Ongoing Software Development
without Classical Requirements

Thomas A. Alspaugh and Walt Scacchi
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3455 USA
thomas.alspaugh@acm.org, wscacchi@ics.uci.edu

Abstract—Many prominent open source software (OSS) de-
velopment projects produce systems without overt requirements
artifacts or processes, contrary to expectations resulting from
classical software development experience and research, and a
growing number of critical software systems are evolved and
sustained in this way yet provide quality and rich functional
capabilities to users and integrators that accept them without
question. We examine data from several OSS projects to investi-
gate this conundrum, and discuss the results of research into OSS
outcomes that sheds light on the consequences of this approach
to software requirements in terms of risk of development failure
and quality of the resulting system.

Index Terms—open source software; open source require-
ments; provisionments.

I. INTRODUCTION

In 2002 one of us (Scacchi) published a study of require-
ments practices and artifacts in four open source software
(OSS) development communities [1]. This was the first sys-
tematic study to show that OSS system and development
processes do not rely on what may be termed classical
requirements artifacts and processes (Section III), namely
those involving problem-space requirements in a document
or repository evaluated for completeness and internal and
external consistency. Others have since reported similar results
[2]-[4]. Yet there are successful, ongoing OSS projects with
users numbered in the millions, and hundreds of OSS systems
relied on as critical infrastructure, such as GNU/Linux, the
Apache HTTP server, the Mozilla Firefox Web browser, the
PostgreSQL database system, and the Eclipse development
platform to name a few [5]-[8].

From the point of view of a classically trained software
developer and requirements practitioner and researcher such
as the other of us (Alspaugh), this is unexpected. The broad
consensus among software experts and researchers over recent
decades has been that devoting appropriate attention to require-
ments processes and artifacts is essential to project success
[9]-[14], and that failure to do so risks undesirable outcomes
such as:

« a product that fails to meet stakeholder needs,

¢ a product that does not exhibit necessary levels of relia-

bility, evolvability, or other software qualities,

o schedule slips and budget overruns, or

« in extreme cases failure to produce any product at all.
How can it be that OSS development produces good software?

In the remainder of the paper we explore this conun-
drum. We present a motivating example, Brooks’s thoughts
on the success of Linux (Section II), and elaborate what
we mean by ‘“classical requirements artifacts and processes”
(Section III), hereafter abbreviated as Classical Requirements,
before describing our study (Section IV) and examining the
OSS artifacts and processes that appear to serve in the place
of Classical Requirements (Section V), using data from our
previous work and work reported by others. We find that the
overwhelming majority of requirements-like artifacts identified
by ourselves and others may be characterized as what we term
provisionments (Section VI), which state features or qualities
in terms of the attributes provided by an existing software
version, a competing product, or a prototype produced by a
developer advocating the change it embodies. The processes
involving these artifacts resemble or in some cases are in-
distinguishable from the bug reporting, tracking, and response
processes found in closed source software (CSS) development.
We discuss several contexts in which provisionments appear
common and are arguably appropriate: OSS of course, soft-
ware game mods, and open architecture software ecosystems
(Section VII).

Finally, we place our work in the context of related work
(Section VIII), discuss several questions of interest (Sec-
tion IX), and conclude the paper (Section X).

II. A MOTIVATING EXAMPLE: BROOKS ON LINUX

In reflecting on Raymond’s description [15] of the open
source process producing Linux, Brooks observes of this
“marvelously functional and robust operating system” that “for
Linux a functional specification already existed: Unix” [16,
page 56]. This is a curious statement, since the development
of Unix itself displayed characteristics of OSS development
including:

o software developed for the developers’ own use rather

than for an external client and users,

« a strong emphasis on extensibility, and

e no overt requirements artifacts or process preceding de-

velopment.

Saying that Unix (specifically the Unix kernel) provided the
requirements for Linux does not explain the problem; it merely
moves it from Linux to Unix. The Unix kernel is marvelously



functional and robust, too; was it developed using a functional
specification or other Classical Requirements?

If so, supporting evidence is in short supply. Ken Thompson
wrote the initial version of Unix in four weeks in the summer
of 1969, yet the first edition of the Unix manual was dated
3 November 1971 [17]. Salus notes “the only way you could
learn [the Unix system] was to sit down with one of the authors
and ask questions” [17]. Ritchie recalls that in 1969 “Thomp-
son, R. H. Canaday, and Ritchie developed, on blackboards
and scribbled notes, the basic design of a file system that
was later to become the heart of Unix”; not the requirements,
but the design [18]. We have searched the writings of the
creators of Unix and researchers reporting on it for Classical
Requirements without finding evidence of it.

It appears that it is indeed possible to produce a marvelously
functional and robust operating system without the aid of a
functional specification or other Classical Requirements.

Brooks goes on to note, as we and others have, that OSS
development works because the developers are users, saying
“The whole requirements determination is implicit, hence
finessed.” He finds no contradiction in ongoing development
without Classical Requirements once initial development is
successfully complete.

III. CLASSICAL ARTIFACTS AND PROCESSES

Researchers and practitioners have developed many types of
requirements artifacts and many requirements processes. We
do not consider any of them in detail here. Instead we focus
on three characteristics shared by nearly every such approach
with which we are familiar:

1) a requirements document or central requirements repos-
itory, defining the system requirements and providing a
criterion for whether a particular candidate requirement
is or is not a requirement for the system;

2) requirements that are preferentially described in terms
of the problem space rather than the solution space; and

3) requirements processes for examining the requirements
document/repository for completeness, internal consis-
tency, and external consistency with the domain and
stakeholder needs.

These characteristics define what we term in this paper
Classical Requirements.

