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Abstract

Computer networks lack a general control paradigm,

as traditional networks do not provide any network-

wide management abstractions. As a result, each new

function (such as routing) must provide its own state

distribution, element discovery, and failure recovery

mechanisms. We believe this lack of a common control

platform has significantly hindered the development of

flexible, reliable and feature-rich network control planes.

To address this, we present Onix, a platform on top of

which a network control plane can be implemented as a

distributed system. Control planes written within Onix

operate on a global view of the network, and use basic

state distribution primitives provided by the platform.

Thus Onix provides a general API for control plane

implementations, while allowing them to make their own

trade-offs among consistency, durability, and scalability.

1 Introduction

Network technology has improved dramatically over

the years with line speeds, port densities, and perfor-

mance/price ratios all increasing rapidly. However,

network control plane mechanisms have advanced at a

much slower pace; for example, it takes several years

to fully design, and even longer to widely deploy, a

new network control protocol.1 In recent years, as

new control requirements have arisen (e.g., greater scale,

increased security, migration of VMs), the inadequacies

of our current network control mechanisms have become

especially problematic. In response, there is a growing

movement, driven by both industry and academia, towards

a control paradigm in which the control plane is decoupled

from the forwarding plane and built as a distributed

system.2

In this model, a network-wide control platform, run-

ning on one or more servers in the network, oversees a

set of simple switches. The control platform handles state

distribution – collecting information from the switches
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1See, for example, TRILL [32], a recent success story which has

been in the design and specification phase for over 6 years.
2The industrial efforts in this area are typically being undertaken by

entities that operate large networks, not by the incumbent networking
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and distributing the appropriate control state to them, as

well as coordinating the state among the various platform

servers – and provides a programmatic interface upon

which developers can build a wide variety of management

applications. (The term “management application” refers

to the control logic needed to implement management

features such as routing and access control.)3 For the

purposes of this paper, we refer to this paradigm for

network control as Software-Defined Networking (SDN).

This is in contrast to the traditional network control

model in which state distribution is limited to link and

reachability information and the distribution model is

fixed. Today a new network control function (e.g.,

scalable routing of flat intra-domain addresses [21])

requires its own distributed protocol, which involves first

solving a hard, low-level design problem and then later

overcoming the difficulty of deploying this design on

switches. As a result, networking gear today supports

a baroque collection of control protocols with differing

scalability and convergence properties. On the other hand,

with SDN, a new control function requires writing control

logic on top of the control platform’s higher-level API; the

difficulties of implementing the distribution mechanisms

and deploying them on switches are taken care of by the

platform. Thus, not only is the work to implement a

new control function reduced, but the platform provides

a unified framework for understanding the scaling and

performance properties of the system.

Said another way, the essence of the SDN philosophy

is that basic primitives for state distribution should be

implemented once in the control platform rather than

separately for individual control tasks, and should use

well-known and general-purpose techniques from the dis-

tributed systems literature rather than the more specialized

algorithms found in routing protocols and other network

control mechanisms. The SDN paradigm allows network

system implementors to use a single control platform

to implement a range of control functions (e.g., routing,

traffic engineering, access control, VM migration) over a

spectrum of control granularities (from individual flows

to large traffic aggregates) in a variety of contexts (e.g.,

enterprises, datacenters, WANs).

3Just to be clear, we only imagine a single “application” being used

in any particular deployment; this application might address several

issues, such as routing and access control, but the control platform

is not designed to allow multiple applications to control the network

simultaneously (unless the network is “physically sliced” [28]).



Because the control platform simplifies the duties of

both switches (which are controlled by the platform) and

the control logic (which is implemented on top of the

platform) while allowing great generality of function,

the control platform is the crucial enabler of the SDN

paradigm. The most important challenges in building a

production-quality control platform are:

• Generality: The control platform’s API must allow

management applications to deliver a wide range of

functionality in a variety of contexts.

• Scalability: Because networks (particularly in the

datacenter) are growing rapidly, any scaling limita-

tions should be due to the inherent problems of state

management, not the implementation of the control

platform.

• Reliability: The control platform must handle equip-

ment (and other) failures gracefully.

• Simplicity: The control platform should simplify the

task of building management applications.

• Control plane performance: The control platform

should not introduce significant additional control

plane latencies or otherwise impede management

applications (note that forwarding path latencies

are unaffected by SDN). However, the requirement

here is for adequate control-plane performance, not

optimal performance. When faced with a tradeoff

between generality and control plane performance,

we try to optimize the former while satisficing the

latter.4

While a number of systems following the basic

paradigm of SDN have been proposed, to date there has

been little published work on how to build a network

control platform satisfying all of these requirements.

To fill this void, in this paper we describe the design

and implementation of such a control platform called

Onix (Sections 2-5). While we do not yet have extensive

deployment experience with Onix, we have implemented

several management applications which are undergoing

production beta trials for commercial deployment. We

discuss these and other use cases in Section 6, and present

some performance measures of the platform itself in

Section 7.

Onix did not arise de novo, but instead derives from

a long history of related work, most notably the line

4There might be settings where optimizing control plane

performance is crucial. For example, if one cannot use backup paths for

improved reliability, one can only rely on a fine-tuned routing protocol.

In such settings one might not use a general-purpose control platform,

but instead adopt a more specialized approach. We consider such settings

increasingly uncommon.
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Figure 1: There are four components in an Onix controlled

network: managed physical infrastructure, connectivity

infrastructure, Onix, and the control logic implemented by the

management application. This figure depicts two Onix instances

coordinating and sharing (via the dashed arrow) their views of

the underlying network state, and offering the control logic a

read/write interface to that state. Section 2.2 describes the NIB.

of research that started with the 4D project [15] and

continued with RCP [3], SANE [6], Ethane [5] and

NOX [16] (see [4,23] for other related work). While all of

these were steps towards shielding protocol design from

low-level details, only NOX could be considered a control

platform offering a general-purpose API.5 However, NOX

did not adequately address reliability, nor did it give

the application designer enough flexibility to achieve

scalability.

The primary contributions of Onix over existing work

are thus twofold. First, Onix exposes a far more general

API than previous systems. As we describe in Section 6,

projects being built on Onix are targeting environments

as diverse as the WAN, the public cloud, and the

enterprise data center. Second, Onix provides flexible

distribution primitives (such as DHT storage and group

membership) allowing application designers to implement

control applications without re-inventing distribution

mechanisms, and while retaining the flexibility to make

performance/scalability trade-offs as dictated by the

application requirements.

