
Online Adaptive Code Generation and Tuning
Ananta Tiwari

Department of Computer Science,
University of Maryland,

College Park, MD, 20742
Email: tiwari@cs.umd.edu

Jeffrey K. Hollingsworth
Department of Computer Science,

University of Maryland,
College Park, MD, 20742

Email: hollings@cs.umd.edu

Abstract—In this paper, we present a runtime compilation and
tuning framework for parallel programs. We extend our prior
work on our auto-tuner, Active Harmony, for tunable parameters
that require code generation (for example, different unroll
factors). For such parameters, our auto-tuner generates and
compiles new code on-the-fly. Effectively, we merge traditional
feedback directed optimization and just-in-time compilation. We
show that our system can leverage available parallelism in today’s
HPC platforms by evaluating different code-variants on different
nodes simultaneously. We evaluate our system on two parallel
applications and show that our system can improve runtime
execution by up to 46% compared to the original version of
the program.

Keywords-Auto-tuning; Parallel Search; Active Harmony

I. INTRODUCTION

Today’s complex and diverse architectural features require
applying nontrivial optimization strategies on scientific codes
to achieve high performance. As a result, programmers usually
have to spend countless hours in rewriting and tuning their
codes. Furthermore, a code that performs well on one plat-
form often faces bottlenecks on another; therefore, the tuning
process must be largely repeated to port the code to a new
computing architecture.

Our research focuses on automating this tedious and error-
prone process of tuning and porting parallel applications.
In our earlier work [23], we showed that for well-defined
benchmark kernels (such as matrix multiplication), compiler-
based offline auto-tuning can deliver significant improvements
over the optimizations offered by native compilers. However,
for full applications, it is not as effective. Based on the
input dataset, a given parallel application can have vastly
different execution profiles. Input datasets can specify physical
domain, solver type(s), solver parameters, discretization order,
and so on. Taking an offline tuning approach to tune for all
possible computational bottlenecks is not a tractable goal.
Instead, on-demand tuning during production execution is a
desirable approach. This on-demand approach also benefits
from the availability of real-time performance data, which
can be linked back to specific code sections and architecture-
specific features.

Development of an online auto-tuner, however, presents its
own set of challenges. Managing the cost of the search process
and the cost of generating and compiling code-variants on-
the-fly are two daunting challenges that runtime auto-tuners

face. Addressing these challenges and making online tuning
practical is the topic of this paper. Our goal is to enable
application developers to write applications once and have the
auto-tuner adjust the application execution automatically when
run on new systems. Our work can be viewed as the merger of
traditional compiler techniques and just-in-time compilation.

We take a search-based collaborative approach to auto-
tuning. Our system, Active Harmony, allows application pro-
grammers, compilers, library writers and performance model-
ers to describe and export a set of performance related tunable
parameters. These parameters define a tuning search-space.
More often than not, this search-space is high-dimensional and
exponential in size and thus, cannot be explored manually.
Our system monitors the program performance and makes
adaptation decisions. The decisions are made by a central
controller using a parallel search algorithm. The parallel search
algorithm leverages parallel architectures to search across a set
of optimization parameter values. Different nodes of a parallel
system evaluate different configurations at each timestep.

In Active Harmony vocabulary, harmonization refers to
the process of adding “hooks” in an application (using the
Active Harmony API) to make it tunable. The process in-
volves making fairly small changes to the application code
to export tuning options to the server. The phrase harmonized
application is used to refer to an application that uses Active
Harmony to adapt its execution.

To summarize, in this paper, we make the following contri-
butions:

1) An online auto-tuner that can recompile programs during
a single execution.

2) Support for tuning multiple code-sections simultane-
ously.

3) Refinements of our parallel search algorithm to include
a penalization technique.

4) A system design to support runtime code generation and
code replacement for large scale parallel applications.

5) An empirical analysis that shows that even when training
runs are not available, our system can improve perfor-
mance of an application within a single execution.

II. CHALLENGES AND REQUIREMENTS

In this section, we review some key challenges that runtime
auto-tuners face and features of Active Harmony that address
them.

A. Minimal overhead
The costs of using an online tuning system must be minimal.

Otherwise, such costs can overshadow any benefit realized in
application performance. If the performance of harmonized
code is better (or at least not worse) than that of untuned ver-
sion of the code, the minimal overhead objective is achieved.

B. Avoid “bad” regions in the search-space
Our earlier experience [8], [23] has shown that tun-

ing search-spaces often exhibit a clear demarcation between
“good” and “bad” regions. We observed that there are fre-
quently many good points near the optimal point and that there
is also often another region where the application performance
is relatively worse. Such a topography argues for online auto-
tuning systems that rapidly get applications out of bad regions
of performance and into the good ones. Achieving optimal
performance is a secondary goal once good performance is
reached.

