it reads an input symbol

II. A reduced one-turn regulated pushdown automaton has a limited number of some components,
such as the number of states, pushdown symbols or transition rules.

The present paper proves that every recursively enumerable language is accepted by an atomic re-
duced one-turn regulated pushdown automaton in terms of (A) acceptance by final state and empty push-
down, (B) acceptance by final state, and (C) acceptance by empty pushdown.

2. Preliminaries

We assume that the reader is familiar with the language theory (see [4]).
For a set, � , �������	�
��� denotes its cardinality.
Let  be an alphabet. �� represents the free monoid generated by  under the operation of concate-

nation. The unit of  � is denoted by � . Set ����� ����� ��� ; algebraically, �� is thus the free semigroup
generated by  under the operation of concatenation.

For ������ ,  �� and !#"%$&�
�'� denote the length of � and the reversal of � , respectively. Set( �)"+*	,.-/�
�'�0� � -1 2-43657�78��)"+*	,.-09#*:�;� , <>=&*?*	,.-/�
�'�@� � -A �-4365B�;5C=	*?*	,D-�9�*4�E� , and FHGI8	JK�
�L�@�
� �M C�N�:PORQ#ST�E�;QU8)8	"%���)5B,.SN�E� .

For �V�4 � and ,W� �HX O�Y�Y�YZO+ �� [� , <>\2]^�
�;O_,`� denotes the , th symbol of � ; for instance, <�\�]a�b�dcUe>�fOhg)�
�ie .

A linear grammar is a quadruple, jk�l�bm:O`noORpqOsrW� , where m and n are alphabets such that mAtBnu�v
, rw�xm , and p is a finite set of productions of the form y{z|- , where y}�xm and -:�~n � �bmw� � ���Z�Dn � .

If y�z�-���p and =�O_$w�AnL� , then =�y�$^��=�-�$:� y�z�-�� or, simply, =�y�$���=�-�$ . In the standard
manner, extend � to �1� , where S��l� ; then, based on �A� , define ��� and � � . The language of j ,� �.j�� , is defined as

� �.j;�o� � ���anf�; �r��A�'�E� . A language,
�

, is linear if and only if
� � � �.j;� ,

where j is a linear grammar.
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A queue grammar (see [3]) is a sixtuple, � �|�.PO`n�O���O��qOsr ORp�� , where  and � are alphabets
satisfying wt���� v , n��� , ���	� , r1�^�. � nL�>�
� � ��� , and p��}�.��:�
� � ���_���x�. � �� �
is a finite relation such that for every �^�� , there exists an element �b��Ohc+O_-�ORe%���Ap . If =KO`$ �� ���
such that = ���H�)c , $@�{���)e , �N�  , �+O��M�  � , c+ORe'��� and �b��Ohc+O�� ORe%�o�:p , then =��|$ � �b��Ohc+O�� ORe%�D� in
j or, simply, =~� $ . In the standard manner, extend � to �i� , where S��i� . Based on �1� , define ���
and � � . The language of � ,

� �
�;� , is defined as
� �
�;�P� � � �~n �  +ra� � � *�� J�"��)"q*4����� .

A left-extended queue grammar (see [5]) is a sixtuple, �}� �. O`noO���O��qOsr/ORp�� , where  O`noO���O��qOsr ,
and p have the same meaning as in a queue grammar; in addition, assume that ���� ���� . If =�O_$ �
 �C� �M�Z � � so = �}�����H�)c , $~�}���������)e , �x�a , �+O�� O_� �a � , c+ORe���� , and �b��Ohc+O�� ORe%�E��p , then
=1��$:� �b��Ohc+O�� ORe%�D� in j or, simply, =1��$ . In the standard manner, extend � to � � , where Su� � .
Based on � � , define � � and �A� as usual. The language of ��O � �
�;� , is defined as

� �
���M� � $u�
n �  ��@r�� � ����$2*��R9Z��5+9+]x" �V�4 � Q#ST�E*:����� .

3. Definitions

This section defines the notion of a one-turn atomic pushdown automaton regulated by a linear language.
Informally, an atomic pushdown automaton changes a state and, in addition, makes only one of these

three actions:

(a) pushing a symbol onto the pushdown;

(b) popping a symbol from the pushdown;

(c) reading a symbol on the input tape.

