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We study the edge states in two-dimensional photonic crystals arising from a singular point in k space at
which two dispersion surfaces intersect. The zigzag edge states in a honeycomb lattice for TM polarization are
analogous to the electronic ones in graphene nanoribbons. Electromagnetic modes at the zigzag edges of such
photonic crystals consisting of ferrite rods are allowed to propagate only along one direction. The one-way
propagation is insensitive to imperfections on the zigzag edge.
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There has been strong interest in one-way propagating
electromagnetic modes similar to the chiral edge states found
in the quantum-Hall effect.1–4 These edge states are unique in
that they allow for transport in only one direction and they
are insensitive to scattering from imperfections. Realizing
these states requires the breaking of time-reversal symmetry.

One-way electromagnetic modes can be realized in pho-
tonic crystals, which comprise a periodic arrangement of
macroscopic media with different electromagnetic
properties.5 Photonic crystals have provided us with various
applications in the manipulation and control of light propa-
gation. Up until now, a photonic crystal with a triangular
lattice of gyroelectric materials for the TE polarization1 and a
photonic crystal with a square lattice of gyromagnetic mate-
rials for TM polarization3 have been proposed to realize one-
way electromagnetic wave propagation. The idea is to start
with a band structure that has both time-reversal symmetry
and inversion symmetry and which allows for the existence
of “Dirac points” in the k space. Dirac points are isolated
points where two bands become degenerate but with a linear
dispersion �resembling that of the massless Dirac equation�
for nearby Bloch vectors. When a gap opens at the Dirac
points due to time-reversal breaking, the two bands acquire
nonzero Chern numbers resulting in one-way modes to occur
at the edges of photonic crystals.1 However, the requirement
for linear dispersion is not necessary for the realization of
one-way edge modes.3

It is well known that Dirac points can be found in the
electronic band structure of graphene which is a monolayer
of graphite with carbon atoms packed into a two-dimensional
�2D� honeycomb crystal structure. The electron transport in
graphene is essentially governed by the Dirac equation and
for a graphene ribbon �graphene with a finite width� with
zigzag edges, there are peculiar localized electronic states at
each edge.6 The corresponding energy bands are twofold de-
generate and are nearly flat at the Fermi energy. The charge
density in the edge state is strongly localized on the zigzag
edge sites. On the other hand, such localized states do not
exist in graphite systems having an armchair edge. We ex-
pect to see analogous features in electromagnetism.7–9 In this
Brief Report, we consider a zigzag ribbon of a magneto-
optical photonic crystal �MOPC� of graphenelike �honey-
comb� lattice �see Fig. 1� for TM polarization. We will show
that there exist one-way edge states at each edge of the rib-
bon. These edge states support robust one-way transport for

electromagnetic guided modes in the microwave regime. We
note that our system is different from the case described in
Ref. 3 where the MOPC was capped with another gapped
material to form a waveguide. If the upper alumina photonic
crystal is removed in the system described in Ref. 3, the
propagating wave along the edge will disappear since their
one-way modes lie inside the light cone. Here the one-way
edge modes are exposed to free space. Even so, we will show
that the one-way propagation is still insensitive to imperfec-
tions on the edge of the ribbon.

We start with the band structure of a two-dimensional
honeycomb lattice of dielectric cylinders in air with TM po-
larization. For dielectric cylinders, the permittivity is �m
=15 and the radius is r=0.2a, where a=10 mm is the lattice
constant of the honeycomb lattice. The band structures are
calculated by the multiple-scattering method and the details
of the methodology are given in the literature.10,11 We just
remark here that the multiple-scattering method employs a
linear combination of cylindrical harmonics to expand the
fields inside and outside the cylinders and as the basis func-
tions formally form a complete set �up to truncation errors�,
the results we obtain are highly precise. Figure 2�a� shows
the band structure of our system. The first two dispersion
surfaces intersect at a single point K in the Brillouin zone.
This point is singular point in k space. This quadratic degen-
erate point appears at �ka�=2� /3 when the band structure is
projected onto a zigzag axis �see Fig. 2�b�; the projected
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FIG. 1. �Color online� A zigzag ribbon with 10 zigzag chains.
The arrows indicate the translational �periodic� directions of the
ribbon and the rectangle indicates the unit cell of the ribbon. The
right panel shows the first Brillouin zone. The band structure of the
ribbon will be projected along the �−K direction.
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band structure is calculated with a supercell containing 10
copies of the primitive unit cell�. Figure 2�c� shows the band
structure for the zigzag ribbon with 10 zigzag chains. The
edge states, which appear inside a bulk gap, are plotted in red
�dark gray�. The two surface states are degenerate within the
region of 2� /3� �ka���. This phenomenon is more obvi-
ous with increasing ribbon width. For a small ribbon width
or a wave vector k, edge modes at two edges couple strongly,
but they are more localized for larger values of the wave
vector k or bigger ribbon width. We note that the edge modes
are outside the light cone and they form bonafide guided
modes. They are completely localized at edge sites when
ka=� and start to gradually penetrate into inner sites as �ka�
deviates from � reaching the extended states at �ka�=2� /3.
This 2D photonic crystal can be viewed as an analog of
graphene as far as edge states are concerned.