We focus on these characteristics because they figure promi-
nently in many influential requirements approaches and in the
requirements practices of working CSS developers we have
known or interviewed, and because convincing arguments have
been made from them to project success and product quality
[9]-[14], [19]. Brooks famously says [20]

The hardest single part of building a software system

is deciding precisely what to build. ... No other part

of the work so cripples the resulting system if done

wrong. No other part is more difficult to rectify later.
Boehm asserts, supported by data [19],

Clearly, it pays to invest effort in finding require-

ments errors early and correcting them in, say,

1 man-hour rather than waiting to find the error
during operations and having to spend 100 man-
hours correcting it.

Lamsweerde characterizes requirements errors as “numerous
and persistent” and as the most expensive and dangerous of
software errors [12]. Gause and Weinberg note “Obviously,
requirements are important because if you don’t know what
you want, or don’t communicate what you want, you reduce
your chances of getting what you want” [10].

The particular form of the requirements is not material
to our work. We note that the prominence and importance
of particular requirements artifacts and processes often vary
depending on the type of system. Not all are appropriate for
development of every system, but many situations can benefit
from an appropriately chosen selection of them. Some (over-
lapping) types and corresponding artifact or process choices
might be:

o Embedded systems, in which software is a component of
a larger hardware system — a state-based specification;

« Real-time systems that must meet specific often-inflexible
timing constraints — a temporal logic specification;

e Critical or high-assurance systems, for which what is
required and what is acceptable must be determined with
precision and the cost of failure is high — a model-
checkable specification and validation by stakeholders;

o Systems that interact significantly with other automated
systems — a formalized specification checked for con-
sistency and completeness;

o Systems that play a role in specific organizational pro-
cesses — stakeholder analysis;

o Systems that address novel problems or address problems
in a novel way — processes that encourage exploration
of the problem space.

We note that the use of Classical Requirements in these
situations and others may be connected to the typical CSS
context in which

o the system is produced by a development group for a
client outside that group,

« most or all of the system’s expected users are also outside
that group,

o the developers may or may not have expertise in the
problem domain, and

« the system is developed against a budget and a schedule.

The requirements state the expectations and commitments of
the client on the one hand and the development group on the
other. The client balances the benefits of the specific proposed
system against the cost of developing it and the wait until it is
ready. The development group evaluates whether the budget,
resources, and schedule are appropriate for the work involved.
The two sides explore, negotiate, and (ideally) agree on a set
of requirements. Both sides can then make plans based on
specific criteria for acceptance.



Examine the conundrum of OSSD

Goal producing high-quality software apparently
without using Classical Requirements
RQ1: How extensively RQ2: What does OSSD
Questions does OSSD use use instead of Classical
Classical Requirements? Requirements?
Artifacts and processes Frequency of Classical- Instead of
Metrics judged by Classical Requirements-like Classical

Requirements standards artifacts and processes Requirements

Fig. 1. Goal Question Metric model

IV. METHOD
A. Research Questions and Metrics

Our goal is to address the apparent conundrum of OSS
development (OSSD) that does not use Classical Requirements
yet successfully produces high-quality software. We apply the
Goal Question Metric approach [21] to produce a measurement
model operationalizing our goal into research questions, and
associating each question with data that can be evaluated
(Figure 1).
o (RQI) To what extent do OSS projects in fact use
Classical Requirements?

¢ (RQ2) Where OSS projects do not use Classical Require-
ments, what artifacts and processes are used instead, if
any?

B. Sources of Data

We address RQ1 and RQ2 using data and results from our
previous work [1], [22] and from other published research on
requirements in OSSD. For an introductory study we find this
appropriate, in place of collection of a new set of data. A first
step is to identify such research; there is not much. We used
work by Noll and Liu [3], [4] which provides both analysis
and some raw data, and work by German [2] providing
analysis only. We also examined the data we found while
investigating Brooks’s statement that Unix provided Linux’s
function specification, using it primarily to cross-check where
possible conclusions we drew from the other data sets. In some
cases we followed up on specific data items and examined
them in the original context. In a few cases we extended the
data with newly-collected data, as for example that shown in
Figure 2.

C. Validity

In this subsection we discuss the internal and external
validity of the study, and threats to its validity.

1) Internal validity: Internal validity is the soundness of
the relationships within a study. Our study examined data and
analysis from different researchers, then merged them in order
to apply our metrics. We examined original data where possi-
ble in order to apply metrics more uniformly. We looked first
for overt Classical Requirements, then for requirements-like
artifacts and processes, and finally for artifacts and processes

that appeared to be used in place of requirements. In order
to systematize our study, we coded and categorized each such
instance, following standard qualitative practice [23].

2) External validity: External validity is the degree to
which the results from the study can be generalized. Iden-
tification of successful OSS systems without overt Classical
Requirements provides an existence proof that software can
be successfully developed without it. Other results are more
difficult to generalize reliably; for example, the study cannot
provide strong support for a hypothesis that Classical Re-
quirements does not contribute to reducing the risk of project
failure, nor to increasing the probability that stakeholders will
be satisfied. The study also does not provide strong support
for hypotheses on the incorporation of OSS development
approaches into CSS projects, as our study examines only
OSSD data and analyses; these are intriguing and investigation
of them remains as future work.

3) Threats to validity: We examined every study we found
that addressed OSSD requirements, eliminating any possibility
of selection bias; however, the number of such studies is quite
small (five), making it more difficult to generalize our results
and increasing the possibility that other OSSD projects do not
fit our conclusions.

Other practitioners and researchers might apply different
standards, for example with a broader or stricter definition
of which instances qualify as Classical Requirements. We
minimized this by defining Classical Requirements explicitly
(Section III) and in abstract terms. This threat affects only
RQLl.

