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One-year Mediterranean diet promotes epigenetic
rejuvenation with country- and sex-specific effects: a pilot
study from the NU-AGE project
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Abstract Mediterranean diet has been proposed to pro-
mote healthy aging, but its effects on aging biomarkers
have been poorly investigated. We evaluated the impact of

a 1-year Mediterranean-like diet in a pilot study including
120 elderly healthy subjects from the NU-AGE study (60
Italians, 60 Poles) by measuring the changes in their
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epigenetic age, assessed by Horvath’s clock. We observed
a trend towards epigenetic rejuvenation of participants after
nutritional intervention. The effect was statistically signif-
icant in the group of Polish females and in subjects who
were epigenetically older at baseline. A genome-wide
association study of epigenetic age changes after the inter-
vention did not return significant (adjusted p value < 0.05)
loci. However, we identified small-effect alleles (nominal p
value < 10–4), mapping in genes enriched in pathways
related to energy metabolism, regulation of cell cycle,
and of immune functions. Together, these findings suggest
that Mediterranean diet can promote epigenetic rejuvena-
tion but with country-, sex-, and individual-specific effects,
thus highlighting the need for a personalized approach to
nutritional interventions.

Keywords Epigenetics . DNAmethylation . Epigenetic
clock . Epigenetic age acceleration . Biological age .

Mediterranean-like diet

Introduction

As the population continues to age within Europe, an
increase in the incidence of age-related diseases is ob-
served (WHO 2017). Indeed, the increasing lifespan is
not associated with an increase in health span, and this
issue represents a great challenge for our societies. There is
an important need to identify factors that are able to
influence health in old age and to develop and validate
interventions that could slow down or counteract the pro-
cess of aging and its associated pathologies. A possible
strategy to impact on aging is to intervene on lifestyle
factors, such as diet or physical activity. Nutritional inter-
ventions seem to be one of the most promising approaches
to promote healthy aging, and growing amount of data
indicates that they can influence the health status of sub-
jects (Longo et al. 2015; Dato et al. 2016;Wahl et al. 2016;
Shlisky et al. 2017; Xia et al. 2017; Heiss et al. 2017).

Mediterranean diet, which is considered by UNESCO
as a heritage of humanity, is a well-balanced mix of
nutrients, anti-oxidants, and anti-inflammatory molecules,
and it has been recently suggested that some of its compo-
nents are able to exert hormetic effects (Martucci et al.
2017). This diet has demonstrated favorable effects on
cardiovascular risk, blood pressure, cancer, inflammation,
or frailty status (Estruch et al. 2006, 2013; Mitjavila et al.
2013; Ostan et al. 2015; Martínez-González et al. 2015;
Kojima et al. 2018), and it has been observed that it can

impact methylation of inflammation-related genes in pe-
ripheral blood cells (Arpón et al. 2017). Some studies have
suggested that Mediterranean diet prevents telomere short-
ening, a well-established biomarker of age, but results are
not consistent among different studies (Davinelli et al.
2019). The role ofMediterranean diet in promoting healthy
aging has been recently investigated in the framework of
the European project NU-AGE (“New dietary strategies
addressing the specific needs of elderly population for an
healthy aging in Europe” (http://www.nu-age.eu/)), a large
multidisciplinary consortium with 30 partners across Eu-
rope (Berendsen et al. 2014; Santoro et al. 2014). The aim
ofNU-AGE project was to investigate how an intervention
based on Mediterranean diet, specifically tailored accord-
ing to the nutritional needs of people over 65 years of age,
can impact on age-related diseases and functional decline,
possibly modulating inflammaging and its outcomes
(Franceschi et al. 2000). Probands were enrolled in five
European countries (Italy, Poland, France, the Netherlands,
and the UK), and a 1-year Mediterranean-like diet was
administered to the intervention subgroup. A comprehen-
sive clinical and molecular characterization was performed
at baseline and after the 1-year intervention, and results
achieved so far in the framework of this study have dem-
onstrated a beneficial effect of the Mediterranean-like diet
on global cognition and episodic memory (Marseglia et al.
2018), osteoporosis (Jennings et al. 2018), immune func-
tion (Maijo et al. 2018), and cardiovascular health
(Jennings et al. 2019), as well as on the proteasomal
proteolysis (Athanasopoulou et al. 2018). The NU-AGE
study design (different countries with different dietary
traditions and habits) and the large number of collected
data allowed to evaluate the impact of relevant variables
usually poorly investigated (age, sex, and ethnicity/genet-
ics, as well as individual characteristics) on different pa-
rameters at baseline and after the intervention (Konz et al.
2018; Marseglia et al. 2018; Ostan et al. 2018; Pujos-
Guillot et al. 2018; Santoro et al. 2018, 2019; Jennings
et al. 2019). Importantly, the enrolled subjects were recruit-
ed also in non-Mediterranean countries (Poland, the Neth-
erlands, and the UK). The effects of a Mediterranean diet
intervention on non-Mediterranean countries is not
granted, because its transferability requires specific chang-
es in dietary habits (Martínez-González et al. 2017) and
because genetic and environmental factors, that can be
country-specific, can hamper/enhance its effects (Mayr
et al. 2018).

