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ABSTRACT 

One way hash functions are a major tool in cryptography. DES is the best 

known and most widely used encryption function in the commercial world 

today. Generating a one-way hash function which is secure if DES is a “good” 

block cipher would therefore be useful. We show three such functions which 

are secure if DES is a good random block cipher. 

Introduction 

DES can be used to build a one-way hash function which is secure if DES is a 

“good” block cipher. Previous efforts have not produced a satisfactory 

resul~4,5.11.12] (although recent work at IBM[18.19] appears very hopeful). We will 

use the me&method discussed by Merkle[l,2] for the construction of one-way hash 

functions. Similar ideas have also been presented by Damgaard[ZO] and Naor and 

Y ung[3]. 

One way hash functions (also called MDC’s (Manipulation Detection Codes), 

fingerprints. cryptographically secure checksums, one way functions. and others) have 

been generally known for some time. The first definition was apparently given by 

Merkle [1.2] who also gave a method of constructing one-way hash functions from 

random block ciphers. More recent overviews have been given by Jueneman. Matyas, 

and Meyer[ll], Jueneman[4], and Damgaard[ZO]. The method of construction used by 

Merkle was provably secure[2]. provided that the block cipher was “random” (see 

below). Naor and Yung[3] also proved security results in the context of polynomial 

time reducibilities. 

We will review the definitions and method of construction required to build a 

one-way hash function. We will then show how DES can be used to build a function 

that satisfies the desired properties, assuming that DES is “random.” Because DES is 

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 428-446, 1990. 
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in fact non-random in several known special cases. the constructions shown here 
would have to be modified to take this into account before being used in a real 
system. 

Definitions 

Broadly speaking, there are two definitions for one-way hash functions. The fh t  
definition is for a "weak" one-way hash function. A weak one-way hash function is a 
function F such that: 

1.) F can be applied to any argument of any size. For notational convenience. F 
applied to more than one argument is equivalent to F applied to the bit-wise 
concatenation of all its arguments. 

2.) F produces a fixed size output. (The output might be 56 bits). 

3.) Given F and x. it is easy to compute F(x), 

4.) Given F and a "suitably chosen" (e.g.. random) x. it is computationally 
infeasible to find an x' * x such that F(x) = F(x'). 

The phrase "computationally infeasible" used above can be replaced with any of 
several more precise definitions -- we defer a more detailed definition for purposes of 
this paper till later. but note in passing that each precise definition of computational 
infeasibility will in turn result in a somewhat different definition of a one way hash 
function. 

In a weak one way hash function there is no guarantee that it is computationally 
infeasible to find pairs of inputs that map onto the same output. That is. it might be 
that F(z) = F(z') for some inputs z and z' that someone in fact found. However. if x 
f z and x f z'. then this doesn't matter. Clearly, we must prevent someone from 
deliberately picking x so that it is equal to a value of z or z' which they know has this 
undesirable property. What's more. it must be difficult to generate too many z-z' 

pairs (and it clearly must be impossible to generate z-z' pairs in which we can 
effectively control the value of z or z') or even a randomly chosen x would not be safe. 
Thus, choosing x in a random fashion should make it unlikely that anyone can find an 
x' such that F(x)= F(x'). It is possible, however, to choose x in a non-random fashion 
and still be safe. If we assume that F is random (often a reasonable assumption in 
practice as discussed later). then any method of choosing x that does not depend on  F 
is effectively random with respect to F and therefore suitable. This observation is 
sometimes important in practice, for it allows simpler (therefore faster and cheaper) 
methods of selecting x. Weak one-way hash functions have been described based on 
DES[12]. 

Various methods of randomizing x have been proposed. Merklej21 proposed that 
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x be encrypted with a good block cipher using a truly random key. The key would be 
pre-pended to the resulting ciphertext, and the new message would then be random. 
Damgaardbrivate communication] proposed selecting a short random pre-fix to x. 
When hashed in the manner suggested here and in [20], such a random pre-fix would 
effectively randomize the entire hash. Naor and Yung[3] do not randomize x. instead 
they randomly choose the function applied to x from a family of functions (also 
providing the advantages of parameterization discussed in the next paragraph). These 
various methods have different advantages and disadvantages. depending on the 
specific objectives being pursued. 

Weak one-way hash functions also suffer from the problem that repeated use 
weakens them. That is. if a weak one-way hash function is used to hash 1.OOO 
different random values for x (which might represent 1.000 different messages signed 
by a 1,000 different people) then the chances of finding an x' such that one of the 
thousand values of x satisfies F(x) = F(x') might be LOO0 times higher. As more 
people sign more messages with the same weak one-way hash function. the overall 
security of the system is degraded. This undesirable state of affairs can be dealt with 
by parameterizing the family of one-way hash functions F. We simply define a family 
of one-way hash functions with the property that each member Fi of the family is 
different from all other members of the family, and so any information about how to 
break F' will provide no help in breaking FJ for i * j. If the system is designed so that 
every use of a weak one-way hash function is parameterized by a different parameter. 
then overall system security can be kept high. 

The less mnemonic term "property 2" was used in [2] -- the term "weak" seems 
preferable. 

The alternative definition is of a "strong" one-way hash function. A strong one- 
way hash function is a function F such that: 

1.) F can be applied to any argument of any size. For notational convenience. F 
applied to more than one argument is equivalent to F applied to the bit-wise 
concatenation of all its arguments. 

