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BACKGROUND Elite controllers (EC) are human immunodeficiency virus (HIV)-positive individuals who can maintain low viral 
loads for extended periods without antiretroviral therapy due to multifactorial and individual characteristics. Most have a small 
HIV-1 reservoir composed of identical proviral sequences maintained by clonal expansion of infected CD4+ T cells. However, 
some have a more diverse peripheral blood mononuclear cell (PBMC)-associated HIV-1 reservoir with unique sequences.

OBJECTIVES To understand the turnover dynamics of the PBMC-associated viral quasispecies in ECs with relatively diverse 
circulating proviral reservoirs.

METHODS We performed single genome amplification of the env gene at three time points during six years in two EC with high 
intra-host HIV DNA diversity.

FINDINGS Both EC displayed quite diverse PBMCs-associated viral quasispecies (mean env diversity = 1.9-4.1%) across all time-
points comprising both identical proviruses that are probably clonally expanded and unique proviruses with evidence of ongoing 
evolution. HIV-1 env glycosylation pattern suggests that ancestral and evolving proviruses may display different phenotypes of 
resistance to broadly neutralising antibodies consistent with persistent immune pressure. Evolving viruses may progressively 
replace the ancestral ones or may remain as minor variants in the circulating proviral population.

MAIN CONCLUSIONS These findings support that the high intra-host HIV-1 diversity of some EC resulted from long-term 
persistence of archival proviruses combined with the continuous reservoir’s reseeding and low, but measurable, viral evolution 
despite undetectable viremia.
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A few percentage (< 0.5%) of human immunodefi-
ciency virus (HIV)-1-infected individuals, termed elite 
controllers (EC), maintained a sustained control of vi-
ral replication in the absence of antiretroviral therapy 
(ART).(1) Most EC displayed a small and homogeneous 
HIV-1 reservoir mostly composed by identical proviral 
sequences that is maintained by the clonal expansion 
of infected memory/naïve CD4+ T cells and by the per-
sistence of long-lived CD4+ T cells that were latently 
infected with identical proviruses around the time of 
viral transmission.(2-9) Some EC, however, displayed a 
more heterogeneous peripheral blood mononuclear cell 
(PBMC)-associated HIV-1 reservoir mostly composed 
by unique sequences.(10,11,12) The mechanism that main-
tained a relatively diverse PBMC-associated HIV-1 pop-
ulation in some EC is not well-defined. Such a pattern 
of relatively high intra-host HIV-1 diversity in some EC 
may be due to a process of ongoing replication and reser-
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voir’s reseeding(12,13,14,15) and/or may be consequence of a 
high genetic diversity in the transmitted viral population 
that persisted during the HIV-1 infection history.(16,17,18,19)

One previous study observed clear evidence of HIV-
1 evolution in plasma sequences recovered from at least 
40% of the EC.(14) Other longitudinal studies confirmed 
that finding, but failed to detect measurable evolution 
of PBMCs-associated proviral sequences.(13,20) Another 
study demonstrates that the HIV-infected CD4+ T cell 
pool in peripheral blood from EC largely comprised ar-
chival proviruses that appeared to be clonally expanded, 
while plasma viral sequences derived from recently in-
fected CD4+ T cells populations from lymphoid tissue 
that were very rarely detected among circulating mem-
ory CD4+ T cells.(9) Those findings may indicate that re-
circulation of recently infected cells from lymphoid tis-
sue to peripheral blood in EC is very restricted and that 
ongoing replication in EC does not result in a significant 
reseeding of the circulating reservoir. Alternatively, it is 
also possible that newly HIV-infected cells recirculate 
from lymphoid tissue to peripheral blood in EC at a very 
slow rate and that reseeding of the circulating reservoir 
is only detectable after long-term follow-up, as observed 
in patients under ART.(21)

In previous studies conducted by our group, we iden-
tified some EC with quite diverse PBMC-associated pro-
viral populations (mean env nucleotide diversity > 2%) 
and the longitudinal analysis of one of those individu-
als (named EEC42) over a long sampling time interval 
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(> 10 years) demonstrates a low, but measurable, env di-
vergence rate (3 x 10-3 substitutions/site/year).(12) Patient 
EEC42, however, was one of the EC from our cohort with 
the highest frequency of blips (30% of viral load deter-
minations above the detection limit of commercial as-
says) during follow-up. In the present study we assess the 
long-term (⁓ 6 years) evolutionary pattern of the env gene 
of the PBMC-associated HIV DNA reservoir in two EC 
(named EEC36 and PEC38) from our cohort that harbour 
diverse proviral quasispecies in the setting of persistent 
undetectable viremia or infrequent blips (< 15% of viral 
load determinations). Our findings support that both EC 
here analysed displayed evidence of continuous circulat-
ing reservoir’s reseeding and ongoing evolution of some 
subpopulation within the proviral quasispecies.