In order to monitor the impact of anti-aging interven-
tions, accurate biological measures of age are needed. The
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discovery of the so-called epigenetic clocks, based on
DNA methylation (DNAm) levels at some specific sites,
has been a major breakthrough in this field within the last
6 years (Horvath 2013; Hannum et al. 2013;Weidner et al.
2014). These biomarkers have been proposed as accurate
and robust biomarkers of aging, but also as indicators of
the biological health of an individual: DNAm age, also
known as epigenetic age, measured in blood cells, has
been found to be predictive of mortality (Marioni et al.
2015a; Perna et al. 2016; Christiansen et al. 2016; Chen
et al. 2016; Dugué et al. 2018) and other aging-related
outcomes such as frailty (Breitling et al. 2016) or cognitive
and physical functioning (Marioni et al. 2015b; Degerman
et al. 2017; Simpkin et al. 2017; Gale et al. 2018a;
Sillanpää et al. 2018). Recent studies demonstrated that
age-associated epigenetic variations can be affected by diet
(Bacalini et al. 2014; Kok et al. 2015; Quach et al. 2017)
and that exposure to some pathogenic conditions or envi-
ronmental factors can influence DNAm age (Horvath et al.
2014; Nevalainen et al. 2017; Li et al. 2018; Rosen et al.
2018); however, little is known about the specific relation-
ship between nutritional interventions and epigenetic bio-
markers of aging.

In the present manuscript, we used epigenetic bio-
markers of aging to study the impact of the nutritional
intervention delivered in the framework of NU-AGE pro-
ject, focusing on subjects enrolled in a Mediterranean
country (Italy) and in a non-Mediterranean country
(Poland).

Subjects and methods

NU-AGE study

NU-AGEwas a 1-year, multicenter, randomized, single-
blind, controlled trial (registered with clinicaltrials.gov,
NCT01754012) with two parallel groups (i.e., dietary
intervention and control) carried out during April 2012–
January 2015 in five European centers in Italy, Poland,
France, the Netherlands, and the UK. The recruitment of
participants has been described in detail previously
(Berendsen et al. 2014; Santoro et al. 2014). Briefly,
1279 participants aged 65–79 years, free of major overt
chronic diseases for at least 2 years (i.e., cancer, severe
organ disease), living independently, and free of demen-
tia, were recruited to participate in the baseline assess-
ment. At enrollment, exclusion criteria included severe
heart diseases, type 1 and insulin-treated type 2 diabetes,

chronic use of corticosteroids, recent use of antibiotics,
change in habitual medication use, frailty (Fried et al.
2001), malnutrition (body mass index (BMI) < 18.5 kg/
m2 or 10% weight loss within 6 months), or food
allergy/intolerance requiring special diets. Participants
were randomly assigned (1:1) to the control or interven-
tion groups, after stratification by sex, age (65–72 or >
72–79 years), frailty status (pre-frail or non-frail), and
body mass index (< 25 or ≥ 25 kg/m2). All participants
provided written informed consent.

Epigenetic analysis was performed in a subgroup of
120 randomly selected subjects (60 from the Italian cohort
and 60 from the Polish one) from the intervention group, at
both baseline (T0) and after 1 year of dietary intervention
(T1), for a total of 240 samples. Exact chronological age of
the subjects (in years) at T0was calculated as follows: [(T0
date) − (date of birth)]/365. Exact chronological age at T1
was calculated as follows: [(T1 date) − (date of birth)]/365.
Adherence to study protocolwas evaluated using the 7-day
food records. A NU-AGE index scoring system was spe-
cifically developed and used as a measure of adherence to
the NU-AGE diet, as described previously (Jennings et al.
2018).