2.) F produces a fixed size output. (The output might be 112 bits). 

3.) Given F and x. it is easy to compute F(x). 

4.) Given F. it is computationally infeasible to find any pair x, x' such that x * x' 

andF(x) = F(x'). 

Strong one-way hash functions are easier to use in systems design than weak one- 
way hash functions because there are no pre-conditions on the selection of x. and they 
provide the full claimed level of security even when used repeatedly (or misused 
either because of error or sub-optimal system design). Many authors recomend the 
exclusive use of strong one-way hash functions[4.11] because of the practical 
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difficulties of insuring that the pre-conditions on x imposed by a weak one-way hash 
function are met, and the increased problems in insuring that different parameters are 
selected for each use. In practice, the constraints imposed by use of a weak one-way 
hash hnction imply that x cannot be chosen by an agent who has a motive to break 
the system. If A signs a message which B provides, then A will have to "randomize" 
the message by some means before signing it. If A fails to randomize the message, 
then B can select a "rigged" message, and later surprise A by exhibiting a novel 
message and showing that A signed it. 

We shall not consider weak one-way hash functions further, except to note they 
can be quite valuable in some system designs, although they must be used with 
caution. Parameterized weak one-way hash functions in particular appear to be 
under-rated. Although the design process is more compiex. systems built in this 
fashion will require half as much storage for the "y" values. In essence. this is because 
the size of the output for a strong one-way hash function must be twice as large as one 
might expect to avoid "birthday" or  "square root" attacks (see later). That is. a typical 
weak one-way hash function might have an output size of 56 bits. and might require 
256 operations to break. A typical strong one-way hash hnction might have an output 
size of 112 bits but still require only 2s6 operations to break. 

The phrases "it is computationally infeasible" and "it is easy to compute" can be 
replaced with many different definitions. A fully satisfactory definition for practical 
applications must consider both constant factors and average case complexity. DES 
has been criticized for having a key size that is "too small" (only 56 bits), while a 
slightly larger key size (64 bits) would eliminate most criticism. A satisfactory 
definition of "computationally infeasible" should be able to distinguish meaningfully 
between these two cases. For this reason. the definition we use here is stronger than 
the often-used definitions based on polynomial time reductions. This stronger 
definition allows us to prove stronger results (results of more practical cryptographic 
significance) but in exchange we must provide better informal reasons for believing 
that a function reasonably approximates our definition. 

For purposes of this paper we will use the "random function". "demon in a box" 
or "oracle" model of complexity for DES. That is. we will assume that DES is 
actually random, in the sense that encryption and decryption are accomplished by 
looking up the correct value in a large table of random numbers. The table is secret 
and information about table entries can be learned only by requesting the value for 
some table entry -- which costs one "operation". More or less equivalently. we can 
view DES as a black box with a demon inside -- whenever we wish to encrypt or 
decrypt a value with some key. we must slip the input into the box and ask the demon 
to tell us the value. The demon will generate a truly random number and return it to 
us. again charging us one "operation" for his efforts. The demon promises to be 
consistent -- once he's given you the ciphertext for a given key and plaintext. he will 
always return the same ciphertext when given the same key and plaintext. He will 
also give you the correct plaintext if you happen to give him the ciphertext and key 
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just mentioned. 

Although we assume that DES is random, it is not immediately obvious how to 
apply DES to a large x and produce a small output in a secure manner. Several 
previous efforts have failed[4.5.11,13]. (A recent proposal by IBM(18.191 looks very 
hopehl and has been carefully scrutinized within IBM. Although there is as yet no 
proof that it is correct. should such a proof be found the IBM proposal would then be 
preferable because of its superior performance). The successful attacks on these 
methods do not require any knowledge of the internal structure of DES and so would 
still work if DES were truly random. Therefore, it is useful to show a method of 
generating a one-way hash function by using repeated applications of DES which is 
immune from this class of attacks. 

While there has been a lively debate about the actual security level provided by 
DES[14.15,16,17] the fact remains that no major deviations from random behavior 
have been found. The most significant deviation noted would effectively reduce the 
key size by one bit to 55 bits [9]. To circumvent the problem caused by this non- 
random behavior would require the redesign of the proposals made here to use a 
55-bit block cipher. with a corresponding slight reduction in either performance or  
security. Other known cases of non-randomness in DES would require case-by-case 
analysis and possible redesign. Aside from the few known cases of non-random 
behavior. DES is generally viewed as a "random" function in the literaturell71 and it 
seems almost certain that some block cipher exists with the desired properties, 
regardless of the eventual fate of DES. The existence of "random block ciphers" 
seems almost assured in some intuitive sense, and DES appears to be a reasonable 
approximation to one. 

The primary use of one-way hash functions is authentication[l.ll]. If y =  F(x). 
and we are already confident that we know y, then we can obtain x from any source 
(in particular. an untrustworthy. unreliable but cheap and convenient source) and 
verify that y =  F(x). Because it is computationally infeasible to find an x' such that 
y = F(x'). we now have confidence that we have the correct value of x. 

