One-Turn Regulated Pushdown Automata and Their Reduction

Alexander Meduna
Brno University of Technology
Department of Computer Science and Engineering
Božetěchova 2, Brno 612 66, Czech Republic
meduna@dcse.fee.vutbr.cz
Dušan Kolár
Brno University of Technology
Department of Computer Science and Engineering
Božetěchova 2, Brno 612 66, Czech Republic
kolar@dcse.fee.vutbr.cz

Abstract

This paper discusses some simple and natural restrictions of regulated pushdown automata. Most importantly, it studies one-turn regulated pushdown automata and proves that they characterize the family of recursively enumerable languages. In fact, this characterization holds even for atomic one-turn regulated pushdown automata of a reduced size. This result is established in terms of acceptance by final state and empty pushdown, acceptance by final state, and acceptance by empty pushdown.

Keywords: one-turn regulated pushdown automata, reduced and atomic variants, recursively enumerable languages

1. Introduction

Regulated grammars play an important role in the language theory. Recently, this theory has introduced their machine-based counterpart—pushdown automata regulated by linear languages or, more simply, regulated pushdown automata, which characterize the family of recursively enumerable languages (see [5]). The present paper continues with the discussion of these automata. More specifi cally, it studies one-turn regulated pushdown automata.

To recall the concept of one-turn pushdown automata (see [2]), consider two consecutive moves made by a pushdown automaton, M. If during the fi rst move M does not shorten its pushdown and during the
second move it does, then M makes a turn during the second move. A pushdown automaton is one-turn if it makes no more than one turn with either of its pushdowns during any computation starting from an initial confi guration. Recall that the one-turn pushdown automata characterize the family of linear languages (see [2]) while their unrestricted versions characterize the family of context-free languages. As a result, the one-turn pushdown automata are less powerfull than the pushdown automata.

The present paper demonstrates that one-turn regulated pushdown automata characterize the family of recursively enumerable languages. Thus, as opposed to the ordinary one-turn pushdown automata, the one-turn regulated pushdown automata are as powerfull as the regulated pushdown automata that can make any number of turns. In fact, this equivalence holds even for some restricted versions of one-turn regulated pushdown automata, including their atomic and reduced versions, which are sketched next.
I. During a move, an atomic one-turn regulated pushdown automaton changes a state and, in addition, performs exactly one of the following actions:

1. it pushes a symbol onto the pushdown
2. it pops a symbol from the pushdown
3. it reads an input symbol
II. A reduced one-turn regulated pushdown automaton has a limited number of some components, such as the number of states, pushdown symbols or transition rules.

The present paper proves that every recursively enumerable language is accepted by an atomic reduced one-turn regulated pushdown automaton in terms of (A) acceptance by fi nal state and empty pushdown, (B) acceptance by fi nal state, and (C) acceptance by empty pushdown.

2. Preliminaries

We assume that the reader is familiar with the language theory (see [4]).
For a set, $X, \operatorname{card}(X)$ denotes its cardinality.
Let V be an alphabet. V^{*} represents the free monoid generated by V under the operation of concatenation. The unit of V^{*} is denoted by ε. Set $V^{+}=V^{*}-\{\varepsilon\}$; algebraically, V^{+}is thus the free semigroup generated by V under the operation of concatenation.

For $w \in V^{*},|w|$ and $\operatorname{rev}(w)$ denote the length of w and the reversal of w, respectively. Set $\operatorname{prefix}(w)=\{x \mid x$ is a prefix of $w\}$, suffix $(w)=\{x \mid x$ is a suffix of $w\}$, and $\operatorname{alph}(w)=$ $\{a \mid a \in V$, and a appears in $w\}$.

For $w \in V^{+}$and $i \in\{1, \ldots,|w|\}, \operatorname{sym}(w, i)$ denotes the i th symbol of w; for instance, $\operatorname{sym}(a b c d, 3)$ $=c$.

A linear grammar is a quadruple, $G=(N, T, P, S)$, where N and T are alphabets such that $N \cap T=$ $\emptyset, S \in N$, and P is a fi nite set of productions of the form $A \rightarrow x$, where $A \in N$ and $x \in T^{*}(N \cup\{\varepsilon\}) T^{*}$. If $A \rightarrow x \in P$ and $u, v \in T^{*}$, then $u A v \Rightarrow u x v[A \rightarrow x]$ or, simply, $u A v \Rightarrow u x v$. In the standard manner, extend \Rightarrow to \Rightarrow^{n}, where $n \geq 0$; then, based on \Rightarrow^{n}, defi ne \Rightarrow^{+}and \Rightarrow^{*}. The language of G, $L(G)$, is defi ned as $L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}$. A language, L, is linear if and only if $L=L(G)$, where G is a linear grammar.

