
One Way Hash Functions and DES

Ralph C. Merkie

Xerox PARC

3333 Coyote Hill Rd

Palo Alto, CA. 94304

merkle@xerox corn

ABSTRACT

One way hash functions are a major tool in cryptography. DES is the best

known and most widely used encryption function in the commercial world

today. Generating a one-way hash function which is secure if DES is a “good”

block cipher would therefore be useful. We show three such functions which

are secure if DES is a good random block cipher.

Introduction

DES can be used to build a one-way hash function which is secure if DES is a

“good” block cipher. Previous efforts have not produced a satisfactory

resul~4,5.11.12] (although recent work at IBM[18.19] appears very hopeful). We will

use the me&method discussed by Merkle[l,2] for the construction of one-way hash

functions. Similar ideas have also been presented by Damgaard[ZO] and Naor and

Y ung[3].

One way hash functions (also called MDC’s (Manipulation Detection Codes),

fingerprints. cryptographically secure checksums, one way functions. and others) have

been generally known for some time. The first definition was apparently given by

Merkle [1.2] who also gave a method of constructing one-way hash functions from

random block ciphers. More recent overviews have been given by Jueneman. Matyas,

and Meyer[ll], Jueneman[4], and Damgaard[ZO]. The method of construction used by

Merkle was provably secure[2]. provided that the block cipher was “random” (see

below). Naor and Yung[3] also proved security results in the context of polynomial

time reducibilities.

We will review the definitions and method of construction required to build a

one-way hash function. We will then show how DES can be used to build a function

that satisfies the desired properties, assuming that DES is “random.” Because DES is

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 428-446, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

429

in fact non-random in several known special cases. the constructions shown here
would have to be modified to take this into account before being used in a real
system.

Definitions

Broadly speaking, there are two definitions for one-way hash functions. The fh t
definition is for a "weak" one-way hash function. A weak one-way hash function is a
function F such that:

1.) F can be applied to any argument of any size. For notational convenience. F
applied to more than one argument is equivalent to F applied to the bit-wise
concatenation of all its arguments.

2.) F produces a fixed size output. (The output might be 56 bits).

3.) Given F and x. it is easy to compute F(x),

4.) Given F and a "suitably chosen" (e.g.. random) x. it is computationally
infeasible to find an x' * x such that F(x) = F(x').

The phrase "computationally infeasible" used above can be replaced with any of
several more precise definitions -- we defer a more detailed definition for purposes of
this paper till later. but note in passing that each precise definition of computational
infeasibility will in turn result in a somewhat different definition of a one way hash
function.

In a weak one way hash function there is no guarantee that it is computationally
infeasible to find pairs of inputs that map onto the same output. That is. it might be
that F(z) = F(z') for some inputs z and z' that someone in fact found. However. if x
f z and x f z'. then this doesn't matter. Clearly, we must prevent someone from
deliberately picking x so that it is equal to a value of z or z' which they know has this
undesirable property. What's more. it must be difficult to generate too many z-z'

pairs (and it clearly must be impossible to generate z-z' pairs in which we can
effectively control the value of z or z') or even a randomly chosen x would not be safe.
Thus, choosing x in a random fashion should make it unlikely that anyone can find an
x' such that F(x)= F(x'). It is possible, however, to choose x in a non-random fashion
and still be safe. If we assume that F is random (often a reasonable assumption in
practice as discussed later). then any method of choosing x that does not depend on F
is effectively random with respect to F and therefore suitable. This observation is
sometimes important in practice, for it allows simpler (therefore faster and cheaper)
methods of selecting x. Weak one-way hash functions have been described based on
DES[12].

Various methods of randomizing x have been proposed. Merklej21 proposed that

430

x be encrypted with a good block cipher using a truly random key. The key would be
pre-pended to the resulting ciphertext, and the new message would then be random.
Damgaardbrivate communication] proposed selecting a short random pre-fix to x.
When hashed in the manner suggested here and in [20], such a random pre-fix would
effectively randomize the entire hash. Naor and Yung[3] do not randomize x. instead
they randomly choose the function applied to x from a family of functions (also
providing the advantages of parameterization discussed in the next paragraph). These
various methods have different advantages and disadvantages. depending on the
specific objectives being pursued.

Weak one-way hash functions also suffer from the problem that repeated use
weakens them. That is. if a weak one-way hash function is used to hash 1.OOO
different random values for x (which might represent 1.000 different messages signed
by a 1,000 different people) then the chances of finding an x' such that one of the
thousand values of x satisfies F(x) = F(x') might be LOO0 times higher. As more
people sign more messages with the same weak one-way hash function. the overall
security of the system is degraded. This undesirable state of affairs can be dealt with
by parameterizing the family of one-way hash functions F. We simply define a family
of one-way hash functions with the property that each member Fi of the family is
different from all other members of the family, and so any information about how to
break F' will provide no help in breaking FJ for i * j. If the system is designed so that
every use of a weak one-way hash function is parameterized by a different parameter.
then overall system security can be kept high.

The less mnemonic term "property 2" was used in [2] -- the term "weak" seems
preferable.

The alternative definition is of a "strong" one-way hash function. A strong one-
way hash function is a function F such that:

1.) F can be applied to any argument of any size. For notational convenience. F
applied to more than one argument is equivalent to F applied to the bit-wise
concatenation of all its arguments.

2.) F produces a fixed size output. (The output might be 112 bits).

3.) Given F and x. it is easy to compute F(x).

4.) Given F. it is computationally infeasible to find any pair x, x' such that x * x'

andF(x) = F(x').