V. OSS ARTIFACTS AND PROCESSES
A. Requirements-Like Artifacts and Processes

We present several examples of specific requirements-like
artifacts and processes we identified in our study. Perhaps
the most common requirement-like OSS artifacts are isolated
feature requests or bug reports submitted to tracking systems
like Bugzilla (Figure 2), and discussed there or on email lists
or electronic bulletin boards. An example is this proposal for
OpenEMR [4]:

You could add a link to the existing superbill page
which would open a new browser window/tab with a
printable version that meets your criteria. This way,
you could leverage existing code and probably not
have to add a table. I am thinking of something
similar to printable links elsewhere in the program,
like in reports and patient report.

A second example is shown in Figure 2. Here a Firefox
feature request is being discussed, in conjunction with possible
changes to the implementation and architecture. Comment 4
may be taken as stating a requirement that Firefox provide
the Profiler, specifically, and more generally that Firefox
provide a specific kind of results (those that the Profiler
currently provided, we infer). This fairly explicit requirement
is stated in solution-space terms (what Profiler provides) rather
than the corresponding problem-space terms; of course, this



Jan Honza Odvarko 2012-10-04 08:24:23 PDT Description
One of the dev-tools team goals is to get rid of JSD1 and use only JSD2 + RDP.

However, JSD1 also includes profiling features (COLLECT_PROFILE_DATA flag) that is
used e.g. in Firebug. These API should be replace by new API so, Firebug and other

tools can continue to provide the same results.

Honza

Jan Honza Odvarko 2012-10-04 08:28:52 PDT

Example of Firebug profiler output

1) Install Firebug:

Comment 1

https://addons.mozilla.org/en-us/firefox/addon/firebug/

2) Load this page:

https://getfirebug.com/tests/head/console/api/profile.html

Follow instructions on the page

Honza

Jim Blandy :jimb 2012-10-09 09:28:22 PDT

Comment 2

It's worth observing, for the long term, that this data could be trivially provided
by the Debugger API, but Debugger is not suitable here because it imposes the
overhead of debug mode --- even though this application would never need the

features that make debug mode necessary.

In other words, if debug mode could be turned on and off with debuggee frames on
the stack, we could simply use Debugger here.

Rob Campbell [:rc] (:robcee)

2012-11-01 15:11:34 PDT

Comment 3

One other option, how necessary is this for Firebug? If we provided an alternative
Profiler would that be sufficient? It seems costly to keep JSD1 hanging around for
this one feature if alternatives are available.

Jan Honza Odvarko 2012-11-02 00:13:28 PDT

(In reply to Rob Campbell [:rc]

Comment 4

(:robcee) from comment #3)

> One other option, how necessary is this for Firebug?
I think that existing Firebug users would complain if the
Profiler is removed or providing different kind of results.

Fig. 2.

is probably considerably more compact. The discussion is
focused on architecture and implementation issues involved
in the requirement. Other requirements are considered only
indirectly if at all, for example if the goal of replacing JSDI1
with JSD2 + RDP is taken to imply a here-unstated software
quality requirement.

A third example is tabbed browsing, a Web browser feature
little known not so many years ago, but now so nearly
universal that the name “tabbed browsing” has become a
token representing a complex of properties and user stories
now assumed to be obvious and requiring no explanation.
Mozilla/Firefox tabbed browsing appears to have first been
proposed in a one-sentence scenario of use (“One thing that I
would really want to see is the ability to open a link in the new
window in background ...”) posted to a Mozilla newsgroup,
which was immediately followed by a post beginning “Have
you tried tabbed browsing [in the Opera web browser]?” [24].
Both these are provisionments; the first cites current system
behavior and describes a difference from it, while the second
cites another system that exhibits the behavior referred to.

Discussion of a feature request in the Firefox Bugzilla, “Bug 797876 — Introduce new API for JS content Profiling”

Each feature request or bug report can be taken to imply
a requirement, but in themselves they rarely constitute a
Classical Requirements artifact. In the examples listed above,
as for most requirements-like artifacts we identified, the
artifacts are neither integrated into a central requirements
document/repository, described in terms of the problem, nor
being examined in the context of other requirements. Our study
indicates that the OSS projects in question do not use Classical
Requirements.

B. An OSS Requirements Document

Our data sources included one example identified as a
requirements document: “Firefox2/Requirements” [25], dis-
cussed by Noll [3]. The document is interesting to us in two
ways.

First, our examination of the document found the items
are expressed in general rather than specific terms, as in this
representative example “[The system] will be optimized and
tuned for general web browsing use cases”, with the specifics
no doubt proposed, discussed, and agreed on through project
mailing lists and discussion boards as in the examples in the



previous section. We also note all but one are stated as a
difference from the previous Firefox version, using phrases
such as “will update” and “will improve”, in other words as
provisionments.

Second, and perhaps more significant, this is the only
presumptive requirements document or repository our re-
search identified in our own searches and in related work
on requirements in OSS. While its existence indicates that
OSS development can tend toward Classical Requirements, its
apparent uniqueness highlights our general finding that OSS
development does not make use of Classical Requirements.

VI. PROVISIONMENTS

As stated in Section I, a provisionment is a statement of
features or qualities in terms of the attributes provided by an
existing software version, a competing product, or a prototype
produced by a developer advocating the change it embodies.
Most provisionments we encountered only suggest or hint at
the behavior or quality in question; the expectation seems to
be that the audience for the provisionment is either already
familiar with what is intended, or will play with the cited
system and see the behavior or quality in question firsthand.

In our study, we saw provisionments being used for re-
quirements or requirements-like artifacts in two ways: either
directly as a specification of behavior or quality, or as a starting
point in a specification of behavior or quality differing in stated
ways from that expressed by the provisionment.

Section V provides examples of both types. Firefox Bugzilla
comment 4 in Figure 2 “I think that existing Firebug users
would complain if the Profiler is removed or providing [sic]
different kind of results” uses a provisionment directly (though
stated in the negative), while the OpenEMR proposal uses a
provisionment (“the existing superbill page”) indirectly as a
starting point for a difference (“You could add ...”).