Formally, an atomic pushdown automaton is a 7-tuple,
� ���
� , � , � ,  , 5 , ! , ��� , where � is a

finite set of states, � is an input alphabet, � is a pushdown alphabet ( � , � , and � are pairwise disjoint),
5'��� is the start state, ! is the pushdown-bottom marker, !����A�"� �#� , �$�%� is a set of final states,
 is a finite set of rules of the form yW8���z �'& , where 8�O�&~�(� , y;O_���(� � � ��� , �4�(� � � ��� , such
that  y �H�0 )� X . That is,  is a finite set of rules such that each of them has one of these forms

(1) y 8 z)& (popping rule)

(2) 8~z �*& (pushing rule)

(3) 8��0z)& (reading rule)

Let + be an alphabet of rule labels such that ,%�������
+E�o�-,%�������. ;� , and / be a bijection from  to
+ . For simplicity, to express that / maps a rule, yW8��~z �'&M�0 , to 1 , where 1��2+ , this paper writes
1�Y yW8��4z �*&x�3 ; in other words, 1�Y y 8	�4z �'& means /L�by 8�� z �'&)�L�41 . A configuration of

�
,5 , is any word from � !H�6�����7� � ; 5 is an initial configuration if 5 �8!#5%� , where ���	� � . For every

-:�9� � , \~�9� � , and 1�Y yW8�� z �*&��: ,
�

makes a move from configuration !+-	y 8���\ to configuration
!+-��*&+\ according to 1 , written as !+-�yW8��H\u� !+-��'&Z\a� 1H� or, more simply, !+-	y 8	�H\�� !+-��'&Z\ . Let5 be any configuration of

�
.

�
makes zero moves from 5 to 5 according to � , symbolically written

as 5 �(; 5 � ��� . Let there exist a sequence of configurations 5 ; O 5�< O�Y�Y�YCO 5 � for some S�� X such that5>=@?A< � 5>= � 1 = � , where 1 = �%+ , for , � X O�Y�Y�YCO_S , then
�

makes S moves from 5 ; to 5 � according to
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1 < Y�Y�Y 1 � , symbolically written as 5 ; � � 5 � � 1 < Y�Y�Y�1 � � or, more simply, 5 ; � � 5 � . Define ��� and
�1� in the standard manner.

Let -�O_- � O_- � � �9� � , \�O_\ � O_\ ��� �0�q� , &2O�& � O�& ��� �0� , and !+- &+\~� !+- � & � \ � � !+- � � & � � \ � � . If  -  �  - �  and
 - �  ��  - ���  , then !+- � & � \ � � !+- � � & � � \ � � is a turn. If

�
makes no more than one turn during any sequence

of moves starting from an initial configuration, then
�

is said to be one-turn.
Let � be a control language over + ; that is, � �%+ � . With � ,

�
defines the following three types of

accepted languages:

� � � O��qO X � —the language accepted by final state

� � � O��qO��)� —the language accepted by empty pushdown

� � � O��qOhg)� —the language accepted by final state and empty pushdown

defined as follows. Let 5 � � !H�6�d��� �q� . If 5 � � !H�6� ��� , 5 � � !H��� , 5 � � !H� � , then 5 is a 1-final
configuration, 2-final configuration, 3-final configuration, respectively. For ,P� X O��2Ohg , define

� � � O��7O_, �
as
� � � O��7O_, � � � �{ s�V�:�q�ZO?Q#ST�*!#5C���1� 5 � 		�H3 S � �R9Z�o��S�, ��
� Q������ ��
����� Q��R3�� � O 5 OTQ#ST��	����B� .
For any family of languages, � , and ,7� �HX O��2Ohg�� , set �L�
�xO_, �7� � �  � � � � � O��qO_, � , where

�
is

a pushdown automaton and ���a�^� . � � and !#"Hm denote the families of recursively enumerable and
linear languages, respectively.

4. Results

This section proves that the one-turn atomic pushdown automata regulated by linear languages charac-
terize � � . In fact, these automata need no more than one state and two pushdown symbols to achieve
this characterization.

Theorem 4.1. For every left-extended queue grammar, $ , there exists a left-extended queue grammar
�k� �.PO&%dO���O �qO%5)OUp�� satisfying

� �'$�� � � �
�;� , ( is a distinguished member of �
� � ��� , }�*);�,+E�-%
such that ) , + , % are pairwise disjoint, and � derives every �@� � �
��� in this way

�@r � � - �@c < c/. Y�Y�Ysc � (
� -	c < �0c/./Y�Y�Ysc � \ < 8.
� -	c < c/.��0c/0 Y�Y�Ysc � \ < \�. 80
...

