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Abstract

While competition between firms producing substitutes is well understood, less is
known about rivalry between complementors. We study the interaction between firms
in markets with one-way essential complements. One good is essential to the use of
the other but not vice versa, as arises with an operating system and applications. Our
interest is in the division of surplus between the two goods and the related incentive for
firms to create complements to an essential good.
Formally, we study a two-good model where consumers value A alone, but can only

enjoy B if they also purchase A. When one firm sells A and another sells B, the firm
that sells B earns a majority of the value it creates. However, if the A firm were to
buy the B firm, it would optimally charge zero for B, provided marginal costs are zero
and the average value of B is small relative to A. Hence, absent strong antitrust or
intellectual property protections, the A firm can leverage its monopoly into B costlessly
by producing a competing version of B and giving it away. For example, Microsoft pro-
vided Internet Explorer as a free substitute for Netscape; in our model, this maximizes
Microsoft’s joint monopoly profits. Furthermore, Microsoft has no incentive to raise
prices, even if all browser competition exits. This may seem surprising since it runs
counter to the traditional gains from price discrimination and versioning. We also show
that a essential monopolist has no incentive to degrade rival complementary products,
which suggests that a monopoly internet service provider will offer net neutrality.
There are other means for the essential A monopolist to capture surplus from B.

We consider the incentive to add a surcharge (or subsidy) to the price of B, or to act as
a Stackelberg leader. We find a small gain from pricing first, but much greater profits
from adding a surcharge to the price of B. The potential for A to capture B’s surplus
highlights the challenges facing a firm whose product depends on an essential good.

∗Many people gave generously of their time on this and earlier drafts; we would especially like to thank
Judy Chevalier, Joseph Farrell, Dmitri Kuksov, Sharon Oster, Ben Polak, Michael Riordan, Peter Schott,
and seminar participants at Berkeley, NYU, and Yale for their insightful comments and suggestions.

†Comments are welcome at keith.chen@yale.edu or at 135 Prospect St. Box 208200 New Haven, CT
06520. The most recent version of this paper is available at: http://www.som.yale.edu/Faculty/keith.chen/

‡Keywords: bundling, complements, monopoly leverage, net neutrality, price discrimination, tying, ver-
sioning. JEL Classifications: C7, D42, D43, K21, L11, L12, L13, L41, M21
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1 Introduction

We generally think of competition as being between two substitute products. But com-

petition also arises between two complementary products. In this paper, we study the

competition between two complements where one is essential and the other is not.

An operating system and a microprocessor are both essential as neither works without

the other. Here we look at the case where one good (A) is essential and the other good (B)

is optional. A consumer can enjoy A without B, but not B without A. An example that

fits this rule is Windows (A) and a media player (B). The media player requires Windows,

while Windows has utility absent a media player. A second example is a cable modem

(A) and cable telephony (B). A consumer can enjoy a cable modem without using cable

telephony but cannot use cable telephony without a cable modem.

We consider the case where the sellers of A and B each have market power. We expect,

all else equal, the seller of A will do better than B. Anyone who wants to enjoy B must

also buy A, but not vice versa. Thus A is in a stronger position. How much does this

asymmetry hurt B?

It turns out that in the Nash pricing game, firm B is able to earn more than half the

increased industry profits it creates. This ability for firm B to capture surplus determines its

incentive to innovate or to enter a market where its product is dependent on an incumbent

firm in a complementary market.

The problem for B is that there are many ways in which firm A can capture the surplus

created by B. Indeed, the best outcome for B is our baseline case, the Nash equilibrium,

where the two firms price simultaneously.

Firm A can be more aggressive by entering the B market and competing directly with

B. Outside the case of complements, this is rarely a profitable strategy. Firm A has to

pay the costs of entering the B market, but once in the market will find itself in Bertrand

competition with the incumbent. Assuming no product differentiation, price will be driven

to cost and neither firm will earn any profits. The situation is different here as firm A

benefits from bringing down the price of B. If customers know that they can get B for free,

this gives them a greater incentive to pay a high price for A.

A second option for A is to acquire B and then set the joint profit-maximizing price.

We know that this is efficient as A can eliminate the problem of double marginalization
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(Cournot, 1838). The surprising result is not that joint profits rise, but how this is achieved.

When the value of B is small relative to A and marginal costs are zero, we find that A would

choose to price B at zero. As we explain below, this result runs contrary to the common

intuition from price-discrimination and versioning. The joint monopolist would give B away

and earn all of its profits in A.

This presents a problem to a firm selling B–its rival in A can earn the joint monopoly

profits by driving the price of B down to zero. If firm A can enter the B market and drive

the price to zero, this will be as profitable as buying B; hence firm A will compare the costs

of buying B to entering the B market and will only be willing to buy B to the extent this

is cheaper than entering the market.1

A third option for firm A is to be a price leader. When firm A sets its price before B, it

raises its price over the Nash result in order to push down the price of B. While A’s profits

increase, the gain is relatively small.

A fourth option for A is to tack on a surcharge or a subsidy to B. In the case of

a subsidy, firm A could offer a coupon for B with the purchase of A. In the case of a

surcharge, this could be accomplished by creating two versions of A, one compatible with

B and one discounted but incompatible version. We find that the monopolist would always

seek to impose a surcharge for the purchase of an A product compatible with B and that

it is never optimal to offer a subsidy.

A related problem is the incentive for an incumbent in A to influence the quality of B.

Instead of making an incompatible version, the A firm can either enhance or degrade the

quality of the complementary product. This issue is particularly relevant to internet-based

businesses, such as the internet telephone services provided by Skype and Vonage. These

services allow users to replace their land-line phone service, but they depend on the user

having high-speed internet access, usually from their local cable company or telco. This has

led to a policy debate over equal access. There is a concern that the broadband provider

will have an incentive to degrade the quality of Skype and Vonage in order to increase the

attractiveness of their own competing internet phone service. Our model shows that the A

firm does not have an incentive to degrade the quality of B, even if A were to enter the

B market itself. This suggests that profit-maximizing internet service providers have no

1While it makes the situation difficult for B, this is not a problem for consumers who generally come out

ahead when the complements are sold by a joint monopolist.
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incentive to disrupt net neutrality.

We believe that the one-way essential complements lead to interesting and relevant

market interactions. Essential complements are prevalent and unstudied. Most software

runs on an operating system without which it is useless. Thus there is often a set of

dependant B goods to an essential A good. Chains of such relationships can also arise; the

operating system is essential to the browser, which is essential to the search engine and

the media player. We explore how the complementary firms compete and how surplus is

divided in these situations.

2 Related Literature

Farrell and Katz (2000) study the incentive for innovation in a world where A and B are

each essential to the other–as is the case with hardware and software. In their model, the

producer of A has a monopoly. Firm A seeks to reduce the price of B so as to capture more

of the surplus for itself.

In the case where all the B firms simultaneously set their price before A, firm A would

like to enter the B market and charge marginal cost. If firm A can set its prices first, it

may choose to enter and offer to sell B at a price below marginal cost. The goal is not to

subsidize the purchase of B, but rather to force its more efficient B rivals to lower their

price.

Farrell and Katz also consider the incentive for firms to engage in quality-enhancing (or

cost-reducing) R&D. They show that the B firms have an efficient incentive to engage in

R&D. This follows because the B firms capture all of the incremental surplus with their

first-mover advantage. In contrast, the A monopolist has an excess incentive to pursue

R&D. The reason is that the monopolist gains from improving its version of B, even if it

doesn’t sell B, because that leads rivals to lower their price of good B.

The result that B firms capture all of the incremental surplus relies on their ability to

set prices first and on the assumption that consumer valuations for the A-B bundle are

homogeneous. With simultaneous pricing and heterogeneous valuations, profits are split

equally between the A and B sellers.2 While this result is to be expected when costs are

2The profits of a B firm might be limited by competition with other similarly positioned B-good firms.

Profits between A and B are equal subject to the constraint that these profits are less than the cost (or

quality) advantage of B over its rivals. In particular, profits are equal when there is a monopolist in A and
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equal, the equal division of profits continues to hold even when production costs are unequal

across A and B; see Casadesus-Masanell, Nalebuff, and Yoffie (2006). Thus a firm only gains

half of the value it creates through innovation.

In our model, good B is not essential to A and profits are no longer equally split equally.