Strong one-way hash functions are easier to use in systems design than weak one-
way hash functions because there are no pre-conditions on the selection of x. and they
provide the full claimed level of security even when used repeatedly (or misused
either because of error or sub-optimal system design). Many authors recomend the
exclusive use of strong one-way hash functions[4.11] because of the practical

431

difficulties of insuring that the pre-conditions on x imposed by a weak one-way hash
function are met, and the increased problems in insuring that different parameters are
selected for each use. In practice, the constraints imposed by use of a weak one-way
hash hnction imply that x cannot be chosen by an agent who has a motive to break
the system. If A signs a message which B provides, then A will have to "randomize"
the message by some means before signing it. If A fails to randomize the message,
then B can select a "rigged" message, and later surprise A by exhibiting a novel
message and showing that A signed it.

We shall not consider weak one-way hash functions further, except to note they
can be quite valuable in some system designs, although they must be used with
caution. Parameterized weak one-way hash functions in particular appear to be
under-rated. Although the design process is more compiex. systems built in this
fashion will require half as much storage for the "y" values. In essence. this is because
the size of the output for a strong one-way hash function must be twice as large as one
might expect to avoid "birthday" or "square root" attacks (see later). That is. a typical
weak one-way hash function might have an output size of 56 bits. and might require
256 operations to break. A typical strong one-way hash hnction might have an output
size of 112 bits but still require only 2s6 operations to break.

The phrases "it is computationally infeasible" and "it is easy to compute" can be
replaced with many different definitions. A fully satisfactory definition for practical
applications must consider both constant factors and average case complexity. DES
has been criticized for having a key size that is "too small" (only 56 bits), while a
slightly larger key size (64 bits) would eliminate most criticism. A satisfactory
definition of "computationally infeasible" should be able to distinguish meaningfully
between these two cases. For this reason. the definition we use here is stronger than
the often-used definitions based on polynomial time reductions. This stronger
definition allows us to prove stronger results (results of more practical cryptographic
significance) but in exchange we must provide better informal reasons for believing
that a function reasonably approximates our definition.

For purposes of this paper we will use the "random function". "demon in a box"
or "oracle" model of complexity for DES. That is. we will assume that DES is
actually random, in the sense that encryption and decryption are accomplished by
looking up the correct value in a large table of random numbers. The table is secret
and information about table entries can be learned only by requesting the value for
some table entry -- which costs one "operation". More or less equivalently. we can
view DES as a black box with a demon inside -- whenever we wish to encrypt or
decrypt a value with some key. we must slip the input into the box and ask the demon
to tell us the value. The demon will generate a truly random number and return it to
us. again charging us one "operation" for his efforts. The demon promises to be
consistent -- once he's given you the ciphertext for a given key and plaintext. he will
always return the same ciphertext when given the same key and plaintext. He will
also give you the correct plaintext if you happen to give him the ciphertext and key

432

just mentioned.

Although we assume that DES is random, it is not immediately obvious how to
apply DES to a large x and produce a small output in a secure manner. Several
previous efforts have failed[4.5.11,13]. (A recent proposal by IBM(18.191 looks very
hopehl and has been carefully scrutinized within IBM. Although there is as yet no
proof that it is correct. should such a proof be found the IBM proposal would then be
preferable because of its superior performance). The successful attacks on these
methods do not require any knowledge of the internal structure of DES and so would
still work if DES were truly random. Therefore, it is useful to show a method of
generating a one-way hash function by using repeated applications of DES which is
immune from this class of attacks.

While there has been a lively debate about the actual security level provided by
DES[14.15,16,17] the fact remains that no major deviations from random behavior
have been found. The most significant deviation noted would effectively reduce the
key size by one bit to 55 bits [9]. To circumvent the problem caused by this non-
random behavior would require the redesign of the proposals made here to use a
55-bit block cipher. with a corresponding slight reduction in either performance or
security. Other known cases of non-randomness in DES would require case-by-case
analysis and possible redesign. Aside from the few known cases of non-random
behavior. DES is generally viewed as a "random" function in the literaturell71 and it
seems almost certain that some block cipher exists with the desired properties,
regardless of the eventual fate of DES. The existence of "random block ciphers"
seems almost assured in some intuitive sense, and DES appears to be a reasonable
approximation to one.

The primary use of one-way hash functions is authentication[l.ll]. If y = F(x).
and we are already confident that we know y, then we can obtain x from any source
(in particular. an untrustworthy. unreliable but cheap and convenient source) and
verify that y = F(x). Because it is computationally infeasible to find an x' such that
y = F(x'). we now have confidence that we have the correct value of x.

The advantages of using one-way functions are clear if. for example. x is a one-
megabyte document while y is 112 bits. If we can design a system that provides good
security for y. then we can always double-check x any time we wish -- thus. we can be
much more casual (i.e.. spend less money) in storing x. One-way hash functions are
virtually a necessitp in digitally signing large messages because most digital signature
methods are rather inefficient. If we first reduce a one-megabyte x to a small y. then
signing the small y is much easier. One-way hash functions are a universal building
block in authentication systems, and have been used to define practical digital
signatures[l.2.6] and to detect fraudulent changes in messages[4.11]. When used in a
tree-structure. one-way hash functions can be used to conveniently authenticate any
individual entry in the "public directory" (so often needed in public-key based
systems)[1.71.

433

The meta-method

We first define a meta-method (given in [1,2]) for constructing F. In this meta-
method, we build F (which accepts an arbitrarily large argument. x) from a simpler
function Fo. The definition of FO is exactly the same as the definition of F. except that
FO accepts only a fixed size argument. That is, Fo might accept an input of 224 bits.
while producing a smaller output of perhaps 112 bits. As we shall see, the larger the

input that FO accepts the better. for this will mean we can more rapidly hash down the

arbitrarily large input. x. We require, however, that Fo have an input that is larger
than its output.