C. Need to coordinate tuning for multiple code-sections
Auto-tuning for full applications typically involves tuning

for multiple code-sections from several libraries simultane-
ously. Therefore, an important question is how to coordinate
this process. Left uncoordinated (for example, if each library
had an embedded auto-tuner), it would be impossible to
tell which change (and on what code-section) was actually
improving the overall performance of the program. In fact,
it is likely that one change might improve performance and
the second hurt performance and the net performance benefit
is little or none. There are a variety of approaches possible
ranging from simple arbitration to ensure that only one code-
section is tuned at a given instance to a fully unified system
that allows coordinated simultaneous search of parameters
originating from different code-sections.

In the Active Harmony project, we take the approach of a
coordinated system to allow simultaneous tuning of multiple
code-sections. We accomplish this by having each code-section
expose its tunable parameters via a simple, but expressive
constraint language (discussed below). A central search en-
gine then uses these constraints to manage the evaluation of
possible auto-tuning steps.

D. Constraint language
An important aspect of searching parameters is to allow the

precise specification of valid parameters. Such specification
could be as simple as expressing the minimum, maximum and
initial values for a parameter. Sometimes not all parameters
values within a range should be searched, so an option to
specify a step function is useful. Likewise for parameters
with a large range (i.e. a buffer that could be from 1K to
100Megabytes), it is useful to specify that parameter should
be searched based on the log of the value.

Another critical factor is that not all parameters are indepen-
dent. Frequently, there is a relationship between parameters
(e.g. when considering tiling a two dimensional array, it is
often useful to have the tiles be rectangles with a definite

TABLE I
A SIMPLE CSL SPECIFICATION

search space simple {
parameter definitions
parameter x int {

range [1:8:1];
}
parameter y int {

range [1:8:1];
}
parameter z int {

range [1:8:1];
}
constraints
constraint cone {

x+z>=z;
}
constraint ctwo {

y>z;
}
#putting everything together
specification {

cone && ctwo;
}

}

aspect ratio). To meet the needs of having a fully expressive
way for developers to define parameters, we have developed
a simple and extensible language (Constraint Specification
Language, CSL) that standardizes parameter space representa-
tion for search-based auto-tuners. CSL allows tool developers
to share information and search strategies with each other.
Meanwhile, application developers can use CSL to export their
tuning needs to auto-tuning tools.

CSL provides constructs to define tunable parameters and to
express relationships between those parameters. Dependencies
between different parameters can be easily specified using
mathematical expressions. CSL supports a fairly comprehen-
sive list of mathematical, logical and relational operators.
Hints to the underlying search algorithm in the form of
initial points to start the search, default values for parameters,
simple constraints on parameters such as MPI message-sizes,
number of OpenMP threads, etc. can be easily expressed
using CSL. Information from performance models can be
specified in the form of constraints to guide the search.
Furthermore, parameters can also be grouped into different
categories to allow application of similar tuning strategies.
This is particularly helpful when there are multiple code-
sections that benefit from the same optimization. We provide
a simple parameter specification example in Table I. In this
example, the search space consists of three parameters —
x, y and z. The relationships between these parameters are
expressed using two constraint definitions — cone and ctwo.
Full CSL grammar is provided in the Appendix.

III. PARAMETER TUNING ALGORITHM

A key to any auto-tuning system is how it goes about
selecting the specific combinations of parameters to try. While
a simple parameter space might be exhaustively searched,
most applications contain too many combinations to try them
all. Instead, an auto tuning system must rely on efficient
search algorithms to evaluate only a sub-set of the possible

2

Fig. 1. Original 4 point simplex in a 2-dimensional space, along with the
simplex transformation steps.

configurations while trying to find an optimal one (or least as
nearly optimal as practical).

The algorithm that we use is based on the Parallel Rank
Order (PRO) algorithm proposed by Tabatabaee et al [22].
For a function of N variables, PRO maintains a set of K

(where K is at least N + 1 and is usually set to the number
of cores the harmonized application is run on) points forming
the vertices of a simplex in an N -dimensional space. Each
simplex transformation step of the algorithm generates up to
(K − 1) new vertices by reflecting, expanding, or shrinking
the simplex around the best vertex. After each transformation
step, the objective function value f associated with each of
the newly generated points are calculated in parallel. The
reflection step is considered successful if at least one of the
(K − 1) new points has a better f than the best point in the
simplex. If the reflection step is not successful, the simplex is
shrunk around the best point. A successful reflection step is
followed by expansion check step. If the expansion check step
is successful, the expanded simplex is accepted. Otherwise, the
reflected simplex is accepted and the search moves on to the
next iteration. The search stops if the simplex converges to
a point in the search space (or after a pre-defined number of
search steps). A graphical illustration for reflection, expansion
and shrink steps are shown in Figure 1 for a 2-dimensional
search space and a 4-point simplex.

Note that before computing all expansion points, we check
the outcome of the expansion for only the most promising case
first. The most promising point (shown in Figure 1-(c)) is the
point in the original simplex whose reflection around the best
point returns a better function value. This seems to be counter-
intuitive at first glance, since we are not taking full advantage
of the parallelism. However, in our experiments, we realized

there are some expansion points with very poor performance
that can slow down the algorithm (for example, setting a tile
size to 0). Therefore, to avoid these time consuming instances
and to ensure good transient behavior of the search algorithm,
we calculate the expansion point performance for the most
promising case first and only if it is successful, perform a full
expansion of the simplex.