We show that when the value of A is large relative to B, the nonessential complement in

B is able to capture more than half the value it creates. On the margin, this is a better

situation for B than when its product is essential.3

It is still the case that the monopolist in A gains when the price of B is lower. This is a

general result for complementary goods. But there are several further differences between

one-way and two-way essential complements. When consumers must buy both A and B

to enjoy either, they care only about the joint price: a subsidy on B is identical to a

discount on A. It doesn’t make sense to ask how a joint monopolist would price A and B

separately. With one-way complements, the individual prices are relevant as some consumers

purchase A without B. The linkage between the two markets suggests the possibility of price

discrimination. We find that in one-way markets, price discrimination is advantageous when

firm A does not own B, but not when A owns B.

Our price discrimination results are connected to the literature on versioned goods. The

A-B bundle can be thought of as a high-quality version of the basic A good. It is well

understood that creating different quality version of a good may allow a monopolist to

engage in second-degree price-discrimantion. Deneckere and McAfee (1996) provide general

conditions under which a monopolist would always sell the premium good (the A-B bundle)

for strictly more than the basic good (A alone). Thus it is surprising that we reach an

opposite conclusion, at least for the case where marginal costs are zero and the value of B

is small relative to A. In that case, we show that the monopolist charges the same price

for the premium and basic versions, so that all customers buy the premium version. The

different conclusions follow from different assumptions: specifically, in our model preference

are multi-dimensional. The discussion following model three provides a graph that translates

our framework into a versioning model and illustrates the intuition for why the results differ.

The case of one-way essential complements is also similar to aspects of the literature on

tying (Bowman 1957, Stigler 1964, Adams and Yellen 1976, Bork 1978, Whinston 1990).

a monopolist in B.
3Overall, firm B does worse in that it is unable to capture any of the surplus created by A.
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Under tying, a monopolist in A forces consumers to buy A along with B. Here, the situation

is reversed; customers can only enjoy B along with A. This “tied” relationship is not

imposed on the consumer by A, but is the result of consumer preferences. While the

essential monopolist does not force the joint sale, it is still able to exploit the asymmetry

in consumer preferences to capture surplus created in the B market.

3 The Model and Cases

In all of our models there are two goods, A and B, where the consumption of A is essential

to the enjoyment of B, but not vice-versa.4

3.1 Base Cases

We start our analysis with the most basic case: homogeneous values. We further assume

that both goods are produced with zero costs.

Proposition 1 When all customers value A at 1 and B at λ, any pair of non-negative

prices (pa, pb) is a Nash equilibrium if and only if pa + pb = 1 + λ and pb ≤ λ.

The proof of this proposition and all subsequent results are contained in the Appendix.

Observe that the division of the pie is indeterminate. As a result, if the incumbent firm

A is able to move first, it would have an advantage. It could set the price of A to be 1 + λ

(or 1 + λ− ε) and thereby capture all of the surplus from both A and B.

Next we add heterogeneity to the valuations of A. We assume that the valuations of

good A are distributed uniformly on [0, 1]. As before, the value of B is the same for all

consumers and equal to λ. We are most interested in the case where A is more valuable

than B. Hence we further assume that λ ≤ 1/2.

Proposition 2 With A uniform on [0, 1] and B at λ ≤ 1/2, there is a unique Nash equi-
librium. Firm A charges 1/2 and firm B charges λ.

4 In our model, there is only one B good. In practice, one could think of analyzing the pricing of one B

good in isolation. Part of the value of the A good comes from the opportunity to purchase all of the other

B goods, some of which may be free.
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Observe that B gets all of the value it creates. If that situation is representative, then

there is no concern that a potential entrant into the complementary market would have

insufficient incentives to innovate and enter.

However, it is an artificial assumption that good B is homogeneous in valuation. The re-

sults from the two base cases suggest that adding heterogeneity may change the equilibrium.

Since heterogeneous valuations are the general case, we turn now to this setting.

3.2 Main Case: Uniform Consumer Valuations

Assume consumer valuations of A are distributed uniformly on [0, 1], and valuations of B

are distributed uniformly on [0, λ]. Further assume that consumer valuations for A and B

are independent.

3.2.1 Model One: Two firms A and B, each a monopoly, and Nash Pricing

The formula for profits depend on whether pa+ pb ≶ λ. The reason is that the geometry of

market areas depends on whether the line defining the set of consumers who are indifferent

about buying both A and B is truncated by the highest possible value for B or not.

As can be seen from the figures below, the demand for good A is the upper left rectangle

combined with the shaded trapezoid to the right. Demand for good B is limited to the

shaded trapezoid.5

5Note that area of the box is λ. Thus the population density is normalized to 1/λ so that the total

population stays constant at 1.
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A&BA&BA
A A&B

λ0

1

λ0

1

PbPb
λ0

1

λ0

1

PbPb

PaPa

PaPa

Pa+Pb > λ Pa+Pb < λ

Figure 1

With a uniform density, we have a closed-form expression for profits. Firm A’s profits are






pa
λ (λ(1− pa) + 1

2(λ− pb)2) when pa + pb ≥ λ
pa
λ (λ− (pa ∗ pb)− 1

2pa
2) when pa + pb ≤ λ





. (1)

Firm B’s profits are






pb
λ ((λ− pb)(1− pa) + 1

2(λ− pb)2) when pa + pb ≥ λ
pb
λ (λ− pb − 1

2pa
2) when pa + pb ≤ λ





. (2)

In the case of primary interest λ is small, so we expect pa + pb ≥ λ. The solution of the

general model reveals that λ = 1 is the crossover point where pa + pb shifts from being

bigger to being smaller than λ.

Lemma 1 When λ = 1 there is a closed-form solution: pa = 2−
√
2 and pb =

√
2− 1

Note that at λ = 1, pa + pb = 1 = λ. In general, the joint solution to the first-

order conditions has no simple analytic form. In such cases, our approach is to graph the

equilibrium results. The underlying equations for pa and pb are provided in the appendix.
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Figure 2 below shows that as λ increases, profits rise for both firms. Firm A is able

to capture some of the value created by B. In contrast, if the two goods were perfect

complements (with two-way essentiality) then profits would be split evenly between the two

firms. Here, firm B gets more than half of the surplus which it creates, but none of the

surplus associated with A. As B become increasingly valuable, eventually firm B earns

more profits than A, even though A is essential for B. Finally, observe that A captures

relatively more of the incremental surplus created by B when λ is small (λ < 1) than when

λ is large.

Firm B

Firm A

λ

Profits

0.5 1 1.5 2

0.2

0.4

0.6

0.8

Figure 2: Profits in the Nash Pricing Game

Given that good A is essential to consumers wishing to enjoy B, there are several ways

that firm A can increase the amount of B surplus it captures. First, we investigate the

strategy of introducing competition into the B market, driving the price of good B down

to cost. Recall that when Microsoft introduced Explorer, it introduced competition into

the browser market dominated by Netscape. Later, we will compare this to alternative

strategies such as purchasing or merging with the B monopolist, charging a different price

for a version of A which is compatible with B, or entering the B market and purposely

degrading (perhaps through barriers to compatibility) the quality of rival B products.
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3.2.2 Model Two: Firm A is a monopolist over A and good B is supplied

competitively

In the competition to capture surplus, firm A has an incentive to lower the price of B. This

might happen exogenously if there is competition in the B market. It could also happen if

A were to enter the B market and drive the price of B down to cost, in this case zero.

Proposition 3 Equilibrium prices are:

pa =






1
4λ+

1
2 when λ ≤ 2

3√
2
3λ when λ ≥ 2

3





, (3)

pb = 0. (4)

The resulting profits are:
1
16(2 + λ)

2 when λ ≤ 2
3

(23 )
3

2λ
1

2 when λ ≥ 2
3

. (5)

It is interesting to note that the price of A is linear in λ up to the point where λ = 2
3 (and

pa =
2
3 ). At λ =

2
3 , the monopolist’s profits are

4
9 . Note that the maximum possible surplus

in this case is 56 (= (1+
2
3)/2) and so the monopolist is able to capture

8
15 or slightly more

than half of the total.

3.2.3 Model Three: Firm A is a monopolist over both products.

One strategy for the A firm to capture more of the surplus generated by the B good is

to buy or merge with the B firm, becoming a monopolist over both markets. This new

joint monopolist will be able to increase industry profits compared to the Nash equilibrium

pricing game. Total profits rise as the joint monopolist can solve the horizontal equivalent

of the double-marginalization problem (Sonnenschein 1968, Nalebuff 2000).