SUBJECTS AND METHODS

Study subjects - In this study we include two EC 
(EEC36 and PEC38), defined as subjects infected with 
HIV-1 for at least five years that maintained undetectable 
RNA viral loads in most (> 70%) determinations without 
ART, harbouring heterogeneous HIV-1 proviral popula-
tions as demonstrated in a previous study of our group.(12) 
Individuals has been followed-up at the Instituto Nacional 
de Infectologia Evandro Chagas (INI) from Rio de Janei-
ro (Brazil) and provided written informed consent docu-
ments approved by the INI Institutional Review Board 
(Addendum 049/2010) and the Brazilian National Human 
Research Ethics Committee (CONEP 14430/2011). The 
procedures followed were in accordance with the Helsinki 
Declaration of 1975, as revised in 1983.

Subject EEC36 is a 46-year-old woman, heterosexu-
al, that was diagnosed with HIV-1 in 2010 and was clas-
sified in a subgroup of ebbing elite controllers (EEC) 
because displayed occasional and transient episodes (≤ 
30% of frequency) of detectable low-level viremia (51-
2,000 copies/mL) during follow-up. Subject PEC38 is 
also a 46-year-old woman (undisclosed exposure cat-
egory) who was diagnosed with HIV-1 in 2011 and was 
classified as a persistent elite controller (PEC) because 
presents 100% of viral load measurements below the de-
tection limit (< 40-50 copies/mL) of the available com-
mercial assays. None of the patients had genetic factors 
(HLA-B and Δ32 CCR5 gene) associated with HIV-1 
protection.(22) Longitudinal analyses of proviral qua-
sispecies over a period of ~ 6 years (2013-2019) were 
performed by combining the HIV-1 env gene sequences 
from our previous study(12) and new sequences generated 
in this study at two visits of follow-up.

CD4+ T cell counts and plasma HIV-1 RNA quantifi-
cation - Absolute CD4+ T cell counts were obtained using 
the MultiTest TruCount-kit and the MultiSet software on a 
FACSCalibur flow cytometer (BD Biosciences San Jose, 
CA). Plasma viral load (VL) were measured according to 
the Brazilian Ministry of Health guidelines, with method-
ologies being updated overtime to improve sensitivity: the 
Versant HIV-1 3.0 RNA assay (bDNA 3.0, Siemens, Tar-
rytown, NY, limit of detection: 50 copies/mL) from 2007 
to 2013, and the Abbott RealTime HIV-1 assay (Abbott 
Laboratories, Wiesbaden, Germany, limit of detection: 40 
copies/mL) from 2013 to until now.

Genomic DNA isolation and single genome am-
plification (SGA) and sequencing - A total of 1×107 
cryopreserved PBMCs were thawed, washed, and im-
mediately after, the total genomic DNA was isolated 
with the addition of the DNAzol® Reagent (Invitrogen, 
USA) under conditions recommended by the manufac-
turers. The isolated DNA was eluted in 100 µL DNase-
free water and stored at -20ºC. SGA and sequencing 
of DNA env sequences from PBMC was performed 
by limiting dilution nested polymerase chain reaction 
(PCR) using conditions previously described.(12) The 
PCR products were sequenced using the ABI BigDye 
Terminator v.3.1 reaction Kit (Applied Biosystems, 
Foster City, CA) in an ABI PRISM 3100 automated se-
quencer (Applied Biosystem). Chromatograms were as-
sembled into contigs using the SeqMan Pro 11 software 
(DNASTAR Inc., Madison, WI). Sequences resulting 
from chromatograms with double peaks or showing 
APOBEC3G/F mediated hypermutation as determined 
using Hypermut software(23) were discarded.

The dataset composed of proviral env sequences 
from each individual’s three follow-up time points was 
submitted to the ElimDupes tool, the online Los Ala-
mos HIV platform (https://www.hiv.lanl.gov/content/se-
quence/elimdupesv2/elimdupes.html) for identification 
of unique proviral DNA sequences and additionally we 
combined the results of the distance matrix performed in 
the MEGA 11 to confirm these unique sequences. A new 
dataset composed only of these unique sequences was 
also later used in viral evolution analysis.

Sequence analysis: HIV-1 subtyping, analyses of viral 
diversity and divergence and N-glycosylation sites - DNA 
viral env sequences were aligned with HIV-1 subtype ref-
erence sequences using ClustalW and then manually ed-
ited, yielding a final alignment covering positions 7008-
7650 relative to the HXB2 reference genome (Genbank 
accession number: K03455.1). Maximum-likelihood (ML) 
phylogenetic trees were reconstructed with the PhyML 3.0 
program(24) using the most appropriate nucleotide substitu-
tion model (GTR+I+G) selected using program jModeltest 
v. 3.7,(25) the sub-tree pruning & re-grafting (SPR) branch 
swapping heuristic tree search algorithm, and the approxi-
mate likelihood-ratio test (aLRT)(26) for branch support.