Analysis of DNA methylation

Samples were analyzed for genome-wide DNA
methylation patterns using the Illumina Infinium
HumanMethylation450 BeadChip array (Illumina
Inc., CA, USA). Genomic DNA was extracted from
250 μL of whole blood (drawn on EDTA tubes),
using the QIAamp 96 DNA Blood Kit (QIAGEN,
Hilden, Germany). One microgram of DNA was
bisulfite converted, using the EZ DNA Methylation
Kit (Zymo Research Corporation, Orange, CA, USA)
according to manufacturer’s instructions. After bisul-
fite conversion, DNA was whole-genome amplified,
enzymatically fragmented, and hybridized to the
Illumina Infinium HumanMethylation450 BeadChips
(Illumina Inc., CA, USA), according to the manufac-
turer’s protocols. Samples from the different groups
(Italy and Poland, T0 and T1) were accurately ran-
domized across the experimental sessions. Arrays
were scanned using the HiScan instrument (Illumina
Inc., CA, USA). Raw fluorescence intensities were
extracted using minfi Bioconductor package, and
no rma l i z a t i on was pe r f o rmed us i ng t h e
preprocessQuantile function (Touleimat and Tost
2012).
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Evaluation of DNA methylation age and of epigenetic
age acceleration

Normalized DNA methylation data were uploaded
into the DNA methylation age calculator, freely
a v a i l a b l e a t t h e w e b s i t e : h t t p s : / /
dnamage.genetics.ucla.edu, to calculate DNAm age,
as described by Horvath (Horvath 2013). DNAm age
is calculated using the weighted average of DNA
methylation levels at 353 CpG sites (Horvath
2013). The “advanced blood analysis” option was
selected in the online calculator, allowing the calcu-
lation of three measures of epigenetic age accelera-
tion (AA) that were further considered in this study.
These measures have been previously described by
Horvath and colleagues and have been applied to
date in several publications (Levine et al. 2015;
Horvath and Ritz 2015; Horvath et al. 2015, 2016;
Chen et al. 2016; Ambatipudi et al. 2017; Quach
et al. 2017; Maierhofer et al. 2017; Gale et al.
2018a, 2018b). The first measure is considered as
the universal measure of epigenetic AA and is de-
noted AgeAccel. It corresponds to the residual that
results from regressing DNAm age on chronological
age. The second measure of epigenetic AA is re-
ferred as Intrinsic Epigenetic Age Acceleration
(IEAA), denoted as AAHOAdjCellCounts in the on-
line software. IEAA is defined as the residual
resulting from regressing DNAm age on chronolog-
ical age and seven measures of immune blood cell
count estimates: naive CD8+ T cells, exhausted
CD8+ T cells, plasma B cells, CD4+ T cells, natural
killer cells, monocytes, and granulocytes. IEAA is
independent of changes in blood cell composition
that occur with time and is considered as a measure
of “pure” epigenetic aging effects in blood cells.
Finally, the third measure considered is referred as
Extrinsic Epigenetic Age Acceleration (EEAA),
known as BioAge4HAStaticAdjAge in the online
software. EEAA is based on a weighted average of
the epigenetic age measure with Hannum’s clock
(Hannum et al. 2013) and three blood cell types that
are known to change with age: naive cytotoxic T
lymphocytes (CD45RA+CCR7+), exhausted cytotox-
ic T lymphocytes (CD45RA-CD28-), and plasma B
cells. EEAA is defined as the residual formed from
regressing the resulting weighted epigenetic age on
chronological age. This measure is dependent on
age-related changes in blood cell composition and

can be considered as a measure of aging in immune
system.

Estimating blood cell counts based on DNA
methylation levels

Blood cell counts used in the measures of IEAA and
EEAA were estimated based on DNA methylation data
using the epigenetic clock online software. Blood cell
proportions of CD8+ T cells, CD4+ T cells, natural killer
cells, B cells, and granulocytes are based on Houseman’s
estimation method (Houseman et al. 2012). An advanced
analysis option of the epigenetic clock software is used to
estimate the percentage of naïve and exhausted CD8+ T
cells.