A queue grammar (see [3]) is a sixtuple, $Q=(V, T, W, F, S, P)$, where V and W are alphabets satisfying $V \cap W=\emptyset, T \subseteq V, F \subseteq W, S \in(V-T)(W-F)$, and $P \subseteq(V \times(W-F)) \times\left(V^{*} \times W\right)$ is a fin nite relation such that for every $a \in V$, there exists an element $(a, b, x, c) \in P$. If $u, v \in V^{*} W$ such that $u=a r b, v=r z c, a \in V, r, z \in V^{*}, b, c \in W$ and $(a, b, z, c) \in P$, then $u \Rightarrow v[(a, b, z, c)]$ in G or, simply, $u \Rightarrow v$. In the standard manner, extend \Rightarrow to \Rightarrow^{n}, where $n \geq 0$. Based on \Rightarrow^{n}, defi ne \Rightarrow^{+} and \Rightarrow^{*}. The language of $Q, L(Q)$, is defi ned as $L(Q)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w f\right.$ where $\left.f \in F\right\}$.

A left-extended queue grammar (see [5]) is a sixtuple, $Q=(V, T, W, F, S, P)$, where V, T, W, F, S, and P have the same meaning as in a queue grammar; in addition, assume that $\# \notin V \cup W$. If $u, v \in$ $V^{*}\{\#\} V^{*} W$ so $u=w \# a r b, v=w a \# r z c, a \in V, r, z, w \in V^{*}, b, c \in W$, and $(a, b, z, c) \in P$, then $u \Rightarrow v[(a, b, z, c)]$ in G or, simply, $u \Rightarrow v$. In the standard manner, extend \Rightarrow to \Rightarrow^{n}, where $n \geq 0$. Based on \Rightarrow^{n}, defi ne \Rightarrow^{+}and \Rightarrow^{*} as usual. The language of $Q, L(Q)$, is defi ned as $L(Q)=\{v \in$ $T^{*} \mid \# S \Rightarrow^{*} w \# v f$ for some $w \in V^{*}$ and $\left.f \in F\right\}$.

3. Definitions

This section defi nes the notion of a one-turn atomic pushdown automaton regulated by a linear language.
Informally, an atomic pushdown automaton changes a state and, in addition, makes only one of these three actions:
(a) pushing a symbol onto the pushdown;
(b) popping a symbol from the pushdown;
(c) reading a symbol on the input tape.

Formally, an atomic pushdown automaton is a 7-tuple, $M=(Q, \Sigma, \Omega, R, s, \$, F)$, where Q is a fi nite set of states, Σ is an input alphabet, Ω is a pushdown alphabet (Q, Σ, and Ω are pairwise disjoint), $s \in Q$ is the start state, $\$$ is the pushdown-bottom marker, $\$ \notin Q \cup \Sigma \cup \Omega, F \subseteq Q$ is a set of fin nal states, R is a fi nite set of rules of the form $A p a \rightarrow w q$, where $p, q \in Q, A, w \in \Omega \cup\{\varepsilon\}, a \in \Sigma \cup\{\varepsilon\}$, such that $|A a w|=1$. That is, R is a fin nite set of rules such that each of them has one of these forms
(1) $A p \rightarrow q$ (popping rule)
(2) $p \rightarrow w q$ (pushing rule)
(3) $p a \rightarrow q$ (reading rule)