The first dataset analysed comprised all proviral se-
quences from the EEC36 and PEC38 subjects (including 
the hypermutated sequences), combined with the HIV-1 
subtype reference sequences [Supplementary data (Fig. 
1)]. The complexity of proviral quasispecies at each time 
point was characterised using two indices after excluding 
hypermutated sequences: the mean nucleotide diversity 
(π) that measures the average number of nucleotide dif-
ferences between any two sequences of the quasispecies, 
and the normalised Shannon entropy (HSN) that provides 
a measure of haplotype (mutant) frequencies. The π was 
calculated using MEGA 11(27) and the HSN was calculated 
by using the R package, Vegan,(28) after rarefaction of sam-
ples to the small sample size (n = 10) for bias correction of 
sample size differences(29) as described previously.(12)

To evaluate intra-host viral divergence, we first verify 
the temporal structure of the ML phylogenetic trees re-
constructed using all sequences, all unique sequences or 

https://memorias.ioc.fiocruz.br/media/com_memorias/documentos/f67dde77cb8bb4be990e83c662c6ee930a783b9a.pdf
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specific subclades of unique sequences from each patient 
by performing a linear regression analysis of the root-to-
tip distances against sampling time using program Tem-
pEst.(30) The intra-host viral evolutionary (divergence) 
rate was then directly estimated from the sampling date 
of the sequences for those datasets with a good temporal 
structure using program BEAST v1.10.(31) The evolution-
ary process was estimated using the HKY + Γ4 nucleotide 
substitution model, a relaxed uncorrelated lognormal mo-
lecular clock model, and the parametric constant coales-
cent model. A continuous-time Markov chain (CTMC) 
rate reference prior was employed in the evolutionary rate 
in all datasets. We also evaluate the number of potential 
N-glycosylation sites (PNGSs) in env sequences using the 
online Los Alamos HIV platform (http://www.hiv.lanl.
gov/content/sequence/GLYCOSITE/glycosite.html).(32)

Statistical analysis - The Mann-Whitney U-test was 
used to compare the mean number of PNGSs between 
viral clades. Tests were two-sided, and p-values ≤ 0.05 
were considered as significant. Graphics and statisti-

cal analysis were performed using GraphPad v6 (Prism 
Software, United States).

Availability of data - The sequences from the 2016 
and 2015 visits for EEC36 and PEC38, respectively, are 
part of a previous study and have been deposited in Gen-
Bank® under accession numbers KY852611-KY852631 
for EEC36 and KY852692-KY852706 for PEC38. The 
new HIV-1 sequences generated during the current study 
(2013 and 2019 visits for EEC36 and 2013 and 2019 visits 
for PEC38) were also deposited in GenBank® under ac-
cession numbers OP799403 - OP799502.

RESULTS

Clinical characteristics of patients - Individuals 
EEC36 and PEC38 are two females 46 years old that have 
been followed up since HIV diagnoses in 2010 and 2011, 
respectively, maintained all (PEC38) or most (EEC36) of 
plasma viral load determinations below the limit of detec-
tion (< 40-50 copies/mL) without ART and CD4+ T cell 
counts within the normal range (≥ 750 cells/μL) (Fig. 1). 

Fig. 1: clinical follow-up from ebbing elite controllers (EEC)36 (A) and persistent elite controller (PEC)38 (B) individuals. Plasma human immuno-
deficiency virus (HIV) RNA viral load (copies/mL, circles) and CD4+ T cell counts (cells/µL, squares) since HIV diagnosis are shown on the left 
and the right Y-axis, respectively. Coloured shaded areas indicate the three follow-up time points that were selected for DNA quasispecies analysis.
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Individual EEC36 displayed undetectable viremia in 18 of 
the 21 (86%) viral load measurements performed between 
2012 and 2021 and the three blips were non-consecutive 
events within the range of 60-1,200 copies/mL (Fig. 1A). 
There were two blips between the first and second time 
points selected for DNA quasispecies analysis and none 
between the second and third timepoints. Individual 
PEC38 displayed undetectable viremia in all 20 viral 
load measurements performed between 2011 and 2021 
(Fig. 1B). Longitudinal analyses revealed no evidence 
of immunologic progression (decline in absolute CD4+ 
T cell counts or %CD4+ T cells) in subjects EEC36 and 
PEC38 throughout follow-up [Supplementary data 
(Fig. 2)]. Moreover, intra-individual variability in abso-
lute CD4+ T cell counts in subjects EEC36 [coefficient 
of variation (CV) = 15.7%] and PEC38 (CV = 13.8%) 
were comparable to those observed during long-term (> 
5 years) follow-up of ART-suppressed HIV-infected in-
dividuals (13.8-20.1%).(33,34)