Genotyping

Genomic DNAwas extracted from 250μL ofwhole blood
(drawn on EDTA tubes), using the QIAamp 96 DNA
Blood Kit (QIAGEN, Hilden, Germany). Two hundred
nanograms of genomic DNAwere genotyped for 713,014
genetic markers by the Illumina OmniExpress BeadChip
(Illumina Inc., CA, USA), according to manufacturer’s
protocol. After quality control, 118 samples were retained.
Quantitative trait association analysis and estimation of
single nucleotide polymorphisms’ (SNPs) allele frequen-
cies were performed using PLINK toolset.

Statistical analysis

The effects of the nutritional intervention on the three
abovementioned measures of epigenetic AA
(AgeAccel, IEAA, and EEAA) were analyzed with a
Student’s paired-sample t test. For each epigenetic AA
measure, Benjamini-Hochberg procedure was applied to
correct for multiple tests, considering a total of 6 tests.
Pearson correlations between measures of epigenetic
age and chronological age or scores of adherence to
Mediterranean diet were calculated. All statistical anal-
yses and graphics were produced using the R v3.3.2.

Results

Subjects

Genome-wide DNAmethylation profiles were analyzed
by the Illumina Infinium HumanMethylation450
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Beadchip (Illumina Inc., CA, USA) in whole blood of
120 European subjects belonging to the intervention
group of the NU-AGE study, with chronological age
ranging from 65 to 79 years old. Sixty patients were
recruited in Italy and the other half was recruited in
Poland. Characteristics of enrolled subjects are summa-
rized in Table 1. Baseline characteristics were similar

between the two groups in terms of chronological age
and adherence to Mediterranean diet (Student’s t test p
value > 0.05) (Supplemental Fig. 1). Body mass index
(BMI) tended to be higher in Polish subjects compared
with Italian ones, and this difference was statistically
significant when considering only males (Student’s t test
p value = 0.027) (Supplemental Fig. 1). After 1 year of

Table 1 Characteristics of the study population at baseline (T0) and after 1 year of Mediterranean-like diet (T1)

Country Italy Poland

Subjects (n) 60 60

Males/females (n) 27/33 24/36

Time T0 T1 T0 T1

Mean chronological
age

(Years), mean ± SD Males +
females

72.23 ± 3.82 73.28 ± 3.81 71.08 ± 4.10 72.10 ± 4.09

Mean BMI kg/m2, mean ± SD 26.99 ± 3.60 26.67 ± 3.59 28.07 ± 3.37 28.02 ± 3.24

Adherence to
NU-AGE diet

(According to NU-AGE diet score),
mean ± SD

51.86 ± 9.78 64.84 ± 8.84 51.62 ± 9.52 66.69 ± 10.09

Mean chronological
age

(Years), mean ± SD Males 72.41 ± 3.91 73.48 ± 3.91 71.55 ± 4.27 72.58 ± 4.25

Mean BMI kg/m2, mean ± SD 26.30 ± 2.88 25.79 ± 2.76 28.20 ± 3.06 28.19 ± 2.81

Adherence to
NU-AGE diet

(According to NU-AGE diet score),
mean ± SD

50.63 ± 10.43 66.48 ± 8.45 51.30 ± 8.39 66.74 ± 10.28

Mean chronological
age

(Years), mean ± SD Females 72.07 ± 3.80 73.12 ± 3.79 70.76 ± 4.01 71.78 ± 4.00

Mean BMI kg/m2, mean ± SD 27.55 ± 4.05 27.39 ± 4.05 27.98 ± 3.61 27.91 ± 3.53

Adherence to
NU-AGE diet

(According to NU-AGE diet score),
mean ± SD

52.87 ± 9.25 63.49 ± 9.06 51.84 ± 10.31 66.66 ± 10.10

BMI, body mass index; SD, standard deviation
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Fig. 1 Significant association between DNAm age and chronological age at T0 and T1. Scatter plots of chronological age (x-axis) versus
DNAm age (y-axis) in the different groups (T0 = blue; T1 = red). Lines represent fitted linear regressions
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nutritional intervention (T1), adherence to Mediterra-
nean diet significantly increased in both Italian and
Polish participants, and a significant decrease in BMI
was observed in Italian males (paired Student’s t test p
value = 0.008) (Supplemental Figs. 1 and 2).

Effect of the nutritional intervention on the epigenetic
age acceleration measures

Epigenetic age (also referred to as DNA methylation age
(DNAm age)) was calculated using the online age calcu-
lator freely available at the website: https://
dnamage.genetics.ucla.edu. As expected, DNAm age
was significantly associated with chronological age
(p< 0.0001), both at T0 (before nutritional intervention)
and at T1 (after a 12-month Mediterranean-like nutritional
intervention), in both Italian and Polish groups (Fig. 1).