2 Design

Understanding how Onix realizes a production-quality

control platform requires discussing two aspects of its

design: the context in which it fits into the network, and

the API it provides to application designers.

2.1 Components

There are four components in a network controlled by

Onix, and they have very distinct roles (see Figure 1).

• Physical infrastructure: This includes network

switches and routers, as well as any other network

elements (such as load balancers) that support

an interface allowing Onix to read and write the

5Only a brief sketch of NOX has been published; in some ways,

this paper can be considered the first in-depth discussion of a NOX-like

design, albeit in a second-generation form.



state controlling the element’s behavior (such as

forwarding table entries). These network elements

need not run any software other than that required

to support this interface and (as described in the

following bullet) achieve basic connectivity.

• Connectivity infrastructure: The communication

between the physical networking gear and Onix (the

“control traffic”) transits the connectivity infrastruc-

ture. This control channel may be implemented

either in-band (in which the control traffic shares

the same forwarding elements as the data traffic on

the network), or out-of-band (in which a separate

physical network is used to handle the control

traffic). The connectivity infrastructure must sup-

port bidirectional communication between the Onix

instances and the switches, and optionally supports

convergence on link failure. Standard routing

protocols (such as IS-IS or OSPF) are suitable for

building and maintaining forwarding state in the

connectivity infrastructure.

• Onix: Onix is a distributed system which runs on

a cluster of one or more physical servers, each of

which may run multiple Onix instances. As the

control platform, Onix is responsible for giving

the control logic programmatic access to the net-

work (both reading and writing network state). In

order to scale to very large networks (millions of

ports) and to provide the requisite resilience for

production deployments, an Onix instance is also

responsible for disseminating network state to other

instances within the cluster.

• Control logic: The network control logic is imple-

mented on top of Onix’s API. This control logic

determines the desired network behavior; Onix

merely provides the primitives needed to access the

appropriate network state.

These are the four basic components of an SDN-

based network. Before delving into the design of Onix,

we should clarify our intended range of applicability.

We assume that the physical infrastructure can forward

packets much faster (typically by two or more orders of

magnitude) than Onix (or any general control platform)

can process them; thus, we do not envision using Onix to

implement management functions that require the control

logic to know about per-packet (or other rapid) changes

in network state.

2.2 The Onix API

The principal contribution of Onix is defining a useful and

general API for network control that allows for the de-

velopment of scalable applications. Building on previous

work [16], we designed Onix’s API around a view of the

physical network, allowing control applications to read

and write state to any element in the network. Our API

is therefore data-centric, providing methods for keeping

state consistent between the in-network elements and the

control application (running on multiple Onix instances).

More specifically, Onix’s API consists of a data model

that represents the network infrastructure, with each

network element corresponding to one or more data

objects. The control logic can: read the current state

associated with that object; alter the network state by

operating on these objects; and register for notifications

of state changes to these objects. In addition, since

Onix must support a wide range of control scenarios,

the platform allows the control logic to customize (in a

way we describe later) the data model and have control

over the placement and consistency of each component

of the network state.

The copy of the network state tracked by Onix is stored

in a data structure we call the Network Information Base

(NIB), which we view as roughly analogous to the Rout-

ing Information Base (RIB) used by IP routers. However,

rather than just storing prefixes to destinations, the NIB is

a graph of all network entities within a network topology.

The NIB is both the heart of the Onix control model and

the basis for Onix’s distribution model. Network control

applications are implemented by reading and writing

to the NIB (for example modifying forwarding state or

accessing port counters), and Onix provides scalability

and resilience by replicating and distributing the NIB

between multiple running instances (as configured by the

application).

While Onix handles the replication and distribution of

NIB data, it relies on application-specific logic to both

detect and provide conflict resolution of network state as it

is exchanged between Onix instances, as well as between

an Onix instance and a network element. The control

logic may also dictate the consistency guarantees for state

disseminated between Onix instances using distributed

locking and consensus algorithms.

In order to simplify the discussion, we assume that

the NIB only contains physical entities in the network.

However, in practice it can easily be extended to support

logical elements (such as tunnels).

2.3 Network Information Base Details

At its most generic level, the NIB holds a collection of

network entities, each of which holds a set of key-value

pairs and is identified by a flat, 128-bit, global identifier.

These network entities are the base structure from which

all types are derived. Onix supports stronger typing

through typed entities, representing different network

elements (or their subparts). Typed entities then contain

a predefined set of attributes (using the key-value pairs)

and methods to perform operations over those attributes.
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Figure 2: The default network entity classes provided by

Onix’s API. Solid lines represent inheritance, while dashed lines

correspond to referential relation between entity instances. The

numbers on the dashed lines show the quantitative mapping

relationship (e.g., one Link maps to two Ports, and two

Ports can map to the same Link). Nodes, ports and links

constitute the network topology. All entity classes inherit the

same base class providing generic key-value pair access.

For example, there is a Port entity class that can

belong to a list of ports in a Node entity. Figure 2

illustrates the default set of typed entities Onix provides –

all typed entities have a common base class limited to

generic key-value pair access. The type-set within Onix is

not fixed and applications can subclass these basic classes

to extend Onix’s data model as needed.6

The NIB provides multiple methods for the control

logic to gain access to network entities. It maintains an

index of all of its entities based on the entity identifier,

allowing for direct querying of a specific entity. It also

supports registration for notifications on state changes

or the addition/deletion of an entity. Applications can

further extend the querying capabilities by listening for

notifications of entity arrivals and maintaining their own

indices.

The control logic for a typical application is therefore

fairly straightforward. It will register to be notified on

some state change (e.g., the addition of new switches and

ports), and once the notification fires, it will manipulate

the network state by modifying the key-value pairs of the

affected entities.

The NIB provides neither fine-grained nor distributed

locking mechanisms, but rather a mechanism to request

and release exclusive access to the NIB data structure

of the local instance. While the application is given the

guarantee that no other thread is updating the NIB within

the same controller instance, it is not guaranteed the

state (or related state) remains untouched by other Onix

instances or network elements. For such coordination,

it must use mechanisms implemented externally to the

NIB. We describe this in more detail in Section 4; for now,

we assume this coordination is mostly static and requires

control logic involvement during failure conditions.