We can now define F in terms of FO as follows:

Function F(x) returns FixedSizeOutputString; -- This might be 112 bits

x: ARRAY[l .. n] OF convenientlySizedChunks; -- perhaps 112 bits

-- Note that SizeOfCinput to Fo) =

-- SizeOficonveniently SizedChunks) + SizeOfiFixedSizeOutputString).
result: FixedSizeOutputString; -- perhaps 112 bits

BEGIN

result = 0;

FOR i = 1 to n DO result = Fo(result.x[i]);

RETURN(result):

END;

As an aside. we note that x is padded with 0's until its size is an integral multiple
of the size of the convenientlySizedChunks. Note that padding with 0 s might
introduce some ambiguity about the exact value of x that is being authenticated. as
discussed by Juenernan[4]. The message "010110" padded to 8 bits would be
"01011OOO" and it is now unclear how many trailing 0's were present in the original
message. Several methods are available to resolve this ambiguity. We select a
method that will also be useful in resolving a further problem: we append the length
of x. in bits. at the end of x. To make this additional ''length" field easy to find. we
shall right justify it in the final block. If the length field won't fit, we add additional
blocks to the end of x. For purposes of notation, we shall assume that the final few
blocks of x hold this count; for example, if we desire a 64-bit count and the

"convenientlySizedChunks" are 8 bits. then the count would occupy xfn-71. x[n-61.
x(n-51, ... x[n-11, and x[n].

434

As a second aside. the linear pattern of computing F used above can be replaced
with a tree pattern. as discussed in [l. 2,7 page 1701. This tree structure is very useful
when we wish to authenticate not the entire input but only a single item (or leaf) from
the input. This occurs in practice when, for example, we wish to authenticate the
public key of a single user from the public directory. Certainly. if we know the correct
hash value for the entire public directory. we could rehash and re-verify the whole
thing before believing that the single entry we were interested in was correct. This.
however, is very inefficient. If the one-way hash function used a tree pattern. then we
could authenticate a single leaf node (the one entry in the public directory that we"re
interested in) if we knew only that entry, and the log n entries along the
authentication path from the leaf to the root. This reduces q n) computations to
verify the whole public directory to O(1og n) computations to verify the single leaf
entry we"re interested in.

In looking at the definition of F we note that the input. x, is treated as an array of
"convenientlySizedChunks". These chunks will have a size which is the size of the
input to Fo less the size of the output from Fo. If the input is 224 bits. and the output
is 112 bits. then each chunk will be 224-112 = 112 bits. Clearly, bigger chunks imply
fewer applications of Fo, which will make the computation of F more efficient. On
the other hand. the chunks can be as small as one bia3.201. which is inefficient but still
secure.

Using this construction, we can now prove that breaking F (finding an x and x'
such that F(x) = F(x') and x f x') is at least as hard as breaking Fo. This is easily
shown by induction. We first make the assumption that x and x' have the same length
-- we shall relax this assumption later.

Basis:

for n = 1. y = F(x) = Fo(O.x[l]) (where 0 is the all zero bit pattern).

Clearly, breaking F must be as hard as breaking FO in this case, for F and Fo are
the same. That is. if x f x' and F(x) = F(x') and n = l . then x[l] f x'[l] and Fo(O.x[l])
= Fo(O.x'[l]). Thus. by definition a "break" of F implies a "break" of Fo.

Induct ion :

We know the property holds for n. and we wish to show it holds for n + 1.

y = F(x) = Fo(F(x[l .. n]). x[n + 11).

Neither F(x[l .. n]) nor x[n+l] (i.e.. neither of the arguments to Fo) can be
modified successfully. for then we would have broken Fo directly. But if F(x[l .. n]) is
correct then. by the induction hypothesis. x[l .. n] cannot have been modified without
breaking Fo. This means that no bit of x could have been modified without breaking
Fo. Q.E.D.

435

In the more general case. it might be that the length of x is not the same as the
length of x'. We can assume. without loss of generality, that x is shorter than x'. (If
this is not the case, then simply swap the names of x and x'). If x is shorter than x'.
and F(x) = F(x'), then the proof given above shows that x is a postfix of x'. In
particular. the length fields of both x and x' must be the same. It is now a simple
matter to reject the string whose length is incorrect.

The particular method selected here to solve the problems caused when x is a
pre-fix or postfix of x' is only one of many. Several other techniques are possible.
Which method is actually used will vary depending on the precise circumstances and
design objectives.

The ability to prove that a break of F implies a break of Fo works for most
definitions of complexity. This will be useful later in the paper when we construct an
Fo' and an Fo" that are not random, but such that breaking them is still
"computationally infeasible".

As an aside, it should be noted that a random block cipher in which the size of
the key was greater than the desired input size to Fo could easily be used to generate a
suitable Fo. We need only define Fo(x) as ENCRYFT(x. 0) (where x is used as the
key, and 0 is the plaintext input consisting of ail 0's). If the key size were, say. 224 bits
then our problem would be well solved. That was exactly the approach taken in 11.21.
Construction of random block ciphers with large keys seems well within current
capabilities. DES. for example, uses 768 bits of key material internally (16*48 bits).
Any problems in using DES as a one-way hash function stem almost exclusively from
its limited key size. This paper primarily addresses the specific problems involved in
using DES as currently defined as the basis for a one-way hash function -- if DES had
a significantly larger key size then the problem solved here would be trivial.