While combined profits are higher, there remains the question of how much the A

monopolist is willing to pay to acquire the B firm. The answer to that question depends on

its profits as a joint monopolist compared to its other options. These other options include

entering the B market, offering subsidies or surcharges for the B product, degrading the

quality of the B good, or moving first to set price.

We have just presented the results for the case where A enters to make the B market

competitive. A benefits when the price of B is as low as possible–at least when A doesn’t
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own B. To the extent that a joint monopolist would do better than the outcome with a

competitive B market, this gives the monopolist an incentive to purchase B rather than

compete.

To compare options, we need to understand how a joint monopolist would maximize

profits and how much it would earn. Along the way, we gain insight on how the joint

monopolist chooses to extract the surplus through A and B.

In the case of complements sold by a joint monopolist, we often see one product being

given away. For example, Adobe gives away a program to read pdf files and charges for the

program to write them.6 We find that under a range of conditions, the complement to the

essential good is given away. For λ up to 2/3, the monopolist takes all the surplus via A.

To demonstrate this result, we first establish that the optimal pb = 0 when the optimal

pa is small, specifically for pa ≤ 2
3 . In that case, the previous solution for pa(λ) when pb = 0

holds, so that pa =
1
4λ+

1
2 . It then follows that pa ≤ 2/3 holds for λ ≤ 2

3 .

Lemma 2 If the optimal pa ≤ 2/3, then the optimal pb = 0.

The outline of the proof for this lemma is found in Figure 3.

PaPa

PbPb

λλλλ0

1

λλλλ0

1
Consider lowering Pb by some small ∆ and raising 
Pa by ∆ (so as to hold Pa + Pb constant).

There are three effects:

1)  Firm gains ∆ on customers just buying A.

Gain = ∆∆∆∆ * (1 – Pa) * Pb

2)  Firm loses some sales of A. 

Loss = Pa * ∆∆∆∆ * Pb

3)  Firm gains some sales of B

Gain = Pb * ∆∆∆∆ * (1 – Pa)

Total effect = ∆ * Pb * [(1 – Pa) – Pa+ (1 – Pa)] =

∆∆∆∆ * Pb * ((((2 – 3 Pa)

So long as Pa = 2/3, we would want to lower Pb and 
raise Pa until Pb=0.

1

2

3

Figure 3

6This may be done for several reasons, not covered in our model. The motivations include the ability to

charge consumers versus firms. Also note that the case of Adobe is a two-way essentiality in that without

an encoder, there is no value to a reader.
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Using this lemma, we can solve for optimal prices when consumer valuations are distributed

uniformly. This is our paper’s first main result. (Theorem 7 shows that this result extends

to general value distributions.)

Theorem 1 The optimal monopoly prices are given by:

pa =






1
4λ+

1
2 when λ ≤ 2

3

2
3 when λ ≥ 2

3





, (6)

pb =





0 when λ ≤ 2

3

1
2λ− 1

3 when λ ≥ 2
3





. (7)

These prices (graphed in Figure 4) lead to the monopoly profits below (graphed in Figure

5).

Profits =
1
16 (2 + λ)

2 when λ ≤ 2
3

1
12 (4 + 3λ)− 1

27λ when λ ≥ 2
3

. (8)

Firm A Nash Pricing

Firm B Nash Pricing

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

λ

Price
0.6

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

λ

Price
0.6

Joint Monopolist:
B Pricing

Joint Monopolist:
A Pricing

Figure 4: Nash Pricing and Joint A & B Monopolist Pricing.

Observe that the monopolist makes its full joint monopoly profits by entering the B market

when λ ≤ 2/3. There is no gain from buying firm B compared to competing with firm B

and driving price down to cost. Thus the most the A monopolist would be willing to pay to
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purchase B is its cost of entry into the B market (assuming that entry into the B market

is possible).

It is not the case that the B good is given away for all values of B–the give away

requires that λ ≤ 2/3. When the average value of B becomes large, the complement is no

longer given away.

Figure 5 graphs profits as a share of total surplus. We compare the combined A & B

profits when the firms price independently (Nash) to profits when a monopolist coordinates

pricing. We also illustrate the monopolist’s profits when it pushes Pb to 0. Note that when

λ is bigger than 2/3rds, the monopolist does nearly as well entering the B market (and

pushing pb down to 0) compared to buying B and setting pb optimally. This remains true

until λ becomes larger than 1, so that the value of B is more than A.

Profits /
total surplus

0.48

0.49

0.51

0.52

0.53

0.54

0.55

0.50

0.48

0.49

0.51

0.52

0.53

0.54

0.55

0.50

λ
0.5 1 1.5 20.5 1 1.5 2

Indep. goods case:
firms absorb ½  total surplus

A+B Profits, Nash

A&B Monopoly Profits

Force Pb=0Force Pb=0

Figure 5: Profits as a Share of Total Social Surplus.

3.2.4 Intuition for why Pb = 0

The result that the unified firm would not charge for B until its value becomes large might

seem contrary to a basic price-discrimination intuition. The combination of goods A & B

can be thought of as a premium version of A. Our result says that the firm will price the

premium version the same as the basic version, thereby pooling customers.
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One reason there is no opportunity to price discriminate is that the marginal value the

customer places on B is independent of how he values A. The firm can’t use the price of

B to charge more to those customers who have a high value for A. This still leaves open

the question as to why the joint monopolist does not set a positive pb to directly extract

surplus generated by B.

Indeed, if it could just the raise the price of B to those customers with the largest values

of B this would be a good idea. The problem is that it has to raise the price of B uniformly

to all customers. Because customers need to buy A in order to enjoy B, for most customers

raising the price of B is identical to raising the price of A. If the price of B is raised from

0 to ∆, then for all customers whose value of B exceeds ∆, they will still buy both A and

B or they will buy nothing. For these customers, there is no difference between raising the

price of A by ∆ or raising the price of B up to ∆.

Hence the desirability of raising the price of B centers around the effect it has on

customers with a low value for B. For these customers, raising the price of B has a cost

without a corresponding gain. Some of these customers switch to only buying A, while

others stop buying A & B altogether, imposing a loss. By comparison, raising the price

of A leads to increased profits on the inframarginal customers at the usual cost of some

decreased sales. It turns out that the lost A sales due to the increase in pb are exactly

half of the lost sales when pa rises. Thus, if the inframarginal gains on the low-value B,

high-value A customer group are at least half the average gains, it will be better to raise pa

rather than pb. In our model, when pa=2/3 the inframarginal gains are 1−pa = 1/3, which
is just half of the average inframarginal gain across all B customers. This helps explain

why pb remains at 0 until pa reaches 2/3.

3.2.5 Relationship with versioning results

It is straightforward to translate our essential complements model to the case of versioning.

We relabel the A and B bundle as the premium good and A alone as the standard good.

Since all of the customers value the premium good more than the standard good, customers

all lie above the 45-degree line.

Figure 6 illustrates the effect on profits from raising the price of pb from 0 to ∆ while

lowering pa by the same amount, thus holding the price of A+B constant. The monopolist

loses ∆2(1 − pa)/λ on the customers that switch to buying the lower-priced A. It gains
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∆2/2 ∗ pa/λ from the new customers attracted to the lower price on A. This is only

profitable if pa > 2/3.

Note that if all of the customers were located along the 45-degree line (or any other

line), then the gain from new customers would be proportional to ∆ ∗ pa, while the loss
would be proportional to∆(1−pa). Thus price discrimination would be profitable whenever
pa > 1/2 — which arises for all λ > 0. It is because preferences are two dimensional that the

new customer group is only half as large as the case with one-dimensional preferences. The

reason is that half of the marginal customers for A were already buying the A-B bundle.

As the price of B rises, these customers transition to buying A alone and thus are not new

customers to the monopolist.

Pa + Pb

λλλλ

0

1

1Pa

A&B
(high quality)

A alone
(low quality)

New A 
customers

V(A)+V(B)

V(A)∆∆∆∆

Figure 6

3.2.6 Model Four: Firm B has a positive cost of production

We have assumed that marginal costs are zero. We think this is a reasonable assumption

for software and many other information good industries where one-way complementarities

arise. Of course, in other circumstances, production costs matter; thus we now turn to
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consider how a joint monopolist would price B when costs are a factor.

We find that it is no longer the case that B is optimally priced at cost over a wide range

of λs. Instead, we find that B’s price equals cost at λ = c and then grows very slowly:

∂pb
∂λ = 0 at λ = c. The positive cost model also allows us to explore the question of whether

an A monopolist would want to subsidize or surcharge the B good (when A doesn’t own B).