One of the unique features that distinguishes PRO from
other algorithms used in auto-tuning systems is that the algo-
rithm leverages parallel architectures to search across a set of
optimization parameter values. Multiple, sometimes unrelated,
points in the search space are evaluated at each timestep. For
online tuning of SPMD-based parallel applications, different
nodes participating in the tuning process can evaluate different
versions of given loop-nests. We depict this graphically in
Figure 2-(a) (more description of the figure appears in the
next section)1.

Parameter tuning is a constrained optimization problem.
Therefore after each simplex transformation step, we have to
make sure that the points returned by the search algorithm
for evaluation are admissible, i.e. they satisfy the constraints.
We consider two types of parameter constraints: internal
discontinuity constraints and boundary constraints. Internal
discontinuity constraints arise because some tuning parameters
can only have discrete admissible values (e.g. integer parame-
ters). For these constraint violations, the computed parameters
are rounded to an admissible discrete value.

To handle boundary constraints, we use a penalization
method. We add a penalty factor to the performance metric
associated with the points that violate the constraints. The
idea is to discourage the simplex from moving towards illegal
regions of the search space. This approach has been used
previously in the context of constrained optimization using
genetic algorithms [11]. In all of the experimental results
presented in this paper we use this method because it is simple
and light-weight. This feature of Active Harmony is new and
has not been considered in our previous work.

IV. SYSTEM DESIGN

In this section, we describe our online auto-tuning ap-
proach for parameters that require new code and present
our system design. Examples of parameters that require new
code include loop unrolling factors, loop fusion and split
parameters and data-copy parameters. With the addition of this
capability, Active Harmony supports the development of self-
tuning applications that include runtime code-transformation
and replacement.

To make runtime auto-tuning practical, the key issue that
needs to be addressed is the efficient runtime management
of the process of generating, compiling, and maintaining a
set of alternative implementations and searching among them.
A given loop-nest generally requires more than one flavor
of transformation strategy. As the number of transformations

1There are, of course, some parameters that are global (such as data
decomposition). These are searched sequentially.

3

(a)

(b)

Fig. 2. Fig.2-(a) shows the overall online tuning workflow. Fig.2-(b) shows
application level view of the auto-tuning workflow

increases, the number of alternative code-variants grows ex-
ponentially. A brute-force approach of generating all possible
combinations is, thus, not practical. Instead, our approach
generates code variants on-demand. This selective approach
requires an efficient code generator that can produce correct
code during runtime.

Developing an efficient code transformation framework that
ensures correctness is a large area of research in and of
itself. Recently, a variety of compiler-based code transforma-
tion frameworks [7], [10], [4], [17] have been developed to
give programmers and compiler experts greater control over
what optimization strategies to use for complex codes. These
frameworks are designed to facilitate manual exploration of the
large optimization space of possible compiler transformations
and their parameter values. Each of these frameworks has its
strengths and weaknesses and as such, it is desirable to design
a system that can easily select among the available tools based
on our code transformation requirements.

Active Harmony relies on standalone code-generation utility
(or code-servers) for on-demand code generation. Here we
describe the two most important features of this utility. First,
the design of code-servers allows the users to easily select and
switch between available code transformation tools. We sep-
arate the search-based navigation of the code-transformation
parameter space and the code-generation process, which al-
lows us to easily switch between different underlying code-
generation tools (e.g. if we are tuning CUDA code, we can
switch to a code-transformation framework that supports GPUs
via CUDA or OpenCL). Second, our code-generation utility

can take advantage of idle (possibly remote) machines for
distributed code-generation and compilation. Users provide a
set of available machines at the start of the tuning session.
These machines do the actual code-generation work. Once all
code-variants are generated, the compiled code-variants are
transported to the scratch filesystem of the parallel machine,
where the application being tuned is executing. After the code-
generation is complete, our code-generation utility notifies the
Active Harmony server about the status.

Figure 2-(a) shows a schematic diagram of the workflow
within our online tuning system. Figure 2-(b) shows the
application-level view of the tuning process. At each search
step, the Active Harmony server issues a request to the
code-servers to generate code variants with a given set of
parameters for loop transformations. The code-variants that
are generated are compiled into a shared library (denoted
as v_N.so in the figure 2-(b)). Once the code-generation
is complete, the application receives a code-ready message
from the Active Harmony server. The nodes allocated to
the parallel application then load the new code using the
dlopen-dlsym mechanism. The new code is executed and
the measured performance values (denoted as PM_N in the
figure 2-(b)) are consumed by the Active Harmony server to
make simplex transformation decisions. The timing of actual
loading of new code is determined by hooks (inserted using the
Active Harmony API) in the application. For example, in most
programs, we load new code only on timestep boundaries.