All NIB operations are asynchronous, meaning that

updating a network entity only guarantees that the update

message will eventually be sent to the corresponding

6Subclassing also enables control over how the key-value pairs are

stored within the entity. Control logics may prefer different trade-offs

between memory and CPU usage.

Category Purpose

Query Find entities.

Create, destroy Create and remove entities.

Access attributes Inspect and modify entities.

Notifications Receive updates about changes.

Synchronize Wait for updates being exported to

network elements and controllers.

Configuration Configure how state is imported

to and exported from the NIB.

Pull Ask for entities to be imported

on-demand.

Table 1: Functions provided by the Onix NIB API.

network element and/or other Onix instances – no

ordering or latency guarantees are given. While this

has the potential to simplify the control logic and make

multiple modifications more efficient, often it is useful to

know when an update has successfully completed. For

instance, to minimize disruption to network traffic, the

application may require the updating of forwarding state

on multiple switches to happen in a particular order (to

minimize, for example, packet drops). For this purpose,

the API provides a synchronization primitive: if called

for an entity, the control logic will receive a callback once

the state has been pushed. After receiving the callback,

the control logic may then inspect the contents of the NIB

and verify that the state is as expected before proceeding.

We note that if the control logic implements distributed

coordination, race-conditions in state updates will either

not exist or will be transient in nature.

An application may also only rely on NIB notifications

to react to failures in modifications as they would any

other network state changes. Table 1 lists available NIB-

manipulation methods.

3 Scaling and Reliability

To be a viable alternative to the traditional network

architecture, Onix must meet the scalability and reliability

requirements of today’s (and tomorrow’s) production net-

works. Because the NIB is the focal point for the system

state and events, its use largely dictates the scalability and

reliability properties of the system. For example, as the

number of elements in the network increases, a NIB that

is not distributed could exhaust system memory. Or, the

number of network events (generated by the NIB) or work

required to manage them could grow to saturate the CPU

of a single Onix instance.7

This and the following section describe the NIB

distribution framework that enables Onix to scale to very

7In one of our upcoming deployments, if a single-instance

application took one second to analyze the statistics of a single Port

and compute a result (e.g., for billing purposes), that application would

take two months to process all Ports in the NIB.



large networks, and to handle network and controller

failure.

3.1 Scalability

Onix supports three strategies that can used to improve

scaling. First, it allows control applications to partition

the workload so that adding instances reduces work

without merely replicating it. Second, Onix allows for

aggregation in which the network managed by a cluster

of Onix nodes appears as a single node in a separate

cluster’s NIB. This allows for federated and hierarchical

structuring of Onix clusters, thus reducing the total

amount of information required within a single Onix

cluster. Finally, Onix provides applications with control

over the consistency and durability of the network state.

In more detail:

• Partitioning. The network control logic may config-

ure Onix so that a particular controller instance keeps

only a subset of the NIB in memory and up-to-date.

Further, one Onix instance may have connections to

a subset of the network elements, and subsequently,

can have fewer events originating from the elements

to process.

• Aggregation. In a multi-Onix setup, one instance of

Onix can expose a subset of the elements in its NIB

as an aggregate element to another Onix instance.

This is typically used to expose less fidelity to upper

tiers in a hierarchy of Onix controllers. For example,

in a large campus network, each building might

be managed by an Onix controller (or controller

cluster) which exposes all of the network elements

in that building as a single aggregate node to a global

Onix instance which performs campus-wide traffic

engineering. This is similar in spirit to global control

management paradigms in ATM networks [27].

• Consistency and durability. The control logic

dictates the consistency requirements for the network

state it manages. This is done by implementing any

of the required distributed locking and consistency

algorithms for state requiring strong consistency,

and providing conflict detection and resolution for

state not guaranteed to be consistent by use of these

algorithms. By default, Onix provides two data

stores that an application can use for state with differ-

ing preferences for durability and consistency. For

state applications that favor durability and stronger

consistency, Onix offers a replicated transactional

database and, for volatile state that is more tolerant

of inconsistencies, a memory-based one-hop DHT.

We return to these data stores in Section 4.

The above scalability mechanisms can be used to

manage networks too large to be controlled by a single

Onix instance. To demonstrate this, we will use a

running example: an application that can establish paths

between switches in a managed topology, with the goal

of establishing complete routes through the network.

Partition. We assume a network with a modest number

of switches that can be easily handled by a single Onix

instance. However, the number and size of all forwarding

state entries on the network exceeds the memory resources

of a single physical server.

To handle such a scenario, the control logic can repli-

cate all switch state, but it must partition the forwarding

state and assign each partition to a unique Onix instance

responsible for managing that state. The method of

partitioning is unimportant as long as it creates relatively

consistent chunks.

The control logic can record the switch and link

inventory in the fully-replicated, durable state shared

by all Onix instances, and it can coordinate updates

using mechanisms provided by the platform. However,

information that is more volatile, such as link utilization

levels, can be stored in the DHT. Each controller can

use the NIB’s representation of the complete physical

topology (from the replicated database), coupled with

link utilization data (from the DHT), to configure the

forwarding state necessary to ensure paths meeting the

deployment’s requirements throughout the network.

The resulting distribution strategy closely resembles the

use of head-end routers in MPLS [24] to manage tunnels.

However, instead of a DHT, MPLS uses intra-domain

routing protocols to disseminate the link utilization

information.

Aggregate. As our example network grows, partition-

ing the path management no longer suffices. We assume

that the Onix instances are still capable of holding the

full NIB, but the control logic cannot keep up with the

number of network events and thus saturates the CPU.

This scenario follows from our experience in which CPU

is commonly the limiting factor for control applications.

To shield remote instances from high-rates of updates,

the application can aggregate a topology as a single

logical node, and use that as the unit of event dissem-

ination between instances. For example, the topology

can be divided into logical areas, each managed by a

distinct Onix instance. Onix instances external to an

area would know the exact physical topology within the

area, but would retrieve only topologically-aggregated

link-utilization information from the DHT (originally

generated by instances within that area).

This use of topological aggregation is similar to ATM

PNNI [27], in which the internals of network areas are

aggregated into single logical nodes when exposed to

neighboring routers. The difference is that the Onix

instances and switches still have full connectivity between



them and it is assumed that the latency between any

element (between the switches and Onix instances or

between Onix instances) is not a problem.