Let Ψ be an alphabet of rule labels such that $\operatorname{card}(\Psi)=\operatorname{card}(R)$, and ψ be a bijection from R to Ψ. For simplicity, to express that ψ maps a rule, $A p a \rightarrow w q \in R$, to ρ, where $\rho \in \Psi$, this paper writes $\rho . A p a \rightarrow w q \in R$; in other words, $\rho . A p a \rightarrow w q$ means $\psi(A p a \rightarrow w q)=\rho$. A configuration of M, χ, is any word from $\{\$\} \Omega^{*} Q \Sigma^{*} ; \chi$ is an initial confi guration if $\chi=\$ s w$, where $w \in \Sigma^{*}$. For every $x \in \Omega^{*}, y \in \Sigma^{*}$, and $\rho . A p a \rightarrow w q \in R, M$ makes a move from confi guration $\$ x$ Apay to confi guration $\$ x w q y$ according to ρ, written as $\$ x$ Apay $\Rightarrow \$ x w q y[\rho]$ or, more simply, $\$ x$ Apay $\Rightarrow \$ x w q y$. Let χ be any confi guration of $M . M$ makes zero moves from χ to χ according to ε, symbolically written as $\chi \Rightarrow^{0} \chi[\varepsilon]$. Let there exist a sequence of confi gurations $\chi_{0}, \chi_{1}, \ldots, \chi_{n}$ for some $n \geq 1$ such that $\chi_{i-1} \Rightarrow \chi_{i}\left[\rho_{i}\right]$, where $\rho_{i} \in \Psi$, for $i=1, \ldots, n$, then M makes n moves from χ_{0} to χ_{n} according to
$\rho_{1} \ldots \rho_{n}$, symbolically written as $\chi_{0} \Rightarrow^{n} \chi_{n}\left[\rho_{1} \ldots \rho_{n}\right]$ or, more simply, $\chi_{0} \Rightarrow^{n} \chi_{n}$. Defi ne \Rightarrow^{*} and \Rightarrow^{+}in the standard manner.

Let $x, x^{\prime}, x^{\prime \prime} \in \Omega^{*}, y, y^{\prime}, y^{\prime \prime} \in \Sigma^{*}, q, q^{\prime}, q^{\prime \prime} \in Q$, and $\$ x q y \Rightarrow \$ x^{\prime} q^{\prime} y^{\prime} \Rightarrow \$ x^{\prime \prime} q^{\prime \prime} y^{\prime \prime}$. If $|x| \leq\left|x^{\prime}\right|$ and $\left|x^{\prime}\right|>\left|x^{\prime \prime}\right|$, then $\$ x^{\prime} q^{\prime} y^{\prime} \Rightarrow \$ x^{\prime \prime} q^{\prime \prime} y^{\prime \prime}$ is a turn. If M makes no more than one turn during any sequence of moves starting from an initial confi guration, then M is said to be one-turn.

Let Ξ be a control language over Ψ; that is, $\Xi \subseteq \Psi^{*}$. With Ξ, M defi nes the following three types of accepted languages:

$$
\begin{aligned}
& L(M, \Xi, 1) \text {-the language accepted by final state } \\
& L(M, \Xi, 2) \text {-the language accepted by empty pushdown } \\
& L(M, \Xi, 3) \text {-the language accepted by final state and empty pushdown }
\end{aligned}
$$

defi ned as follows. Let $\chi \in\{\$\} \Omega^{*} Q \Sigma^{*}$. If $\chi \in\{\$\} \Omega^{*} F, \chi \in\{\$\} Q, \chi \in\{\$\} F$, then χ is a 1-final configuration, 2-final configuration, 3-final configuration, respectively. For $i=1,2,3$, defi ne $L(M, \Xi, i)$ as $L(M, \Xi, i)=\left\{w \mid w \in \Sigma^{*}\right.$, and $\$ s w \Rightarrow^{*} \chi[\sigma]$ in M for an i-final configuration, χ, and $\left.\sigma \in \Xi\right\}$.

For any family of languages, X, and $i \in\{1,2,3\}$, set $\mathcal{L}(X, i)=\{L \mid L=L(M, \Xi, i)$, where M is a pushdown automaton and $\Xi \in X\} . R E$ and $L I N$ denote the families of recursively enumerable and linear languages, respectively.

4. Results

This section proves that the one-turn atomic pushdown automata regulated by linear languages characterize $R E$. In fact, these automata need no more than one state and two pushdown symbols to achieve this characterization.