Preparing an application for auto-tuning starts with outlining
the compute-intensive code-sections to separate functions. We
then insert appropriate calls to the outlined functions using
function pointers. These function pointers are updated when
new codes become available. Currently, the code-sections are
outlined manually. In the future, we intend to automate this
process using the ROSE compiler framework [12]. Each node
running the application keeps track of the best code-variant
it has seen thus far in the tuning process. If the code-server
fails to deliver new versions on time, the nodes continue their
execution with the best version that they have discovered up to
that point in the tuning process. The period where no new code
is available is referred as search_stall (see figure 2-(b)).
The non-blocking relationship between application execution
and dynamic code-generation is important in minimizing the
online tuning overhead. The application does not have to
wait until the new code becomes available. Furthermore, this
asynchronous relationship enables our auto-tuner to exercise
control over what code-generation utility to use, how many
parallel code-servers to run and how many code-variants to
generate in any given search iteration. The policy decisions
about what code-variants to generate and evaluate at each
iteration is made completely by the centralized tuning server.

V. EXPERIMENTS

In this section, we present an experimental evaluation of
our framework. First, we conduct a study using as a test
application, a Poisson’s equation solver program, to determine
the least number of parallel code-servers needed to ensure

4

that the search_stall phase does not dominate the tuning
workflow. Second, we use two parallel applications to demon-
strate the effectiveness of our system on three different com-
puting platforms. We compare the performance of harmonized
applications with that of original applications compiled with
the vendor-suggested highest level of optimization flags turned
on. Moreover, once the harmonized application is done with
its execution, we take the best code-variants returned by the
Active Harmony server and run the application using those
code-variants. We call these runs post-harmony runs.

Active Harmony utilizes the first search iteration to generate
uniformly distributed random configurations from the search
space. These configurations are evaluated in parallel. We call
this iteration exploratory iteration2. The best among these
configurations then serves as the starting point for the initial
simplex construction. For all our experiments, unroll factors
and tile sizes are constrained by the storage capacity of their
associated memory hierarchy levels.

To control for performance variability3, we use the multiple
sampling method. Each configuration is evaluated twice (i.e.
the performance of two consecutive timesteps is recorded) and
the minimum of the two samples is sent to the Active Harmony
server. We showed in our previous work [22] that even in the
presence of 5% variability due to background noise, taking the
minimum of two samples is enough to ensure the convergence
of the search algorithm.

A. Platforms

The experiments were performed on three platforms. The
first platform is a 64-node Linux cluster (henceforth referred
to as umd-cluster). Each node is equipped with dual Intel
Xeon 2.66 GHz (SSE2) cores (with Hyper-Threading enabled).
Nodes are connected via a Myrinet interconnect. The second
platform (at NERSC [6]) is named Carver, which is an IBM
iDataPlex system with 400 compute nodes. Each node contains
two quad-core Intel Nehalem 2.67 GHz cores (3,200 cores
total in the machine). Nodes are connected via a 4X QDR
Infiniband interconnect. These architectures are different from
each other not only in terms of the core architectures —
Carver’s cores are several generations newer — but also in
terms of the interconnect used to connect the nodes. Finally,
the third platform, which is named Hopper4, is a Cray XT5
machine at NERSC. Each node consists of two 2.4 GHz AMD
Opteron Shanghai quad-core cores (5,312 cores total in the
machine). Nodes are connected via a Seastar2 interconnect.

2Note that this randomized method can sometimes select points in the
search space that have poor performance. We pay this penalty for one iteration
at the beginning of the search to gather some knowledge about the search
space. The cost of this step is usually amortized within the first few PRO
steps.

3Besides the tunable parameters, there are many other factors affecting a
program’s performance. Therefore, even for a fixed set of tunable parameters,
the application performance varies in time. Network contention, operating
system jitter, and memory architecture complexity are common sources of
performance variability.

4Hopper has since been upgraded to a Cray XE6 with 153,408 cores.

B. Code-generation utility
For all the experimental results presented in this paper, we

use CHiLL [7], a polyhedra-based compiler framework, to
generate code-variants. As we discussed in section IV, we can
use any available code-generation utility within our system.
We chose CHiLL because it provides a convenient high-level
script interface that allows compilers and application program-
mers to use a common interface to describe parameterized
code transformations to be applied to a computation (see
tables III and IV). In CHiLL nomenclature, these scripts are
called “recipes”. Besides making it easy to interface with
the code-generation utility, these code transformation recipes
offer an additional advantage. Unlike traditional compiler
optimizations which must be coded into the compiler, these
recipes can be evolved and reused over time. A recipe library,
created by compiler experts and developers based on their
experience working with real codes, can then be consulted
by auto-tuners to tune arbitrary loop-nests.

For the experiments on the umd-cluster, the code-generation
and compilation is delegated to idle local machines. For the ex-
periments on Carver, the code-generation is out-sourced to an
eight-core 64-bit x86 machine at UMD (i.e. code is generated
just in time and shipped across the continental United States).
This was done because the Carver scheduler does not permit
synchronized (co-scheduled) jobs yet, which meant that we
could not launch a code-generation job simultaneously with
the application job. For the experiments on Hopper, the code-
generation and compilation takes place on the login nodes.