For each subject, we evaluated the epigenetic age
acceleration (AA), that is the deviation between DNAm
age and effective chronological age. Positive values of
epigenetic AA indicate an epigenetic age older than
expected, while negative values indicate an epigenetic
age younger than expected on the basis of chronological
age. In particular, we considered three measures of
epigenetic AA, implemented in the online age calcula-
tor, which reflect different aspects of epigenetic aging
(see the “Subjects and methods” section): (1) AgeAccel;
(2) Intrinsic Epigenetic Age Acceleration (IEAA); (3)
Extrinsic Epigenetic Age Acceleration (EEAA)
(Supplemental Table 1). At T0, in Italian subjects,
AgeAccel ranged from − 12.38 to 15.62 years, IEAA
ranged from − 11.56 to 12.27 years, and EEAA ranged
from − 10.90 to 7.41 years. In Polish subjects, AgeAccel
ranged from − 8.49 to 16.27 years, IEAA ranged from −

9.01 to 15.55 years, and EEAA ranged from − 12.56 to
13.56 years. At T1, in Italian subjects, AgeAccel ranged
from − 8.60 to 14.25 years, IEAA ranged from − 8.62 to
9.92 years, and EEAA ranged from − 8.97 to 7.90 years.
In Polish subjects, at T1, AgeAccel ranged from − 9.81
to 10.99 years, IEAA ranged from − 10.44 to 9.47 years,
and EEAA ranged from − 11.31 to 10.02 years. Baseline
measures of epigenetic AAwere similar between Italian
and Polish subjects (Student’s t test p value > 0.05), but
EEAA was significantly higher in Polish males
compared with Polish females (Student’s t test p =
0.00009) and compared with Italian males (Student’s t
test p = 0.02).

In both Italian and Polish cohorts, epigenetic AA
measures at baseline were significantly associated

(p < 0.05) with those obtained after the 12-month-
tailored nutritional intervention (Supplemental Fig. 3).

We then used Student’s paired-sample t test to com-
pare the epigenetic AA measures at T0 and at T1. In
Italian subjects, no statistically significant differences
between T0 and T1 were observed considering
AgeAccel, also when subjects were divided according
to sex (Fig. 2, upper panel). On the contrary, in Polish
subjects, AgeAccel measures were significantly lower at
T1 versus baseline (T0) (p = 0.0312) (Fig. 2, upper
panel). In other words, under the Mediterranean-like
diet intervention, there was a statistically significant
rejuvenation of the Polish subjects, according to the
AgeAccel measure. When we divided samples on the
basis of sex, we observed that the effect was predomi-
nantly related to a decrease in AgeAccel measures in
Polish females at T1 compared with T0 (p = 0.0013).
Rejuvenation of the Polish females after 1 year of nutri-
tional intervention was confirmed with the IEAA mea-
sure (Fig. 2, middle panel), as analysis returned a sig-
nificant decrease in IEAA values at T1 versus T0 (p =
0.007). Lower IEAAmeasures were also observed at T1
in Italian subjects as compared with T0 (p = 0.0347).
The EEAA predictor did not give significant results
(Fig. 2, lower panel) in both groups. After correction
for multiple testing, the effect remained statistically
significant for Polish females, according to AgeAccel
(adjusted p value = 0.008) and IEAA (adjusted p value =
0.04) measures (Fig. 2).
Supplemental Fig. 4 reports, for each subject, the intra-

pair difference between AgeAccel at T1 and AgeAccel at
T0 (AgeAccel Diff), the intra-pair difference between
IEAA at T1 and IEAA at T0 (IEAA Diff), and the intra-
pair difference between EEAA at T1 and EEAA at T0
(IEAA Diff). In all three cases, a negative value indicates
an epigenetic rejuvenation.

