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The problem faced with symmetric ciphers has always been key exchange. Hellman and Diffie 
(1976) proposed the idea for key exchange (public key cryptography). Their idea was based on the 
difficulty in inverting certain mathematical functions; one way functions. The RSA was one of the 
first practical solutions of key exchange.  This paper identifies one way functions and their 
corresponding public key encryption system, with emphasis on the RSA. 
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INTRODUCTION 
 
Security of data is important; encryption is used to do 
this. Early encryption systems like DES, AES (NIST, 
2001) are examples of symmetric/secret key encryption 
systems. In these encryption systems, the key used to 
encrypt is the same as the key used to decrypt. The DES 
is still secure and used today (Kenekayoro, 2010), but the 
DES and all secret key cryptosystems from Enigma 
(German encryption system in WWII) to advanced 
encryption systems like AES have one weakness; key 
exchange. How keys are securely transmitted from 
sender to receiver was a major problem. Diffie and 
Hellman (1976) proposed the idea of public key 
cryptosystems, an encryption system where the key used 
to encrypt is different from the key used to decrypt. The 
paper suggested that public key cryptosystems can be 
achieved using one way functions, functions that are 
easy to solve but hard to reverse, hard in the sense that 
there are no efficient methods to solve them.  Several 
one way functions have been found and are used in 
public key cryptography; this paper identifies these 
mathematical functions and their corresponding 
cryptosystems. Emphasis is laid on the RSA but other 
encryption systems are discussed. 
 
 
PUBLIC KEY CRYPTOGRAPHY (PKC) 
 
The concept of public key cryptography was invented by 
Whitfield and Hellman but there was no practical 
implementation until the RSA, Merkle also independently 
invented the concept of public key cryptography, although 
credit  is  given  to  Whitfield   and   Hellman.   Using   the  

traditional names used in cryptography “Bob”, “Alice” and 
“Eve” to describe the concept of public key cryptography, 
Bob places his encryption key in a public directory where 
everybody can see it and has a decryption key different 
from the public key that only he knows. If Alice wants to 
send a message to Bob, she checks the public directory 
for Bobs public key, encrypts the message; EB (M) = C 
and sends the cipher text C to Bob. If the message is 
intercepted by Eve she would not be able to decipher it 
(even Alice cannot decrypt the message) as only Bob 
knows the decryption key. When the message gets to 
Bob, he decrypts the cipher text with his decryption key 
(private key); DB (C) = M and reads the message. In 
public key cryptography as opposed to symmetric 
cryptography, Bob and Alice do not need any prior 
communication for key exchange, they do not need to 
share any secret (key), only Bob can decrypt messages 
encrypted with his public (encryption key) and vice versa. 
All public key cryptosystems security rests on a 
computational problem; the difficulty in inverting some 
mathematical functions. These functions are known as 
one way functions.  
 
 
ONE WAY FUNCTIONS 
 
It is a cliché that most things are easier to do than to 
undo, in mathematics, there is a formal term for this, one 
way functions (OWF). The famous axiom, the Axiom of 
Choice says that; every function f has an inverse g such 
that f(g(x)) = x for x in the range of f. The axiom is 
accepted but proofs dependent on  this  axiom  are  being  
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singled out (Levin, 2003). Another set of mathematical 
functions, OWF;   are those functions that are easy to 
solve in one direction but hard to invert. Easy is defined 
as functions that can be computed in polynomial-time, 
and hard defined as functions not computable in 
polynomial time. There is no proof that one way functions 
exist, proving this also proves the complexity 
class . Functions belonging to complexity type 
P, can be computed by a deterministic making machine 
in a time which is bounded above by some polynomial 
time, while functions belonging to complexity type NP 
(nondeterministic, polynomial) are problems computable 
in polynomial time on a “nondeterministic” computer 
(Diffie and Hellman, 1976).  Examples of NP hard 
problems are the travelling salesman problem (Letchford, 
2010), and other scheduling and optimization problems. 
These problems are hard to compute in worst case, but 
for a function to be used in cryptography, it should be 
hard to compute in average case.  
 