C. Calculating the “net” speedup
Our runtime tuning strategy uses extra cores to generate

and compile new code. Ideally, a fair comparison would be
between the execution time of the harmonized application to
that of the original application run on Nh + C cores, where
Nh is the number of cores the harmonized application is run
on and C is the number of cores used for code-generation.
However, this is not always possible due to application’s
data distribution semantics (for example, the application may
require the number of cores to be a power of 2). Instead,
to account for these extra cores, we calculate a new metric
— net speedup. We define charge factor (equation 1) as the
ratio of the number of cores used to run the application and
the total number of cores used for both code-generation and
harmonized application execution.

c.f. =
Nh

Nh + C
(1)

We then multiply the speedup of harmonized applications over
the original application by this charge factor to derive the net
speedup.

D. Code-server sensitivity
With the experimental results presented in this section,

we attempt to answer the following question — how many
parallel code-servers are needed to ensure that the auto-tuner
does not have to wait for too long before the new code is

5

0 50 100 150 200 250 300 350 400 450 500
0.5

1

1.5

2

Sensitivity analysis − Comparison of the search Evolution
 for different number of code server

0 50 100 150 200 250 300 350 400 450 500
0.5

1

1.5

2

Iterations

Pe
r−

ite
ra

tio
n

tim
e

(s
)

1 code−server
2 code−servers
4 code−servers

8 code−servers
12 code−servers
16 code−servers

Stalls
Stalls

Stalls

Fig. 3. Sensitivity results demonstrating how the change in the number of code-servers affects the search evolution

ready? A related question is — How often is the system in
the search_stall phase? These questions are important
because if the search_stall phase is long, the application
can possibly continue with mediocre parameter configurations
for extended periods of time.

The experiments were conducted on the umd-cluster using
the PES application (described in section V-E1). We controlled
the input problem size (10243) and the number of cores
running the application (128). All 128 cores participate in the
tuning process, which means at each search step, code-servers
have to generate and compile up to 128 code-variants. This is a
typical number of code-variants required per search iteration in
all the experiments reported in this paper. We vary the number
of code-servers running in parallel and record the average
number of time-steps that the application had to continue with
the old code. We call this metric “stalled” iterations.

Figure 3 shows how per-iteration performance measure-
ments change over time for auto-tuning conducted with alter-
nate number of code-servers. Long stretches of consecutive ap-
plication timesteps with no performance improvement (marked
by arrows) in experiments conducted with 1, 2 and 4 code-
servers indicate that the application continued its execution
with poor configurations for several timesteps. The same is
not true for tuning conducted with 8, 12 and 16 code-servers.

Table II summarizes the results for this experiment. We
direct the readers to columns 3 and 5. As the number of code-
servers is increased from 1 to 4, the average number of stalled
iterations goes down significantly. This is to be expected. What
is surprising is that the addition of extra code-servers from 8
to 16 does not significantly change the application speedup or
the number of stalled iterations. The reason for this is that
as the search algorithm evolves and starts converging to a

point in the search space, the load on code-servers goes down
(i.e., more points in the simplex become identical). The data
in column 4 of table II shows the number of unique code-
variants evaluated in different experiments. We can see that as
the average number of search iterations goes from 6 for runs
using 1 code-server to 17 for runs using 2 code-servers, the
average number of unique code-variants goes up by only 208.

Our end goal with this experiment was to set a min-
imum number of code-servers required to ensure a short
search_stall phase for the rest of the experiments. Hav-
ing said that, we acknowledge that there are other factors that
can play important roles in setting this minimum. In one of
our preliminary experiments, we discovered that the size of
the search space can also dictate this minimum. When we
ran the experiments with small tuning space, the exploratory
iteration (initial random search of points) was able to find
good parameter configurations. In this case, the number of
stalled iterations did not matter because applications were
already executing with good configurations. Moreover, the
number of minimum code-servers can (and most probably
will) change if we switch between different code-generation
tools. Currently, we are looking into more robust ways to
account for these issues and to derive the value for the
minimum required parallel code-servers. For the rest of the
auto-tuning experiments we describe in this paper, we used 8
code-servers.

E. Subject applications, tuning strategies and results
1) Poisson’s Equation Solver (PES): Poisson’s equation is a

partial differential equation that is used to characterize many
processes in electrostatics, engineering, fluid dynamics, and
theoretical physics. To solve for Poisson’s equation on a three-

6

TABLE II
SENSITIVITY EXPERIMENT RESULTS

of code Avg. # of Avg. # of Avg. # of code Avg.
servers search iters stalled iters evaluated speedup

1 6* 46 502 0.75
2 17* 13 710 0.97
4 27 7.18 928 1.04
8 23 4.48 818 1.23

12 22 4.06 833 1.21
16 26 3.59 931 1.24

* - search algorithm did not converge

0 100 200 300 400 5000

0.5

1

1.5

2

Application Iterations

Ti
m

e
(s

ec
)

Aggregate plot of the worst per−iteration performance
(PES, 128 cores, umd−cluster)

worst perf

Original Perf (0.84 sec)

Fig. 4. A plot for aggregate worst timing at each iteration.

dimensional grid, we use a modified version of the parallel
implementation provided in the KeLP-1.4 distribution [1]. The
application is written in C++ and Fortran. The implementation
uses the redblack successive over relaxation method to solve
the equation. The core of the computational time is spent on
the relaxation function, which uses a 7-point stencil operation,
and the error calculation function, which calculates the sum
of squares of the residual over the 3D grid. These two code-
sections are tuned simultaneously using the Active Harmony
framework. The code-sections are outlined in table III.