With the construction of F from Fo now in hand, it is clear what to do: define Fo
in terms of DES. This is simpler than trying to define F in terms of DES directly --
which has been tried and can lead to subtle problems[4.5.11]. Defining FO in terms of
DES will involve a fixed number of applications of DES in some particular pattern.
Analyzing the complexity of a fixed pattern of applications of DES can be tedious. but
has proven easier than analyzing the indefinite number of applications of DES that
are required when F is defined directly in terms of DES.

A Method

In our first method, we shall simply attempt to produce an Fo such that its input
is larger than its output: we won't worry about efficiency. In our second and third
methods, we"l1 see improvements in efficiency but at the cost of more complex

436

analyses. The methods presented here are by no means unique, nor is there any
reason to believe they are the most efficient. Further work should produce improved
methods. The principle. however, should be clear -- try to combine a few applications
of DES in such a way that we produce a satisfactory Fo -- (and such that the analysis is
tractable.. .) .

For this first method we will adopt a fixed size output of 112 bits for both F and
FO because we are building a strong one-way hash function which we wish to be as
secure as DES, i.e.. it must require at least 256 operations to break. The output size
must be at least 112 bits because we know that smaller values of the output will make
the system vulnerable to "square root attacks"[4,5.8,11]. If the output size were 56
bits. then hashing 228 arbitrarily chosen messages would result in a high probability
that two of those messages produced the same 56-bit output. Because the probability
of a collision goes up sharply as the number of messages exceeds the square root of
the number of possible output values. such attacks are called "square root attacks"
(also known as "birthday attacks"[5] because the probability that two people at a party
were born on the same day goes up sharply when the number of people at the party
exceeds the square root of 365. or about 19 people).

We turn now to some definitions. DES accepts 64 bits of input. 56 bits of key
material, and produces a 64-bit output. We denote encryption by:

64-bit-ciphertext = ENCRYPT(56-bit-key. 64-bit-plaintext)

We denote decryption by:

64-bit-plaintext = DECRY PT(56-bit-key. 64-bit-ciphertext)

We can view €>CRYPT and DECRYPT as functions that map from 120 bits
onto 64 bits. That is. ENCRYPT and DECRYIT can be viewed as very large tables
which have random (or nearly random -- see below) entries. We do not initially know
the random values in these tables. and can find out only by using one of the two

functions ENCRYPT or DECRYPT. (The concept of random encryption functions
was given by Shannon[lO In some sense. our 2120 random 64-bit entries are just
2126 random bits. These 2]li6 random bits can be used in a n y way want -- if we desire
a large number of random bits. we need only look up many different values in our
giant table. We are fundamentally limited only by the total number of random bits.
not the particular format they are packaged in. We can repackage the bits to best suit
our needs -- which is exactly what we will be doing.

Unfortunately. EXCRYPT (and similarly DECRYPT) is non-random in the
following sense: we can easily generate a legitimate input-output pair in which the
output value is non-random. Even worse. we can easily generate an input-output pair
in which the output value is anything that we want! Given a 64-bit value that we want
produced as the output we can easily find many 120-bit inputs that produce the
desired output value. That is. we can easily find many keys and plaintexts such that
ENCRYPT(key.plaintext) = ciphertext. We simply pick a random 56-bit key. and

437

then decrypt the 64-bit ciphertext with that key. This is bad. To remedy this. we can
XOR the 64-bit output with the 64-bit input, to produce a new 64-bit output We will
define this operation with a lower case fa (this definition has been used before[l2]).
By definition, if the 120-bit input to fo is arbitrarily divided into a 56-bit key and a
64-bit plaintext. then

fo(key,plaintext) = ENCRYm(key, plaintext) XOR plaintext

All our further use of DES will be through this new function, fo. This function
maps 120 bits onto 64 bits. It will be a good approximation to a random function if
DES is a good approximation to a random function. In particular, fo has the
interesting property that the output value will be random no matter how it is computed

If we compute n values of fo by computing DES n different times. then the n output
values of fo will be randomly distributed, In contrast the input values might be quite
systematic -- we could simply compute fo(0). fo(1). fo(2). ... fo(n-1). The sequence of
input values 0.1.2. ... n-1 certainly qualifies as non-random. However. no matter how
hard we try. the output values will be random, as can be easily proven. First. we note
that there are only two possible methods of computing an output value of fo -- either
we encrypt some plaintext with DES. or we decrypt some ciphertext. If we encrypt
some plaintext, then the ciphertext produced by the encryption is random (courtesy of
our demon). When we exclusive-or this random ciphertext with the (possibly non-
random) plaintext, the result is also random. Equivalently, if we decrypt a ciphertext.
then the plaintext produced by the decryption is random (again courtesy of our
demon). When we exclusive-or this random plaintext with the (possibly non-random)
ciphertext, the result is also random. As a result. the output of fo is always random. no
matter how it was computed.

In this paragraph we first discuss and then decide we can safely ignore a minor
deviation from randomness caused by the fact that DES is a permutation. I f we
compute ENCRYFT(key. p l a i d) = cipherl, then we know that computing
ENCRYPT(key, plain2)=cipher2 will not produce cipherl. i.e.. that cipherl f
cipher2. (We are simply observing that each plaintext has one and only one
ciphertext. and each ciphertext has one and only one plaintext For this reason, DES
is not quite random). This. however, is a very minor deviation from randomness in
the context in which we are using DES. Recall that we only wish to achieve a level of
security equivalent to DES. which means that we only need to insure that fo behaves
randomly for at most 256 different values applied to the input Now. if we have
actually applied fo 2'6 times, then at worst there will not be 264 possible output values
left but instead only 261 - 2? This corresponds to about 63.994 bits -- a loss which
we can and will neglect. (Put another way. this means that our demon might compute
a random 64-bit value and then occasionally reject the value because it's already been
used for some other plaintext-ciphertext pair. The demon will reject a random value
at most one time in 256. This slight deviation from randomness has almost no
practical impact on the proofs that follow).