For comparison, we show in Fig. 3 the band structures
similar to Fig. 2 but for a triangular lattice with TE polariza-
tion. There is also a singular point in k space at which the
second and third dispersion surfaces intersect. The dielectric
constant and rod radius were chosen such that this singular
point is below the light cone. We note that the two edge
states arising from the singular point are degenerate within
the region of �ka��2� /3 and extended into bulk states with

increasing value of �ka�. This phenomenon is just the oppo-
site to that of the honeycomb lattice for TM polarization. For
the triangular lattice, a substantial part of the edge mode will
go inside the light cone �shaded in Fig. 3� and will thus be
leaky.

Breaking time-reversal symmetry lifts the degeneracy at
K point and creates a gap. One convenient way to break the
time-reversal symmetry is to employ gyromagnetic aniso-
tropy, which can be implemented with commercially avail-
able ferrite rods for the TM polarization. When we apply a
dc magnetic field along the axis of rods �z axis�; the field
induces the magnetic anisotropy of ferrimagnetic materials.
When fully magnetized, the ferrite has the magnetic perme-
ability tensor12

�̄ = � �r − i�k 0

i�k �r 0

0 0 1
� , �1�

with

�r = 1 +
�m�0

�0
2 − �2 , �2�

�k =
�m�

�0
2 − �2 , �3�

where �0=�H0 is the precession frequency �� is the gyro-
magnetic ratio and H0 is the applied magnetic field� and
�m=4��Ms with 4�Ms the saturation magnetization. We
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FIG. 4. �Color online� �a� Band structure for a honeycomb lat-
tice of ferrite rods with �m=15, H0=500 Oe, 4�Ms=1750 G, r
=0.2a, and a=10 mm. �b� The corresponding projected band struc-
ture of a supercell containing 10 unit cells onto a zigzag axis
��−K�. �c� Band structure of the ribbon along the �−K direction.
The light cone is shaded and the edge states are shown in red �dark
gray� and green �light gray�. �d� Squared amplitude of the Ez field
for one-way edge mode at one edge of the zigzag ribbon with 10
zigzag chains excited by a line source at fa /c=0.254 with green
�light gray� and red �dark gray� representing zero and positive val-
ues. The line source is at �−10,−4� �marked with “+” in the figure�.
The excited edge mode propagates to the right.
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FIG. 2. �Color online� �a� Band structure for a 2D honeycomb
lattice of dielectric rods with �m=15 and r=0.2a. �b� The corre-
sponding projected band structure �of a supercell containing 10
primitive unit cells� onto a zigzag axis ��−K�. �c� The band struc-
ture of the ribbon shown in Fig. 1 along the �−K direction. The
light cone is shaded and the edge states are shown in red �dark
gray�.

M K
0

0.1

0.2

0.3

−1 0 1−1 0 1
0.25

0.26

0.27

fa
/c fa

/c

(a) (b) (c)

Γ
ka/π ka/π

Γ

FIG. 3. �Color online� �a� Band structure for a 2D triangular
lattice of dielectric rods with �m=40 and r=0.35a. �b� The corre-
sponding projected band structure �of a supercell containing 20
primitive unit cells� onto the �−K direction. �c� The band structure
along the �−K direction for a finite slab of 20 layers. The light
cone is shaded and the edge states are shown in red �dark gray�.
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can define an effective permeability as �e= ��r
2−�k

2� /�r. It
can be shown that in the ferrite material, the wave number is
given by k2=�2�e�m. If we keep �e=1 and increase �k
gradually, we can see that the two edge bands in Fig. 2�c�
will split with increasing strength of the time-reversal break-
ing ��k /�r�.