The original implementation of the relaxation operation uses
the first half of one iteration to update “red” array points and
the second half of the iteration to update the “black” points.
In the adapted version of the application, we use the fused
version of the relaxation operation. The fused version orders
the loop iteration so that black points in each column are
updated immediately after the red points in the next column
and vice versa [20]. This fused version (see Table III) serves
as the baseline for comparing the net speedup of harmonized
PES.

Our tuning strategy for this application combines symbolic
parameter tuning5 and tuning with dynamic code-generation.
For the relaxation function, we use symbolic tuning. We tile
the two outermost loops and use Active Harmony to determine
the dimension of the tiles. The error function is optimized

5Symbolic tuning refers to tuning for parameters that are symbolic, i.e. no
new code is necessary to move between parameter values.

512 576 640 704 768 832 896

0.8

1

1.2

1.4

1.6

1.8

2
PES Application (64 cores, umd−cluster)

Problem−domain (cubed)

Im
pr

ov
em

en
t

post−harmony
harmonized
net speedup

(108) (184) (254) (341) (428) (536) (680)

Fig. 5. Performance improvement of harmonized PES, net speedup, and
post-harmony run of the solver (64 core run on umd-cluster)

using the dynamic code-generation method. For this function,
we tile all three loops and the innermost loop is unrolled. The
search space is, thus, six-dimensional (two tunable parameters
for the relaxation function and four for the error function).
All cores allocated to the application participate in the tuning
process. Thus, a 128-core run of this application evaluates up
to 128 tiling configurations simultaneously for the relaxation
function and up to 128 loop-variants simultaneously for the
error function in a single search step. The optimization strategy
(expressed in terms of the CHiLL recipe) along with the
constraints for unbound tunable parameters is provided in table
III. For a 5123 problem size run on 64-cores, the search space
has approximately 3.11× 107 possible configurations.

We performed two sets of auto-tuning experiments — one
using 64 cores and one using 128 cores. Both sets of experi-
ments were done on the umd-cluster. For each core count, we
select multiple input domain sizes. Figure 4 shows how Active
Harmony steers per-iteration performance of the harmonized
PES. This experiment uses a grid size of 10243. The figure
plots the timing of the worst performing configuration for
each application iteration. The running time of an SPMD-
based application is bounded, at each timestep, by the slowest
configuration. Per-iteration time for the original application is
indicated by the horizontal line in the figure. The figure shows
that Active Harmony suggested configurations outperform the
original application’s per-iteration timing within the first few
tens of iterations.

Figures 5 and 6 plot the net and harmonized speedups
achieved within one full execution of the harmonized PES. The
original application execution times (in seconds) are shown
in parentheses below the label for x-axis. The application
was run on 64 and 128 cores on the umd-cluster for varying
input data sizes. As expected, as the size of the problem
domain increases, the performance of the harmonized appli-
cation increases as well. This is intuitive because with the
increase in the problem size, the Active Harmony server gets
more time to explore the search space before the application

7

TABLE III
PES AUTO-TUNING

Kernel Original Transformation Search Constraints
Code Strategy/Recipe and space description

relaxation

do kk=wl2-1,wh2
do k=kk+1,kk,-1

if ((k.le.wh2).and.
(k.ge.wl2)) then

do j=wl1,wh1
do i=wl0+mod(kk+j+1,2),wh0,2

u(i,j,k) = c * (u(i-1,j,k)
+ u(i+1,j,k) + u(i,j-1,k)
+ u(i,j+1,k) + u(i,j,k-1)
+ u(i,j,k+1)- c2*b(i,j,k))

Manual tiling:
i and j loops
(TI1, TJ1)

TI1 × TJ1 ≤ 1

2

`

cache size

2

´

TI1 ≥ TJ1
TI1 ∈ [0, 4, . . . , prob size]

TJ1 ∈ [0, 4, . . . , prob size]

error

do k = 1, N
do j = 1, N

do i = 1, N
du = c*(u(i-1,j,k) + u(i+1,j,k)

+ u(i,j-1,k) + u(i,j+1,k)
+ u(i,j,k-1) + u(i,j,k+1)
- c2*u(i,j,k))

r = b(i,j,k) - du
err = err + r*r

original()*
tile(0, 3, TI2)**
tile(0, 3, TJ2)
tile(0, 3, TK2)
unroll(0, 6, UI2)***

TI2 ∈ [0, 4, . . . , prob size]
TJ2 ∈ [0, 4, . . . , prob size]
TK2 ∈ [0, 4, . . . , prob size]