Diversity and complexity of HIV DNA quasispecies 
- To measure the diversity of the PBMC-associated HIV 
DNA quasispecies in patients EEC36 and PEC38, we per-
formed single genome amplification of the env gene by 
limiting dilution PCR at three time points during a period 
of six years between 2013 and 2019 (Fig. 1). A total of 50 
new env sequences obtained from patient EEC36 at 2013 
and 2019 were combined with 21 env sequences previous-
ly recovered at 2016, and a total of 51 new env sequences 
obtained from patient PEC38 at 2013 and 2019 were com-
bined with 15 env sequences previously obtained at 2015. 
The 71 and 66 env sequences recovered from individuals 
EEC36 and PEC38, respectively, were next aligned with 
HIV-1 subtype reference sequences and subjected to ML 
phylogenetic analysis. This analysis confirmed that all 
env sequences from subjects EEC36 and PEC38 clustered 
in highly supported (aLRT = 100%) monophyletic groups 
within subtype B and subtype A1 [Supplementary data 
(Fig. 1)], respectively, confirming that these patients were 
infected by a single subtype B or A1 variant through the 
follow-up period. One sequence from 2013 and one from 
2019 from subjects EEC36 and PEC38, respectively, were 
classified as hypermutated and excluded from subsequent 
analyses. Analyses of env sequences obtained at each time 
point revealed that subjects EEC36 and PEC 38 displayed 
quite diverse (π ≥ 1.9%) proviral quasispecies at all time 

points analysed (Table I). Although mean diversity of pro-
viral quasispecies in subject PEC38 (π = 3.9 - 4.1%) was 
higher than in subject EEC36 (π = 1.9 - 3.7%), the over-
all complexity of proviral quasispecies in subject EEC36 
(HSN = 0.81 - 0.98) tend to be higher than in subject PEC38 
(HSN = 0.80 - 0.87) (Table I).

Evolution of HIV DNA quasispecies - In both indi-
viduals viral quasispecies, env sequences sampled at 
different time points were highly intermingled in the 
ML phylogenetic tree (Figs 2A-3A). To obtain a clearer 
picture of the proviral dynamics over time, we first com-
pared the number of identical DNA viral sequences that 
could be used as surrogate markers of “proviral clones” 
maintained by clonal expansion of infected cells. Next, 
we analyse the temporal structure (root-to-tip distance 
against sequence sampling time) as a surrogate marker 
of viral divergence. Linear regression was used to de-
termine if slopes were significantly different (p < 0.05) 
from zero. We estimate the temporal structure of dif-
ferent datasets including: (i) all quasispecies sequences; 
(ii) all unique sequences by retaining only one sequence 
(one of the earliest) from each proviral clone to reduce 
the impact of latency on intra-host evolutionary diver-
gence; (iii) highly supported (aLRT ≥ 0.85) subclades 
comprising at least 10 sequences covering the whole pe-
riod of study; and (iv) unique sequence datasets without 
sequences from divergent subclade.

In subject EEC36, identical sequences represent a 
minor fraction of the whole quasispecies (31%, 22/70) 
and only a few of them persist across different time 
points (Fig. 2B), indicating a substantial renewal of cir-
culating viral reservoir over time. Consistent with this 
observation, we detected a significant increase in the ge-
netic divergence for datasets including all viral sequenc-
es (Fig. 2C) and all unique sequences (Fig. 2D). In addi-
tion, we also identified three highly supported subclades 
that showed a significant increase in genetic divergence 
over time [Supplementary data (Fig. 3)]. The subclade 
with the best temporal structure (highest coefficient of 
correlation), designated as EEC36DIV, comprises 30% (n 
= 16) of unique sequences and displayed a similar di-
vergence rate (slope) as datasets comprising all viral se-
quences (n = 70) and all unique sequences (n = 54) (Fig. 
2E). Importantly, when the subclade EEC36DIV was re-
moved, the remaining unique sequences from other sub-

TABLE I
Virological characteristics of subjects EEC36 and PEC38

Patient ID Visit (month/year) RNA load (cp/mL) Subtype π HSN Total sequences

EEC36
V1 (Apr 2013) < 40

B
2.4% 0.97 25

V7 (May 2016) < 40 1.9% 0.81 21
V13 (Mar 2019) < 40 3.7% 0.98 24

PEC38
V1 (Jun 2013) < 40

A1
4.0% 0.86 16

V4 (Dec 2015) < 40 3.9% 0.80 15
V9 (Jan 2019) < 40 4.1% 0.87 34

EEC: ebbing elite controllers; PEC: persistent elite controller; HSN: the normalised Shannon entropy; π: the mean nucleotide diversity.