Partition further. At some point, the number of el-

ements within a control domain will overwhelm the

capacity of a single Onix instance. However, due to

relatively slow change rates of the physical network, it is

still possible to maintain a distributed view of the network

graph (the NIB).

Applications can still rely on aggregating link utiliza-

tion information, but in a partitioned NIB scheme, they

would use the inter-Onix state distribution mechanisms to

mediate requests to switches in remote areas; this can be

done by using NIB attributes as a remote communication

channel. The “request” and “response” are relayed

between the areas using the DHT. Because this transfer

might happen via a third Onix instance, any application

that needs faster response times may configure DHT key

ranges for areas and use DHT keys such that for the

modified entity its attributes are stored within the proper

area.

It is possible for this approach to scale to wide-area

deployment scenarious. For example, each partition

could represent a large network area, and each network

is exposed as an aggregate node to a cluster of Onix

instances that make global routing decisions over the

aggregate nodes. Thus, each partition makes local

routing decisions, and the cluster makes routing decisions

between these partitions (abstracting each as a single

logical node). The state distribution requirements for

this approach would be almost identical to hierarchical

MPLS.

Inter-domain aggregation. Once the controlled net-

work spans two separate ASes, sharing full topology

information among the Onix instances becomes infeasible

due to privacy reasons and the control logic designer

needs to adapt the design again to changed requirements.

The platform does not dictate how the ASes would peer,

but at a high-level they would have two requirements

to fulfill: a) sharing their topologies at some level of

detail (while preserving privacy) with their peers, and b)

establishing paths for each other proactively (according

to a peering contract) or on-demand, and exchanging their

ingress information. For both requirements, there are

proposals in academia [13] and industry deployments [12]

that applications could implement to arrange peering

between Onix instances in adjacent ASes.

3.2 Reliability

Control applications on Onix must handle four types

of network failures: forwarding element failures, link

failures, Onix instance failures, and failures in connectiv-

ity between network elements and Onix instances (and

between the Onix instances themselves). This section

discusses each in turn.

Network element and link failures. Modern control

planes already handle network element and link failures,

and control logic built on Onix can use the same

mechanisms. If a network element or link fails, the

control logic has to steer traffic around the failures. The

dissemination times of the failures through the network

together with the re-computation of the forwarding tables

define the minimum time for reacting to the failures.

Given increasingly stringent requirements convergence

times, it may be preferrable that convergence be handled

partially by backup paths with fast failover mechanisms

in the network element.

Onix failures. To handle an Onix instance failure, the

control logic has two options: running instances can

detect a failed node and take over the responsibilities

of the failed instance quickly, or more than one instance

can simultaneously manage each network element.

Onix provides coordination facilities (discussed in

Section 4) for detecting and reacting to instance failures.

For the simultaneous management of a network element

by more than one Onix instance, the control logic has

to handle lost update race conditions when writing to

network state. To help, Onix provides hooks that appli-

cations can use to determine whether conflicting changes

made by other instances to the network element can be

overridden. Provided the control logic computes the same

network element state in a deterministic fashion at each

Onix instance, i.e., every Onix instance implements the

same algorithm, the state can remain inconsistent only

transiently. At the high-level, this approach is similar to

the reliability mechanisms of RCP [3], in which multiple

centralized controllers push updates over iBGP to edge

routers.

Connectivity infrastructure failures. Onix state dis-

tribution mechanisms decouple themselves from the

underlying topology. Therefore, they require connectivity

to recover from failures, both between network elements

and Onix instances as well as between Onix instances.

There are a number of methods for establishing this

connectivity. We describe some of the more common

deployment scenarios below.

It is not unusual for an operational network to have a

dedicated physical network or VLAN for management.

This is common, for example, in large datacenter build-

outs or hosting environments. In such environments,

Onix can use the management network for control traffic,

isolating it from forwarding plane disruptions. Under

this deployment model, the control network uses standard

networking gear and thus any disruption to the control

network is handled with traditional protocols (e.g., OSPF

or spanning tree).



Even if the environment does not provide a separate

control network, the physical network topology is typ-

ically known to Onix. Therefore, it is possible for the

control logic to populate network elements with static

forwarding state to establish connecitivty between Onix

and the switches. To guarantee connectivity in presence

of failures, source routing can be combined with multi-

pathing (also implemented below Onix): source routing

packets over multiple paths can guarantee extremely

reliable connectivity to the managed network elements,

as well as between Onix instances.

4 Distributing the NIB

This section describes how Onix distributes its Network

Information Base and the consistency semantics an

application can expect from it.

4.1 Overview

Onix’s support for state distribution mechanisms was

guided by two observations on network management ap-

plications. First, applications have differing requirements

on scalability, frequency of updates on shared space,

and durability. For example network policy declarations

change slowly and have stringent durability requirements.

Conversely, logic using link load information relies on

rapidly-changing network state that is more transient

in nature (and thus does not have the same durability

requirements).

Second, distinct applications often have different

requirements for the consistency of the network state

they manage. Link state information and network

policy configurations are extreme examples: transiently-

inconsistent status flags of adjacent links are easier for an

application to resolve than an inconsistency in network-

wide policy declaration. In the latter case, a human may

be needed to perform the resolution correctly.

Onix supports an application’s ability to choose be-

tween update speeds and durability by providing two sep-

arate mechanisms for distributing network state updates

between Onix instances: one designed for high update

rates with guaranteed availability, and one designed

with durability and consistency in mind. Following

the example of many distributed storage systems that

allow applications to make performance/scalability trade-

offs [2, 8, 29, 31], Onix makes application designers

responsible for explicitly determining their preferred

mechanism for any given state in the NIB – they can

also opt to use the NIB solely as storage for local state.

Furthermore, Onix can support arbitrary storage systems

if applications write their own import and export modules,

which transfer data into the NIB from storage systems

and out of the NIB to storage systems respectively.

In solving the applications’ preference for differing

consistency requirements, Onix relies on their help: it

expects the applications to use the provided coordination

facilities [19] to implement distributed locking or consen-

sus protocols as needed. The platform also expects the

applications to provide the implementation for handling

any inconsistencies arising between updates, if they are

not using strict data consistency. While applications are

given the responsibility to implement the inconsistency

handling, Onix provides a programmatic framework to

assist the applications in doing so.