Because fo is such a good approximation to a random function. w e will be unable

to find two inputs which map onto a 64-bit output in significantly less than 2"
operations (as a consequence of the birthday problem). This, however, does not
provide good enough security. We want to force cryptanalysis to take at least 256
operations, which will require an output of 112 bits. To accomplish this. we will
simply look up **x" twice. and concatenate the two outputs. This will produce 128
bits. This is more than we need, so we throw away the extra bits. However, we only
have a single function fo -- how can we look up x twice? By reducing the size of x
from 120 bits to 119 bits, and using the additional bit to effectively split fo into two
different functions.

Formally. we declare that x is 119 bits. We define Fo as:

Fo(x)

Fo(x) is simply the concatenation of the two applications of fo. We first prefixed
x with a "O", and then with a "1" to distinguish the two applications of fo. To produce
the desired 112 bit output. we threw away the final 16 bits of the 128 bits produced.

Intuitively, fo is just a very large random table. The index into this table is a 120
bit number. By making x only 119 bits in size, we effectively produce two tables -- the
first half of fo and the second half of fo. By looking up x first in the first half. and then
in the second half. we obtain two totally unrelated random numbers. This produces
128 random bits from a single value of x. Now. we need only throw away 16 bits. We
are left with 112 random bits. which is what we desired.

As a result. we have a random function Fo which accepts a 119 bit input and
produces a 112 bit output. Therefore we can use Fo to build a one-way hash function
F that will accept 119-112 = 7 bits per iteration. Each iteration requires two
computations of DES. so we require one application of DES for every 3.5 bits to be
hashed. The performance is poor -- but we can prove rather easily that it's as secure
as DES under the assumption that DES is a random function.

Firstll2bitsOf(fo("O", x), fo("1". x))

A Faster Method

We can show a faster method is also secure. though the analysis is somewhat
more complex. The faster method will require that we divide x into two pieces: x l of
118 bits and x2 of 54 (= 120-64-2) bits. In total. x will be 172 (118 + 54) bits. We will
reduce these 172 bits to 128 bits using 4 applications of DES, which allows us to hash
(172-128)/4 = 11 bits per application of DES. This is clearly better than 3.5. though
better is still possible.

We will define Fo' as follows:

Fo'

a: fO("O0". c: fd''10''. xl). x2) ,

439

Note that Fo' (and so F') produce a 128 bit output. We will use this additional
output only to guarantee 56 bits of equivalent security -- we will not provide the full
64 bits of security that might seem possible. but will instead "waste" a few bits to
make the construction go through. (The actual security is somewhat better than 56
bits. though we will not prove this).

Notationally. we have labeled the intermediate values in the computation with
the letters a, b, c. and d.

The degradation in security in this computation occurs because different values
of x i might produce the same intermediate values for c or d. That is, it might happen
that c = fo('I0". XI) = c" = f&'lO". XI"). If such collisions did not occur, then we
could guarantee that different values of xl would produce different values for both c
and d. This in turn would let us guarantee that all pairs x. x' such that x * x' would
result in selection of the values for both a and b from different entries in our giant
table. That is. if x f x' then either xz z xz" or both (c f c'' and d # d"). But then the
two values used as input to fo to compute a and a" must be different, and the two
values used as input to fo to compute b and b" must also be different. Thus, we have
guaranteed that a and b were selected from different locations in our giant table.
which lets us conclude that the probability of a collision in both a and b is a random
event whose probability we can compute, and which is small (less than one in 256).

Of course. collisions involving c or d will occur. and so the foregoing logic is false.
However, we can bound the number of collisions that are expected to occur. and use
this bound to determine a bound on the deterioration in the security of F<.

We observe that c and d are always random. because they are produced as
outputs from fo and we have already shown that outputs from fo are always random.
no matter how computed. Therefore, no matter how cleverly XI is chosen, the
probability that the same value of c (or of d) is produced by two different values of x i
is random. Therefore. if we limit ourselves to 256 a plications of fo. the expected

computations of values of d). Given that there are at most 2# such collisions. the
expected maximum number of 3 way collisions is 256 * (248/264) = 240. The expected
maximum number of n-way collisions is 264-n*8, which implies there are probably no
%way collisions. We can use a 7-way collision as an upper bound.

Now, if Fo'(x) = Fo'(x'). and x if x'. then either x l # XI'' or x2 f x2". If xz # x2*'.

then the computations of a and b were random, and the probability of a random
collision for both of them is negligible (if 256 com utations of a and b had already

concerned). If, on the other hand, XI # XI'' and x2 = x2". we can further divide the
situation into two cases: either (c = c" or d = d"), or (c # c" and d f d"). If (c * c"
and d f d") then by the logic used before the computations of a and b were random.
and the probability of a random collision for both of them is negligible. If. on the

maximum number of collisions will be 256 * (256/2 6p) or 2*. (This also holds for

been done, the probability of a collision would be 2 5 9 /2128 -- negligible as far as we"re

440

other hand, (c = c" or d = d") then we can use our upper bound on the number of
collisions to limit the number of distinct values of XI for which this can occur. (we
reject the case where c = c" and d = d" as being sufficiently improbable that we can
ignore it). We can assume that c = c'' (symetncal considerations hold if, instead, d =
d"). Obviously there are at most 7 different values for x i that map onto the same
value for c. Therefore, instead of getting random values when we pick a and b. we
might at worst get 7 non-random trials in which the 7 values computed for a were
always the same (because c and x2 were always the same. and hence a = fO("O0". c. x2

) would be the same). This would generate 7 different trials for b, but b is only 64 bits
-- so these 7 trials have a higher probability of success than 7 tr ials that randomly
selected a 128-bit value. Specificall the probability of success in these 7 random

(64 - log2 49) or 58.3 bits. This is greater than 56. as desired. (This does not imp1 our
security level is 58.3 bits -- remember that we have already assumed a limit of 2 in a
few places. It simply confirms that we can reach at least 56 bits of security. For
various reasons, we could actually achieve more than 56 bits of security -- but this
suffices to show the idea).