A provisionment is distinct from a feature, a quality, a
bug report, and similar entities in that each of those is
something to be expressed, while a provisionment is a way
of expressing something. In our study we found many feature
requests and bug reports expressed using provisionments; OSS
project archives appear to teem with feature requests and
bug reports, and the majority we examined were expressed
using provisionments. Statements of qualities were much less
common but were also often expressed with provisionments.

VII. SOME EXAMPLE CONTEXTS

We discuss three contexts highlighting the interplay between
requirements, provisionments, and architecture: open source
software, here discussed at greater length; software games,
some of which are themselves OSS and many of which support
modifications that exhibit OSS characteristics, whether the
underlying game is OSS or not, and are described using
provisionments; and OA systems of complex components, for
which provisionments mediated by architectural configurations
play prominent roles.

A. Open Source Software

OSS requirements, to the extent that they can be identi-
fied, tend to be distributed across space, time, people, and
the artifacts that interlink them. OSS requirements are thus
decentralized—that is, they are decentralized requirements
that co-exist and co-evolve within different artifacts, online
conversations, and repositories, as well as within the contin-
ually emerging interactions and collective actions of OSSD
project participants and surrounding project social world. To
be clear, decentralized requirements are not the same as the
(centralized) requirements for decentralized systems or sys-
tem development efforts. Traditional software engineering and
system development projects assume that their requirements
can be elicited, captured, analyzed, and managed as centrally
controlled resources (or documentation artifacts) within a
centralized administrative authority that adheres to contractual
requirements and employs a centralized requirements artifact
repository—that is, centralized requirements. In this way as
in others, OSSD projects represent an alternative paradigm
to that long advocated by software engineering and software
requirements engineering community [22].

By the standards of classical software development and
requirements practice, OSS requirements and processes are
not satisfactory. Requirements are expressed indirectly at best;
they are scattered across mailing lists, discussion boards, and
bug trackers rather than collected in one place; they appear
to be integrated only in the implementation of the system
they refer to; they are almost universally stated in solution
terms, not problem terms; once stated and discussed, they
rarely appear to be referred to.

An RE researcher or practitioner might well look at dis-
persed statements such as these and simply conclude that
requirements were for practical purposes absent by any rea-
sonable or ordinary standard; if such decentralized, indirect
requirements were used for a classical software development
project, it would be judged to be at high risk of failure.

One would think therefore that many open source projects
should fail—and they do, in large numbers. About 59% fail
according to one study [26], roughly double the 31% rate at
which classical projects are reported to fail according to a 1994
survey [27]. Of course failure means something different for
an OSSD project; there is no concept of over budget or behind
schedule, and failed OSSD projects tend to wither away rather
than being cancelled. Nevertheless, the comparison is startling.

Though most OSSD projects fail to produce a sustained se-
quence of widely-used software system releases, a substantial
number are striking successes. Hundreds of OSSD projects are
critical in a number of areas:

« the operation of the World-Wide Web: (the Firefox and
Chrome web browsers and the Apache web servers and
web services infrastructure);

« interactive software development (Eclipse and NetBeans
development environments),

« customer relationship management (SugarCRM),

o database management systems (PostgreSQL, MySQL),



o operating systems (GNU/Linux, Darwin/OSX),
« office communications systems (Asterix),

and many more.

Clearly OSSD processes are capable of producing high
quality software systems, despite scanty requirements artifacts
and processes. We see the use of provisionments to make
statements about the functionality of current and future system
versions as one key factor, particularly convenient for an
ongoing project producing version after version, each of which
is described not in absolute terms but in terms of its differences
from the previous one. Others may include developing an
(informal) architecture and reasoning about it, in place of
developing requirements and reasoning about requirements;
using extensibility (see below), developer prototypes, and fre-
quent releases of new system versions to explore the problem
space by experimenting with alternative solutions within it; the
fact that OSS developers are also users of the systems they
develop; and the extensive discussions of system issues and
proposals, characteristic of OSSD projects, in online forums
that are public and persistently available.

We note that many prominent OSS systems are strongly
extensible, with mechanisms by which the core functional-
ity of the system may be extended independently, without
affecting the system core. These mechanisms allow end-
users to customize their copy of a system to suit there own
needs and preferences, and in many cases allow developers
to expeditiously prototype candidate provisionments. Exam-
ples of extensibility include Unix, supporting the addition
of shell scripts, commands, libraries, and device drivers;
Firefox, Eclipse, jEdit, and others, supporting the addition of
plug-ins; and Firefox and jEdit again, and others, supporting
the use of scripting languages. In addition to satisfying the
system quality requirement (QR) of extensibility, extension
mechanisms can also contribute to the requirement, for project
success and continuation, to bring new contributors into the
project community. Writing extensions for one’s one copy of
a system is an easy and appealing first step towards making
more substantial contributions to the project that produces the
system

Extensibility and several other quality requirements will be
seen to play important roles in games and OA systems too.

Viewing OSSD from a classical RE standpoint, we still note
some concerns. Classical RE has approaches for identifying
relevant stakeholders, and we see no corresponding practice
in OSSD. We are concerned that OSSD projects will tend
not to identify stakeholder roles in which the stakeholders
are not developers and (for whatever reason) not motivated
to come forward and contribute. We are also concerned about
the effectiveness of OSSD in exploring the problem space, as
opposed to the solution space. If such exploration is occurring,
it is doing so inconspicuously.

We also do not claim that developers can easily see into
their own goals and needs; they are only human, after all. We
note only that what corresponds to elicitation may be more
straightforward since the communication step vanishes.

B. Software Game Mods

Many software games are extensible and thus can be modi-
fied by their users to produce new games, ranging from simple
modifications obviously similar to the host game to others
almost unrecognizable as related to their hosts.