Finally, we assessed if AgeAccel Diff, IEAA Diff,
and EEAA Diff values were related to, respectively,
Age Accel, IEAA, and EEAA values at baseline
(Fig. 3). In both the countries and for all the differ-
ent AA measures, we found that the majority of
subjects showing an epigenetic age rejuvenation
(AgeAccel Diff, IEAA Diff, or EEAA Diff less than
0) had also baseline AA levels greater than 0 (Fig.
3). Fisher’s exact test confirmed that this enrichment
was significant for AgeAccel and IEAA measures in
Poles, indicating that the effect of the diet tended to
be more marked in those subjects that displayed
higher epigenetic AA values at T0.
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Association between epigenetic age acceleration
measures, BMI, and adherence
to the Mediterranean-like diet

In order to identify factors associated with the slowdown
of the epigenetic AA measures, we first investigated the

relationship between BMI and the epigenetic markers. We
did not find any significant association between BMI and
AgeAccel, IEEA or EEAA (results not shown).

We also analyzed the association between the
epigenetic AA measures and the NU-AGE score
measuring the adherence to the Mediterranean-like
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Fig. 2 A 1 year Mediterranean-like diet intervention promotes
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diet, calculated at T0 and T1 (see the “Subjects
and methods” section). We observed a significant
negative association of AgeAccel (p = 0.037) and
IEAA (p = 0.027) with the NU-AGE score, with
higher levels of adherence to the Mediterranean-
like diet associated with negative epigenetic AA
values, that is with epigenetic rejuvenation (Sup-
plemental Fig. 5).

Association between epigenetic age acceleration
measures and genotype

Finally, we evaluated if a response to Mediterranean-like
dietary intervention, in terms of epigenetic AA,was related
to the genetic background of the participants of the study.
To this aim, we carried out a genome-wide association
study (GWAS) of epigenetic AA measures in our cohort,
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Fig. 3 Stronger impact of diet on
epigenetic AA measures in
subjects with higher epigenetic
AA values at baseline. Scatter
plots of epigenetic AA measures
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expressed as AgeAccel Diff, IEAA Diff, or EEAA Diff as
described above (Supplemental Fig. 4). The quantile-
quantile (QQ) plot of association results demonstrated no
genomic inflation (data not shown). After correction for
multiple testing, no significant association was observed at
the genome-wide level (Benjamini-Hochberg corrected p

value < 0.05). However, small-effect loci with nominal
significance (p value < 1 × 10−4) were identified for all of
the three measures of epigenetic AA. A total of 68, 49, and
46 single nucleotide polymorphisms (SNPs) were found
significantly associated with AgeAccel Diff, IEAA Diff,
and EEAA Diff, respectively (Supplemental Table 2).
Thirty-one SNPs were common between AgeAccel Diff
and IEAA Diff, while there were no SNPs in common
between EEAA Diff and AgeAccel Diff or IEAA Diff
(Fig. 4). Interestingly, 5 SNPs out of 68 (for AgeAccel
Diff) and 6 SNPs out of 49 (for IEAADiff) showed minor
allele frequency differences between Italians and Polish
(p values < 0.05).

In order to identify pathways that may be relevant to
epigenetic AA effects upon Mediterranean-like nutri-
tional intervention, we performed enrichment analysis
using i-GSEA4GWAS (Supplemental Table 3). In the
analysis of AgeAccel Diff associations, we found 60

significant gene sets (p < 0.05); 13 of which were sig-
nificant after false discovery rate (FDR) correction
(FDR < 0.05). IEAA Diff analysis returned 37 signifi-
cant gene sets (p < 0.05); 11 of which had a FDR < 0.05.
We found a large overlap between the enrichment anal-
ysis results of the two epigenetic AA measures, in
particular for pathways involved in energy metabolism,
regulation of cell cycle, and of immune functions. On
the contrary, enrichment analysis for EEAADiff did not
return any significant result (p < 0.05).

Discussion

In this study, we observed the effects of a 1-year Mediter-
ranean-like diet, newly designed according to the nutrition-
al needs of people over 65 years of age (Berendsen et al.
2014), on epigenetic AA measures. We analyzed blood
methylation data, obtained in a population of subjects
enrolled in a multicenter trial, and we demonstrated that
the nutritional intervention delivered in theNU-AGE study
can slow down the epigenetic aging rate of blood in
specific groups of participants.