The advantages of using one-way functions are clear if. for example. x is a one- 
megabyte document while y is 112 bits. If we can design a system that provides good 
security for y. then we can always double-check x any time we wish -- thus. we can be 
much more casual (i.e.. spend less money) in storing x. One-way hash functions are 
virtually a necessitp in digitally signing large messages because most digital signature 
methods are rather inefficient. If we first reduce a one-megabyte x to a small y. then 
signing the small y is much easier. One-way hash functions are a universal building 
block in authentication systems, and have been used to define practical digital 
signatures[l.2.6] and to detect fraudulent changes in messages[4.11]. When used in a 
tree-structure. one-way hash functions can be used to conveniently authenticate any 
individual entry in the "public directory" (so often needed in public-key based 
systems)[ 1.71. 
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The meta-method 

We first define a meta-method (given in [1,2]) for constructing F. In this meta- 
method, we build F (which accepts an arbitrarily large argument. x) from a simpler 
function Fo. The definition of FO is exactly the same as the definition of F. except that 
FO accepts only a fixed size argument. That is, Fo might accept an input of 224 bits. 
while producing a smaller output of perhaps 112 bits. As we shall see, the larger the 

input that FO accepts the better. for this will mean we can more rapidly hash down the 

arbitrarily large input. x. We require, however, that Fo have an input that is larger 
than its output. 

We can now define F in terms of FO as follows: 

Function F(x) returns FixedSizeOutputString; -- This might be 112 bits 

x: ARRAY[l .. n] OF convenientlySizedChunks; -- perhaps 112 bits 

-- Note that SizeOfCinput to Fo) = 

-- SizeOficonveniently SizedChunks) + SizeOfiFixedSizeOutputString). 
result: FixedSizeOutputString; -- perhaps 112 bits 

BEGIN 

result = 0; 

FOR i = 1 to n DO result = Fo(result.x[i]); 

RETURN( result): 

END; 

As an aside. we note that x is padded with 0's until its size is an integral multiple 
of the size of the convenientlySizedChunks. Note that padding with 0 s  might 
introduce some ambiguity about the exact value of x that is being authenticated. as 
discussed by Juenernan[4]. The message "010110" padded to 8 bits would be 
"01011OOO" and it is now unclear how many trailing 0's were present in the original 
message. Several methods are available to resolve this ambiguity. We select a 
method that will also be useful in resolving a further problem: we append the length 
of x. in bits. at the end of x. To make this additional ''length" field easy to find. we 
shall right justify it in the final block. If  the length field won't fit, we add additional 
blocks to the end of x. For purposes of notation, we shall assume that the final few 
blocks of x hold this count; for example, if we desire a 64-bit count and the 

"convenientlySizedChunks" are 8 bits. then the count would occupy xfn-71. x[n-61. 
x(n-51, ... x[n-11, and x[n]. 
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As a second aside. the linear pattern of computing F used above can be replaced 
with a tree pattern. as discussed in [l. 2,7 page 1701. This tree structure is very useful 
when we wish to authenticate not the entire input but only a single item (or leaf) from 
the input. This occurs in practice when, for example, we wish to authenticate the 
public key of a single user from the public directory. Certainly. if we know the correct 
hash value for the entire public directory. we could rehash and re-verify the whole 
thing before believing that the single entry we were interested in was correct. This. 
however, is very inefficient. If the one-way hash function used a tree pattern. then we 
could authenticate a single leaf node (the one entry in the public directory that we"re 
interested in) if we knew only that entry, and the log n entries along the 
authentication path from the leaf to the root. This reduces q n )  computations to 
verify the whole public directory to O(1og n) computations to verify the single leaf 
entry we"re interested in. 

In looking at  the definition of F we note that the input. x, is treated as an array of 
"convenientlySizedChunks". These chunks will have a size which is the size of the 
input to Fo less the size of the output from Fo. If the input is 224 bits. and the output 
is 112 bits. then each chunk will be 224-112 = 112 bits. Clearly, bigger chunks imply 
fewer applications of Fo, which will make the computation of F more efficient. On 
the other hand. the chunks can be as small as one bia3.201. which is inefficient but still 
secure. 

Using this construction, we can now prove that breaking F (finding an x and x' 
such that F(x) = F(x') and x f x') is at least as hard as breaking Fo. This is easily 
shown by induction. We first make the assumption that x and x' have the same length 
-- we shall relax this assumption later. 

Basis: 

for n = 1. y = F(x) = Fo(O.x[l]) (where 0 is the all zero bit pattern). 

Clearly, breaking F must be as hard as breaking FO in this case, for F and Fo are 
the same. That is. if x f x' and F(x) = F(x') and n = l .  then x[l] f x'[l] and Fo(O.x[l]) 
= Fo(O.x'[l]). Thus. by definition a "break" of F implies a "break" of Fo. 

Induct ion : 

We know the property holds for n. and we wish to show it holds for n + 1. 

y = F(x) = Fo( F(x[l .. n]). x[n + 11). 

Neither F(x[l .. n]) nor x[n+l] (i.e.. neither of the arguments to Fo) can be 
modified successfully. for then we would have broken Fo directly. But if F(x[l .. n]) is 
correct then. by the induction hypothesis. x[l .. n] cannot have been modified without 
breaking Fo. This means that no bit of x could have been modified without breaking 
Fo. Q.E.D. 
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In the more general case. it might be that the length of x is not the same as the 
length of x'. We can assume. without loss of generality, that x is shorter than x'. (If 
this is not the case, then simply swap the names of x and x'). If x is shorter than x'. 
and F(x) = F(x'), then the proof given above shows that x is a postfix of x'. In 
particular. the length fields of both x and x' must be the same. It is now a simple 
matter to reject the string whose length is incorrect. 