 
ONE WAY TRAPDOOR FUNCTION  
 
One way function, with certain unique information 
(trapdoor information), makes it easy to invert 
information. These functions are candidates for public 
key encryption systems; encryption systems where the 
key used to encrypt is different from the key used to 
decrypt. The forward operation of the mathematical 
function (encrypting) is easy but inverting this function 
(decrypting) is hard without knowledge of the trapdoor 
information. This trapdoor information can be seen as the 
private key. Finding such functions is difficult, several 
candidate functions have been identified, although not 
proven to be one way, no efficient way to invert has been 
found. If an efficient method to invert any of these 
functions is found, the encryption system that uses this 
function becomes useless. In the following sections, we 
discuss several one way trapdoor functions and their 
corresponding encryption systems.  
 
 
RSA 
 
The RSA, gotten from the names of the inventors 
“Rivest”, “Shamir”, Adelman” is one of the first public key 
encryption systems. The underlying hard problem known 
as the RSAP is based on the difficulty in factoring large 
integers.  
 
 
The RSA algorithm 
 
In the RSA algorithm, we have a public key (e, n) and a 
private key d. To encrypt a message M (create cipher text 
C), the message is raised to the eth power modulon and 
to decrypt  a  cipher text C  (go back to message  M),  the 

 
 
 
 
cipher text is raised to the dth power modulo n: 
 

 
 

 
(Rivest et al., 1978) 
 
 
Prime numbers 
 
A natural number is a prime number if it is divisible by 
only itself and one. A natural number that is not prime is 
called composite and 1(one) is neither prime nor 
composite. Prime numbers are important in cryptography 
for example, in the RSA you have to select two large 
primes in order to build a one way function and in the 
elliptic curve domain, a prime number p defines the field 
as well as the elliptic curve form.  

It has been proven that there is an infinite number of 
prime numbers. In modern cryptography, large primes 
are often needed and as numbers get bigger it becomes 
harder to find prime numbers. Edson Smith, George 
Woltman and Scott Kurowski in 2008 found the largest 
known prime number. The project used volunteers’ 
computers to hunt for prime numbers, the largest prime 
number found has 13 million digits (243,112,609 – 1). It is a 
Mersenne prime that is, it can be written in the form 2n-1.  

To find prime numbers 1 , we choose random odd 
numbers and perform a primality (is prime) or 
compositeness (not prime) test. All major primality testing 
algorithms for large numbers are probalistic. An example 
is the Fermat Little Theorem that is turned into a primality 
testing algorithm.  The theorem states that “for any prime 
number p and any number a not divisible by p, the 
equivalence    ap-1 � 1 (mod p) most hold”. We can test 
the primality of a number n by randomly choosing a value 
not divisible by n for a, and computing an-1 � 1 (mod n). If 
this value is not equal to 1, then n is definitive not a 
prime. However, there is a flaw in the algorithm, finding 
an ‘a’ for which an-1 �1 (mod n) does not imply that n is a 
prime number. Composite numbers for which an-1 �1 
(mod n) is true for all ‘a’ are called Carmichael numbers. 
Because of this Fermat test is not widely used, other 
primality testing algorithms used are Solovay-Stassen 
test (Solovay and Strassen, 1977) and Miller-Rabin test 
(Rabin, 1980).   
 
 
Generating RSA keys 
 
To generate the public and private key pair for an RSA 
encryption system we need to: 
  

                                            
1 Eratosthenes of Cyrene 276BC-194BC discovered the first algorithm to find 
prime numbers, the Sieve of Eratosthenes. 



 
 
 
 
1. Compute n as a product of two very large random 
prime numbers p and q. Although n is part of the public 
key, factors of n, p and q are kept secret. 
 

 
 
2. Pick private (decryption) key d as a large random 
integer that is relatively prime to , 

that is their greatest common divisor must be 1. The 
inventors of the RSA encryption system suggested that 
any prime number greater than max(p, q) would suffice 
for decryption key d, but it is important that d is chosen 
from a large enough set so that a cryptanalyst cannot find 
it by direct search: 
 

 
 
3. The encryption (public) key is computed to be the 
multiplicative inverse of d modulo .  

 

 
 
It is important to note 
that , then 

Euler’s totient function   

 is the number of numbers that are smaller than n 
and are co prime with n. There is no efficient algorithm to 
factorize large integers and if the factors p and q of n are 
not known, there is also no efficient way to 
compute . The security of the RSA lies in this 
property. 
 
 
Digital signatures 
 
 “Digital signature is a special application of cryptographic 
technology to assure the origin of a message and identity 
of the sender” (Brown, 1993). There are various 
cryptographic schemes to implement digital signatures 
and the RSA algorithm is first encryption system suitable 
for signing and encrypting documents. 