Thus, application designers are free to determine

the trade-off between potentially simplified application

architectures (promoting consistency and durability) and

more efficient operations (with the cost of increased

complexity). We now discuss the state distribution

between Onix instances in more detail, as well as how

Onix integrates network elements and their state into these

distribution mechanisms.

4.2 State Distribution Between Onix Instances

Onix uses different mechanisms to keep state consistent

between Onix instances and between Onix and the

network forwarding elements. The reasons for this are

twofold. First, switches generally have low-powered

management CPUs and limited RAM. Therefore, the

protocol should be lightweight and primarily for con-

sistency of forwarding state. Conversely, Onix instances

can run on high powered general compute platforms and

don’t have such limitations. Secondly, the requirements

for managing switch state are much narrower and better

defined than that needed by any given application.

Onix implements a transactional persistent database

backed by a replicated state machine for disseminating

all state updates requiring durability and simplified

consistency management. The replicated database comes

with severe performance limitations, and therefore it

is intended to serve only as a reliable dissemination

mechanism for slowly changing network state. The

transactional database provides a flexible SQL-based

querying API together with triggers and rich data models

for applications to use directly, as necessary.

To integrate the replicated database with the NIB,

Onix includes import/export modules that interact with

the database. These components load and store entity

declarations and their attributes from/to the transactional

database. Applications can easily group NIB modifica-

tions together into a single transaction to be exported to

the database. When the import module receives a trigger

invocation from the database about changed database

contents, it applies the changes to the NIB.

For network state needing high update rates and avail-

ability, Onix provides a one-hop, eventually-consistent,

memory-only DHT (similar to Dynamo [9]), relaxing

the consistency and durability guarantees provided by

the replicated database. In addition to the common



get/put API, the DHT provides soft-state triggers: the

application can register to receive a callback when a

particular value gets updated, after which the trigger must

be reinstalled. False positives are allowed to simplify

the implementation of the DHT replication mechanism.

The DHT implementation manages its membership state

and assigns key-range responsibilities using the same

coordination mechanisms provided to applications.

Updates to the DHT by multiple Onix instances can

lead to state inconsistencies. For instance, while using

triggers, the application must be carefully prepared for any

race conditions that could occur due to multiple writers

and callback delays. Also, the introduction of a second

storage system may result in inconsistencies in the NIB.

In such cases, the Onix DHT returns multiple values for

a given key, and it is up to the applications to provide

conflict resolution, or avoid these conditions by using

distributed coordination mechanisms.

4.3 Network Element State Management

The Onix design does not dictate a particular protocol for

managing network element forwarding state. Rather, the

primary interface to the application is the NIB, and any

suitable protocol supported by the elements in the network

can be used under the covers to keep the NIB entities in

sync with the actual network state. In this section we

describe the network element state management protocols

currently supported by Onix.

OpenFlow [23] provides a performance-optimized

channel to the switches for managing forwarding tables

and quickly learning port status changes (which may have

an impact on reachability within the network). Onix turns

OpenFlow events and operations into state that it stores in

the NIB entities. For instance, when an application adds

a flow entry to a ForwardingTable entity in the NIB,

the OpenFlow export component will translate that into

an OpenFlow operation that adds the entry to the switch

TCAM. Similarly, the TCAM entries are accessible to the

application in the contents of the ForwardingTable

entity.

For managing and accessing general switch configu-

ration and status information, an Onix instance can opt

to connect to a switch over a configuration database pro-

tocol (such as the one supported by Open vSwitch [26]).

Typically this database interface exposes the switch

internals that OpenFlow does not. For Onix, the protocol

provides a mechanism to receive a stream of switch state

updates, as well as to push changes to the switch state.

The low-level semantics of the protocol closely resembles

the transactional database (used between controllers)

discussed above, but instead of requiring full SQL support

from the switches, the database interface has a more

restricted query language that does not provide joins.

Similarly to the integration with OpenFlow, Onix

provides convenient, data-oriented access to the switch

configuration state by mapping the switch database

contents to NIB entities that can be read and modified

by the applications. For example, by creating and

attaching Port entities with proper attributes to a

ForwardingEngine entity (which corresponds to a

single switch datapath), applications can configure new

tunnel endpoints without knowing that this translates to

an update transaction sent to the corresponding switch.

4.4 Consistency and Coordination

The NIB is the central integration point for multiple data

sources (other Onix instances as well as connected net-

work elements); that is, the state distribution mechanisms

do not interact directly with each other, but rather they

import and export state into the NIB. To support multiple

applications with possibly very different scalability and

reliability requirements, Onix requires the applications

to declare what data should be imported to and exported

from a particular source. Applications do this through the

configuration of import and export modules.

The NIB integrates the data sources without requiring

strong consistency, and as a result, the state updates to

be imported into NIB may be inconsistent either due

to the inconsistency of state within an individual data

source (DHT) or due to inconsistencies between data

sources. To this end, Onix expects the applications to

register inconsistency resolution logic with the platform.

Applications have two means to do so. First, in Onix,

entities are C++ classes that the application may extend,

and thus, applications are expected simply to use in-

heritance to embed referential inconsistency detection

logic into entities so that applications are not exposed to

inconsistent state.8 Second, the plugins the applications

pass to the import/export components implement conflict

resolution logic, allowing the import modules to know

how to resolve situations where both the local NIB and

the data source have changes for the same state.

For example, consider a new Node N , imported into

the NIB from the replicated database. If N contains

a reference in its list of ports to Port P that has not

yet been imported (because they are retrieved from the

network elements, not from the replicated database), the

application might prefer that N not expose a reference

to P to the control logic until P has been imported.

Furthermore, if the application is using the DHT to

store statistics about the number of packets forwarded

by N , it is possible for the import module of an

Onix instance to retrieve two different values for this

number from the DHT (e.g., due to rebalancing of

controllers’ responsibilities within a cluster, resulting in

two controllers transiently updating the same value). The

8Any inconsistent changes remain pending within the NIB until they

can be applied or applications deem it invalid for good.



application’s conflict resolution logic must reconcile these

values, storing only one into the NIB and back out to the

DHT.

This leaves the application with a consistent topology

data model. However, the application still needs to react to

Onix instance failures and use the provided coordination

mechanisms to determine which instances are responsible

for different portions of the NIB. As these responsibilities

shift within the cluster, the application must instruct the

corresponding import and export modules to adjust their

behaviors.