https://memorias.ioc.fiocruz.br/media/com_memorias/documentos/f67dde77cb8bb4be990e83c662c6ee930a783b9a.pdf
https://memorias.ioc.fiocruz.br/media/com_memorias/documentos/f67dde77cb8bb4be990e83c662c6ee930a783b9a.pdf
https://memorias.ioc.fiocruz.br/media/com_memorias/documentos/f67dde77cb8bb4be990e83c662c6ee930a783b9a.pdf
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clades (EEC36NON-DIV) displayed no significant temporal 
structure (Fig. 2F), supporting that subclade EEC36DIV 
essentially explained the temporal structure of datasets 
including all viral sequences and all unique sequences. 
Of note, the subclade EEC36DIV becomes increasingly 
predominant over time, rising from 12% of quasispecies 
sequences in 2013 to 46% in 2019 (Fig. 2G).

In subject PEC38, the overall proportion of identi-
cal DNA viral sequences (49%, 32/65) and of proviral 

clones detected in at least two (21%, 14/65) or three (32%, 
21/65) time points was higher than in subject EEC36 
(Fig. 3B), supporting a more limited renewal of the viral 
reservoir. Consistent with this observation, we found no 
evidence of measurable divergence over time for datas-
ets including all viral sequences (Fig. 3C) and all unique 
sequences (Fig. 3D). We also failed to detect measur-
able divergence in most highly supported subclades, 
with the exception of two subclades that displayed a 

Fig. 2: human immunodeficiency virus (HIV)-1 env sequences detected during the six years follow-up of subject ebbing elite controllers 
(EEC)36. (A) Longitudinal analysis of HIV-1 peripheral blood mononuclear cell (PBMC)-associated DNA (circles) env sequences obtained 
between 2013 and 2019. Circles in the tips of the maximum-likelihood (ML) phylogenetic tree are coloured according to the visit, as shown in 
the legend at the upper left corner. The green branches indicate the monophyletic subclade EEC36DIV with the best temporal structure. Hori-
zontal branch lengths are proportional to the bar at the bottom indicating nucleotide substitutions per site. The approximate likelihood-ratio 
test (aLRT) support is shown for EEC36DIV node. (B) Venn diagrams containing the total number of identical proviral sequences detected at 
one (non-overlapping regions) or several (overlapping regions) time intervals during follow-up. (C-F) Plot of the root-to-tip distance of proviral 
sequences against sequence sampling for: (C) all proviral sequences, (D) all unique sequences, (E) unique sequences from the subclade with 
the best temporal structure (EEC36DIV), and (F) unique sequences from others subclades (EEC36NON-DIV). (G) Graph depicting the percentage of 
proviral sequences that belong to the subclades EEC36DIV and EEC36NON-DIV over time (month/year). DIV: evolving; NON-DIV: non-evolving.
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Fig. 3: human immunodeficiency virus (HIV)-1 env sequences detected during the six years follow-up of subject persistent elite controller 
(PEC)38. (A) Longitudinal analysis of HIV-1 peripheral blood mononuclear cell (PBMC)-associated DNA (circles) env sequences obtained 
between 2013 and 2019. Circles in the tips of the maximum-likelihood (ML) phylogenetic tree are coloured according to the visit, as shown in 
the legend at the upper left corner. The blue branches indicate the monophyletic subclade PEC38DIV with the best temporal structure. Hori-
zontal branch lengths are proportional to the bar at the bottom indicating nucleotide substitutions per site. The approximate likelihood-ratio 
test (aLRT) support is shown for PEC38DIV node. (B) Venn diagrams containing the total number of identical proviral sequences detected at one 
(non-overlapping regions) or several (overlapping regions) time intervals during the follow-up. (C-F) Plot of the root-to-tip distance of proviral 
sequences against sequence sampling time for: (C) all proviral sequences, (D) all unique sequences, (E) unique sequences from the subclade 
with the best temporal structure (PEC38DIV), and (F) unique sequences from other subclades (PEC38NON-DIV). (G) Graph depicting the percentage 
of proviral sequences that belong to the subclades PEC38DIV and PEC38NON-DIV over time. DIV: evolving; NON-DIV: non-evolving.
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significant increase in the genetic divergence over time 
[Supplementary data (Fig. 4)]. The subclade with the 
best temporal structure (highest coefficient of correla-
tion), designated as PEC38DIV, comprised 38% (n = 12) 
of unique sequences and displayed a higher divergence 
rate (slope) than datasets comprising all viral sequences 
and all unique sequences (Fig. 3E). As expected, when 
the subclade PEC38DIV is removed, the remaining unique 
sequences (PEC38NON-DIV) display no significant tempo-
ral structure (Fig. 3F). The frequency of the subclade 
PEC38DIV tends to decrease over time, ranging from 25% 
in 2013 to 15% in 2019 (Fig. 3G).