Theorem 4.1. For every left-extended queue grammar, K, there exists a left-extended queue grammar $Q=(V, \tau, W, F, s, P)$ satisfying $L(K)=L(Q)$, ! is a distinguished member of $(W-F), V=U \cup Z \cup \tau$ such that U, Z, τ are pairwise disjoint, and Q derives every $z \in L(Q)$ in this way

$$
\begin{array}{rll}
\# S & \Rightarrow^{+} & x \# b_{1} b_{2} \ldots b_{n}! \\
& \Rightarrow & x b_{1} \# b_{2} \ldots b_{n} y_{1} p_{2} \\
& \Rightarrow & x b_{1} b_{2} \# b_{3} \ldots b_{n} y_{1} y_{2} p_{3} \\
& \vdots & \\
& \Rightarrow & x b_{1} b_{2} \ldots b_{n-1} \# b_{n} y_{1} y_{2} \ldots y_{n-1} p_{n} \\
& \Rightarrow & x b_{1} b_{2} \ldots b_{n-1} b_{n} \# y_{1} y_{2} \ldots y_{n} p_{n+1}
\end{array}
$$

where $n \in N, x \in U^{*}, b_{i} \in Z$ for $i=1, \ldots, n, y_{i} \in \tau^{*}$ for $i=1, \ldots, n, z=y_{1} y_{2} \ldots y_{n}, p_{i} \in W-\{!\}$ for $i=1, \ldots, n-1, p_{n} \in F$, and in this derivation $x \# b_{1} b_{2} \ldots b_{n}$! is the only word containing !.

Proof:

see [5].

Theorem 4.2. Let Q be a left-extended queue grammar satisfying the properties of Theorem 4.1. Then, there is a linear grammar, G, and a one-turn atomic pushdown automaton $M=(\{L\}, \tau,\{0,1\}, H,\lfloor, \$,\{L\})$ such that $\operatorname{card}(H)=\operatorname{card}(\tau)+4$ and $L(Q)=L(M, L(G), 3)$.

Proof:

Let $Q=(V, \tau, W, F, s, R)$ be a queue grammar satisfying the properties of Theorem 4.1. For some $n \geq 1$, introduce a homomorphism f from R to X, where $X=\left(\{1\}^{*}\{0\}\{1\}^{*}\{1\}^{n} \cap\{0,1\}^{2 n}\right)$. Extend f so it is defi ned from R^{*} to X^{*}. Defi ne the substitution h from V^{*} to X^{*} as $h(a)=\{f(r): r=$ $(a, p, x, q) \in R$ for some $\left.p, q \in W, x \in V^{*}\right\}$. Defi ne the coding d from $\{0,1\}^{*}$ to $\{2,3\}^{*}$ as $d(0)=2$, $d(1)=3$. Construct the linear grammar $G=(N, T, P, S)$ as follows. Set

$$
\begin{aligned}
& T=\{0,1,2,3\} \cup \tau \\
& N=\{S\} \cup\{\tilde{q}: q \in W\} \cup\{\hat{q}: q \in W\} \\
& P=\{S \rightarrow \tilde{f}: f \in F\} \cup\{\tilde{!} \rightarrow \hat{!}\}
\end{aligned}
$$

Extend P by performing 1 through 3 given next.

1. for every $r=(a, p, x, q) \in R, p, q \in w, x \in T^{*}: P=P \cup\{\tilde{q} \rightarrow \tilde{p} d(f(r)) x\}$
2. for every $(a, p, x, q) \in R: P=P \cup\{\hat{q} \rightarrow y \hat{p} b: y \in \operatorname{rev}(h(x)), b \in h(a)\}$
3. for every $(a, p, x, q) \in R, a p=S, p, q \in W, x \in V^{*}: P=P \cup\{\hat{q} \rightarrow y: y \in \operatorname{rev}(h(x))\}$

Defi ne the pushdown automaton $M=(\{\lfloor \}, \tau,\{0,1\}, H,\lfloor, \$,\{L\})$, where H contains the next transition rules:
0. $\lfloor\rightarrow 0\rfloor$

1. $\lfloor\rightarrow 1\lfloor$
2. $0\lfloor\rightarrow L$
3. $1 \downharpoonright \rightarrow L$
a. $\lfloor a \rightarrow\lfloor$ for every $a \in \tau$