� -	c < c/./Y�Y�YUc � ?A< �@c � \ < \�. Y�Y�Yh\ � ?A< 8 �
� -	c < c . Y�Y�YUc � ?A< c � ��\ < \ . Y�Y�Yh\ � 8 ��� <

where S��xm , -:�1)'� , c = �2+ for , � X O�Y�Y�YZO_S , \ = �3%f� for , � X O�Y�Y�YCO_S , ����\ < \�. Y�Y�Yh\ � , 8 = ��� ��� ( �
for , � X O�Y�Y�YCO_S �iX , 8 � ��� , and in this derivation - �0c < c/. Y�Y�Ysc � ( is the only word containing ( .

Proof:
see [5]. 45
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Theorem 4.2. Let � be a left-extended queue grammar satisfying the properties of Theorem 4.1. Then,
there is a linear grammar, j , and a one-turn atomic pushdown automaton

� �l� ��� �)O %dO � �dO X �)O��xO � O�!dO ��� �Z�
such that ,%���#�	��� �W��,%�������'%������ and

� �
�;�P� � � � O � �.j;�sOhg)� .

Proof:
Let � � �.PO %dO���O��qOh5HO� ;� be a queue grammar satisfying the properties of Theorem 4.1. For some
S � X , introduce a homomorphism * from  to � , where ��� � �HX �)� � �2� �HX �+� �HX � � t � �dO X � . � � . Extend
* so it is defined from  � to � � . Define the substitution J from  � to � � as JK�b�d�M� � *P�
�H�
	��^�
�b��Ob8KO_-�O�&)�o�� for some 8KO�&@�0� , - ����+� . Define the coding � from � �dO X � � to � �2Ohg��+� as ���b�H�q� � ,
��� X � ��g . Construct the linear grammar j}�l�bmxO`n�ORpqOsr � as follows. Set

n{� � �dO X O��2Ohg��o� %

m�� � r �7� ���&	 &��9�l�B� ���&�	 &��9�l�

p}� � r^z �*�	�*4�����q� � � (2z � ( �

Extend p by performing 1 through 3 given next.

1. for every �E�l�b��Ob8�O_-�O�&)�7�: , 8KO�&��x� , -x��n � : p}�{p�� ���&;z �8���� *P�
�H�_� -T�

2. for every �b��Ob8�O_-�O�&)�B�: : pV�up�� ���&Ez \ �8	c�	)\M�^!#"%$	� J��
-?�_�sOhc'�:JK�b�d�h�

3. for every �b��Ob8�O_-�O�&)�B�: , �C8~��r , 8�O�&���� , -x�4�� : p}�{p�� ���&;z \�	)\N��!�"�$&� J��
-&�_�h�

Define the pushdown automaton
� � � ��� �)O %dO � �dO X �)O��xO � O�!2O ��� �#� , where � contains the next transition

rules:

0. � z � �

1. � z X��

2. � � z �

3. X�� z �

a. � �@z � for every � ��%

We next demonstrate that
� � � O � �.j�Ohg)�sOhg)�B� � �
�;� .

To demonstrate
� � � O � �.j�Ohg)�sOhg)�B� � �
��� , observe that

�
accepts every word � as
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!+� < Y�Y�YR��� ?A< ��� �1� ! �c��aY�Y�Y � c < �� � Y�Y�Y
�� < � � < Y�Y�Yh��� ?A< ���

� ! �c��aY�Y�Y � c < �� � Y�Y�Y
�� < � � < Y�Y�Yh��� ?A< ���

� � ! �c��aY�Y�Y � c < � � < Y�Y�YR��� ?A< ���
� ! �c � Y�Y�Y � c < � � < Y�Y�YR� � ?A< � �
�

� ����� ! �c � Y�Y�Y � c < � � . Y�Y�YR� � ?A< � �
� ! �c��aY�Y�Y � c/. � ��. Y�Y�YR��� ?A< ���
�

� �
	�� ! �c��aY�Y�Y � c/. � ��0 Y�Y�YR��� ?A< ���
� ! �c��aY�Y�Y � c/0 � ��0 Y�Y�YR��� ?A< ���
...