To estimate the intra-host HIV-1 env divergence rate 
in subjects EEC36 and PEC38, we performed a Bayes-
ian molecular clock analysis of datasets with significant 
temporal structure and that only comprise unique se-
quences. The Bayesian molecular clock analyses esti-
mate an overall mean intra-host env evolutionary rate 
of: 1.5 × 10-3 subst/site/year (95% HPD: 5.5 × 10-4 - 2.9 
× 10-3 subst/site/year) for all unique sequences of subject 
EEC36, 5.0 × 10-3 subst/site/year (95% HPD: 1.3 × 10-3 
- 1.6 × 10-2 subst/site/year) for subclade EEC36DIV, and 
2.9 x 10-3 subst/site/year (95% HPD: 5.7 × 10-7 - 1.7 × 
10-2 subst/site/year) for subclade PEC38DIV. These anal-
yses support that the subclades EEC36DIV and PEC38DIV 
have been evolving at a slow but measurable rate over 
long-term follow-up. Although the median evolutionary 
rate of subclade EEC36DIV was about two times higher 
than that estimated from all unique sequences, consis-
tent with the better temporal structure of the sub-clade 
respect to other sequences from quasispecies, the HPD 
intervals of both estimates displayed substantial overlap 
and no definitive conclusions could be obtained.

To understand the potential impact of env changes 
on virus phenotype, we compared the diversity and 
number of PNGSs in env sequences from evolving and 
non-evolving (ancestral) subpopulations from each sub-
ject. We observed a significant (p = 0.0002) increase in 
the mean number of PNGSs in the evolving (EEC36DIV) 
respect to non-evolving (EEC36NON-DIV) proviruses of 
subject EEC36 (Fig. 4A). While PNGSs at the C2-C3 
region were quite conserved, with positive signatures 
for neutralisation detected as the most common variant, 
PNGSs at the V4-C4 region were more variable (Table 
II). The PNGSs N406 and N413 were only detected in 
EEC36NON-DIV variants (> 90%), while the PNGSs N411 
and N442 were only detected among EEC36DIV variants 
(75-100%). We do not observe significant (p = 0.10) dif-
ference in the mean number of PNGSs between evolv-
ing (PEC38DIV) and non-evolving (PEC38NON-DIV) pro-
viruses of subject PEC38 (Fig. 4B), but we observed 
several important variations among sites (Table II). The 
PNGSs N289, N295, N401 and N463 were much more 
frequent among PEC38DIV variants (83-100%) respect to 
PEC38NON-DIV variants (35-70%), the PNGSs N355 and 
N466 were less frequently detected among PEC38DIV 
variants (42-58%) respect to PEC38NON-DIV variants (70-
95%), and the PNGS N363, N399 and N462 were only 
detected among PEC38NON-DIV variants (25-70%).

DISCUSSION

In this study, we investigate the long-term (> 5 years) 
HIV evolution in two EC with relatively diverse circu-
lating proviral reservoirs, in the setting of persistent un-
detectable viremia (subject PEC38) and occasional blips 
(subject EEC36) and no evidence of immunologic pro-
gression. We detected genetic markers of ongoing evo-
lution and continuous renewal in the PBMCs-associated 
proviral sequences of both EC during follow-up. HIV-
infected PBMCs from both EC comprised a significant 
fraction of identical (probably clonally expanded) archi-
val proviruses and unique evolving proviruses. We hy-
pothesise that subjects EEC36 and PEC38 may display 
an efficient mechanism of suppression of extrafollicular 
HIV replication that maintains plasma viremia below de-
tectable levels, but fails to fully suppress viral replication 
(and viral evolution) within lymphoid tissues.(9,35) Contin-
uous trafficking of newly infected cells from lymphoid 
tissues to peripheral blood resulted in a slow, but measur-
able, long-term reseeding of the circulating reservoir.(9)

The detection of unique evolving proviruses in cir-
culating reservoirs was previously described after long-
term follow-up (> 10 years) of another EC (subject EEC42) 
from our cohort that displayed quite frequent blips (30% 
of viral load determinations above the detection limit of 
commercial assays).(12) The present study demonstrates 
that long-term ongoing proviral evolution may also occur 
in EC with occasional blips (EEC36, 14% of viral load 
determinations) and even in EC with persistent undetect-
able viremia (PEC38), but with different rate. The over-
all proportion of unique proviral sequences in subject 
PEC38 (49%) was lower than in subjects with blips (70 
- 80%). Furthermore, we detected measurable divergence 
in the whole proviral quasispecies of subjects EEC36 and 
EEC42, but not in subject PEC38. These findings sug-
gest that the relative contribution of clonally expanded 
archival proviruses vs unique evolving proviruses to the 
long-term landscape of the circulating reservoir in EC 
may vary among individuals according to the levels of 
cumulative residual viral replication and of trafficking of 
newly infected cells between tissue compartments.