The particular method selected here to solve the problems caused when x is a 
pre-fix or postfix of x' is only one of many. Several other techniques are possible. 
Which method is actually used will vary depending on the precise circumstances and 
design objectives. 

The ability to prove that a break of F implies a break of Fo works for most 
definitions of complexity. This will be useful later in the paper when we construct an 
Fo' and an Fo" that are not random, but such that breaking them is still 
"computationally infeasible". 

As an aside, it should be noted that a random block cipher in which the size of 
the key was greater than the desired input size to Fo could easily be used to generate a 
suitable Fo. We need only define Fo(x) as ENCRYFT(x. 0) (where x is used as the 
key, and 0 is the plaintext input consisting of ail 0's). If the key size were, say. 224 bits 
then our problem would be well solved. That was exactly the approach taken in 11.21. 
Construction of random block ciphers with large keys seems well within current 
capabilities. DES. for example, uses 768 bits of key material internally (16*48 bits). 
Any problems in using DES as a one-way hash function stem almost exclusively from 
its limited key size. This paper primarily addresses the specific problems involved in 
using DES as currently defined as the basis for a one-way hash function -- if DES had 
a significantly larger key size then the problem solved here would be trivial. 

With the construction of F from Fo now in hand, it is clear what to do: define Fo 
in terms of DES. This is simpler than trying to define F in terms of DES directly -- 
which has been tried and can lead to subtle problems[4.5.11]. Defining FO in terms of 
DES will involve a fixed number of applications of DES in some particular pattern. 
Analyzing the complexity of a fixed pattern of applications of DES can be tedious. but 
has proven easier than analyzing the indefinite number of applications of DES that 
are required when F is defined directly in terms of DES. 

A Method 

In our first method, we shall simply attempt to produce an Fo such that its input 
is larger than its output: we won't worry about efficiency. In our second and third 
methods, we"l1 see improvements in efficiency but at the cost of more complex 
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analyses. The methods presented here are by no means unique, nor is there any 
reason to believe they are the most efficient. Further work should produce improved 
methods. The principle. however, should be clear -- try to combine a few applications 
of DES in such a way that we produce a satisfactory Fo -- (and such that the analysis is 
tractable.. . ) . 

For this first method we will adopt a fixed size output of 112 bits for both F and 
FO because we are building a strong one-way hash function which we wish to be as 
secure as DES, i.e.. it must require at least 256 operations to break. The output size 
must be at least 112 bits because we know that smaller values of the output will make 
the system vulnerable to "square root attacks"[4,5.8,11]. If the output size were 56 
bits. then hashing 228 arbitrarily chosen messages would result in a high probability 
that two of those messages produced the same 56-bit output. Because the probability 
of a collision goes up sharply as the number of messages exceeds the square root of 
the number of possible output values. such attacks are called "square root attacks" 
(also known as "birthday attacks"[5] because the probability that two people at a party 
were born on the same day goes up sharply when the number of people at the party 
exceeds the square root of 365. or about 19 people). 

We turn now to some definitions. DES accepts 64 bits of input. 56 bits of key 
material, and produces a 64-bit output. We denote encryption by: 

64-bit-ciphertext = ENCRYPT(56-bit-key. 64-bit-plaintext) 

We denote decryption by: 

64-bit-plaintext = DECRY PT(56-bit-key. 64-bit-ciphertext) 

We can view €>CRYPT and DECRYPT as functions that map from 120 bits 
onto 64 bits. That is. ENCRYPT and DECRYIT can be viewed as very large tables 
which have random (or nearly random -- see below) entries. We do not initially know 
the random values in these tables. and can find out only by using one of the two 

functions ENCRYPT or DECRYPT. (The concept of random encryption functions 
was given by Shannon[lO In some sense. our 2120 random 64-bit entries are just 
2126 random bits. These 2]li6 random bits can be used in a n y  way want -- if we desire 
a large number of random bits. we need only look up many different values in our 
giant table. We are fundamentally limited only by the total number of random bits. 
not the particular format they are packaged in. We can repackage the bits to best suit 
our needs -- which is exactly what we will be doing. 

Unfortunately. EXCRYPT (and similarly DECRYPT) is non-random in the 
following sense: we can easily generate a legitimate input-output pair in which the 
output value is non-random. Even worse. we can easily generate an input-output pair 
in which the output value is anything that we want! Given a 64-bit value that we want 
produced as the output  we can easily find many 120-bit inputs that produce the 
desired output value. That is. we can easily find many keys and plaintexts such that 
ENCRYPT(key.plaintext) = ciphertext. We simply pick a random 56-bit key. and 
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then decrypt the 64-bit ciphertext with that key. This is bad. To remedy this. we can 
XOR the 64-bit output with the 64-bit input, to produce a new 64-bit output We will 
define this operation with a lower case fa (this definition has been used before[l2]). 
By definition, if the 120-bit input to fo is arbitrarily divided into a 56-bit key and a 
64-bit plaintext. then 

fo(key,plaintext) = ENCRYm(key, plaintext) XOR plaintext 

All our further use of DES will be through this new function, fo. This function 
maps 120 bits onto 64 bits. It will be a good approximation to a random function if 
DES is a good approximation to a random function. In particular, fo has the 
interesting property that the output value will be random no matter how it is computed 