User modified computer games, hereafter referred to as
game mods, are a leading form of user-led innovation in
game design and game play experience. Game mods, modding
practices, and modders are in many ways quite similar to their
counterparts in the world of OSS development, even though
they often seem isolated to those unaware of game software
development. Modding is increasingly a part of mainstream
technology development culture and practice, and especially so
for games. Modders are players of the games they reconfigure,
just as OSS developers are users of the systems they develop.
There is no systematic distinction between developers and
users in these communities, except for the many users/players
that contribute little beyond their usage and their demand for
more such systems. Modding and OSSD projects are in many
ways comparable experiments to prototype alternative visions
of what innovative systems might be in the near future, and
so both are widely embraced and practiced as a means for
learning about new technologies, new system capabilities, new
working relationships with potentially unfamiliar teammates
from other cultures, and more [28].

Game conversion mods are perhaps the most common form
of game mods. Most such conversions are partial, in that they
add or modify in-game characters, game resources such as
weapons, potions, or spells, play levels, zones, landscapes,
game rules, or play mechanics. In these cases the conversion
can often best be described in terms of provisionments of
the host game. More ambitious modders go as far as to
accomplish either total conversions that create entirely new
games from existing games of a kind that are not easily
determined from the originating game, or even parodies that
implicitly or explicitly spoof the content or play experience of
one or more other games via reproduction and transformation.

One of the most widely distributed and played total game
conversions is the Counter-Strike (CS) mod of the Half-
Life first-person action game from Valve Software. The CS
mod attracted millions of players preferring to play it over
the original Half-Life game. Other modders began to further
convert the CS mod in part or fully, to the point that Valve
Software modified its game development and distribution
business model to embrace game modding as part of the game
play experience provided by the Half-Life product family.
Valve has since marketed a number of CS variants. As of
2011, Valve Software had sold over 25M copies of CS and its
descendants [29].

Other player-modders have produced meta-mods, or mods
that can themselves be modded, such as Garry’s Mod of Half-
Life 2. Garry’s Mod has evolved into a modding toolkit used
in hundreds of game conversions and producing inventive
game play mechanics. Game conversions can also exhibit
innovations in game design and re-purposing. The game Chex



o o -
Fi D

TORCH HERLTH

Fig. 3. A screenshot of Chex Quest, a nonviolent mod of Doom (image
courtesy of user Vulpis Alba)

Quest is a conversion of the first-person shooter game Doom
into a “non-violent” game distributed in Chex cereal boxes
and targeted to young people and gamers (Figure 3).

Extensibility to support the creation of mods has become a
necessary feature for a successful game.

C. Open Architecture Software Ecosystems

As we note in our previous work [30]-[33], a substantial
number of development organizations have adopted a strategy
in which a software-intensive system is developed with an
open architecture (OA) [34], integrating components that may
be OSS or proprietary with open application programming
interfaces (APIs). Such systems evolve not only through the
evolution of their individual components, but also through
replacement of one component by another, possibly from
a different producer or under a different license. With this
approach, the development organization becomes an integrator
of components largely produced elsewhere and interconnected
through open APIs, with shim code added as necessary to
achieve the desired result. This approach allows development
of large systems of complex components, with relatively little
coding needed. Requirements artifacts and processes are not
prominent here. Instead, we see a prototyping process and
a system described in terms of provisionments rather than
requirements.

One reason that reasoning with provisionments is appealing
for OA systems is that the integrator cannot choose arbitrary
functional capabilities. Instead, there are a limited number of
alternative components to select among, and one must simply
take what is available. As the components evolve the same
situation recurs, in that the functional capabilities may change
from version to version, and the integrator must work with
what is available. The most straightforward approach is simply
to reason based on what the selected components provide.

A second reason is that individual components such as
Firefox do not come with Classical Requirements that could

" . Google || Google || Gnome "
Firefox Opera || AbiWord Docs || Calendar||Evolution Fedora ||Windows 0SX
Design-time
architecture:
Browser,
WP,
calendar
Instance Instance Instance Instance
architecture: architecture: architecture: architecture:
Firefox, Firefox, Firefox, Opera,
. ol ol ol OR ...
AbiWord, N Google Cal., N Google Cal., N Google Docs, N
Evolution, Google Docs, Google Docs, Evolution,
Fedora Fedora Windows 0OsX

Fig. 4. Ecosystem from which instantiations of the system architecture can
be drawn

be used to reason about requirements for the overall system.

The possible components that can be incorporated into a
system define an ecosystem for it. Figure 4 sketches a potential
ecosystem for a system composed of a web browser, word
processor, email and calendar component, and any scripts and
shim code the integrator produces to knit them all together
and achieve the desired functionality. If we hypothetically
consider the requirements of the composed system, we note
that the requirements would necessarily be decentralized,
since whatever requirements process we used for the overall
system would be independent of that used for each individual
component. If we were able to get requirements for each
component (which in general is not possible) and integrate
them to arrive at requirements for this version of the overall
system, this central requirements artifact would last only until
the next component version was released, sending the situation
back to decentralized requirements.

In practice, integrators appear follow the lead of the devel-
opers of the OSS components, and work with provisionments.
The acceleration of evolution caused by integrating the inde-
pendent supply chains for the components currently selected
is driving a need to understand decentralized requirements and
reason in terms of decentralized provisionments.