� ! �c�� � ���
�

� ���� ! �c�� �
� ! �

according to a word of the form ����� � � � � � �.j�� where

� � � "%$	� *P�
���'�_� � "�$?� *P�
��� ?A< �_��Y�Y�Y � "%$	� *P�
� < �_� ,
� � � "%$	� *P��� � �_� � "%$&� *P��� � ?A< �_��Y�Y�Y � "�$&� *P��� < �_� ,� � � *P��� ; �`*P��� < ��Y�Y�YU*P��� � � ,� � � �	� *P�
� < �_� � < ��� *P�
� .C�_� ��. Y�Y�Ys��� *P�
���'�_� ��� ,

for some ]�O_S�� X so that

for ,P� X O�Y�Y�Y�O_] ,

� = � � c = O�& = O_� = O�& = � < �B�� , c = �4�� % , & = O�& = � < ��� ,
�c = �{*P��� = �

for ��� X O�Y�Y�Y/O_S�� X ,
��� � �b��� ?A< Ob8�� ?A< O_-��)Ob8��C� , ��� ?A< � �� % , 8�� ?A< Ob8��w�4���7� , -��w���.�� %��`� ,�������*P�
���C� , & � � < ��� ,

�� ; 8 ; �{5
Thus, in Q,

��� ; 8 ; � � ; ��\ ; - < 8 < � �b� ; Ob8 ; O_- < Ob8 < �D�
� � ; � < ��\ < - .D8 . � �b� < Ob8 < O_-.#Ob8.%�D�
� � ; � < � . ��\ . - 0 8 0 � �b� . Ob8 . O_- 0 Ob8 0 �D�
...

� � ; � < � . Y�Y�Yh� � ?A< ��\ � ?A< - � 8 � � �b� �
?A< Ob8 � ?A< O_- � Ob8 � �D�

� � ; � < � . Y�Y�Yh� � ��\ � - �#� < & < � �b� � Ob8 � O_- ���
< O�& < �D�

� � ; Y�Y�Yh� � c < �0c/./Y�Y�Ysc��o� < & . � � c < O�& < O_� < O�& .C�D�
� � ; Y�Y�Yh� � c < c/. �@c 0/Y�Y�Y>c!�o� < ��. & 0 � � c/.#O�& .#O_��.ZO�& 0C�D�
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...

� � ; Y�Y�YU� � c < Y�Y�Y>c�� ?A< �0c��o� < ��. Y�Y�YR��� ?A< & � � � c�� ?A< O�& � ?A< O_��� ?A< O�& �'�D�
� � ; Y�Y�YU� � c < Y�Y�Y>c��*��� < ��. Y�Y�YR���'&�� � < � � c��;O�& �EO_����O�& � � < �D�

Therefore, � < ��. Y�Y�Yh���k� � �
�;� . Consequently,
� � � O � �.j;�sOhg)� � � �
��� .

A proof that
� �
�;� � � � � O � �.j;�sOhg)� is left to the reader.

As
� �
�;� � � � � O � �.j;�sOhg)� and

� � � O � �.j��sOhg)� � � �
��� , � �
���W� � � � O � �.j;�sOhg)� . Observe that
�

is atomic and one-turn. Furthermore, ���H��������� ��,C�H���	�'%������ . Thus, Theorem 4.2 holds. 45

Theorem 4.3. For every
� �	 � , there is a linear language � , and a one-turn atomic pushdown au-

tomaton,
� � �
��O�� O �LO� �Oh5HO�!�O���� such that ���������
��� � X , ��������� �o� � � , ���H���	�. ;� � ,%�������
� � � � ,

and
� � � O��7Ohg)�W� � .

Proof:
By Theorem 2.1 in [3], for every

� �  � , there is a queue grammar � such that
� � � �
�;� . Clearly,

there is a left-extended queue grammar, � � , such that
� �
���q� � �
� � � . Thus, this theorem follows from

Theorems 4.1 and 4.2. 45

Theorem 4.4. For every
� �	 � , there is a linear language � , and a one-turn atomic pushdown au-

tomaton,
� � �
��O�� O �LO� �Oh5HO�!�O���� such that ���������
��� � X , ��������� �o� � � , ���H���	�. ;� � ,%�������
� � � � ,

and
� � � O��7O X �W� � .

Proof:
Prove this theorem by analogy with the demonstration of Theorem 4.3. 45

Theorem 4.5. For every
� �	 � , there is a linear language � , and a one-turn atomic pushdown au-

tomaton,
� � �
��O�� O �LO� �Oh5HO�!�O���� such that ���������
��� � X , ��������� �o� � � , ���H���	�. ;� � ,%�������
� � � � ,

and
� � � O��7O��)�W� � .

Proof:
Prove this theorem by analogy with the demonstration of Theorem 4.3. 45

Theorem 4.6. For , � �HX O��2Ohg�� , � � � � � ! "HmaO_, � .
Proof:
This theorem follows from the previous three theorems. 45
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