If we compute n values of fo by computing DES n different times. then the n output 
values of fo will be randomly distributed, In contrast the input values might be quite 
systematic -- we could simply compute fo(0). fo(1). fo(2). ... fo(n-1). The sequence of 
input values 0.1.2. ... n-1 certainly qualifies as non-random. However. no matter how 
hard we try. the output values will be random, as can be easily proven. First. we note 
that there are only two possible methods of computing an output value of fo -- either 
we encrypt some plaintext with DES. or we decrypt some ciphertext. If we encrypt 
some plaintext, then the ciphertext produced by the encryption is random (courtesy of 
our demon). When we exclusive-or this random ciphertext with the (possibly non- 
random) plaintext, the result is also random. Equivalently, if we decrypt a ciphertext. 
then the plaintext produced by the decryption is random (again courtesy of our 
demon). When we exclusive-or this random plaintext with the (possibly non-random) 
ciphertext, the result is also random. As a result. the output of fo is always random. no 
matter how it was computed. 

In this paragraph we first discuss and then decide we can safely ignore a minor 
deviation from randomness caused by the fact that DES is a permutation. I f  we 
compute ENCRYFT(key. p l a i d ) =  cipherl, then we know that computing 
ENCRYPT(key, plain2)=cipher2 will not produce cipherl. i.e.. that cipherl f 
cipher2. (We are simply observing that each plaintext has one and only one 
ciphertext. and each ciphertext has one and only one plaintext For this reason, DES 
is not quite random). This. however, is a very minor deviation from randomness in 
the context in which we are using DES. Recall that we only wish to achieve a level of 
security equivalent to DES. which means that we only need to insure that fo behaves 
randomly for at most 256 different values applied to the input Now. if we have 
actually applied fo 2'6 times, then at worst there will not be 264 possible output values 
left but instead only 261 - 2? This corresponds to about 63.994 bits -- a loss which 
we can and will neglect. (Put another way. this means that our demon might compute 
a random 64-bit value and then occasionally reject the value because it's already been 
used for some other plaintext-ciphertext pair. The demon will reject a random value 
at most one time in 256. This slight deviation from randomness has almost no 
practical impact on the proofs that follow). 

Because fo is such a good approximation to a random function. w e  will be unable 



to find two inputs which map onto a 64-bit output in significantly less than 2" 
operations (as a consequence of the birthday problem). This, however, does not 
provide good enough security. We want to force cryptanalysis to take at least 256 
operations, which will require an output of 112 bits. To accomplish this. we will 
simply look up **x" twice. and concatenate the two outputs. This will produce 128 
bits. This is more than we need, so we throw away the extra bits. However, we only 
have a single function fo -- how can we look up x twice? By reducing the size of x 
from 120 bits to 119 bits, and using the additional bit to effectively split fo into two 
different functions. 

Formally. we declare that x is 119 bits. We define Fo as: 

Fo(x) 

Fo(x) is simply the concatenation of the two applications of fo. We first prefixed 
x with a "O", and then with a "1" to distinguish the two applications of fo. To produce 
the desired 112 bit output. we threw away the final 16 bits of the 128 bits produced. 

Intuitively, fo is just a very large random table. The index into this table is a 120 
bit number. By making x only 119 bits in size, we effectively produce two tables -- the 
first half of fo and the second half of fo. By looking up x first in the first half. and then 
in the second half. we obtain two totally unrelated random numbers. This produces 
128 random bits from a single value of x. Now. we need only throw away 16 bits. We 
are left with 112 random bits. which is what we desired. 

As a result. we have a random function Fo which accepts a 119 bit input and 
produces a 112 bit output. Therefore we can use Fo to build a one-way hash function 
F that will accept 119-112 = 7 bits per iteration. Each iteration requires two 
computations of DES. so we require one application of DES for every 3.5 bits to be 
hashed. The performance is poor -- but we can prove rather easily that it's as secure 
as DES under the assumption that DES is a random function. 

Firstll2bitsOf( fo("O", x), fo("1". x) ) 

A Faster Method 

We can show a faster method is also secure. though the analysis is somewhat 
more complex. The faster method will require that we divide x into two pieces: x l  of 
118 bits and x2 of 54 (= 120-64-2) bits. In total. x will be 172 (118 + 54) bits. We will 
reduce these 172 bits to 128 bits using 4 applications of DES, which allows us to hash 
(172-128)/4 = 11 bits per application of DES. This is clearly better than 3.5. though 
better is still possible. 

We will define Fo' as follows: 

Fo' 

a: fO("O0". c: fd''10''. xl). x2) ,  
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Note that Fo' (and so F') produce a 128 bit output. We will use this additional 
output only to guarantee 56 bits of equivalent security -- we will not provide the full 
64 bits of security that might seem possible. but will instead "waste" a few bits to 
make the construction go through. (The actual security is somewhat better than 56 
bits. though we will not prove this). 

Notationally. we have labeled the intermediate values in the computation with 
the letters a, b, c.  and d. 