VIII. RELATED WORK
A. Requirements in open source development

Scacchi was the first to systematically observe and posit
the idea that OSS system and development processes do
not rely on producing and review of formal functional re-
quirements documents [1]. Instead, OSS development projects
commonly rely on “software informalisms,” no matter what
the application domain, nor who the developers may be. Such
informalisms are rendered within online artifacts like bug
reports, messages in a discussion forum, online chat tran-
scripts, etc. that developers use to communicate their interests
about different aspects of a system, its development, its user



experience, or its need to evolve in some way. He found that
OSS requirements often were described after the functionality
they prescribe had already been implemented and found to
be viable or practical—requirements after the fact. By 2009
Scacchi had identified a set of twenty-odd different types of
informalisms in use across different open source development
(OSSD) projects, such that a given project might routinely use
5-10 informalisms, with different projects utilizing different
mixes of software informalisms so that no specific set seems
to dominate [22]. The informalisms identified were (a) project
email; (b) discussion forums, electronic bulletin boards, and
group blogs; (c) news postings; (d) instant messaging; (e)
project digests summarizing (a)-(d); (f) usage scenarios as
linked Web pages or screenshots; (g) how-to guides; (h) to-do
lists; (i) Frequently Asked Questions lists; (j) project Wikis;
(k) traditional system documentation; (1) external publications;
(m) project licenses; (n) open software architecture diagrams;
(o) intra-application functionality in scripting languages; (p)
externally developed software modules (“plug-ins”); (q) soft-
ware modules reused from other OSS projects; (r) project Web
sites or portals; (s) project source code Web directories; (t)
project repositories such as CVS; (u) bug reports; and (v) issue
tracking databases such as Bugzilla. Provisionments may be
found in many of these informalisms—especially (a-e), (u),
and (v)—but the category of provisionments is orthogonal to
them and, we believe, significant in itself.

German described five sources for requirements for the
GNOME project, based on his experience as a contributor
[2]. He terms them vision (a leader proposes a list of re-
quirements), reference application (an outside system is to
be imitated), asserted requirement (arising from discussions
among contributors), prototype (an implementation illustrating
a proposed feature to be discussed), and post-hoc requirement
(like a prototype, but offered as a ready-to-integrate implemen-
tation of a feature the contributor desires). Provisionments are
most closely involved with German’s prototypes and post-hoc
requirements.

Noll examined the published requirements document for the
Web browser version Firefox 2.0, identifying where each of
the 14 items was first mentioned, how it was implemented,
and why each was initially proposed [3]. Eight were asserted
by developers from their personal experience or knowledge
of user needs, three were requested by users, and one was
driven by a feature in competing browsers. This highlights that
although OSS developers are themselves users, non-developer
users also play a role in OSS evolution.

Noll and Liu also examined requirements for the Open-
EMR electronic medical records project, finding comparable
proportions contributed by developers vs. users [4]. Each
feature was briefly discussed in the project’s online developers
forum, which they characterized as requirements validation
and agreement. We found the OpenEMR requirements or
features to be more difficult to classify, for example “Support
for deleting immunizations”, and hypothesize that each acts as
a token for the corresponding forum discussion.

B. Requirements and architecture

The close relationship between requirements and architec-
ture suggests that the affordances provided by requirements
in classical development may somehow be provided through
architectural means in OSSD.

Nuseibeh proposed the Twin Peaks model as an expression
of the interrelation of requirements and architecture: problem
concerns and solution concerns cannot in general be addressed
in sequence, rather needing to be addressed concurrently [35].
The model conveys a back-and-forth alternation treating both
requirements and architecture in increasing detail.

De Boer and van Vliet argue that the traditional distinction
between requirements and architecture is misguided, and that
there is no fundamental difference between them, saying
“architecturally significant requirements [ASRs] are in fact
architectural design decisions [ADDs], and vice versa” [36].
Both are optative statements characterizing what is desired,
and by their nature earlier optative statements constrain what
later optative statements can be made.

Alspaugh et al. found that of systems with published
development artifacts, only toy systems for textbooks have
both complete requirements and a complete architecture [37].
Of the remainder, roughly half had a complete architecture,
another quarter had complete requirements, and the remainder
had neither. We believe this occurs because requirements
and architecture are to a certain degree redundant, so that
developers have no need to develop both fully.

All this work suggests that if expected OSS requirements
artifacts or processes do not appear to be present, the purposes
of those artifacts and processes may be being achieved through
architectural means.

IX. DISCUSSION
A. Are OSS Requirements “Good”?

This is a fascinating question to which we have no definitive
answer.

In one sense, the answer is “most definitely not”. The
previous career of one of us (Alspaugh) included work as
a developer, team lead, manager, and consultant occasionally
called in to help struggling development projects. In each case
the struggles could usefully be ascribed to problems with the
project’s requirements artifacts and processes, in that attacking
those problems brought the projects in each case onto a path
that could (and usually did) lead to success, and the OSS
requirements-like artifacts and processes we examined evoke
the problematic ones of those projects.

However, the OSS data we examined in this study was not
from troubled projects but from flourishing ones. We conclude
that at least some of the work that Classical Requirements
accomplishes is being done in another domain with processes
appropriate to that domain; our hypothesis, potentially sup-
ported by some of the data we examined, is that some of it
is being done in the software architecture domain, through
processes that are more what we would expect though here
again the artifacts do not appear to be overt.



We note again that CSS bug reports and feature requests
and the processes for managing them look much like those
for OSS.

B. Centralized vs. Decentralized

Rather than a single central requirements or provisionments
repository or document, updated as necessary, OSS projects
almost universally appear to use email threads, electronic
bulletin boards, and similar sequences of archived interactions
as a record of them (and of virtually everything else, it
appears).

This choice prevents overall consideration and analysis of
the provisionments as a whole. However, it may support a
deeper goal for OSSD projects: creating and sustaining a com-
munity of contributors. The ongoing conversation, archived
online so potential contributors can dip into it to see if interests
them, provides an ongoing sequence of nudges to participate
and a continuing reinforcement of community membership
to those who do participate. This may more valuable and
fundamental than any incremental benefits likely to accrue
from unifying the information into a single document.