It is known that environmental factors, including diet,
are able tomodify the epigenome (Bacalini et al. 2014), and
cross-sectional associations between epigenetic AA mea-
sures and diet have been previously described by Quach
et al. (Quach et al. 2017). However, data from longitudinal
studies on a possible rejuvenation of epigenetic age with
dedicated therapeutic or lifestyle interventions are few.
Only twoworks have been recently published on this topic.
Firstly, Pavanello et al. examined the hypothesis that an
intensive relaxing training of 60 days may influence epige-
netic age by turning back the epigenetic clock (Pavanello
et al. 2019) (Pavanello et al. 2019). They observed a trend
to a reduction in DNAm age (estimated with the model
proposed by Zbiec-Piekarska et al. (Zbieć-Piekarska et al.
2015) after training in six healthy subjects, but the effect
was not statistically significant (p= 0.053). Secondly, the
effect of a protocol intended to “rejuvenate the thymus”
(thymus regeneration, immunorestoration, and insulin mit-
igation, TRIIM trial) was examined by Horvath’s team in a
small, non-controlled study (Fahy et al. 2019). The 1-year
intervention, composed of recombinant human growth hor-
mone, dehydroepiandrosterone, and metformin, was deliv-
ered to 9 healthy agingmen (age range 51–65 years old). A
rejuvenating effect on four epigenetic age predictors
(Horvath 2013; Hannum et al. 2013; Levine et al. 2018;

Fig. 4 Thirty-one SNPs associated with AgeAccel are common
with IEAA. Venn diagram of SNPs associated with AgeAccel
(blue), IEAA (yellow), and EEAA (green)
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Lu et al. 2019) was observed, with a mean change of about
2.5 years. The intervention was also associated with a
protective effect on different immunosenescence bio-
markers (reversal of thymic involution, increase in both
naïve CD4+ and CD8+ T cells), and the effect persisted
6 months after discontinuing the treatment (Fahy et al.
2019).

Data regarding the impact of nutritional intervention are
lacking, and to our knowledge, our study is the first
longitudinal and interventional study to examine effects
of such an intervention on epigenetic age acceleration
measures in human blood cells. According to our results,
a 1-year nutritional intervention could be able to rewind the
epigenetic AA process in some specific groups. The dis-
crepancy between the slowdown obtained with AgeAccel
and IEAAmeasures on one hand, and the absence of effect
observed with EEAA measure on the other hand seems to
be of particular interest. Indeed, the three measures of
epigenetic AAwe studied in this work do not capture the
same features of biological aging. By their very own
construction, IEAA is considered as a measure of epige-
netic age acceleration independent of age-related changes
in the cellular composition of blood, whereas EEAA is
more meant to capture the age-related decline of the im-
mune system. Here, we did not observe any significant
impact of the nutritional intervention on this decline ac-
cording to the EEAA measure. Our results therefore sug-
gest that the Mediterranean-like diet has a pure rejuvenat-
ing impact on the biological clock, and that this result is
unconfounded by a potential effect of the intervention on
the immune system.

Interestingly, the protective effect of the whole diet on
the epigenetic age appears to be both country- and sex-
specific, as Polish, and especially Polish females, appear to
benefit the more for the intervention, according to the
measures of epigenetic AA. Epigenetic aging rates have
been previously described as influenced by race/ethnicity
(Horvath et al. 2016) and sex (Horvath et al. 2016; Xiao
et al. 2018), and we also demonstrated here that the epige-
netic response to an intervention can be influenced by
these parameters. It is likely that the observed differences
between males and females are related not only to pure
biological differences (for example, differences in body
composition (Santoro et al. 2018), but also to
anthropologic and cultural components (such as levels of
education, cooking, or willingness to stick to the nutritional
advices for example).

While population and sex-specificities appear clearly
in this work, inter-individual differences intervene also

in the response to the nutritional intervention. Firstly,
subjects that were epigenetically older at baseline (i.e.,
subjects with higher epigenetic AA values at T0) had a
more marked effect of the nutritional intervention and
seemed to benefit more of the effects of the
Mediterranean-like diet. Secondly, according to our
GWAS, some genetic variants influence the response
to the intervention. GWAS results were largely overlap-
ping between AgeAccel and IEAA analysis. Further-
more, enrichment analysis suggested that both epigenet-
ic AA measures were associated to genetic variants in
genes involved in pathways related to the regulation of
cell metabolism and immune function. Among the gene
sets associated to AgeAccel differences between T1 and
T0, it is worth to note the presence of the mTOR
pathway, which plays a pivotal role in the regulation of
nutrients-sensing and energy metabolism during aging
(Cummings and Lamming 2017; Tosti et al. 2018;
Lushchak et al. 2019). In animal models, it has been
previously demonstrated the influence of a genetic com-
ponent in the response to a nutritional intervention, such
as caloric restriction (CR) (Liao et al. 2010). Liao et al.
observed that lifespan expansion by CR was not univer-
sal in mice and was highly dependent on the strain of the
animals, suggesting the important influence of the ge-
notype in the CR effect (Liao et al. 2010). In humans,
this problem has been poorly investigated. Previous
reports have evaluated the association between genetic
background and epigenetic AA in different tissues (Lu
et al. 2016, 2017, 2018), but little is known about the
influence of genetics on the response to a nutritional
intervention. In a recent study, the effects of dietary
supplementation with folic acid and vitamin B12 on
epigenetic age deceleration were found dependent upon
gender and MTHFR genotype (Sae-Lee et al. 2018).
Only the group of women with the MTHFR 677CC
genotype displayed a deceleration in epigenetic aging
upon vitaminic supplementation (Sae-Lee et al. 2018).