Previous studies detected evidence of ongoing HIV-1 
evolution in plasma sequences of some EC, but failed to 
detect measurable evolution of PBMCs-associated pro-
viral sequences.(9,14,15,20,36-38) Detection of ongoing evolu-
tion of circulating reservoirs in EC may have been ham-
pered in previous studies by the significant fraction of 
latent archival proviruses that compose the quasispecies 
combined with the narrow sampling interval (< 5 years) 
and/or the few (n < 10) proviral sequences obtained at 
each time-point. Ongoing evolution in the peripheral 
DNA viral compartment of EC may become only appar-
ent when: (i) proviral samples are obtained over wide 
sampling intervals (> 5 years); (ii) a substantial number 
of proviral clones (n > 15) are amplified at each point; 
and (iii) the analyses are focused on unique sequences 
from specific subclades that are probably replicating in-
stead of sequences from the bulk proviral quasispecies, 
as observed in subject PEC38.

https://memorias.ioc.fiocruz.br/media/com_memorias/documentos/f67dde77cb8bb4be990e83c662c6ee930a783b9a.pdf
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Fig. 4: analyses of N-linked glycosylation in the env gp120 C2-C4 region of viral sequences from subjects ebbing elite controllers (EEC)36 
and persistent elite controller (PEC)38. Dot plots with the numbers of estimated potential N-glycosylation sites (PNGSs) in env sequences from 
EEC36NON-DIV and EEC36DIV (A) and PEC38NON-DIV and PEC38DIV (B). Horizontal lines represent the mean and standard deviation. Two-tailed 
Mann-Whitney U tests were used. DIV: evolving; NON-DIV: non-evolving.

Divergent patterns of HIV persistence were de-
scribed in the setting of fully suppressive ART and vi-
remic controllers (VC). While several studies reported 
no evidence of ongoing evolution in PBMCs-associated 
DNA viral sequences during ART,(39,40,41,42,43) one study 
described continued infections of cells in lymphoid tis-
sue sanctuary sites and common trafficking to blood-
stream that resulted in the replenish and ongoing evo-
lution of PBMCs-associated proviral reservoir during 
ART.(21) Another study with four VC showed that two 
participants presented proviral sequences that integrated 
recently, while proviruses recovered from the other two 
participants dated to time points spread throughout in-
fection, consistent with different rates of reservoir turn-
over.(44) These findings point to the probable coexistence 
of different mechanisms of HIV persistence (clonal am-
plification and ongoing replication) in EC, VC and treat-
ed subjects and further support that ART may provide 
and additional layer of protection to some EC, by further 
reducing the level of residual HIV replication and ongo-
ing viral evolution.(45,46,47,48)

Changes in HIV-1 env glycosylation pattern repre-
sents an important mechanism of escape from broadly 
neutralising antibodies (bNAb)(49,50) and the number of 
PNGSs in env typically increased over the first years 
of infection, as the virus became more resistant to au-
tologous Nab.(51,52,53) Evolving variants display a higher 
frequency of PNGSs than ancestral ones(54,55) and pro-
viruses of EC subjects showed less glycosylated and 
less-functional env sequences than proviruses from pro-
gressors’ individuals.(55,56) Of note, we detected a signifi-
cantly higher mean number of PNGSs in proviruses of 
the evolving clade (EEC36DIV) than in other proviruses 
of subject EEC36, suggesting that this clade may dis-
play a higher resistance to bNab and/or better env func-
tionality, consistent with its increasing prevalence over 
time. This result, however, should be interpreted with 
caution as many PNGSs increase sensitivity to bNAb or 
may have opposite effects depending on the bNAb class. 
Among PNGSs over-represented in EEC36DIV provirus-
es, site N362 was correlated with sensitivity to V3/CD-

4bs bNab and site N442 was correlated with sensitivity 
to V3 bNab and resistance to CD4bs bNab.(57) The PNGS 
N413, which was under-represented among EEC36DIV 
variants, was correlated with sensitivity to V3 bNab and 
resistance to MPER bNab.(58)