We turn to this question after looking at the joint monopoly solution with positive costs.

Suppose that the costs of production are some positive amount, c > 0. In this case, an

independent B firm would clearly never sell B below c; the question remains whether a firm

with a monopoly over both goods would ever chose to subsidize sales of B by selling it for

a price below c. The answer is no.

Theorem 2 A monopolist over both A and B always sets pb ≥ c and pa ≥ 1/2.

The intuition for this result follows from Figure 7.

To add positive costs, note we only need to change 
profits from added sales of B.

Our three effects are:

1)  Firm gains ∆ on customers just buying A:

Gain = ∆∆∆∆ * (1 – Pa) * Pb

2)  Firm loses some sales of A:

Loss = Pa * ∆∆∆∆ * Pb

3)  Firm gains some sales of B:

Gain = (Pb – c) * ∆∆∆∆ * (1 – Pa)

FOC implies Pb = c * (1 – Pa) / (2 – 3 Pa)

Pa = 1/2 implies Pb = c, and increasing afterwards.  
Hence, the joint monopolist never subsidizes B.

PaPa

PbPb

λλλλ0

1

λλλλ0

1

1

2

3

Figure 7

Our next question is whether the joint monopolist’s optimal strategy of pricing B at 0 for

small λ extends to this case. Would the firm price B at c for some range of λ > c? To the

first-order it does: pb = c when λ = c and increases slowly while λ− c is small.

Theorem 3 As λ increases from c, pb increases slowly:
∂pb
∂λ = 0 at λ = c.

Turning to the price of A, in contrast to the zero cost case the price of A initially rises,

but slowly.
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Corollary 1 For positive c, as λ increases from c, pa increases slowly:
∂pa
∂λ = 0 at λ = c >

0. In contrast, at c = 0, ∂pa∂λ = 1/4.

This result is not the direct analog of Theorem 1. With positive costs it is no longer

the case that there is an interval where the price of B remains at cost. The reason for the

difference is that there is now a finite group of customers who value A but to whom it is not

efficient to supply B. If we had assumed that the distribution of B values was from c to λ

(rather than 0 to λ), then our previous result would have carried through directly. Until λ

equals 2/3+ c, the price of B would remain at c. However, we believe it is more reasonable

to assume that customer valuations range from 0 to λ. Thus as λ increases to just beyond

c, the set of customers that are interested in B is small, and this provides the monopolist

with an incentive to charge above cost.

3.2.7 Model Five: Firms A sets two prices, for versions compatible and incom-

patible with B.

Another strategy that firm A can use to capture surplus is to directly influence the price of

B. It can do this in either direction. The monopolist can offer a discount to its consumers

who choose to buy B or the monopolist can impose a surcharge on its consumers who choose

to buy B. To offer a discount, the A monopolist could provide a coupon with each purchase

of A that entitles the buyer to get some amount off good B. A motivation for doing this

is that if the firm were a joint monopolist, A would be giving B away (at least for small

values of λ). From A’s perspective, the price of B is too high and the discount coupon will

lower the price of B and thereby make the purchase of A more attractive.

Alternatively, the monopolist could impose a surcharge onB. In order to add a surcharge

to the price of B, the A monopolist can create two versions of its good, one which is

compatible with B and one which is not. By charging more for the compatible version, this

has the effect of adding a surcharge to the price of B.

The results below show that A would never want to subsidize B. Rather, firm A always

finds it optimal to add a surcharge to the price of B.

To consider the question of surcharges versus subsidies, we introduce the notation that

Firm A charges pa for the incompatible version of A and pac for the compatible versions

of A. When pac > pa, the only consumers that buy the more expensive compatible version
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are those who also plan to buy B. In contrast, when pac < pa, we interpret this as the case

of a discount coupon. Here we "force" the customers buying the compatible version to also

buy B. Thus in both cases, the compatible version is always bought alongside good B and

the incompatible version is always bought alone.

Theorem 4 The A firm always charges strictly more for the compatible version.

The general intuition from the bundling literature (MacAfee et. al. 1989) is that a mo-

nopolist will generally wish to sell a bundle at discount relative to the individual prices.

But this intuition for a bundle discount relies on the firm owning both goods A and B.

Here the monopolist only owns A.

The intuition for why the monopolist wants to impose a surcharge on B is based on price

discrimination. Imagine that the monopolist could charge a different price for A depending

on the customer’s valuation for B. Then the A monopolist would want to charge a higher

price for customers with high B valuations. The reason is that as the value of B increases,

there are more customers buying the bundle and thus more inframarginal customers. Thus

the value of raising the price to these customers is larger, while the cost of raising the price

(the incremental lost customer) remains the same.

In Figure 8, we graph the prices that firms A and B would charge for B and the compat-

ible and incompatible versions of A, when consumer valuations are distributed uniformly.

If firm A can create a version of A 
incompatible with B

λ
0.5 1 1.5 2

Price

0.2

0.4

0.6

0.8

1

λ
0.5 1 1.5 2

λ
0.5 1 1.5 2

Price

0.2

0.4

0.6

0.8

1

Price

0.2

0.4

0.6

0.8

1

Compatibility
Surcharge

Orig. B

Orig. A

Orig. BOrig. B

Orig. AOrig. A

Incomp. A

New B

Figure 8

18



3.2.8 Model Six: Firms A and B play a Stackelberg price game with A moving

first

Another option for the monopolist to capture surplus is to move first and preemptively set

the price of A. The goal is to induce firm B to lower its price. This is done by raising the

price of A. While moving first does increase profits of A, the effect is relatively small. We

graph these prices below in Figure 9; the equations are in the appendix.

If firm A can be a Stackelberg Leader

λ
0.5 1 1.5 2

λ
0.5 1 1.5 2

Price

0.2

0.4

0.6

0.8

1

Orig. AOrig. A

Orig. BOrig. B
Stackelberg BStackelberg B

Stackelberg AStackelberg A

Figure 9

From the graph it is clear that firm A is unable to lower the price of B very much by being

a price leader. Indeed when λ < 1, the Stackelberg prices are nearly indistinguishable from

the simultaneous-move Nash prices.

3.2.9 Model Seven: Firms A can degrade the value of competing B products

by θ

If moving first does not allow firm A to significantly alter prices, another strategy is to

introduce a B good while discouraging the use of B goods manufactured by other parties.

This could be accomplished by making it difficult for other firms to build compatible add-

ons. An example of this is a high-speed internet provider degrading the packet quality

of other-party supplied internet telephone service, while providing priority to A’s internet
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telephony service.

Here we assume that there are two versions of good B. The degraded B has value

discounted by θ < 1 and is priced at pb and the premium B product is priced at pb. Our

main question is whether the A firm would ever purposely degrade the quality of rival B

products. If θ were a choice variable for firm A, would it have an incentive to lower θ? We

first examine a situation where firm A does not produce a B product and show that if B

was priced above cost, firm A would want to enter with a premium (undegraded) B and

drive the price of B down to 0. Formally,

Theorem 5 If B is non-competitively supplied so that pb > 0, then for λ low enough (as

long as pa ≤ 2/3), firm A will profit from driving the price pb to 0.

We next show that once pb = 0, for λ low enough, the profit-maximizing price of the

undegraded B is 0. This implies that firm A has no incentive to purposely lower θ in the

first place, since it will never be optimal to take any of its profits through the price of B.

Formally:

Theorem 6 If B is competitively supplied so that pb = 0, then for λ low enough (as long

as pa ≤ 2/3), firm A will charge 0 for B.

The intuition for this theorem is provided in Figure 10.

Pa

Pb / (1 – θθθθ)
λλλλ0

1

Slope – θθθθ

1

2

3

Consider lowering Pb by some small ∆ and raising 
Pa by ∆ so as to hold Pa + Pb constant.

1)  Firm gains ∆ on customers just buying A:

∆ ∆ ∆ ∆ * [1 – Pa + (θθθθPb) / 2(1 –θθθθ)] * Pb / (1 –θθθθ)
2) Firm loses some sales of A:

Pa * ∆ ∆ ∆ ∆ * Pb / (1 –θθθθ)
3) Firm gains some sales of B:

Pb * ∆∆∆∆ / (1 –θθθθ)     * [1 – Pa + (θθθθPb) / (1 –θθθθ)]
This raises profits if:

∆ ∆ ∆ ∆ * Pb / (1 –θθθθ) * [2 – 3Pa + 3(θθθθPb) / 2(1 –θθθθ)] > 0

Hence, the optimal Pb = 0 when Pa = 2/3.