TI2 ≥ TJ2
TJ2 ≥ TK2

UI2 ∈ [1, 2, . . . , register size]

Search space dimension : 6
Parameters : [TI1, TJ1, T I2, TJ2, TK2, UI2]

Sample search space size: 3.11 × 107

possible configurations for

64 − core run with 5123domain − size

* - keep original loop order. ** - tile(statement #, loop level to tile, tiling factor) *** - unroll(statement #, loop level to unroll, unroll factor)

960 1024 1088 1152 1216 12801

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Problem−domain (cubed)

Im
pr

ov
em

en
t

PES Applicaition (128 cores, umd−cluster)

post−harmony
harmonized
net speedup

(411) (598) (700) (816) (929)(464)

Fig. 6. Performance improvement of harmonized PES, net speedup, and
post-harmony run of the solver (128 core run on umd-cluster)

completes its execution. For the 5123 problem size (see figure
5), the program runtime is too short (108 seconds) and the
harmonized application runs 28% slower than the original
untuned version. The 28% slowdown does incorporate the
charge factor for 8 extra cores used for code-generation. The
harmonized application is unable to overcome the penalty of
using some poor configurations early in the short run of the
program (132 seconds elapsed time).

On average, for both core counts and different problem do-
mains, harmonized PES, in terms of the net speedup, performs
1.16 times faster than the original application. Thus, even after

allowing for the code-servers, a single execution with no prior
runs is, on average, 16% faster than the original application.
The best net speedup for the harmonized application is 1.37.
Post-harmony runs, which use Active Harmony suggested pa-
rameter configurations and code-variants, on average, perform
1.72 times faster than the original application. This indicates
the performance gain if the program was run a second time
on the same machine with similar inputs.

2) Parallel Multiblock Lattice Boltzmann (PMLB): The
Lattice Boltzmann Method (LBM) is a widely used method
in solving fluid dynamic systems. In contrast to the conven-
tional methods in fluid dynamics, which are based on the
discretization of macroscopic differential equations, the LBM
has the ability to deal efficiently with complex geometrics
and topologies [25]. For our experiments, we use the parallel
multiblock implementation (extended to 3D problems) of the
LBM developed by Yu et al [26]. The test case lattice model
for our experiments is D3Q19 (19 velocities in 3D) with the
collision and streaming operations. The application is written
in C.

The PMLB code is divided into six main operations: ini-
tialization, collision, communication, streaming, physical and
finalization. Collision, communication, streaming and physical
operations are executed within a loop. Initialization and final-
ization operations are performed once. We focus our attention
on the streaming operation, which accounts for more than
75% of the execution time. The streaming operation moves
particles in motion to new locations along with their respective
19 velocities. This operation requires a significant number of
memory copy operations.

The streaming operation consists of five separate triply-

8

TABLE IV
PMLB AUTO-TUNING

Kernel Original Transformation Search Constraints
Code Strategy/Recipe and space description

streaming 1

for (i=1; i<=imax;i++)
for(j=1; j<=jmax; j++)
for(k=1; k<=kmax; k++)
{
c1 = i*(ny_local);
c2 = c1+(ny_local);
c3 = (c1+j)*(nz_local);
c4 = c3+(nz_local);
c5 = (c2+j)*(nz_local);
c6 = c5+(nz_local);
c7 = (c3+k)*en;

fi[6+c7]=fi[6+(k+1+c3)*en];
fi[4+c7]=fi[4+(k+c4)*en];
fi[18+c5]=fi[18+(k+1+c4)*en];
fi[2+c7]=fi[2+(k+c5)*en];
fi[14+c7]=fi[14+(k+1+ c5)*en];
fi[10+c7]=fi[10+(k+c6)*en];

}

original()*
tile(0, 1, TI)**
tile(0, 3, TJ)
unroll(0, 5, UK)***
known(imax>1)****
known(jmax>1)
known(kmax>1)

TI ∈ [0, 4, . . . , prob size]
TJ ∈ [0, 4, . . . , prob size]

UK ∈ [1, 2, 3, 4]
TI ≥ TJ

Search space dimension : 6
2 sets of [TI, TJ, UK] :

one for fused kernels and

one for non−fused kernels

Sample search space size: : 8.92 × 106

possible configurations for

128 − core, 5123 problem size

* - keep original loop order. ** - tile(statement #, loop level to tile, tiling factor) *** - unroll(statement #, loop level to unroll, unroll factor)
**** - known predicate

nested kernels, which are tuned simultaneously. Our opti-
mization strategy utilizes loop-fusion, loop-tiling and loop-
unrolling. The tuning is done in two phases. The first few iter-
ations of the LBM method are used to identify the best fusion
configuration for the five triply nested loops within the stream-
ing operation. For this stage, we use the exhaustive search.
Once we identify the best performing fusion configuration,
the tuning moves to the second stage, which involves tiling
the outermost two loops and unrolling the innermost loop6.
The second stage uses the parallel rank ordering algorithm
to determine two sets of tiling and unrolling factors — one
for the fused loop-nests and another for the remaining loop-
nests. The search parameter space for all PMLB experiments
is, thus, six-dimensional. The optimization strategy (expressed
in terms of the CHiLL recipe) along with the constraints for
unbound tunable parameters is provided in table IV. Out of
the five deeply nested kernels in the streaming operation, we
show only one kernel in the table. Other kernels are similar in
structure. For a 5123 problem size run on 128-cores, the search
space has approximately 8.92× 106 possible configurations.