Although the mean number of PNGSs did not vary 
significantly between evolving (PEC38DIV) and other 
proviruses of subject PEC38, we observed differences at 
several key positions. Among PNGSs over-represented 
in PEC38DIV proviruses, sites N295 and N289 were cor-
related with sensitivity and resistance to V3 bNab, re-
spectively.(59) Notably, preservation of the PNGS N289 
was also important for high viral infectivity.(57) None 
of PNGSs under-represented in PEC38DIV proviruses 
(N355, N363, N399, N462 and N466) were correlated 
with changing sensitivity to bNAb; but nearby PNGSs 
were associated with sensitivity to bNAb (N362) or au-
tologous NAb in HIV controllers (N397 and N460).(53) 
These findings suggest that PEC38DIV proviruses may 
display differential resistance to bNab and/or infectiv-
ity than other proviral variants. Despite these potential 
advantages, the frequency of PEC38DIV proviruses de-
creased over time, supporting that the host immune re-
sponse in this subject was more efficient to contain the 
refuelling of circulating reservoirs by evolving variants 
than in subject EEC36.

Functionality of the Env protein could be a rel-
evant determinant of in vivo viral replication control 
and pathogenesis(60) and one study described that high 
level of HIV proviral env diversity in EC is associated 
with future loss of natural virologic control.(11) Other 
studies, however, suggests that env or pol genetic diver-
sity of the HIV-1 proviral reservoir is not an accurate 
biomarker for the prediction of virologic breakthrough 
in EC.(61,62) Indeed, subjects EEC36 and PEC38 main-
tained virological and immunological control during 
follow-up despite evidence of ongoing proviral evolu-
tion. Similarly, other studies described that EC main-
tains virologic control despite selection of immune 
escape mutations in plasma viral sequences.(9,10,13-15,20,36-

38,63,64) These findings suggest that host immunity in 



Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 118, 2023 9|11

some EC can efficiently control HIV-1 infection with-
out completely blocking viral replication and evolution, 
but we cannot rule out the possibility of long-term im-
munological attrition due to persistent low levels of vi-
ral replication and evolution in those subjects.

Our study has some limitations. First, we cannot 
exclude that some proviral sequences described as 
unique were not detected at multiple time-points due 
to the limited sampling size or that they were persis-
tently detected in lymphoid tissues but only recirculate 
in blood at some specific time points. Second, we do 
not explore the evolution of RNA viral sequences in 
the plasma compartment of EC subjects, and we thus 
cannot confirm the hypothesis that divergent (and 
evolving) proviral clades identified in our analyses 
correspond to actively replicating viral variants. Third, 
although the changes in the HIV-1 env glycosylation 
pattern between evolving and non-evolving proviruses 
are consistent with differential resistance to neutralisa-
tion and/or env functionality, we do not experimentally 
assess the phenotype of different viral variants. Finally, 
our findings need to be confirmed in larger cohorts of 
EC with diverse proviral populations.

In summary, this study confirms that the relatively 
high HIV-1 env diversity detected in the circulating pro-
viral population of some EC resulted from a process of 
ongoing viral evolution and reservoir’s reseeding com-
bined with long-term persistence of ancestral proviruses. 
The ongoing viral evolution may result in the emergence 
of variants with altered immunological and/or virological 
phenotypes in EC, despite persistent virologic control. 
Such evolved variants may progressively replace the an-
cestral ones or may remain as minor variants in the circu-
lating proviral reservoir. Continuous follow-up would be 
important to assess the potential association of ongoing 
viral evolution and reservoir replenishment with future 
immunologic and/or virologic breakthrough in EC and to 
identify those subjects that may benefit from ART.
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TABLE II
Proportion of sequences in evolving (DIV) and non-evolving (NON-DIV) and proviral subpopulation  

of subjects EEC36 and PEC38 with mutations at potential N-glycosylation sites (PNGSs) that may modulate  
the neutralisation phenotype and/or viral infectivity

Position (HXB2) Region EEC36NON-DIV EEC36DIV PEC38NON-DIV PEC38DIV

276 C2 97% 100% 100% 100%
289 C2 100% 100% 65% 92%
295 C2 100% 100% 70% 100%
301 V3 100% 100% 100% 100%
332 C3 100% 100% 100% 100%
339 C3 94% 100% --- ---
355 C3 100% 100% 70% 58%
362 C3 81% 100% --- ---
363 C3 --- --- 25% --
386 V4 100% 100% 90% 100%
392 V4 100% 100% 100% 100%
397 V4 92% 75% --- ---
399 V4 --- --- 55% ---
401 V4 --- --- 45% 83%
406 V4 92% --- 100% 100%
411 V4 --- 75% --- ---
413 V4 100% --- --- ---
442 C4 --- 100% 100% 100%
448 C4 100% 100% 95% 100%
461 V5 97% 100% --- ---
462 V5 --- --- 70% ---
463 V5 --- --- 35% 83%
466 V5 --- --- 95% 42%

EEC: ebbing elite controllers; PEC: persistent elite controller.
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