Figure 10
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3.3 Extensions to General Distributions

We now show that Theorem 1 extends to general value distributions when consumer val-

uations for A and B are independent. Consider a setting where a consumer’s value va for

good A is described by the CDF F (·) and vb by G(·) where both F and G are distributed on
[0, 1]. Assume that consumer valuations for A and B are distributed independently, where

both densities are smooth with full support on [0, 1]. Now consider a set of distributions

for vb indexed by λ such that:

∀λ ∈ (0, 1] : Gλ(x) = G(
1

λ
x). (9)

Denote the optimal prices charged by a monopolist facing valuations F (·) and Gλ(·) by
pa(λ) and pb(λ). Then we have the following generalization of our main result:

Theorem 7 If one firm is a monopoly over both goods A and B, ∀G(·),∃U > 0 such that
for all λ ∈ (0, U ], pb(λ) = 0.

As the range of possible values for B becomes small (relative to the range for A), we

find that the joint monopolist will quite generally set the price of B at zero and earn all of

its profits through A. Although general densities are allowed, the result requires that both

densities are smooth with full support.

Without this smoothness assumption, it is possible to construct a simple counterexam-

ple. Consider the case where A is uniform on [0, 1] and B has a 2-point distribution, half

the consumers value B at zero and half value B at λ.7 In that case, the optimal pricing

is pa = 1/2 and pb = λ/2. The consumers who don’t value B are sold A at the regular

monopoly price and the half that value B at λ pay λ/2 for the add on. This leads to profits

of (1+λ+ λ2/2)/4. In contrast, when pb = 0, the highest profits arise with pa = 1/2+ λ/4

and these profits are slightly lower at (1 + λ+ λ2/4)/4. This two-point distribution is very

much a knife-edge case; even for U-shaped distributions arbitrarily close to the two-point

distribution, it is still the case that the optimal pb = 0 as the range of B values becomes

small.

Our earlier results on subsidies and surcharges also extend to the general distribution

case. Suppose firm A is a monopolist over the production of good A and firm B is a

monopolist over good B. Further, suppose that firm A can charge two prices, pa for a

7We thank Dmitri Kuksov for suggesting this example.
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baseline A, and pac = pa+ δ for a version of A that is compatible with B (that is, charge a

different price for consumers who also wish to buy good B). Consumer valuations are again

distributed with smooth CDFs F and G with full support on [0, 1] and [0, λ] respectively.

We then have:

Theorem 8 If F satisfies the hazard rate condition that f (x)
1−F (x) is strictly increasing in x,

then the A firm will always charge more for its compatible version, setting pac > pa.

4 Conclusion

The interaction between an essential good and its complement is naturally lopsided. And

yet in the Nash pricing game, the complementary product is able to capture over half of

the surplus it creates.

The greatest challenge for the complementor firm arises if A is able to enter the B

market. While the A firm is not able to earn any profits in the B market, it doesn’t have

to. Firm A can raise the price of A in response to the reduced price of B. The surprising

result is that giving away B leads to joint profit maximization under a range of conditions.

This is a problem for a B firm hoping to be bought out by A. There is no incentive for A

to purchase B in order to set its price optimally. In these cases, the most A is willing to

pay is its cost of entry.

If A is not able to enter the B market, there is only a small gain to setting the price of

A before B. There is a larger gain from creating two versions of A, one compatible and one

incompatible with B, and charging more for the compatible version.

The multiple avenues for A to capture B’s surplus highlights the challenges facing a firm

whose product depends on an essential good.
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5 Appendix

Proposition 1 When all customers value A at 1 and B at λ, any pair of non-negative

prices (pa, pb) is a Nash equilibrium if and only if pa + pb = 1 + λ and pb ≤ λ.

Proof. If pa + pb = 1 + λ and pb ≤ λ then neither firm can unilaterally increase profits.

Lowering price does not increase demand; raising price leads to zero demand and zero

profits. If pa + pb < 1 + λ then firm A can raise profits by increasing pa, as its demand will

remain unchanged. If pa + pb > 1 + λ, then either pa > 1 or pb > λ. If pa > 1, then firm A

will increase its profits up from zero by setting pa = 1. If pa ≤ 1 and pb > λ, then firm B

will increase its profits up from zero by setting pb = λ. Finally, given that pa+pb = 1+λ in

any Nash Equilibrium, if pb > λ then consumers will only be buying A. Thus firm B could

increase its profits up from zero by setting pb = λ.

Proposition 2 With A uniform on [0, 1] and B at λ ≤ 1/2, there is a unique Nash equi-
librium. Firm A charges 1/2 and firm B charges λ.

Proof. First we show it is an equilibrium, then show it is unique.

If firm B charges λ, then A faces a demand curve 1− pa and A’s optimal response is to
charge 1/2. If A charges 1/2, then firm B faces a demand curve of 1+λ−1/2−pb = 1/2+λ−pb
for pb ≤ λ and zero demand if pb > λ. (If firm B charges more than λ, no customer will

buy B as an add on.)

The optimal price for B is pb = Min[(1/4 + λ/2), λ]. The min is λ provided λ ≤ 1/2.
This demonstrates that (1/2, λ) is a Nash Equilibrium for λ ≤ 1/2.

To see that this equilibrium is unique, observe that were A to charge some other prices

than 1/2, firm B would then face a demand curve of 1 + λ − pa − pb which leads to an
optimal price of pb = min[(1 + λ− pa)/2, λ].

If pa < 1/2, B will settle at λ which leads to pa = 1/2. Thus the only possible alternative

equilibria arise when pa ≥ 1/2 and pb = (1 + λ− pa)/2.
In that case, the residual demand for A is 1 + λ− pb − pa Thus the profit-maximizing

price for A is

pa = (1+ λ− pb)/2 = (1 + λ− (1 + λ− pa)/2)/2. (10)

Simplifying leads to pa = (1 + λ)/3 ≤ 1/2 as λ ≤ 1/2. Thus pa can never be greater than
1/2 which leads pb to λ, demonstrating the uniqueness of the Nash equilibrium.
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Lemma 1 When λ = 1 there is a closed-form solution: pa = 2−
√
2 and pb =

√
2− 1

Proof. Firm A’s first-order conditions are:




p2b + λ(1− 4pa + λ)− 2pb = 0 when pa + pb ≥ λ
pa(3pa + 4pb)− 2λ = 0 when pa + pb ≤ λ





, (11)

and firm B’s first-order conditions are




3p2b + 4pb(pa − 1− λ) + λ(2− 2pa + λ) = 0 when pa + pb ≥ λ

p2a + 4pb − 2λ = 0 when pa + pb ≤ λ





. (12)

For λ = 1, firm A’s first order conditions simplify to

p2b + (2− 4pa)− 2pb = 0 when pa + pb ≥ 1
pa(3pa + 4pb)− 2 = 0 when pa + pb ≤ 1

, (13)

and firm B’s first-order conditions simplify to:

3p2b + 4pb(pa − 2) + (3− 2pa) = 0 when pa + pb ≥ 1
p2a + 4pb = 2 when pa + pb ≤ 1

. (14)

Looking first at the case where pa + pb ≥ 1, we have three solutions for pa and pb. The

solutions are (pa = 9/16, pb = 3/2), (pa = 2 −
√
2, pb =

√
2 − 1), and (pa = 2 +

√
2, pb =

−1−
√
2). The first solution violates pb ≤ λ, and the third condition has a negative value of

pb. The middle solution exactly satisfies pa + pb = 1. This shows there is a unique solution

for pa + pb ≥ 1.
Looking next at the case where pa+pb ≤ 1, again we have three solutions for pa and pb.

The solutions are (pa = −1, pb = 1/4), (pa = 2−
√
2, pb =

√
2− 1), and (pa = 2+

√
2, pb =

−1−
√
2). The first solution violates pa ≥ 0, and the third condition has a negative value of

pb. The middle solution exactly satisfies pa + pb = 1. This shows there is a unique solution

for pa + pb ≤ 1. These two solutions coincide.

Figure Notes 1 (Support for Figure 2)

Simplifying the first-order conditions from equations 11 and 12, we find that for pa+pb ≥ λ,
pa and pb solve equations:

pa =
1

4λ
(p2b + 2λ− 2pbλ+ λ2) (15)

pb =
1

3
(2− 2pa + 2λ−

√
4 + 4p2a + λ(2 + λ)− 2pa(4 + λ)) (16)
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and that for pa + pb ≤ λ, pa and pb solve the equations:

pa =
1

3
(−2pb +

√
4p2b + 6λ), (17)

pb =
1

4
(−p2a + 2λ). (18)

We know from lemma 1 that pa + pb = λ at λ = 1. Graphing these solutions, we find that

pa+pb ≥ λ if and only if λ ≤ 1. Figure 2 graphs the profits corresponding to these solutions.