C. Is OSSD efficient?

There does not appear to be data on this question yet. It
is not clear that successful OSS projects produce results as
expeditiously or more so than CSS projects do; they may
well be slower in calendar time or take more person-months.
Certainly the importance of schedules and budgets in CSS
could drive more efficient development. Brooks notes that one
would expect communication to be a more serious bottleneck
for OSS than for CSS [16], though we note this may be
ameliorated by the reduction or elimination of communication
between developers and stakeholders, since OSS developers
are themselves users and stakeholders.

D. Would OSS Benefit from Classical Requirements?

Perhaps, but the answer is not clear; at this stage, we can
only speculate. If the user-developers are identifying stake-
holder needs sufficiently well and those needs are addressed
sufficiently well by the incremental revisions that appear
to characterize OSSD, then probably not. However if the
needs would be best addressed by a reconsideration of the
problem and a more radical change in the solution, Classical
Requirements has advantages to offer.

We note the truism that a new solution to a problem
opens the eyes of its users to new problems not previously
considered. A product that is evolving at a sufficiently rapid
pace (and OSS systems are considered to evolve rapidly)
may be obtaining many of the benefits of problem-space
requirements processes through solution-space development
processes.

E. Are Provisionments Advantageous?

We see an increasing trend of rapidly-evolving systems
described and reasoned about in terms of whole-system pro-
visionments, or of component provisionments related through

the system’s architecture [30], [31], [33], [38]. This may not
only be increasingly typical but also in fact the appropriate
approach for reasoning about a stakeholder problem and com-
plex system solution, that is to be implemented by combining
complex components. Such an approach manages complexity
by reasoning in terms of the capabilities of known (though of-
ten themselves complex) components, arranged in architectural
configurations in which the capabilities combine to address a
problem. It manages ongoing evolution by describing future
behavior in terms of differences from past behavior.

F. Are Provisionments Limited to OSS?

No, they are not; we have seen them in our work as
professional CSS developers, most prominently in bug reports
and to a lesser extent in feature requests where they serve the
same purposes as in OSS.

Some professional CSS developers with whom we have
discussed this research report that the requirements they work
with might frequently be more accurately described as pro-
visionments. And as we noted in Section VII-C, OA system
development often appears to be guided by reasoning with
provisionments, whether the integrators are an OSS project or
a proprietary development group, and with good cause.

As we and many other researchers have noted, there is now
far more data available from OSS development projects than
there is from CSS projects, to which researchers typically
have limited or no access. We recall the challenges we have
faced in attempting to get access to proprietary development
requirements in order to Based on our results so far, we
expect provisionments will be found to be in wide use in OSS
development, or even in virtually universal use since they align
so naturally with reported OSSD processes. It will be more
difficult to assess the degree to which provisionments are used
in CSS development, but based on what we have learned, we
believe their use is widespread there also.

X. CONCLUSION

In this paper we examined the apparent contradiction be-
tween the success of at least some OSS systems and their
lack of what may be termed classical requirements artifacts
and processes or Classical Requirements, discussed in Sec-
tion III. In Section IV we listed four research questions. Here
we summarize the answers arising from our study and our
examination of related work.

(RQ1) To what extent do OSS projects in fact use Classical
Requirements? In the data we examined, Classical Require-
ments was almost completely absent. We found requirements-
like artifacts and some requirements-like processes, but virtu-
ally nothing exhibiting the three characteristics by which we
defined Classical Requirements in Section III.

(RQ2) Where OSS projects do not use Classical Require-
ments, what artifacts and processes are used instead, if any?
The most prominent requirements-like artifacts we identified
were provisionments (Section VI), statements of features or
qualities in terms of the attributes provided by an existing



software version, a competing product, or a prototype pro-
duced by a developer advocating the change it embodies.
These were ubiquitous in the data we examined. The processes
were more difficult to characterize; perhaps the most common
requirements-like process we saw was the discussion of pro-
visionments in terms of solution-space issues. We hypothesize
that architectural reasoning and discussion played a role as
well, but did not find strong evidence for it; we may have
been looking in the wrong places for that.

In summary, OSS’s lack of Classical Requirements results in
some of the undesirable outcomes predicted by the broad con-
sensus of software experts and researchers, but not all of them.
In some contexts the advantages of OSS appear to outweigh
this disadvantage. Further research will be needed to obtain
more definitive answers and to provide guidance to making
the most effective use of OSS development approaches.

ACKNOWLEDGMENTS

This research is supported by grant #N00244-12-1-0067
from the Acquisition Research Program at the Naval Postgrad-
uate School, and by grant #1256593 from the U.S. National
Science Foundation. No review, approval, or endorsement
implied.

The authors thank the anonymous reviewers of an earlier
version of this paper for their careful and insightful comments.

REFERENCES

[1] W. Scacchi, “Understanding the requirements for developing open source
software systems,” IEE Proceedings—Software, vol. 149, no. 1, pp. 24—
39, Feb. 2002.

[2] D. M. German, “GNOME, a case of open source global software devel-
opment,” in International Workshop on Global Software Development
(GSD’03), 2003.

[3] J. Noll, “Requirements acquisition in open source development: Firefox

2.0,” in Open Source Development, Communities and Quality (IFIP —

The International Federation for Information Processing), B. Russo,

E. Damiani, S. Hissam, B. Lundell, and G. Succi, Eds. Springer-Verlag,

2008, pp. 69-79.

J. Noll and W.-M. Liu, “Requirements elicitation in open source software

development: a case study,” in 3rd International Workshop on Emerging

Trends in Free/Libre/Open Source Software Research and Development

(FLOSS ’10), 2010, pp. 35-40.

R. Stallman, “Linux and the GNU system,” 2007, http://www.gnu.org/

gnu/linux-and-gnu, accessed 30 March 2013.

[6] A.Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open
source software development: Apache and Mozilla,” ACM Transactions
on Software Engineering and Methodology, vol. 11, no. 3, pp. 309-346,
2002.