Although the foregoing discussion was relatively informal because of the relative
simplicity of the problem. the techniques become harder to apply in more complex
cases. In the following case. a more formal analysis was needed because of the sheer
complexity of the situation.

trials for b is at most 7 2 /2 64 o r 49/2'. This produces an equivalent security level of

5 i .

A Complex And Yet Faster Method

It is again possible to improve the performance. though to do so requires a
significantly more complex analysis. We will divide a 234 bit x into 2 pieces. each of
117 bits in size: x1 and x2. We will define Fo" as:

Fo" =-

fo("00". First59bitsOf(fo(" 100". XI)). First59bitsOf(fo("lOl". x2))).

fo("O1". First59bitsOf(fo("llO". XI)). First59bitsOf(f~("lll". x2)))

Essentially. we have built a small tree of fo's. Because there are six applications
of fo. we have used the first two or three bits to divide fo into six distinct functions.
Thus, fO("O0". ...). fO("O1". ...). fo("100". ...). fo("101". ...), fO("llO". ...) and fo(''l11''.
...) can be viewed as six unrelated random functions. The "leaf' functions in this tree
map 117 bits onto 59 bits. The "root" functions map 118 bits onto 64 bits. Overall.
Fo" maps 234 bits onto 128 bits using six applications of DES, which means we can
hash 234-128 = 106 bits/iteration, or 106/6 = almost 18 bits/application of DES.
This is an improvement over 11 bits/application of DES.

44 1

However, we are now left with the problem of showing that we have not
significantly degraded security. Again, there is degradation in security caused by
collisions during the intermediate computations. This is why we kept 128 bits of
output -- Fo" is not perfectly random and we must retain additional output bits in
order to reach our desired objective of 2s6 operations to break it. Our proof will
actually not be able to show that we have retained the full 56-bits of security that we
desire, though we will come close. Tightening up the proof would make it even more
complex, though probably (although not certainly) providing the 56-bit security level
desired.

First, we shall label the various values produced by this computation.

Fo"

a: fo("o0". c: First59bitsOf(fo("lOO", XI)). e: First59bitsOf(fo("lOl". x2))).

b: fO("01". d: First59bitsOf(f~("110". XI)). f: FirstS9bitsOf(fo(l111". x2)))

We first note that c. e. d. and fa re random. No matter how cleverly we pick x i
and x2. these values are random and we can apply statistical methods to them. In
particular, every value of x i and every value of x2 will generate a tuple: that is. every
value for xi will generate a tuple <c.d>, and every value for x2 will generate a tuple
<e,D. Because fo is random. the actual values of XI and of x2 are irrelevant -- the only
thing that matters is that we have generated tuples <c,d> and <e.D.

This leads to our first definition: we define a ranlorn linkage map as two sets of
tuples, each tuple having two chosen 59-bit elements. and each set of tuples
containing 256 elements. The two 59-bit elements in a tuple are "linked" because they
are generated from a single value of XI or of x2. Note that this is equivalent to saying
that the two elements in a tuple are generated randomly. hence the name random
linkage map.

Intuitively. a random linkage map is all the useful information that any algorithm
can ever hope to obtain about the four possible intermediate values. A random
linkage map actually requires computations of fo to compute. so it actually is an
upper bound on the information that can be obtained. Any actual algorithm that
attempts to crack Fo" will in fact have less information than is present in a random
linkage map. However, it can't hurt to give the algorithm additional information for
free. Any optimal algorithm to crack Fo" should not slow down if it is given all the
information in a random linkage map, instead of getting only the sub-set of
information about a random linkage map that it actually computed. The major reason
for providing all the information in a random linkage map is that. although an actual
algorithm would use only part of the information. it is not clear which part it would
select. By providing all the information. we avoid the problems involved in
determining optimal strategies for dealing with the partial information that can
actually be computed.

442

For any computation of Fo" and any actual value of x, we will generate four
intermediate values c. e. d, and f. By definition, both <c.d>. and <e.D will appear in
the corresponding random linkage map. This motivates the following definition: a
quadruple <c,e.d,D is doubh fink& with respect to a random linkage map if the tuple
<c.d> appears in the first set and the tuple <e.D appears in the second set.

Given a doubly linked quadruple <c.e,d,D, we can compute a valid output of
Fo". This output is valid because there exist an input XI concatenated with x2, where
XI links the tuple <c.d> and x2 links the tuple <e.D, which generates the intermediate
quadruple <c,e.d.D from which the output is then computed. That is. a doubly linked
quadruple is just as good as an actual input, x.