Proposition 3 Equilibrium prices are:

pa =






1
4λ+

1
2 when λ ≤ 2

3√
2
3λ when λ ≥ 2

3





, (19)

pb = 0. (20)

Proof. To solve this case, we look at firm A’s first-order conditions where pb = 0. Prices

are the solution to firm A’s first-order conditions below:

λ(2− 4pa + λ) = λ when λ ≤ 1
pa(3pa) = 2λ when λ ≥ 1

. (21)

Lemma 2 If the optimal pa ≤ 2/3, then the optimal pb = 0.

Proof. Assume pb > 0. Consider lowering pb by ∆ and raising pa by ∆, where ∆ is small.

This has three first-order effects. First we charge more to those who continue to buy only

A. The gain is:

∆ ∗ pb ∗ (1− pa). (22)

Second, we lose some customers who used to buy A. The loss is

−pa ∗ pb ∗∆. (23)

Third, we sell B to more customers. The gain is

pb ∗∆ ∗ (1− pa). (24)

Combining these effects, our price change has a first-order effect on profits of:

∆ ∗ pb ∗ (2(1− pa)− pa), (25)
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which is positive when 2− 3pa > 0.
This implies that so long as pa < 2/3, the monopolist would increase its profits by

lowering pb and raising pa by the same amount. But if for any positive pb the firm would

want to lower pb, then the optimal pb must be 0. By continuity pb = 0 when pa = 2/3.

Theorem 1 The optimal monopoly prices are given by:

pa =






1
4λ+

1
2 when λ ≤ 2

3

2
3 when λ ≥ 2

3





, (26)

pb =





0 when λ ≤ 2

3

1
2λ− 1

3 when λ ≥ 2
3





. (27)

Proof. Lemma two shows that for all pa ≤ 2/3, the optimal pb = 0. As λ→ 0, the optimal

pa → 1/2. (This follows because the B market becomes irrelevant and the monopoly prices

to maximize profits on A alone.) Since pa(0) = 1/2, for some range of λ around 0, the

optimal pa < 2/3, so by our lemma the optimal pb will be 0 in that range. To demarche

that range, observe that so long as pb = 0, the first-order conditions that give the optimal

pa are:

1− 2pa + λ
2 = 0 for pa > λ

λ− 3
2p
2
a = 0 for pa < λ

. (28)

The solution to the second condition is pa =
√

2
3λ, which violates pa < λ when 0 < λ < 2/3.

The solution to the first condition is pa =
1
4λ+

1
2 , which satisfies pa < λ when λ < 2/3, and

pa =
2
3 at λ = 2/3. Also note that 1

4λ +
1
2 < 2/3 for λ < 2/3, justifying the assumption

that pb = 0. Therefore pa =
1
4λ+

1
2 and pb = 0 is the unique solution while λ ≤ 2

3 .

Turning to the case of λ > 2
3 , it is possible that the optimal pb > 0. If so, then we are

at an interior solution for pa and pb and both first-order conditions are satisfied. As in the

Nash case, the geometry of monopoly profits changes depending on whether pa + pb ≶ λ.

The profits the joint monopoly will earn are:

1

λ
(pa(λ− (pa ∗ pb)−

1

2
p2a) + pb(λ− pb −

1

2
p2a)), and (29)

1

λ
(pa(λ− (1− pa) +

1

2
(λ− pb)2) + pb((λ− pb)(1− pa) +

1

2
(λ− pb)2)) (30)

for pa + pb < λ and pa + pb > λ, respectively. Differentiating these with respect to pa and
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pb leads to two first-order conditions per case. The first-order conditions for pa are:

3pa(pa + 2pb) = 2λ when pa + pb < λ

3p2b + λ(2− 4pa + λ) = 4pbλ when pa + pb > λ
. (31)

The first-order conditions for good B are:

3p2a + 4pb = 2λ when pa + pb < λ

pb(6pa + 3pb − 4) + λ(2 + λ) = 4(pa + pb)λ when pa + pb > λ
. (32)

When pa + pb ≥ λ, the first-order conditions are only satisfied if:

pa =
2

3
and pb =

1

3
(2λ+

√
2λ+ λ2), (33)

pa =
2

3
and pb =

1

3
(2λ−

√
2λ+ λ2), (34)

or if

pa =
1

4
λ+

1

2
and pb = 0. (35)

Only the first solution does not violate pa + pb ≥ λ when λ > 2/3.
When pa + pb ≤ λ, the first-order conditions are only satisfied if:

pa =

√
2

3
λ and pb = 0, (36)

or if:

pa =
2

3
and pb =

1

2
λ− 1

3
. (37)

Both solutions satisfy pa+pb ≤ λ when λ > 2/3. Therefore we are left with three candidate
solutions. Calling these solutions 1, 2 and 3 respectively, we have corresponding profits

Π1,Π2, and Π3 of:

Π1 =
1

27
λ(6− 2

√
λ(2 + λ) + λ(3 + λ−

√
λ(2 + λ) (38)

Π2 = (
2

3
λ)3/2 (39)

Π3 = − 1
27
+
1

12
λ(4 + 3λ). (40)

To establish which solution maximizes profits, we compare their profits directly. Comparing

solutions 1 and 2,

Π1 < Π2 ⇔ λ(6(1−
√
6λ) + λ2 − (2 + λ)

√
λ(2 + λ) + 3λ) < 0, (41)
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which is true for all λ > 2/3. (Π1 < Π2 for all λ greater than approximately 0.13.) Therefore

only the second and third solutions are possible optima. Looking at Π2 and Π3,

Π2 < Π3 ⇔ 4 < 3λ(12− 8
√
6λ+ 9λ)⇔ λ > 2/3. (42)

This confirms that our third solution is unique for all λ > 2/3, and proves our theorem.

Theorem 2 A monopolist over both A and B always sets pb ≥ c and pa ≥ 1/2.

Proof. As in the case without costs, consider lowering pb by ∆ and raising pa by ∆, where

∆ is small. This has three first-order effects.

First we charge more to those who continue to buy only A. The gain is

∆ ∗ pb ∗ (1− pa). (43)

Second, we lose some customers who used to buy A. The loss is

−pa ∗ pb ∗∆. (44)

Third, we sell B to more customers. The gain is

(pb − c) ∗∆ ∗ (1− pa). (45)

Combining these effects, our price change has a first-order effect on profits of

∆ ∗ {(pb(2− 3pa)− c(1− pa)}. (46)

Since ∆ can be either positive or negative, we know that

pb =
c(1− pa)
2− 3pa

. (47)

Note that at pa = 1/2 we have pb = c, and pb > c if and only if pa > 1/2.8 Therefore,

either pa ≥ 1/2 and pb ≥ c or pa < 1/2 and pb < c. To establish our theorem we only need

show that the monopolist would never choose the second combination, namely pa < 1/2

and pb < c.

But the monopolist would never want to charge a price below 1/2 for A when it is also

subsidizing B. It would do better by raising the price of A up to 1/2. This raises profits

on A. The gain from existing customers is more than 1/2 (as A’s market area exceeds 1/2

8Observe that pb is monotonic in pa.
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all the way to the price of 1/2) and the loss from reduced demand is less than pa, which is

always less than 1/2. Thus the net effect on A is positive. A side effect of increasing the

price of A is that sales of B will fall, but as the monopolist was losing money on each B

sale, that, too, increases profits.

Theorem 3 As λ increases from c, pb increases slowly:
∂pb
∂λ = 0 at λ = c.

Proof. We prove this by inspection of the first-order conditions. The first-order condition

for pa leads to:

pa =
1

2
+
(λ− pb)2
4λ

− (pb − c)
2λ

(λ− pb), and (48)

dpa
dλ

=
λ2 + 2cpb − 3p2b

4λ2
+ (
3pb − c
2λ

− 1)dpb
dλ
. (49)

From equation 47, we know that

dpb
dλ

=
c

(2− 3pa)2
dpa
dλ
. (50)

Hence
dpa
dλ
(1− 3pb − c− 2λ

2λ

c

(2− 3pa)2
) =

λ2 + 2cpb − 3p2b
4λ2

. (51)

From our previous theorem we know that pb → c as λ→ c. Therefore as λ→ c,

dpa
dλ
(1− c− λ

λ

c

(2− 3pa)2
) =

λ2 − c2
4λ2

. (52)

Now observe that if c > 0, then as λ→ c, dpadλ = 0, while for c = 0,
dpa
dλ = 1/4. Hence, from

equation 50, it follows that ∂pb∂λ = 0 for both c > 0 and c = 0.