[7]1 J. Des Rivieres and J. Wiegand, “Eclipse: a platform for integrating

development tools,” IBM Systems Journal, vol. 43, no. 2, pp. 371-383,

Apr. 2004.

PostgreSQL, “About,” http://www.postgresql.org/about/, accessed 30

March 2013.

[9] E. P. Brooks, Jr., The Mythical Man Month: Essays on Software

Engineering, 1st ed. Addison-Wesley, 1975.

D. C. Gause and G. M. Weinberg, Exploring Requirements: Quality

Before Design. New York: Dorset House, 1989.

M. Jackson, Software Requirements and Specification: a lexicon of

practice, principles and prejudices. Wokingham, England: Addison-

Wesley, 1995.

A. v. Lamsweerde, Requirements Engineering: From System Goals to

UML Models to Software Specifications. Wiley, 2009.

I. Sommerville, Software Engineering, 7th ed. Addison-Wesley, 2004.

H. van Vliet, Software Engineering: Principles and Practice, 2nd ed.

John Wiley & Sons, 2000.

[4

=

[5

=

[8

=

[10]

[11]

(12]

[13]
[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

(32]

[33]

[38]

E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary, revised ed. O’Reilly,
2001.

F. P. Brooks, Jr., The Design of Design: Essays from a Computer
Scientist. Addison-Wesley, 2010.

P. H. Salus, A Quarter Century of UNIX. Addison-Wesley, 1994.

D. Ritchie, “The evolution of the Unix time-sharing system,” AT&T
Bell Laboratories Technical Journal, vol. 63, no. 6, pp. 1577-1593,
Oct. 1984.

B. Boehm, “Software engineering,” IEEE Transactions on Computers,
vol. 25, no. 12, pp. 1126-1241, 1976.

F. P. Brooks, Jr., “No silver bullet: Essence and accidents of software
engineering,” IEEE Computer, vol. 20, no. 4, pp. 10-19, Apr. 1987,
reprinted from /FIP Congress, Dublin, Ireland, 1986.

V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal Question
Metric approach,” in Encyclopedia of Software Engineering. John Wiley
and Sons, 1994, pp. 528-532.

W. Scacchi, “Understanding requirements for open source software,” in
Design Requirements Engineering: A Ten-Year Perspective, K. Lyytinen,
P. Loucopoulos, J. Mylopoulos, and B. Robinson, Eds. Springer-Verlag,
2009, pp. 467-494.

J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches, 2nd ed. Thousand Oaks, CA, USA: SAGE
Publications, 2003.

J. Noll, “Innovation in open source software development: A tale of two
features,” in Open Source Development, Adoption and Innovation: IFIP
Working Group 2.13 on Open Source Software, J. Feller, B. Fitzgerald,
W. Scacchi, and A. Sillitti, Eds.  Springer, 2007, pp. 109-120.
Firefox2/Requirements, Mozilla Foundation, Oct. 2006, http://wiki.
mozilla.org/Firefox2/Requirements, accessed 27 Jan 2013.

A. Wiggins and K. Crowston, “Reclassifying success and tragedy in
FLOSS projects,” in 6th International Conference on Open Source
Systems, May 2010, pp. 294-307.

T. Standish Group, “The CHAOS report,” 1994.

W. Scacchi, “Free/open source software development: Recent research
results and emerging opportunities,” in 6th Joint European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE 2007), Sep. 2007, pp. 459—
468.

E. Makuch, “Counter-Strike: Global offensive firing up early 2012,” http:
/lwww.gamespot.com/6328645, Aug. 2011.

T. A. Alspaugh, H. U. Asuncion, and W. Scacchi, “Intellectual property
rights requirements for heterogeneously-licensed systems,” in 17th [EEE
International Requirements Engineering Conference (RE’09), 2009, pp.
24-33.

T. A. Alspaugh, W. Scacchi, and H. U. Asuncion, “Software licenses in
context: The challenge of heterogeneously-licensed systems,” Journal of
the Association for Information Systems, vol. 11, no. 11, pp. 730-755,
Nov. 2010.

W. Scacchi and T. A. Alspaugh, “Understanding the role of licenses and
evolution in open architecture software ecosystems,” Journal of Systems
and Software, vol. 85, no. 7, pp. 1479-1494, Jul. 2012, http://www.
sciencedirect.com/science/journal/01641212/85/7.

T. A. Alspaugh, H. U. Asuncion, and W. Scacchi, “The challenge
of heterogeneously licensed systems in open architecture software
ecosystems,” in Software Ecosystems: Analyzing and Managing Business
Networks in the Software Industry, S. Jansen, M. Cusumano, and
S. Brinkkemper, Eds. Edward Elgar Publishing, 2013.

P. Oreizy, “Open architecture software: A flexible approach to decen-
tralized software evolution,” Ph.D. dissertation, University of California,
Irvine, 2000, http://www.ics.uci.edu/~peymano/papers/thesis.pdf.

B. Nuseibeh, “Weaving together requirements and architectures,” IEEE
Computer, vol. 34, no. 3, pp. 115-117, 2001.

R. C. de Boer and H. van Vliet, “Controversy corner: On the simi-
larity between requirements and architecture,” Journal of Systems and
Software, vol. 82, no. 3, pp. 544-550, Mar. 2009.

M. Diallo, S. E. Sim, and T. A. Alspaugh, “Case study, interrupted: The
paucity of subject systems that span the requirements-architecture gap,”
in First Workshop on Empirical Assessment of Software Engineering
Languages and Technologies (WEASELTech’07), Nov. 2007.

W. Scacchi and T. A. Alspaugh, “Designing secure systems based on
open architectures with open source and closed source components,” in
International Conference on Open Source Systems (0SS 2012), 2012.