We next demonstrate that $L(M, L(G, 3), 3)=L(Q)$.
To demonstrate $L(M, L(G, 3), 3)=L(Q)$, observe that M accepts every word w as

$$
\begin{array}{rll}
\$ w_{1} \ldots w_{m-1} w_{m} & \Rightarrow^{+} & \$ \bar{b}_{m} \ldots \bar{b}_{1} \bar{a}_{n} \ldots \bar{a}_{1}\left\lfloor w_{1} \ldots w_{m-1} w_{m}\right. \\
& \Rightarrow & \$ \bar{b}_{m} \ldots \bar{b}_{1} \bar{a}_{n} \ldots \bar{a}_{1}\left\lfloor w_{1} \ldots w_{m-1} w_{m}\right. \\
& \Rightarrow^{n} & \$ \bar{b}_{m} \ldots \bar{b}_{1}\left\lfloor w_{1} \ldots w_{m-1} w_{m}\right. \\
& \Rightarrow & \$ \bar{b}_{m} \ldots \bar{b}_{1}\left\lfloor w_{1} \ldots w_{m-1} w_{m}\right. \\
& \Rightarrow w_{1} \mid & \$ \bar{b}_{m} \ldots \bar{b}_{1}\left\lfloor w_{2} \ldots w_{m-1} w_{m}\right. \\
& \Rightarrow & \$ \bar{b}_{m} \ldots \bar{b}_{2}\left\lfloor w_{2} \ldots w_{m-1} w_{m}\right. \\
& \Rightarrow w_{2} \mid & \$ \bar{b}_{m} \ldots \bar{b}_{2}\left\lfloor w_{3} \ldots w_{m-1} w_{m}\right. \\
& \Rightarrow & \$ \bar{b}_{m} \ldots \bar{b}_{3}\left\lfloor w_{3} \ldots w_{m-1} w_{m}\right. \\
& \vdots & \\
& \Rightarrow & \$ \bar{b}_{m}\left\lfloor w_{m}\right. \\
& \Rightarrow w_{m} \mid & \$ \bar{b}_{m}\lfloor \\
& \Rightarrow & \$\lfloor
\end{array}
$$

according to a word of the form $\beta \alpha \alpha^{\prime} \beta^{\prime} \in L(G)$ where

$$
\begin{aligned}
\beta & =\operatorname{rev}\left(f\left(r_{m}\right)\right) \operatorname{rev}\left(f\left(r_{m-1}\right)\right) \ldots \operatorname{rev}\left(f\left(r_{1}\right)\right), \\
\alpha & =\operatorname{rev}\left(f\left(t_{n}\right)\right) \operatorname{rev}\left(f\left(t_{n-1}\right)\right) \ldots \operatorname{rev}\left(f\left(t_{1}\right)\right), \\
\alpha^{\prime} & =f\left(t_{0}\right) f\left(t_{1}\right) \ldots f\left(t_{n}\right) \\
\beta^{\prime} & =d\left(f\left(r_{1}\right)\right) w_{1} d\left(f\left(r_{2}\right)\right) w_{2} \ldots d\left(f\left(r_{m}\right)\right) w_{m},
\end{aligned}
$$

for some $m, n \geq 1$ so that

$$
\begin{aligned}
& \text { for } i=1, \ldots, m \\
& t_{i}=\left(b_{i}, q_{i}, w_{i}, q_{i+1}\right) \in R, b_{i} \in V \backslash \tau, q_{i}, q_{i+1} \in Q, \bar{b}_{i}=f\left(t_{i}\right) \\
& \text { for } j=1, \ldots, n+1, \\
& r_{j}=\quad\left(a_{j-1}, p_{j-1}, x_{j}, p_{j}\right), a_{j-1} \in V \backslash \tau, p_{j-1}, p_{j} \in Q \backslash F, x_{j} \in(V \backslash \tau)^{*}, \\
& \quad \bar{a}_{j}=f\left(r_{j}\right), q_{m+1} \in F, \bar{a}_{0} p_{0}=s
\end{aligned}
$$