In summary, strengths of our study include the fol-
lowing: (1) the experimental design (multi-center trial
with 1-year follow-up), with the inclusion of two differ-
ent populations coming from one Mediterranean and
one non-Mediterranean European countries, with exten-
sive assessment at baseline and after one-year of inter-
vention; (2) a well-controlled nutritional intervention;
(3) the combination of data on genetics and epigenetics
for the same individuals; and (4) the use of the state-of-
the-art epigenetic biomarkers of aging, which are robust
and well-validated instruments, previously associated
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with mortality, morbidity, and several age-related phe-
notypes (Horvath and Raj 2018).

On the contrary, several important limitations exist.
Firstly, the absence of a control group is a major one.
Genome-wide DNA methylation analysis was performed
only in a subset of subjects included in the intervention
group and was not performed on subjects randomized into
the control group. This outline corresponds to the initial
design of the NU-AGE study, as described by Santoro
et al. (Santoro et al. 2014), where it was originally decided
to performOMICs analysis (epigenomics, transcriptomics,
metabolomics, and metagenomics) in a subgroup of 120
randomly selected subjects before and after diet. There
were no specific changes in the lifestyle behaviors of the
individuals recruited in the control group, and specially, no
significant increase in the NU-AGE index, which mea-
sures the adherence to Mediterranean diet. This index,
while not different between the two groups at baseline,
only changed significantly in the intervention group after
1 year, as compared with the control one (Berendsen et al.
2018). In support of our data, it has been demonstrated that
Mediterranean diet can have a specific impact on DNA
methylation levels of certain genes. Thus, in the
PREDIMED study, it was observed that a nutritional in-
tervention based onMediterranean diet was able to impact
on DNAmethylation levels of inflammation-related genes
compared with the non-intervention group (Arpón et al.
2017).

Secondly, in our experimental settings, the nutritional
intervention resulted only in a small effect size
(Supplementary Table 1), which however is reasonable
according to recent literature. In the recently published
results of the TRIIM trial (Fahy et al. 2019), the nine
volunteers were found to be on average 2.5 years younger
after the intervention than they entered, which means that
they gained back about 1.5 years in 1 year of trial. It is
reasonable that the effect of NU-AGE nutritional interven-
tion (i.e., average of − 1.47 years of AgeAccelDiff and of
− 1.36 years of IEAADiff in the subgroup of Polish fe-
males) could have a minor effect on aging biomarkers
compared with the one presented by Fahy et al., who
evaluated the impact of 3 combined drugs. However, this
small effect should be necessarily confirmed in a larger
number of enrolled subjects compared with the cohort
analyzed in our pilot study. The same applies to ourGWAS
analysis, as no significant association was observed after
correction for multiple testing and as the small sample size
prevented us from performing the analysis in subgroups
divided for country or sex.

In conclusion, we report that a Mediterranean-like
nutritional intervention can promote epigenetic rejuve-
nation in the elderly, and that its effect is dependent on
different factors including the following: (1) country-/
population-specific factors, likely influenced by
anthropologic and cultural components; (2) sex-/gen-
der-specific factors: and (3) individual-specific factors,
for example, related to the genetic background and to
the baseline epigenetic profile of each individual.

Further work is required to overcome the important
limitations of this preliminary work, to elucidate how
some specific determinants influence the epigenetic ag-
ing and how some individuals seem to be more prone to
benefit from specific interventions. This will be a key
achievement for the development of individualized nu-
tritional interventions aimed at promoting healthy living
and, more in general, for the application of a precision
medicine approach to anti-aging interventions.
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