We show in Fig. 4 the results corresponding to an array of
ferrite rods with �m=15, H0=500 Oe, and 4�Ms=1750 G.
There parameters are typical for commercially available
yttrium-iron-garnet.12,13 Figure 4�a� shows the band structure
of the honeycomb lattice of ferrite rods. The dense flat bands
around fa /c=0.1 are due to the resonance of �r and �k. The
frequency of interest is around fa /c=0.25 �for a=10 mm
the corresponding frequency is about 7.5 GHz� where we
observe a small gap. The corresponding projected band
structure �for a supercell containing 10 unit cells� along the
zigzag axis is shown in Fig. 4�b�. For the ribbon, edge states
appear inside the gap of the infinite photonic crystal as
shown in Fig. 4�c�. The band structure of the ribbon is sym-
metric with respect to k=0 since the ribbon itself has inver-
sion symmetry. If we cap the ferrite ribbon with another
gapped material so that the two edges of the ribbon see dif-
ferent surroundings, we can see that the bands in green �light
gray� are associated with one edge, while the bands in red
�dark gray� are modes on the other edge. As a direct illustra-
tion of the one-way transport property, we see that waves
from a line source near the edge of the ribbon only excite

mode propagating to the right �see Fig. 4�d��. The results are
calculated by the finite-element frequency-domain method.
The line source was located close enough to the edge to
excite the edge states efficiently, since the edge states �as
they are guided modes� can be excited by the evanescent
wave components of the source.

As indicated in Fig. 4�d�, the edge modes are strongly
localized at edge sites. Such edge states can be used to con-
struct an open cavity. Figure 5 shows a hexagonal cavity
consisting of such ferrite rods in a honeycomb lattice
bounded by zigzag edges. The mode shown in Fig. 5�a� is
excited by a line source radiating at the frequency near one
of the resonances of the cavity �fa /c=0.254673�. Figure 5�a�
shows that the fields corresponding to the mode are strongly
localized on the edge cylinders, as expected from the results
shown in Fig. 4�d�. Figure 5�c� shows the energy flow by
showing the distribution of the Poynting vectors near the
upper edge of the hexagonal array corresponding to the re-
gion outlined by the rectangle in Fig. 5�a�. By examining the
distribution of the Poynting vectors, we see that the power
flow is cycling inside the ferrite rods on edge sites and such
microscopic cycles form macroscopically the anticlockwise
loop on the edges of the whole hexagon. We expect that the
one-way power-flow characteristics should make the power
flow robust against imperfections or disruptions along the
edge. This is indeed the case as can be seen in Fig. 5�b�. If
we insert a metal plate �size 0.15a�1.5a� on the edge of the
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FIG. 5. �Color online� �a� Ez field distribution for a hexagonal cavity consisting of ferrite rods excited by a line source at fa /c
=0.254673 �near the resonant frequency of the cavity� located at �0.5,−7.5� �marked with “+” in the figure�. There are nine rods at the
outermost edge of the hexagon. The rods are the same as in Fig. 4. �b� Same as in �a� but with an obstacle inserted on the upper edge �black
rectangle; a metal plate with thickness 0.15a�. �c�, �d� Distribution of Poynting vectors near the upper edge of the hexagon in �a� and �b�,
respectively. The power flow is cycling anticlockwise on the edges of the hexagon.
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hexagon, as shown in Fig. 5�b�, the power flow is still cy-
cling on the edges of the hexagon. The microscopic details
are shown in Fig. 5�d�. The distribution of Poynting vectors
in Fig. 5�d� shows that the power flow simply chose another
route to go around the obstacle to avoid being scattered. For
edge states supported by dielectric photonic crystals, such a
drastic obstacle would introduce strong backscattering and
completely destroy the guiding.

In conclusion, we demonstrated that one-way edge modes
exist in a photonic crystal consisting of ferrite rods �under an
external dc magnetic field� arranged in a honeycomb lattice.
To achieve this we start with a lattice of dielectric rods which

has a singular point in dispersion surfaces. These edge modes
are below the light line so they are localized on the edges of
a finite-size sample in free space. The edge modes can be
excited by the evanescent fields of a line source. The one-
way propagation is robust against obstacles on the edges of
the photonic crystals.
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