We now prove that the expected running time for an optmal algorithm to find
two values x. x' such that Fo"(x) = Fo"(x') (where Fo" is based on DES in the manner
described, and DES is assumed to be random). is at least as long as the expected
running time for an algorithm to find a pair of doubly linked quadruples such that
both quadruples generate the same output (the same values for a and c). given only a
random linkage map and the ability to compute values for a and c using fo. That is,
the algorithm that uses the random linkage map cannot use fo to compute new values
for c, e. d. and f (after all. it already has the random linkage map which is supposed to
provide at least as much information as could ever be obtained by computing such
intermediate values with fo -- so letting it compute more intermediate values would
provide it with an unfair advantage). Instead, valid intermediate quadruples must be
obtained from the linkage map. Both algorithms can apply fo to arguments that are
prefixed with "0". for these are just the values used to compute either a or c. The
random linkage map contains no information about computations of a or c.

The proof is relatively simple -- given the foregoing definitions. If we are given
any algorithm for cracking Fo" we can use it to define an algorithm that is just as good
at solving an equivalent problem defined in terms of the random linkage map. Given
a random linkage map and an Fo" cracking algorithm. we run the Fo" cracking
algorithm. but now lie to it whenever it tries to compute fo. Instead of giving it the
"correct" truly random value, we instead give it a value selected at random from the
random linkage map. Of course, we must be consistent. If the optimal algorithm
gives us the same argument twice, we return the same value. In addition. if it gives us
a value for which we"ve already returned a c. and now requests a d. we must return
the proper linked value. This does not introduce any bias. though. because all the
entries in a random linkage map are random. The t ru ly random values generated by
the DES "oracle" are just as good as the truly random values taken from the random
linkage map. and so the expected running time of this "random linkage map"
cracking algorithm must be less than or equal to the expected running time for the
corresponding Fo" cracking algorithm. Therefore. a lower bound on the expected
running time of a "random linkage map" cracking algorithm is also a lower bound on
the expected running time of any Fo" cracking algorithm.

We can now concentrate on finding a lower bound for the running time of an

443

algorithm to crack a random linkage map. We start by analyzing the intermediate
values c. e, d, and fin a random linkage map.

We define a collision for c. e. d, or f with respect to a linkage map as a value of c,
e, d. or f which appears in two different tuples in the same set and in the same position
in the two tuples.

First. because c. e. d. and f are 59 bits. an upper bound on the expected number
of collisions for each of them is (2j6/2j * 2s6 or 2s3. The number of triple collisions
will be bounded by (253/254 * 2s6 or 2'. In general. the expected number of n-tuple
collisions is bounded by 259-3*n. There will probably not be a n y 20-tuple collisions, so
we can safely use this as the expected maximum.

Our objective is to find a lower bound for the running time of the best algorithm
that finds two doubly linked quadruples <c.e,d,D and <c".e".d".f'> such that they
produce the same output. i.e.. such that a = fo("O0". c, e) is equal to a" fo("OO", c",
e"), and b = fo("O1". d. f) is equal to b" = fo("O1". d", f'). (Note that the two
quadruples are each doubly linked internally, independently of the other -- the links
do not extend from one quadruple to the other). To do this. we will consider what
happens during an actual run of a linkage-map cracking algorithm. The only things
that such a run can do are compute a value of a from some tuple <c,e>. or compute a
value b from some tuple <d.D (note that these tuples are not the tuples that appear in
the linkage map -- those were tuples <c,d> and<e.D). We can ask. each time such a
computation is performed. what the probability is that that particular computation
will result in finding a pair of quadruples with the desired property -- i.e.. the
probability that that particular computation of fo will terminate the run successfully.
Clearly. i f we can provide an upper bound on the probability of success for each such
computation during the course of the run. then we can determine a lower bound on
the expected running time.

Now. if we were to compute a = fO("O0". c. e) then we could succeed if and only
if there were already two doubly linked quadruples <c.e.d.D and <c".e".d".f'>. and
further the case that b = fo("O1". d. f) = fo("O1". d", f'). We would then succeed if.
after computing a. we found that it matched the value for a". i.e., a = fO("O0". c. e) =
a" = fo("O0". c". e"). If there were only one other quadruple <c".e".d".f'> such that
b = b", then the probability of success would be one chance in 2M. However. there
might be several. In particular. it might be the case that b = b" because d = d" and f
= f' . The only other alternative is that b = b" and either d f d" or f # f'. In the
first case. because there are at most 20 collisions for either d or f. there could be at
most 202 = 400 quadruples matching this criteria. Obtaining a bound for the second
case is more difficult but is possible by noting that every distinct computation of a
produces a random number.

There are at most 256 computations of b. Therefore. the expected maximum
number of collisions for b is 2". The number of triple collisions is 240. the number of
quadruple collisions is 2". and the number of n-way collisions is 264-5*n, Clearly. the

444

expected number of 8-way collisions is 0, and can be neglected. The maximum
number of 7-way collisions is 2'. which is rather small. We could use 7 as a simple
bound on the number of collisions, or we could perform a more complex analysis to
show that. on average, the number of collisions is more like 2 or 3. If we content
ourselves with the easier bound of 7. we can then produce a bound on the probability
of success following each computation of a or b.

For each quadruple <c.e.d.D there are at most 400 quadruples <c",e",d".f '> such
that b = b" because d = d" and f = f'. Further, there are at most 7 collisions such
that b = b" and either d f d" or f f f'. Therefore. there are at most 7*400 = 2,800
quadruples <c",e",d".f'> which might cause the computation of a to terminate the
run. Therefore, the probability of success is upper bounded by 2,800/2&. This
corresponds to 64 - log2 2.800 bits of security. or 64 - 11.5 or about 52.5 bits. This is
somewhat lower than we desire (by 3.5 bits) but it seems likely that tightening the
proof would recover most if not all of this loss.