The degradation in security in this computation occurs because different values 
of x i  might produce the same intermediate values for c or d. That is, it might happen 
that c = fo('I0". XI) = c" = f&'lO". XI"). If such collisions did not occur, then we 
could guarantee that different values of xl  would produce different values for both c 
and d. This in turn would let us guarantee that all pairs x. x' such that x * x' would 
result in selection of the values for both a and b from different entries in our giant 
table. That is. if  x f x' then either xz z xz" or both ( c  f c'' and d # d"). But then the 
two values used as input to fo to compute a and a" must be different, and the two 
values used as input to fo to compute b and b" must also be different. Thus, we have 
guaranteed that a and b were selected from different locations in our giant table. 
which lets us conclude that the probability of a collision in both a and b is a random 
event whose probability we can compute, and which is small (less than one in 256). 

Of course. collisions involving c or d will occur. and so the foregoing logic is false. 
However, we can bound the number of collisions that are expected to occur. and use 
this bound to determine a bound on the deterioration in the security of F<. 

We observe that c and d are always random. because they are produced as 
outputs from fo and we have already shown that outputs from fo are always random. 
no matter how computed. Therefore, no matter how cleverly XI is chosen, the 
probability that the same value of c (or of d) is produced by two different values of x i  
is random. Therefore. if we limit ourselves to 256 a plications of fo. the expected 

computations of values of d). Given that there are at most 2# such collisions. the 
expected maximum number of 3 way collisions is 256 * (248/264) = 240. The expected 
maximum number of n-way collisions is 264-n*8, which implies there are probably no 
%way collisions. We can use a 7-way collision as an upper bound. 

Now, if Fo'(x) = Fo'(x'). and x if x'. then either x l  # XI'' or x2 f x2". If xz # x2*'. 

then the computations of a and b were random, and the probability of a random 
collision for both of them is negligible (if 256 com utations of a and b had already 

concerned). If, on the other hand, XI # XI'' and x2 = x2". we can further divide the 
situation into two cases: either ( c  = c" or d = d"), or (c  # c" and d f d"). If (c * c" 
and d f d") then by the logic used before the computations of a and b were random. 
and the probability of a random collision for both of them is negligible. If. on the 

maximum number of collisions will be 256 * (256/2 6p  ) or 2*. (This also holds for 

been done, the probability of a collision would be 2 5 9  /2128 -- negligible as far as we"re 
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other hand, (c = c" or d = d") then we can use our upper bound on the number of 
collisions to limit the number of distinct values of XI for which this can occur. (we 
reject the case where c = c" and d = d" as being sufficiently improbable that we can 
ignore it). We can assume that c = c'' (symetncal considerations hold if, instead, d = 
d"). Obviously there are at most 7 different values for x i  that map onto the same 
value for c. Therefore, instead of getting random values when we pick a and b. we 
might at worst get 7 non-random trials in which the 7 values computed for a were 
always the same (because c and x2 were always the same. and hence a = fO("O0". c. x2 

) would be the same). This would generate 7 different trials for b, but b is only 64 bits 
-- so these 7 trials have a higher probability of success than 7 tr ials that randomly 
selected a 128-bit value. Specificall the probability of success in these 7 random 

(64 - log2 49) or 58.3 bits. This is greater than 56. as desired. (This does not imp1 our 
security level is 58.3 bits -- remember that we have already assumed a limit of 2 in a 
few places. It simply confirms that we can reach at least 56 bits of security. For 
various reasons, we could actually achieve more than 56 bits of security -- but this 
suffices to show the idea). 

Although the foregoing discussion was relatively informal because of the relative 
simplicity of the problem. the techniques become harder to apply in more complex 
cases. In the following case. a more formal analysis was needed because of the sheer 
complexity of the situation. 

trials for b is at most 7 2 /2 64 o r  49/2'. This produces an equivalent security level of 

5 i .  

A Complex And Yet Faster Method 

It is again possible to improve the performance. though to do so requires a 
significantly more complex analysis. We will divide a 234 bit x into 2 pieces. each of 
117 bits in size: x1 and x2. We will define Fo" as: 

Fo" =- 

fo("00". First59bitsOf(fo(" 100". XI)). First59bitsOf(fo("lOl". x2)) ). 

fo("O1". First59bitsOf(fo("llO". XI)). First59bitsOf(f~("lll". x2)) ) 

Essentially. we have built a small tree of fo's. Because there are six applications 
of fo. we have used the first two or three bits to divide fo into six distinct functions. 
Thus, fO("O0". ...). fO("O1". ...). fo("100". ...). fo("101". ...), fO("llO". ...) and fo(''l11''. 
... ) can be viewed as six unrelated random functions. The "leaf' functions in this tree 
map 117 bits onto 59 bits. The "root" functions map 118 bits onto 64 bits. Overall. 
Fo" maps 234 bits onto 128 bits using six applications of DES, which means we can 
hash 234-128 = 106 bits/iteration, or 106/6 = almost 18 bits/application of DES. 
This is an improvement over 11 bits/application of DES. 
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However, we are now left with the problem of showing that we have not 
significantly degraded security. Again, there is degradation in security caused by 
collisions during the intermediate computations. This is why we kept 128 bits of 
output -- Fo" is not perfectly random and we must retain additional output bits in 
order to reach our desired objective of 2s6 operations to break it. Our proof will 
actually not be able to show that we have retained the full 56-bits of security that we 
desire, though we will come close. Tightening up the proof would make it even more 
complex, though probably (although not certainly) providing the 56-bit security level 
desired. 