Corollary 1 For positive c, as λ increases from c, pa increases slowly:
∂pa
∂λ = 0 at λ = c >

0. At c = 0, ∂pa∂λ = 1/4.

Proof. The corollary follows from the proof of theorem 3.

Theorem 4 The A firm always charges strictly more for the compatible version.

Proof. Suppose we are in the coupon case so that we give a discount to people who buy

both goods, i.e. pac < pa. Consider lowering pa until it equals pac. This has two effects.

First, we charge less to those who used to buy the incompatible A. This costs:

(pa − pac) ∗ (1− pa) ∗ (pb + pac − pa). (53)
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Second, we gain some customers who now buy the incompatible A. This increases profits

by:

pac ∗ (pa − pac) ∗ (pb +
pac − pa
2

). (54)

Some customers switch from buying the compatible version to the incompatible version of

A, but this is only a loss to firm B. Note that (pb +
pac−pa
2 ) > (pb + pac − pa), so this

increases A’s profits if pac > (1−pa). But this must be true since pac > 1/2. Thus discounts
are never optimal.

Now, suppose pa = pac. Consider lowering pa by ∆. This has two first-order effects.

First, firm A charges less to those who used to buy only A. This costs:

∆ ∗ pb ∗ (1− pac). (55)

Second, firm A gains customers who now buy A. This increases profits by:

pac ∗ pb ∗∆. (56)

Firm A loses ∆ on customers who switch from buying the compatible version to buying the

incompatible version, but this is a second-order effect.

Combining these effects, the price change has a first-order effect on profits of:

∆ ∗ pb ∗ (pac − (1− pac)), (57)

which is positive as long as pac > 1/2.

This shows that firm A would never subsidize a version that is compatible with B, and

in fact always wants to apply a surcharge. Prices solve:

pa =






1
4λ (pac + pb − λ)(3pac + pb − λ) + 1

2 when λ ≤ 126
121

1
3(−3pac − 2pb +

√
(3pac + 2pb)2 + 6λ) when λ ≥ 126

121





, (58)

pac =

1
3 (2− 3pa − 2pb + 2λ−

√
4 + 3pa(3pa − 4) + p2b − 2pb(1 + λ) + λ(2 + λ)) when λ ≤ 126

121 ,

and 1
4 (−3p2a − 2pb + 2λ) when λ ≥ 126

121 ,

(59)

and pb =

1
3 (2− 2pa − 2pac + 2λ−

√
4 + 4p2a − 2pac + 2pa(pac − 4− λ) + (pac − λ)2 + 2λ) when λ ≤ 126

121 ,

and 1
4 (−p2a − 2pac + 2λ) when λ ≥ 126

121 .

(60)
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Figure Notes 2 (Support for Figure 8)

In some cases the closed-form solutions for pa and pb are more than several pages. These

cases are omitted and available from the authors upon request. Optimal prices solve:

pa =






omitted when λ ≤ x
omitted when x ≤ λ ≤ 10

9

p3a + λ =
3
2p
2
a + paλ when λ ≥ 10

9





, (61)

and

pb =






1
3(2− 2pa + 2λ−

√
4− 8pa + 4p2a + 2λ− 2paλ+ λ2) when λ ≤ 10

9

omitted when x ≤ λ ≤ 10
9

1
4(−p2a + 2λ) when λ ≥ 10

9





.

(62)

where x solves 2x3 − 19x2 + 60x− 44 = 0 (x ≈ 1.036).

Theorem 5 If B is non-competitively supplied so that pb > 0, then for λ low enough (as

long as pa ≤ 2/3), firm A will profit from driving the price pb to 0.

Proof. Note that consumers who value good B at value
pb−pb
1−θ are indifferent between

buying B and B. Therefore we can restrict attention to the case where
pb−pb
1−θ >

pb
θ , since if

this does not hold, no consumers will buy B.

Consider lowering pb all the way down to 0, lowering pb by the same amount, and

raising pa by the same amount. This has two effects. First, we lose sales of A from the

price increase:

−pa ∗
1

2
∗ pb
θ
∗ pb. (63)

Second, we gain on those who were buying A and not buying B:

pb ∗
pb − pb
1− θ ∗ (1− pa + θ

pb − pb
1− θ ). (64)

Since
pb−pb
1−θ >

pb
θ , if we rewrite the second force substituting for

pb−pb
1−θ , we make the overall

gain smaller. Therefore profits are less than:

pb ∗
pb
θ
∗ (1− pa + θ

pb
θ
)− pa ∗

1

2
∗ pb
θ
∗ pb. (65)

Simplifying, this is equal to:
p2b
θ
(1 + pb −

3

2
pa). (66)
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Examining this expression shows that for small pa, the firm earns positive profits from

lowering pb. In particular, as long as pa <
2
3 the firm strictly profits from forcing competition

into the market for B, driving pb to 0. Since for small λ, pa is close to
1
2 , the firm would

choose to do so for small λ.

Theorem 6 If B is competitively supplied so that pb = 0, then for λ low enough (as long

as pa ≤ 2/3), firm A will charge 0 for B.

Proof. Assume pb = 0 and pb > 0.

Consider lowering pb by ∆ and raising pa by ∆. This has three effects. First the firm

charge more to those who continue to buy only A:

∆ ∗ pb
1− θ ∗ (1− pa +

1

2
pb

θ

1− θ ). (67)

Second, it loses some customers who used to buy A:

−pa ∗∆ ∗
pb
1− θ . (68)

Third, it sells B to more customers:

pb ∗
∆

1− θ ∗ (1− pa + pb
θ

1− θ ). (69)

Combining these effects, the effect on profits is:

∆ ∗ pb
1− θ ∗ (2(1− pa)− pa +

3

2
pb

θ

1− θ ), (70)

which is positive as long as 2− 3pa + 3
2pb

θ
1−θ > 0.

In particular, if pa <
2
3 then lowering pb by ∆ and raising pa by ∆ raises profits. Since

for small λ, pa is close to
1
2 ; hence the firm would set pb = 0.

Theorem 7 If one firm is a monopoly over both goods A and B, ∀G(·),∃U > 0 such that
for all λ ∈ (0, U ], pb(λ) = 0.
In words, for any smooth distributions of values for A and B, if the distribution of values

for B is compressed enough relative to A, then the monopolist would charge 0 for B.

Proof. Define pa(0) and pb(0) as the limλ→0 pa(λ) and the limλ→0 pb(λ) as λ goes to 0 from

above. First, note that pb(0) = 0 follows from that fact that for all λ, pb(λ) ≤ λ. Next,
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0 < pa(0) < 1 follows trivially from the fact that f(·) has full support, since profits are 0 at
both pa = 0 and pa = 1.

Given these limit conditions, we consider the effect on profits of the following deviation:

starting at the optimal prices pa(λ) and pb(λ), lower the price of B to 0, and raise the

price of A by pb(λ) so as to keep the sum of the two prices constant. We show that for

small enough λ this deviation will increase profits for any 0 < pb ≤ λ. But since pb(λ) was
supposed to be profit maximizing, it must be that for λ small enough, pb(λ) = 0.