For coordination, Onix embeds Zookeeper [19] and

provides applications with an object-oriented API to its

filesystem-like hierarchical namespace, convenient for

realizing distributed algorithms for consensus, group

membership, and failure detection. While some appli-

cations may prefer to use Zookeeper’s services directly

to store persistent configuration state instead of the trans-

actional database, for most the object size limitations of

Zookeeper and convenience of accessing the configuration

state directly through the NIB are a reason to favor the

transactional database.

5 Implementation

Onix consists of roughly 150,000 lines of C++ and

integrates a number of third party libraries. At its simplest,

Onix is a harness which contains logic for communicating

with the network elements, aggregating that information

into the NIB, and providing a framework in which appli-

cation programmers can write a management application.

A single Onix instance can run across multiple pro-

cesses, each implemented using a different programming

language, if necessary. Processes are interconnected using

the same RPC system that Onix instances can use among

themselves, but instead of running over TCP/IP it runs

over local IPC connections. In this model, supporting a

new programming language becomes a matter of writing

a few thousand lines of integration code, typically in the

new language itself. Onix currently supports C++, Python,

and Java.

Independent of the programming language, all soft-

ware modules in Onix are written as loosely-coupled

components, which can be replaced with others without

recompiling Onix as long as the component’s binary

interface remains the same. Components can be loaded

and unloaded dynamically and designers can express

dependencies between components to ensure they are

loaded and unloaded in the proper order.

6 Applications

In this section, we discuss some applications currently

being built on top of Onix. In keeping with the focus of

the paper, we limit the applications discussed to those that

are being developed for production environments. We

believe the range of functionality they cover demonstrates

the generality of the platform. Table 2 lists the ways in

which these applications stress the various Onix features.

Ethane. For enterprise networks, we have built a

network management application similar to Ethane [5] to

enforce network security policies. Using the Flow-based

Management Language (FML) [18] network administra-

tors can declare security policies in a centralized fashion

using high-level names instead of network-level addresses

and identifiers. The application processes the first packet

of every flow obtained from the first hop switch: it tracks

hosts’ current locations, applies the security policies, and

if the flow is approved, sets up the forwarding state for

the flow through the network to the destination host. The

link state of the network is discovered through LLDP

messages sent by Onix instances as each switch connects.

Since the aggregate flow traffic of a large network can

easily exceed the capacity of a single server, large-scale

deployment of our implementation, it requires multiple

Onix instances to partition the flow processing. Further,

having Onix on the flow-setup path makes failover

between multiple instances particularly important.

Partitioning the flow-processing state requires that all

controllers be able to set up paths in the network, end to

end. Therefore, each Onix instance needs to know the

location of all end-points as well as the link state of the

network. However, it is not particularly important that this

information be strongly consistent between controllers.

At worst, a flow is routed to an old location of the host

over a failed link, which is impossible to avoid during

network element failures. It is also unnecessary for

the link state to be persistent, since this information is

obtained dynamically. Therefore, the controllers can

use the DHT for storing link-state, which allows tens

of thousands of updates per second (see Section 7).

Distributed Virtual Switch (DVS). In virtualized en-

terprise network environments, the network edge consists

of virtual, software-based L2 switch appliances within

hypervisors instead of physical network switches [26].

It is not uncommon for virtual deployments (especially

in cloud-hosting providers) to consist of tens of VMs

per server, and to have hundreds, thousands or tens of

thousands of VMs in total. These environments can also

be highly dynamic, such that VMs are added, deleted and

migrated on the fly.

To cope with such environments, the concept of a

distributed virtual switch (DVS) has arisen [33]. A DVS

roughly operates as follows. It provides a logical switch

abstraction over which policies (e.g., policing, QoS,

ACLs) are declared over the logical switch ports. These

ports are bound to virtual machines through integration

with the hypervisor. As the machines come and go and

move around the network, the DVS ensures that the



Control Logic Flow Setup Distribution Availability Integration

Ethane ! !
Distributed virtual switch !
Multi-tenant virtualized datacenter ! !
Scale-out carrier-grade IP router !

Table 2: Aspects of Onix especially stressed by deployed control logic applications.

policies follow the VMs and therefore do not have to

be reconfigured manually; to this end, the DVS integrates

to the host virtualization platform.

Thus, when operating as part of a DVS application,

Onix is not involved in forwarding plane flow setup,

but only invoked when VMs are created, destroyed, or

migrated. Hypervisors are organized as pools consisting

of a reasonably small number of hypervisors and VMs

typically do not migrate across pools; and therefore,

the control logic can easily partition itself according to

these pools. A single Onix instance then handles all the

hypervisors of a single pool. All the switch configuration

state is persisted to the transactional database, whereas all

VM locations are not shared between Onix instances.

If an Onix instance goes down, the network can

still operate. However, VM dynamics will no longer

be allowed. Therefore, high availability in such an

environment is less critical than in the Ethane environment

described previously, in which an Onix crash would

render the network inoperable to new flows. In our DVS

application, for simplicity reasons reliability is achieved

through a cold standby prepared to boot in a failure

condition.

Multi-tenant virtualized data centers. Multi-tenant

environments exacerbate the problems described in the

context of the previous application. The problem state-

ment is similar, however: in addition to handling end-host

dynamics, the network must also enforce both addressing

and resource isolation between tenant networks. Tenant

networks may have, for example, overlapping MAC

or IP addresses, and may run over the same physical

infrastructure.

We have developed an application on top of Onix which

allows the creation of tenant-specific L2 networks. These

networks provide a standard Ethernet service model and

can be configured independently of each other and can

span physical network subnets.

The control logic isolates tenant networks by encap-

sulating tenants’ packets at the edge, before they enter

the physical network, and decapsulating them when they

either enter another hypervisor or are released to the

Internet. For each tenant virtual network, the control logic

establishes tunnels pair-wise between all the hypervisors

running VMs attached to the tenant virtual network. As

a result, the number of required tunnels is O(N2), and

thus, with potentially tens of thousands of VMs per tenant

network, the state for just tunnels may grow beyond the

capacity of a single Onix instance, not to mention that the

switch connections can be equally numerous.9

Therefore, the control logic partitions the tenant net-

work so that multiple Onix instances share responsibility

for the network. A single Onix instance manages only a

subset of hypervisors, but publishes the tunnel end-point

information over the DHT so any other instances needing

to set up a tunnel involving one of those hypervisors can

configure the DHT import module to load the relevant

information into the NIB. The tunnels themselves are

stateless, and thus, multiple hypervisors can send traffic

to a single receiving tunnel end-point.