First, we shall label the various values produced by this computation. 

Fo" 

a: fo("o0". c: First59bitsOf(fo("lOO", XI)). e: First59bitsOf(fo("lOl". x2)) ). 

b: fO("01". d: First59bitsOf(f~("110". XI)). f: FirstS9bitsOf(fo(l111". x2)) ) 

We first note that c. e. d. and fa re  random. No matter how cleverly we pick x i  
and x2. these values are random and we can apply statistical methods to them. In 
particular, every value of x i  and every value of x2 will generate a tuple: that is. every 
value for xi will generate a tuple <c.d>, and every value for x2 will generate a tuple 
<e,D. Because fo is random. the actual values of XI and of x2 are irrelevant -- the only 
thing that matters is that we have generated tuples <c,d> and <e.D. 

This leads to our first definition: we define a ranlorn linkage map as two sets of 
tuples, each tuple having two chosen 59-bit elements. and each set of tuples 
containing 256 elements. The two 59-bit elements in a tuple are "linked" because they 
are generated from a single value of XI or of x2. Note that this is equivalent to saying 
that the two elements in a tuple are generated randomly. hence the name random 
linkage map. 

Intuitively. a random linkage map is all the useful information that any algorithm 
can ever hope to obtain about the four possible intermediate values. A random 
linkage map actually requires computations of fo to compute. so it actually is an 
upper bound on the information that can be obtained. Any actual algorithm that 
attempts to crack Fo" will in fact have less information than is present in a random 
linkage map. However, it can't hurt to give the algorithm additional information for 
free. Any optimal algorithm to crack Fo" should not slow down if it is given all the 
information in a random linkage map, instead of getting only the sub-set of 
information about a random linkage map that it actually computed. The major reason 
for providing all the information in a random linkage map is that. although an actual 
algorithm would use only part of the information. it is not clear which part it would 
select. By providing all the information. we avoid the problems involved in 
determining optimal strategies for dealing with the partial information that can 
actually be computed. 



442 

For any computation of Fo" and any actual value of x, we will generate four 
intermediate values c. e. d, and f. By definition, both <c.d>. and <e.D will appear in 
the corresponding random linkage map. This motivates the following definition: a 
quadruple <c,e.d,D is doubh fink& with respect to a random linkage map if the tuple 
<c.d> appears in the first set and the tuple <e.D appears in the second set. 

Given a doubly linked quadruple <c.e,d,D, we can compute a valid output of 
Fo". This output is valid because there exist an input XI concatenated with x2, where 
XI links the tuple <c.d> and x2 links the tuple <e.D, which generates the intermediate 
quadruple <c,e.d.D from which the output is then computed. That is. a doubly linked 
quadruple is just as good as an actual input, x. 

We now prove that the expected running time for an optmal algorithm to find 
two values x. x' such that Fo"(x) = Fo"(x') (where Fo" is based on DES in the manner 
described, and DES is assumed to be random). is at least as long as the expected 
running time for an algorithm to find a pair of doubly linked quadruples such that 
both quadruples generate the same output (the same values for a and c). given only a 
random linkage map and the ability to compute values for a and c using fo. That is, 
the algorithm that uses the random linkage map cannot use fo to compute new values 
for c, e. d. and f (after all. it already has the random linkage map which is supposed to 
provide at least as much information as could ever be obtained by computing such 
intermediate values with fo -- so letting it compute more intermediate values would 
provide it with an unfair advantage). Instead, valid intermediate quadruples must be 
obtained from the linkage map. Both algorithms can apply fo to arguments that are 
prefixed with "0". for these are just the values used to compute either a or c. The 
random linkage map contains no information about computations of a or c. 

The proof is relatively simple -- given the foregoing definitions. If we are given 
any algorithm for cracking Fo" we can use it to define an algorithm that is just as good 
at solving an equivalent problem defined in terms of the random linkage map. Given 
a random linkage map and an Fo" cracking algorithm. we run the Fo" cracking 
algorithm. but now lie to it whenever it tries to compute fo. Instead of giving it the 
"correct" truly random value, we instead give it a value selected at random from the 
random linkage map. Of course, we must be consistent. If the optimal algorithm 
gives us the same argument twice, we return the same value. In addition. if it gives us 
a value for which we"ve already returned a c. and now requests a d. we must return 
the proper linked value. This does not introduce any bias. though. because all the 
entries in a random linkage map are random. The t ru ly  random values generated by 
the DES "oracle" are just as good as the truly random values taken from the random 
linkage map. and so the expected running time of this "random linkage map" 
cracking algorithm must be less than or equal to the expected running time for the 
corresponding Fo" cracking algorithm. Therefore. a lower bound on the expected 
running time of a "random linkage map" cracking algorithm is also a lower bound on 
the expected running time of any Fo" cracking algorithm. 

We can now concentrate on finding a lower bound for the running time of an 
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algorithm to crack a random linkage map. We start by analyzing the intermediate 
values c. e, d, and fin a random linkage map. 

We define a collision for c. e. d, or f with respect to a linkage map as a value of c, 
e,  d. or f which appears in two different tuples in the same set and in the same position 
in the two tuples. 