Thus, in Q ,

$$
\begin{array}{rlr}
\# a_{0} p_{0} & \Rightarrow a_{0} \# y_{0} x_{1} p_{1} & \\
& \Rightarrow a_{0} a_{1} \# y_{1} x_{2} p_{2} & {\left[\left(a_{0}, p_{0}, x_{1}, p_{1}\right)\right]} \\
& \Rightarrow a_{0} a_{1} a_{2} \# y_{2} x_{3} p_{3} & {\left[\left(a_{1}, p_{1}, x_{2}, p_{2}\right)\right]} \\
& \vdots & {\left[\left(a_{2}, p_{2}, x_{3}, p_{3}\right)\right]} \\
& \Rightarrow a_{0} a_{1} a_{2} \ldots a_{n-1} \# y_{n-1} x_{n} p_{n} & \\
& \Rightarrow a_{0} a_{1} a_{2} \ldots a_{n} \# y_{n} x_{n+1} q_{1} & {\left[\left(a_{n-1}, p_{n-1}, x_{n}, p_{n}\right)\right]} \\
& \Rightarrow a_{0} \ldots a_{n} b_{1} \# b_{2} \ldots b_{m} w_{1} q_{2} & {\left[\left(b_{1}, p_{1}, w_{n}, q_{2}\right)\right]} \\
& \Rightarrow a_{0} \ldots a_{n} b_{1} b_{2} \# b_{3} \ldots b_{m} w_{1} w_{2} q_{3} & {\left[\left(b_{2}, q_{2}, w_{2}, q_{3}\right)\right]}
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow a_{0} \ldots a_{n} b_{1} \ldots b_{m-1} \# b_{m} w_{1} w_{2} \ldots w_{m-1} q_{m} & {\left[\left(b_{m-1}, q_{m-1}, w_{m-1}, q_{m}\right)\right]} \\
\Rightarrow a_{0} \ldots a_{n} b_{1} \ldots b_{m} \# w_{1} w_{2} \ldots w_{m} q_{m+1} & {\left[\left(b_{m}, q_{m}, w_{m}, q_{m+1}\right)\right]}
\end{array}
$$

Therefore, $w_{1} w_{2} \ldots w_{m} \in L(Q)$. Consequently, $L(M, L(G), 3) \subseteq L(Q)$.
A proof that $L(Q) \subseteq L(M, L(G), 3)$ is left to the reader.
As $L(Q) \subseteq L(M, L(G), 3)$ and $L(M, L(G), 3) \subseteq L(Q), L(Q)=L(M, L(G), 3)$. Observe that M is atomic and one-turn. Furthermore, $\operatorname{card}(H)=\operatorname{card}(\tau)+4$. Thus, Theorem 4.2 holds.

Theorem 4.3. For every $L \in R E$, there is a linear language Ξ, and a one-turn atomic pushdown automaton, $M=(Q, \Sigma, \Omega, R, s, \$, F)$ such that $\operatorname{card}(Q) \leq 1, \operatorname{card}(\Omega) \leq 2, \operatorname{card}(R) \leq \operatorname{card}(\Sigma)+4$, and $L(M, \Xi, 3)=L$.

Proof:

By Theorem 2.1 in [3], for every $L \in R E$, there is a queue grammar Q such that $L=L(Q)$. Clearly, there is a left-extended queue grammar, Q^{\prime}, such that $L(Q)=L\left(Q^{\prime}\right)$. Thus, this theorem follows from Theorems 4.1 and 4.2.

Theorem 4.4. For every $L \in R E$, there is a linear language Ξ, and a one-turn atomic pushdown automaton, $M=(Q, \Sigma, \Omega, R, s, \$, F)$ such that $\operatorname{card}(Q) \leq 1, \operatorname{card}(\Omega) \leq 2, \operatorname{card}(R) \leq \operatorname{card}(\Sigma)+4$, and $L(M, \Xi, 1)=L$.

Proof:

Prove this theorem by analogy with the demonstration of Theorem 4.3.
Theorem 4.5. For every $L \in R E$, there is a linear language Ξ, and a one-turn atomic pushdown automaton, $M=(Q, \Sigma, \Omega, R, s, \$, F)$ such that $\operatorname{card}(Q) \leq 1, \operatorname{card}(\Omega) \leq 2, \operatorname{card}(R) \leq \operatorname{card}(\Sigma)+4$, and $L(M, \Xi, 2)=L$.

Proof:

Prove this theorem by analogy with the demonstration of Theorem 4.3.
Theorem 4.6. For $i \in\{1,2,3\}, R E=\mathcal{L}(L I N, i)$.

Proof:

This theorem follows from the previous three theorems.

References

[1] Dassow, J. and Paun, G.: Regulated Rewriting in Formal Language Theory. Springer, New York, 1989.
[2] Harrison, M.: Introduction to Formal Language Theory. Addison Wesley, Reading, 1978
[3] Kleijn, H. C. M. and Rozenberg, G.: On the Generative Power of Regular Pattern Grammars, Acta Informatica, Vol. 20, pp. 391-411, 1983.
[4] Meduna, A.: Automata and Languages: Theory and Applications. Springer, London, 2000.
[5] Meduna, A. and Kolář, D.: Regulated Pushdown Automata, Acta Cybernetica, Vol. 14, pp. 653-664, 2000.