The most obvious places where this lower bound could be tightened are the
following. First. we always assumed 256 operations could be performed for the
computation of all intermediate values. Clearly, this is not possible. In fact. these Zs6
operations need to be parcelled out among all computations of all values in some
optimal way. Second. we gave away a great deal of information for free. This
information would in fact have to be computed by some means. Third. we used
simple bounds of 7 collisions for elements a or b and 20 collisions for elements c. e. d.
or f. These upper bounds are achieved only infrequently. That is. if the upper bound
of 20 were achieved for only a hundred elements. then it would only improve the
overall probability of success modestly. The more frequently occuring values of 10 or
11 would have greater significance. for they would involve the bulk of the
computations actually made.

Conclusion

We have shown three methods for building a strong one-way hash function from
DES. All methods are provably secure if DES is a random function. All methods rely
on producing a "building block" function which is of fixed and finite size. and using
this "building block" to build the actual one-way hash function which can then accept
an input of indefinite size. In the first method. a simple pattern of two applications of
DES was used, and the proof was not complex. The resulting method. though. was
not very efficient. The second method improved the efficiency, but a moderately
complex analysis of a particular pattern of four applications of DES was used to prove
the required security properties. The final method improved efficiency further. but a
complex analysis of six applications of DES was used to prove that the security level
was at least equivalent to 52.5 bits -- and areas where the proof could be "tightened
UP" (hopefully to the desired 56-bit level of security) were noted. There is no r e m n

445

to believe that this particular pattern of six applications of DES is optimal -- indeed, it
would be very surprising if it were. It seems probable, therefore, that more efficient
patterns of application of DES exist. and can be derived using the general methods
outlined here.

Acknowledgements

The author would like to thank many people for their interest and comments, and
would particularly like to thank Don Coppersmith. Ivan Damgaard. Dan Greene.
Mike Matyas. Carl Meyer. and Moti Yung.

Bibliography

1.) "Secrecy, Authentication. and Public Key Systems". Stanford Ph.D. thesis.
1979, by Ralph C. Merkle.

2.) "A Certified Digital Signature", unpublished paper. 1979. To appear in
Crypt0 '89.

3.) "Universal One-way Hash Functions and their Cryptographic
Applications". Moni Naor and Moti Yung. Proceedings of the Twenty First Annual
ACM Symposium on Theory of Computing, Seattle. Washington May 15-17. 1989.
page 33-43.

4.) "A High Speed Manipulation Detection Code", by Robert R. Jueneman,
Advances in Cryptology - CRYPT0 '86, Springer Verlag. Lecture Notes on Computer
Science, Vol. 263. page 327 to 346.

5.) "Another Birthday Attack" by Don Coppersmith. Advances in Cryptology -
CRYFTO '85. Springer Verlag, Lecture Notes on Computer Science, Vol. 218. pages
14 to 17.

6.) "A digital signature based on a conventional encryption function". by Ralph
C. Merkle. Advances in Cryptology CRYFTO 87, Springer Verlag, Lecture Notes on
Computer Science. Vol. 293. page 369-378.

7.) "Cryptography and Data Security", by Dorothy E. R. Denning. Addison-
Wesley 1982. page 170.

8.) "On the security of multiple encryption". by Ralph C. Merkle. CACM Vol.
24 No. 7, July 1981 pages 465 to 467.

446

9.) "Results of an initial attempt to cryptanalyze the NBS Data Encryption
Standard". by Martin Hellman e t al.. Information Systems lab. report SEL 76-042.
Stanford University 1976.

10.) "Communication Theory of Secrecy Systems", by C. E. Shannon, Bell Sys.
Tech. Jour. 28 (Oct 1949) 656-715

11.) "Message Authentication" by R. R. Jueneman. S. M. Matyas, C. H. Meyer,
IEEE Communications Magazine, Vol. 23, No. 9. September 1985 pages 29-40.

12.) "Generating strong one-way functions with cryptographic algorithm". by
S. M. Matyas. C. H. Meyer. and J. Oseas, IBM Technical Disclosure Bulletin, Vol. 27.
No. 10A. March 1985 pages 5658-5659

13.) "Analysis of Jueneman's MDC Scheme". by Don Coppersmith.
preliminary version June 9. 1988. Analysis of the system presented in [4].

14.) "The Data Encryption Standard: Past and Future" by M.E. Smid and
D.K. Branstad. Proc. of the IEEE. Vol76 No. 5 pp 550-559. May 1988

15.) "Defending Secrets, Sharing Data: New Locks and Keys for Electronic
Information". U.S. Congress. Office of Technology Assessment. OTA-CIT-310. U.S.
Government Printing Office, October 1987

"Exhaustive cryptanalysis of the NEB data encryption standard*.
Computer, June 1977. pages 74-78

"Cryptograhy: a new dimension in data security". by Carl H. Meyer and
Stephen M. Matyas , Wiley 1982.

"Secure program code with modification detection code". by Carl H.
Meyer and Michael Schilling; Proceedings of the 5th Worldwide Congress on
Computers and Communication Security and Protection -- SECURICOM 88. pp.
111-130. SEDEP. 8. Rud de la Michodiese, 75002, Paris. France.

"Cryptography -- A State of the Art Review." by Carl H. Meyer.
COMEURO 89. Hamburg, May 8-12. 1989. Proceedings - VLSI and Computer
Peripherals. 3rd Annual European Computer Conference, pp. 150-154.

16.)

17.)

18.)

19.)

20.) "Design Principles for Hash Functions" by Ivan Damgaard. Crypt0 '89.

	One Way Hash Functions and DES
	ABSTRACT
	Introduction
	Definitions
	The meta-method
	A Method
	A Faster Method
	A Complex And Yet Faster Method
	Conclusion
	Acknowledgements
	Bibliography