Scale-out carrier-grade IP router. We are currently

considering a design to create a scale-out BGP router us-

ing commodity switching components as the forwarding

plane. This project is still in the design phase, but we

include it here to demonstrate how Onix can be used with

traditional network control logic.

In our design, Onix provides the “glue” between the

physical hardware (a collection of commodity switches)

and the control plane (an open source BGP stack). Onix

is therefore responsible for aggregating the disparate

hardware devices and presenting them to the control logic

as a single forwarding plane, consisting of an L2/L3 table,

and a set of ports. Onix is also responsible for translating

the RIB, as calculated by the BGP stack, into flow entries

across the cluster of commodity switches.

In essence, Onix will provide the logic to build a scale-

out chassis from the switches. The backplane of the

chassis is realized through the use of multiple connections

and multi-pathing between the switches, and individual

switches act as line-cards. If a single switch fails, Onix

will alert the routing stack that the associated ports on the

full chassis have gone offline. However, this should not

affect the other switches within the cluster.

The control traffic from the network (e.g., BGP or

IGP traffic) is forwarded from the switches to Onix,

which annotates it with the correct logical switch port and

forwards it to the routing stack. Because only a handful of

switches are used, the memory and processing demands

9The VMs of a single tenant are not likely to share physical servers

to avoid fate-sharing in hardware failure conditions.
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of this applications are relatively modest. A single Onix

instance with an active failover (on which the hardware

configuration state is persistent) is sufficient for even very

large deployments. This application is discussed in more

detail in [7].

7 Evaluation

In this section, we evaluate Onix in two ways: with

micro-benchmarks, designed to test Onix’s performance

as a general platform, and with end-to-end performance

measurements of an in-development Onix application in

a test environment.

7.1 Scalability Micro-Benchmarks

Single-node performance. We first benchmark three

key scalability-related aspects of a single Onix instance:

throughput of the NIB, memory usage of the NIB, and

bandwidth in the presence of many connections.

The NIB is the focal point of the API, and the

performance of an application will depend on the capacity

the NIB has for processing updates and notifying listeners.

To measure this throughput, we ran a micro-benchmark

where an application repeatedly acquired exclusive access

to the NIB (by its cooperative thread acquiring the CPU),

modified integer attributes of an entity (which triggers

immediate notification of any registered listeners), and

then released NIB access. In this test, none of the listeners

acted on the notifications of NIB changes they received.

Figure 3 contains the results. With only a single attribute

modification, this micro-benchmark essentially becomes

a benchmark for our threading library, as acquiring
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Figure 5: Number of 64-byte packets forwarded per second by

a single Onix node, as the # of switch connections increases.

exclusive access to the NIB translates to a context switch.

As the number of modified attributes between context

switches increases, the effective throughput increases

because the modifications involve only a short, fine-tuned

code path through the NIB to the listeners.

Onix NIB entities provide convenient state access

for the application as well as for import and export

modules. The NIB must thus be able to handle a

large number of entries without excessive memory usage.

Figure 4 displays the results of measuring the total

memory consumption of the C++ process holding the

NIB while varying both network topology size and the

number of attributes per entity. Each attribute in this

test is 16 bytes (on average), with an 8-byte attribute

identifier (plus C++ string overhead); in addition, Onix

uses a map to store attributes (for indexing purposes) that

reserves memory in discrete chunks. A zero-attribute

entity, including the overhead of storing and indexing

it in the NIB, consumes 191 bytes. The results in

Figure 4 suggest a single Onix instance (on a server-

grade machine) can easily handle networks of millions

of entities. As entities include more attributes, their sizes

increase proportionally.

Each Onix instance has to connect to the switches

it manages. To stress this interface, we connected

a (software) switch cloud to a single Onix instance and

ran an application that, after receiving a 64-byte packet

from a random switch, made a forwarding decision

without updating the switch’s forwarding tables. That

is, the application sent the packet back to the switch with

forwarding directions for that packet alone. Because of

the application’s simplicity, the test effectively bench-

marks the performance of our OpenFlow stack, which

has the same code path for both packets and network

events (such as port events). Figure 5 shows the stack

can perform well (forwarding over one hundred thousand

packets per second), with up to roughly one thousand

concurrent connections. We have not yet optimized our

implementation in this regard, and the results highlight a

known limitation of our threading library, which forces

the OpenFlow protocol stack to do more threading context

switches as the number of connections increases. Bumps

in the graph are due to the operating system scheduling

the controller process over multiple CPU cores.
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Figure 7: A CDF showing the latency of updating a DHT value

at one node, and for that update to be fetched by another node

in a 5-node network.

Multi-node performance. Onix instances use three

mechanisms to cooperate: two state update dissemination

mechanisms (the DHT and the replicated, transactional

database) and the Zookeeper coordination mechanism.

Zookeeper’s performance has been studied elsewhere [19],

so we focus on the DHT and replicated database.

The throughput of our memory-based DHT is effec-

tively limited by the Onix RPC stack. Figure 6 shows

the call throughput between an Onix instance acting as

an RPC client, and another acting as an RPC server, with

the client pipelining requests to compensate for network

latency. The DHT performance can then be seen as the

RPC performance divided by the replication factor. While

a single value update may result in both a notification

call and subsequent get calls from each Onix instance

having an interest in the value, the high RPC throughput

still shows our DHT to be capable of handling very

dynamic network state. For example, if you assume

that an application fully replicates the NIB to 5 Onix

instances, then each NIB update will result in 22 RPC

request-response pairs (2 to store two copies of the data

in the DHT, 2∗5 to notify all instances of the update, and

2∗5 for all instances to fetch the new value from both

replicas and reinstall their triggers). Given the results in

Figure 6, this implies that the application, in aggregate,

can handle 24,000 small DHT value updates per second.

In a real deployment this might translate, for example,

to updating a load attribute on 24,000 link entities every

second – a fairly ambitious scale for any physical network

that is controlled by just five Onix instances. Applications

can use aggregation and NIB partitioning to scale further.