First. because c. e. d. and f are 59 bits. an upper bound on the expected number 
of collisions for each of them is (2j6/2j * 2s6 or 2s3. The number of triple collisions 
will be bounded by (253/254 * 2s6 or 2'. In general. the expected number of n-tuple 
collisions is bounded by 259-3*n. There will probably not be a n y  20-tuple collisions, so 
we can safely use this as the expected maximum. 

Our objective is to find a lower bound for the running time of the best algorithm 
that finds two doubly linked quadruples <c.e,d,D and <c".e".d".f'> such that they 
produce the same output. i.e.. such that a = fo("O0". c, e) is equal to a" fo("OO", c", 
e"), and b = fo("O1". d. f) is equal to b" = fo("O1". d", f'). (Note that the two 
quadruples are each doubly linked internally, independently of the other -- the links 
do not extend from one quadruple to the other). To do this. we will consider what 
happens during an actual run of a linkage-map cracking algorithm. The only things 
that such a run can do are compute a value of a from some tuple <c,e>. or compute a 
value b from some tuple <d.D (note that these tuples are not the tuples that appear in 
the linkage map -- those were tuples <c,d> and<e.D). We can ask. each time such a 
computation is performed. what the probability is that that particular computation 
will result in finding a pair of quadruples with the desired property -- i.e.. the 
probability that that particular computation of fo will terminate the run successfully. 
Clearly. i f  we can provide an upper bound on the probability of success for each such 
computation during the course of the run. then we can determine a lower bound on 
the expected running time. 

Now. if we were to compute a = fO("O0". c. e )  then we could succeed if and only 
if there were already two doubly linked quadruples <c.e.d.D and <c".e".d".f'>. and 
further the case that b = fo("O1". d. f) = fo("O1". d", f'). We would then succeed if. 
after computing a. we found that it matched the value for a". i.e., a = fO("O0". c. e) = 
a" = fo("O0". c". e"). If there were only one other quadruple <c".e".d".f'> such that 
b = b", then the probability of success would be one chance in 2M. However. there 
might be several. In particular. it might be the case that b = b" because d = d" and f 
= f' .  The only other alternative is that b = b" and either d f d" or f # f'. In the 
first case. because there are at most 20 collisions for either d or f. there could be at 
most 202 = 400 quadruples matching this criteria. Obtaining a bound for the second 
case is more difficult but is possible by noting that every distinct computation of a 
produces a random number. 

There are at most 256 computations of b. Therefore. the expected maximum 
number of collisions for b is 2". The number of triple collisions is 240. the number of 
quadruple collisions is 2". and the number of n-way collisions is 264-5*n, Clearly. the 
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expected number of 8-way collisions is 0, and can be neglected. The maximum 
number of 7-way collisions is 2'. which is rather small. We could use 7 as a simple 
bound on the number of collisions, or we could perform a more complex analysis to 
show that. on average, the number of collisions is more like 2 or 3. If we content 
ourselves with the easier bound of 7. we can then produce a bound on the probability 
of success following each computation of a or b. 

For each quadruple <c.e.d.D there are at most 400 quadruples <c",e",d".f '> such 
that b = b" because d = d" and f = f'. Further, there are at most 7 collisions such 
that b = b" and either d f d" or f f f'. Therefore. there are at most 7*400 = 2,800 
quadruples <c",e",d".f'> which might cause the computation of a to terminate the 
run. Therefore, the probability of success is upper bounded by 2,800/2&. This 
corresponds to 64 - log2 2.800 bits of security. or 64 - 11.5 or about 52.5 bits. This is 
somewhat lower than we desire (by 3.5 bits) but it seems likely that tightening the 
proof would recover most if not all of this loss. 

The most obvious places where this lower bound could be tightened are the 
following. First. we always assumed 256 operations could be performed for the 
computation of all intermediate values. Clearly, this is not possible. In fact. these Zs6 
operations need to be parcelled out among all computations of all values in some 
optimal way. Second. we gave away a great deal of information for free. This 
information would in fact have to be computed by some means. Third. we used 
simple bounds of 7 collisions for elements a or b and 20 collisions for elements c. e. d. 
or f. These upper bounds are achieved only infrequently. That is. if the upper bound 
of 20 were achieved for only a hundred elements. then it would only improve the 
overall probability of success modestly. The more frequently occuring values of 10 or 
11 would have greater significance. for they would involve the bulk of the 
computations actually made. 

Conclusion 

We have shown three methods for building a strong one-way hash function from 
DES. All methods are provably secure if DES is a random function. All methods rely 
on producing a "building block" function which is of fixed and finite size. and using 
this "building block" to build the actual one-way hash function which can then accept 
an input of indefinite size. In the first method. a simple pattern of two applications of 
DES was used, and the proof was not complex. The resulting method. though. was 
not very efficient. The second method improved the efficiency, but a moderately 
complex analysis of a particular pattern of four applications of DES was used to prove 
the required security properties. The final method improved efficiency further. but a 
complex analysis of six applications of DES was used to prove that the security level 
was at least equivalent to 52.5 bits -- and areas where the proof could be "tightened 
UP" (hopefully to the desired 56-bit level of security) were noted. There is no r e m n  
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to believe that this particular pattern of six applications of DES is optimal -- indeed, it 
would be very surprising if it were. It seems probable, therefore, that more efficient 
patterns of application of DES exist. and can be derived using the general methods 
outlined here. 
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