For Bob to sign a message M he wants to send to Alice 
using the RSA public cryptosystem, he first computes the 
message signature “sign” using his decryption 
algorithm/key DB,  this makes sense because in RSA 
cryptosystem has a property that each message is a 
cipher text of some other message: 

 

 
 
After the message has been signed to assure the identity 
of  the   sender,   he   can   now   encrypt  it   with   Alice’s 
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encryption algorithm/key for privacy: 
 

 
 
When Alice gets the cipher text that she knows it’s from 
Bob, she first decrypts the cipher text DA  to get “Sign” 
and encrypts the signature with Bob’s algorithm EB  to get 
the message: 
 

 
 
With the message signature pair (M, Sign), Alice cannot 
modify the message because she will have to know Bob’s 
private key to sign it and Bob cannot deny having sent 
Alice the message because only he knows his private key 
and can create: 
  

 
 
The RSA cryptosystem has been adapted to create 
several signature schemes, the most recent the 
Probalistic Signature Scheme (RSA-PSS) which follows 
the hash then sign paradigm (RSA Laboratories, 2009). It 
was invented by Phillip Rogaway and Bellare Mihir and 
patented in 2006.  
 
 
Security of the RSA 
 
There have been several attacks on the RSA encryption 
system and most of them are as a result of improper use 
of the encryption system.  For example, the low private 
exponent where a small decryption key is chosen to 
reduce the decryption keys generation time or the low 
public exponent where a small public key is chosen to 
improve encryption or signature time. 

When a low decryption key is used, the factorization of 
N can be found in polynomial time, and when a small 
encryption key is used, there are several attacks 
possible, for example the partial key exposure attacks 
(Boneh and Durfee, 1998).  

These attacks can be avoided by using a very large 
random encryption/decryption keys. However, the 
adaptive chosen cipher text attack is not quite as a result 
of improper use of the RSA.  Bleichenbacher was able to 
mount a practical attack on the RSA implementation of 
the Secure Socket Layer (SSL) (Bleichenbacher, 1998) 
using adaptive chosen cipher text attack. This attack 
however can be prevented using secure padding 
schemes like the Optimal Asymmetric Encryption padding 
(OAEP) (Bellare and Rogaway, 1994).  The RSA-OAEP 
was proven to be secure under the RSA assumption 
(Eiichiro et al., 2004) and there have been several 
improvements thus strengthening the RSA-OAEP 
encryption   system   standard   (Garg and Verma, 2009). 
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CONCLUSION 
 
Key exchange has always been a problem for symmetric 
ciphers, the idea of public key cryptography by Whitfield 
and Hellman solved this problem. The idea is based on 
mathematical one way functions; that is functions that are 
easy to solve on one direction but hard to reverse. The 
RSA was the first encryption that gave a practical solution 
to this idea and the RSA can also be used to sign 
documents digitally (Digital Signatures).  

The RSA when used with the Chinese remainder 
theorem RSA-CRT is theoretically known to be 4 times 
faster than the standard RSA and (Garg and Verma, 
2009) proposed a scheme that is 56 times faster than the 
standard RSA. Although this is a significant improvement, 
symmetric encryption systems are faster than asymmetric 
encryption systems. In hardware, the DES is between 
1000 and 10,000 times faster than the RSA (RSA 
Laboratories, 2009).  As a result of this, if Bob wants to 
send a message to Alice, he encrypts the message with a 
symmetric encryption system like the AES and the 
symmetric encryption key with a public key cryptosystem. 
The encrypted message and encrypted key is sent to 
Alice. Alice can now decrypt the symmetric key with her 
private key and use the decrypted key to decrypt the 
message. 

There are other public key encryption systems based 
on different computational problems. Rabin Crypto-
system; based on the difficulty in finding square roots a 
modulo number (Rabin, 1979), Polly Cracker; the 
difficulty of Multivariate Polynomial Equation (Koblitz, 
1998), Knapsack algorithm (Merkle and Hellman, 1982). 
The knapsack algorithm for PKC has now been broken. 
More popular encryption systems Elgamal Cryptosystem 
(Elgamal, 1985), Elliptic Curve Encryption System 
(Koblitz, 1987) are based on the discrete logarithmic 
problem. 

The security of all public key encryptions systems rests 
on the underlying mathematical problem, if there is any 
leap in mathematics that finds an efficient way to solve 
any of these problems; the corresponding encryption 
system becomes useless.  
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