Our replicated transactional database is not optimized

for throughput. However, its performance has not yet

become a bottleneck due to the relatively static nature

Queries/trans 1 10 20 50 100

Queries/s 49.7 331.9 520.1 541.7 494.4

Table 3: The throughput of Onix’s replicated database.

of the data it stores. Table 3 shows the throughput

for different query batching sizes (1/3 of queries are

INSERTs, and 2/3 are SELECTs) in a 5-node replicated

database. If the application stores its port inventory in the

replicated database, for example, without any batching it

can process 17 port additions and removals per second,

along with about 6.5 queries per second from each node

about the existence of ports (17 + 6.5 ∗ 5 ∼ 49.7).

7.2 Reliability Micro-Benchmarks

A primary consideration for production deployments is

reliability in the face of failures. We now consider

the three failure modes a control application needs to

handle: link failures, switch failures, and Onix instance

failures. Finally, we consider the perceived network

communication failure time with an Onix application.

Link and switch failures. Onix instances monitor their

connections to switches using aggressive keepalives.

Similarly, switches monitor their links (and tunnels) using

hardware-based probing (such as 802.1ag CFM [1]).

Both of these can be fine-tuned to meet application

requirements.

Once a link or switch failure is reported to the control

application, the latencies involved in disseminating the

failure-related state updates throughout the Onix cluster

become essential; they define the absolute minimum time

the control application will take to react to the failure

throughout the network.

Figure 7 shows the latencies of DHT value propagation

in a 5-node, LAN-connected network. However, once

the controllers are more distant from each other in

the network, the DHT’s pull-based approach begins to

introduce additional latencies compared to the ideal push-

based methods common in distributed network protocols

today. Also, the new value being put to the DHT may

be placed on an Onix instance not on the physical path

between the instance updating the value and the one

interested in the new value. Thus, in the worst case, a

state update may take four times as long as it takes to push

the value (one hop to put the new value, one to notify an

interested Onix instance, and two to get the new value).

In practice, however, this overhead tends not to

impact network performance, because practical avail-

ability requirements for production traffic require the

control application to prepare for switch and link failures

proactively by using backup paths.

Onix instance failures. The application has to detect

failed Onix instances and then reconfigure responsibilities

within the Onix cluster. For this, applications rely on the
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Figure 8: A CDF of the perceived communication disruption

time between two hosts when an intermediate switch fails. These

measurements include the one-second (application-configurable)

keepalive timeout used by Onix. The hosts measure the

disruption time by sending a ping every 10 ms and counting the

number of missed replies.

Zookeeper coordination facilities provided by Onix. As

with its throughput, we refer the reader to a previous

study [19] for details.

Application test. Onix is currently being used by a

number of organizations as the platform for building

commercial applications. While scaling work and testing

is ongoing, applications have managed networks of up to

64 switches with a single Onix instance, and Onix has

been tested in clusters of up to 5 instances.

We now measure the end-to-end failure reaction time of

the multi-tenant virtualized data center application (Sec-

tion 6). The core of the application is a set of tunnels

creating an L2 overlay. If a switch hosting a tunnel fails,

the application must patch up the network quickly to

ensure continued connectivity withing the overlay.

Figure 8 shows how quickly the application can create

new tunnels to reestablish the connectivity between hosts

when a switch hosting a tunnel fails. The measured time

includes the time for Onix to detect the switch failure,

and for the application to decide on a new switch to

host the tunnel, create the new tunnel endpoints, and

update the switch forwarding tables. The figure shows the

median disruption for the host-to-host communication is

1120 ms. Given the configured one-second switch failure

detection time, this suggests it takes Onix 120 ms to repair

the tunnel once the failure has been detected. Although

this application is unoptimized, we believe these results

hold promise that a complete application on Onix can

achieve reactive properties on par with traditional routing

implementations.

8 Related Work

As mentioned in Section 1, Onix descends from a long

line of work in which the control plane is separated

from the dataplane [3–6,15,16,23], but Onix’s focus on

being a production-quality control platform for large-scale

networks led us to focus more on reliability, scalability,

and generality than previous systems. Ours is not the

first system to consider network control as a distributed

systems problem [10,20], although we do not anticipate

the need to run our platform on end-hosts, due to

the flexibility of merchant silicon and other efforts to

generalize the forwarding plane [23], and the rapid

increase in power of commodity servers.

An orthogonal line of research focuses on offering

network developers an extensible forwarding plane (e.g.,

RouteBricks [11], Click [22] and XORP [17]); Onix is

complementary to these systems in offering an extensible

control plane. Similarly, Onix can be the platform

for flexible data center network architectures such as

SEATTLE [21], VL2 [14] and Portland [25] to manage

large data centers. This was explored somewhat in [30].

Other recent work [34] reduces the load of a centralized

controller by distributing network state amongst switches.

Onix focuses on the problem of providing generic dis-

tributed state management APIs at the controller, instead

of focusing on a particular approach to scale. We view

this work as distinct but compatible, as this technique

could be implemented within Onix.

Onix also follows the path of many earlier distributed

systems that rely on applications’ help to relax consis-

tency requirements in order to improve the efficiency of

state replication. Bayou [31], PRACTI [2], WheelFS [29]

and PNUTS [8] are examples of such systems.

9 Conclusion

The SDN paradigm uses the control platform to simplify

network control implementations. Rather than forcing

developers to deal directly with the details of the physical

infrastructure, the control platform handles the lower-

level issues and allows developers to program their

control logic on a high-level API. In so doing, Onix

essentially turns networking problems into distributed

systems problem, resolvable by concepts and paradigms

familiar for distributed systems developers.

However, this paper is not about the ideology of SDN,

but about its implementation. The crucial enabler of

this approach is the control platform, and in this paper

we present Onix as an existence proof that such control

platforms are feasible. In fact, Onix required no novel

mechanisms, but instead involves only the judicious use

of standard distributed system design practices.

What we should make clear, however, is that Onix

does not, by itself, solve all the problems of network

management. The designers of management applications

still have to understand the scalability implications of

their design. Onix provides general tools for managing

state, but it does not magically make problems of scale

and consistency disappear. We are still learning how to

build control logic on the Onix API, but in the examples

we have encountered so far management applications are

far easier to build with Onix than without it.
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