To prove our theorem by contradiction, assume that there exists a smooth G(·) such
that ∀λ > 0, pb(λ) > 0. First, we establish that our proposed deviation is possible. Since
pa(λ) is converging to pa(0) and pb(λ) is converging to 0, we must be able to choose a U1 > 0

such that ∀λ ∈ (0, U1] :

0 < pb(λ) ≤ λ < (1− pa(λ)), so that pb(λ) + pa(λ) ≤ 1. (71)

We want to do this so that for all λ ∈ (0, U1] we can consider the deviation of lowering
the price of B to 0 and raising the price of A by pb(λ) to offset it. Writing the effect on

profits, there are a number of customers who used to purchase (only) good A that now stop

purchasing A. They represent lost profits of:

Losses = pa(λ)

∫ pb(λ)

0
(F (pa(λ) + pb(λ)− x)− F (pa(λ))) ∗ g(x)dx. (72)

Offsetting this loss, there are a number of customers who used to buy only A and now buy

both A and B, at the new higher price of A. This represents a gain in profits of:

Gains = pb(λ)

∫ pb(λ)

0
(1− F (pa(λ) + pb(λ)− x)) ∗ g(x)dx. (73)

We can bound these expression with simpler expressions for the bounding rectangles either

larger or smaller than the exact integrals. Looking first at our gains, we see that:

Gains ≥ (1− F (pa(λ) + pb(λ))) ∗G(pb(λ)) ∗ pb(λ). (74)

Adding the corresponding rectangular lower bound, we can bound our gains above and

below:

1− F (pa(λ) + pb(λ)) ≤
Gains

G(pb(λ)) ∗ pb(λ)
≤ 1− F (pa(λ)). (75)

Note that we are looking at the ratio of gains to G(pb(λ)) ∗ pb(λ), which by assumption is
strictly positive for all λ > 0. Intuitively, as λ goes to 0 the change in profits from our

35



proposed deviation will go to zero; however the ratio of this change to G(pb(λ)) ∗ pb(λ)
will converge to a strictly positive sum. This will establish that for small enough λ, our

proposed deviation will strictly increase profits.

Now as λ → 0, the two bounds in equation 75 converge to the same limit, so we have

that:

lim
λ→0

Gains

G(pb(λ)) ∗ pb(λ)
= 1− F (pa(0)). (76)

Turning to losses, we will show that subtracting an upper bound of losses from our gains

results in no change in profits as λ goes to 0. We then show that for small enough λ, our

real losses are strictly less then their upper bound, which establishes our result.

Applying the same rectangular upper bound to our losses as we did to gains, we see

that:
Losses

G(pb(λ)) ∗ pb(λ)
≤ pa(λ)

F (pa(λ) + pb(λ))− F (pa(λ))
pb(λ)

. (77)

Since we’ve assumed that f and g have full support, as λ→ 0 we have:

lim
λ→0

Losses

G(pb(λ)) ∗ pb(λ)
≤ pa(0) ∗ f(pa(0)). (78)

Note that when λ = 0, the first-order condition for the optimality of pa is:

1− F (pa(0))− pa(0) ∗ f (pa(0)) = 0. (79)

Combining equations 76, 78, and 79, we see that as λ→ 0, our proposed deviation is weakly

a good idea. That is, taking gains, subtracting our upper bound on losses and applying the

first-order condition for pa gives us:

lim
λ→0

Gains−Losses
G(pb(λ)) ∗ pb(λ)

≥ 0. (80)

Recall that to establish our result we need this inequality to be strict; we now show that

our losses converge to a number strictly less than their upper bound.

Since we have assumed that g is smooth with full support, we can rewrite our losses

from equation 72 using a first-order approximation to the integral. This gives us:

lim
λ→0

Losses = lim
λ→0

pa(λ) ∗ f(pa(λ))[pb(λ) ∗G(pb(λ))−
∫ pb(λ)

0
x ∗ g(x)dx]. (81)

Putting these losses over G(pb(λ)) ∗ pb(λ) and simplifying gives us:

lim
λ→0

Losses

G(pb(λ)) ∗ pb(λ)
= lim
λ→0

pa(λ) ∗ f(pa(λ))−
pa(λ) ∗ f(pa(λ)) ∗

∫ pb(λ)
0 x ∗ g(x)dx

pb(λ) ∗G(pb(λ))
. (82)
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The first term of our losses cancels with our gains by equation 79. We can also use equation

79 to substitute for pa(λ) ∗ f(pa(λ)), giving us:

lim
λ→0

Gains−Losses
G(pb(λ)) ∗ pb(λ)

= lim
λ→0

[1− F (pa(λ))] ∗
∫ pb(λ)
0 x ∗ g(x)dx

pb(λ) ∗G(pb(λ))
. (83)

If this limit is strictly greater that 0, then there must be a U2 > 0 such that Gains−Losses
is positive for all ∀λ ∈ (0, U2], and taking U = min(U1, U2) would finish our proof by

contradiction. But 1− F (pa(0)) > 0; therefore we are done if:

lim
λ→0

∫ pb(λ)
0 x ∗ g(x)dx
pb(λ) ∗G(pb(λ))

> 0. (84)

Since both the numerator and denominator of this ratio go to 0, by L’Hospital’s rule we

have that:

lim
λ→0

∫ pb(λ)
0 x ∗ g(x)dx
pb(λ) ∗G(pb(λ))

= lim
pb(λ)→0

pb(λ) ∗ g(pb(λ))
G(pb(λ)) + pb(λ) ∗ g(pb(λ))

. (85)

If g(0) > 0 then in the limit G(pb(λ)) = pb(λ) ∗ g(pb(λ)), and

lim
pb(λ)→0

pb(λ) ∗ g(pb(λ))
G(pb(λ)) + pb(λ) ∗ g(pb(λ))

=
1

2
, (86)

which would complete our proof. If g(0) = 0, applying L’Hospital’s rule again gives us:

lim
λ→0

pb(λ) ∗ g(pb(λ))
G(pb(λ)) + pb(λ) ∗ g(pb(λ))

= lim
λ→0

g′(pb(λ)) ∗ pb(λ) + g(pb(λ)) ∗ pb(λ)
2g(pb(λ)) + pb(λ) ∗ g′(pb(λ))

, (87)

so we would have our result if g′(pb(λ)) > 0.

Repeating this process, we see that our limit will be strictly positive as long as at least

one higher order derivative of G at 0 is positive. But this follows from the fact that g has

full support. This proves our theorem.

Theorem 8 If F satisfies the hazard rate condition that f (x)
1−F (x) is strictly increasing in x,

then the A firm will always charge more for its compatible version, setting pac > pa.

Proof. We show that the optimal surcharge is strictly positive by contradiction. Assume

that the optimal prices satisfy pac ≤ pa. Consider lowering pa by ∆.
This has three effects. First, the A firm gains new A customers who are now willing to

buy the incompatible A; this gain is:

pa ∗∆ ∗ f (pa) ∗G(pb − pa + pac). (88)
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Second, the firm loses money by lowering prices for existing customers who were buying the

incompatible A:

−∆ ∗ (1− F (pa)) ∗G(pb − pa + pac). (89)

Third, some A customers who used to buy the compatible A switch to buying the incom-

patible version of A. This effect is:

(pa − pac) ∗ (1− F (pa)) ∗∆ ∗ g(pb − pa + pac). (90)

When pac < pa, this effect is a gain to the firm, and when pa = pac, then this has no

first-order effect (and a second-order loss).

It is sufficient for lowering pa to increase profits that the gains in equation 88 outweigh

the losses in equation 89, since equation 90 is to the first-order weakly positive. Therefore,

ignoring equation 90, lowering pa by a small amount will have a strictly positive effect if:

pa ∗ f(pa)− (1− F (pa)) > 0. (91)

This would contradict the optimality of pa; therefore, it follows that:

pac ≤ pa ⇒ pa ∗ f(pa)− (1− F (pa)) ≤ 0. (92)

Now consider raising both pa and pac by ∆.

This has four effects. First, by raising pa the firm gains on those customers who continue

buying the incompatible A:

∆ ∗ (1− F (pa)) ∗G(pb − pa + pac). (93)

Second, the firm loses some incompatible A customers:

−pa ∗∆ ∗ f(pa) ∗G(pb − pa + pac). (94)

Third, by raising pac, the firm gains on those customers who continue buying the compatible

A. This gain is:

∆ ∗
∫ λ

pb−pa+pac

(1− F (pb + pac − x)) ∗ g(x)dx. (95)

Fourth, the firm loses some compatible A customers:

−pac ∗∆ ∗
∫ λ

pb−pa+pac

f(pb + pac − x) ∗ g(x)dx. (96)

38



By equation 92, the gain from equation 93 is weakly greater than the loss from equation

94. This leaves us to consider the combined effect of equations 95 and 96:

∆ ∗
∫ λ

pb−pa+pac

[1− pac ∗
f(pb + pac − x)

1− F (pb + pac − x)
] ∗ (1− F (pb + pac − x)) ∗ g(x)dx. (97)

Our hazard rate condition guarantees that this is strictly positive (as it is weakly positive

at x = pb − pa + pac). Therefore, raising both prices results in a strict increase in profits
to firm A, contradicting the optimality of pa and pac. Therefore pac > pa. The monopolist

who can produce both a compatible and incompatible version of A would always charge

strictly more for the compatible version.
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