PMLB tuning experiments were done on the umd-cluster,
Carver and Hopper. Figures 7 and 8 plot speedup results
for harmonized and post-harmony PMLB runs using 64 and
128 cores on umd-cluster. We use multiple input datasets for
different core counts. Again, we see that the increase in the
size of the problem domain leads to a better performance
for the harmonized PMLB. On average, harmonized PMLB
performs 1.14 times faster than the original application, while
post-harmony runs perform 1.38 times faster than the original
application.

For the experiments on Carver, we use two different core
counts — 256 and 512. We were limited in terms of the

6Simple code modifications were required to remove scalar dependencies
between different levels of loop-nests to ensure legality of code transforma-
tions.

256 320 384 448 512 5760.8

0.9

1

1.1

1.2

1.3

1.4

1.5
PMLB Application (64 cores, umd−cluster)

Problem−domain (cubed)

Im
pr

ov
em

en
t

post−harmony
harmonized
net speedup

(282) (474) (1122) (1559)(150) (746)

Fig. 7. Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (64 core run on umd-cluster)

384 448 512 576 6400.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

PMLB Application (128 cores, umd−cluster)

Problem−domain (cubed)

Im
pr

ov
em

en
t

post−harmony
harmonized
net speedup

(379) (549) (781) (1108)(243)

Fig. 8. Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (128 core run on umd-cluster)

9

512 640 768 896 1024 1152
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

PMLB Application (256 cores, Carver)

Problem−domain (cubed)

Im
pr

ov
em

en
t

post−harmony
harmonized
net speedup

(73) (151) (284) (533) (712) (1190)

Fig. 9. Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (256 core run on Carver)

640 768 896 1024 1152 12800.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Problem−domain (cubed)

Im
pr

ov
em

en
t

PMLB Application (512 cores, Carver)

post−harmony
harmonized
net speedup

(238) (409) (886)(164) (651)(96)

Fig. 10. Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (512 core run on Carver)

number of core counts because 512 is the maximum core count
a user can reserve on Carver. Figures 9 and 10 plot speedup
results for harmonized and post-harmony runs using 256 and
512 cores of Carver. In terms of the net speedup, on average,
harmonized PMLB performs 1.11 times faster than the original
application. The best net speedup for a harmonized run is 1.46,
i.e. even after factoring in the extra cores for code-generation,
a single execution of harmonized PMLB is up to 46% faster
than the original application. Post-harmony runs perform, on
average, 1.37 times faster than the original application.

Experiments on Hopper were done using 512 and 1024
cores. Figures 11 and 12 plot speedup results for harmonized
and post-harmony runs using 512 and 1024 cores of Hopper.
In terms of the net speedup, on average, harmonized PMLB
performs 1.14 times faster than the original application. The
best net speedup for a harmonized run is 1.21. Post-harmony
runs perform, on average, 1.28 times faster than the original
application.

640 768 896 1024 1152 12800.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Problem−domain (cubed)

Im
pr

ov
em

en
t

PMLB Application (512 cores, Hopper)

post−harmony
harmonized
net speedup

(95) (178) (286) (443) (614) (846)

Fig. 11. Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (512 core run on Hopper)

1024 1152 14081

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Problem−domain (cubed)

Im
pr

ov
em

en
t

PMLB Application (1024 cores, Hopper)

post−harmony
harmonized
net speedup

(204) (300) (562)

Fig. 12. Performance improvement of harmonized PMLB, net speedup, and
post-harmony run of PMLB (512 core run on Hopper)

F. Cross-platform comparison
In the preceding section, we showed how we applied Active

Harmony to auto-tune the execution of two parallel applica-
tions on three different platforms. A logical question is how
do the parameters that Active Harmony selected for different
platforms relate to each other. To answer this question, we
conducted a controlled study using 64-cores on all three
systems. We selected three problem sizes for the PMLB
application. The selection of the problem sizes was based on
whether Active Harmony’s search converges to a solution or
not within a single execution of the harmonized PMLB. This
was done to ensure that Active Harmony gets a fair chance
to select good configurations on all the systems. We then
use Active Harmony suggested parameter configurations for
a given problem size on one system to conduct post-harmony
runs for the same problem size on other systems.

The results are summarized in table V. Post-harmony runs
conducted on the umd-cluster using the configurations sug-

10

TABLE V
RESULTS FOR CROSS-PLATFORM EXPERIMENTS

speedups for post- speedups for post- speedups for post-
Problem-size harmony on umd-cluster harmony on Carver harmony on Hopper

w/ umd w/ Carver w/ Hopper w/ Carver w/ umd w/ Hopper w/ Hopper w/ Carver w/ umd
confs confs confs confs confs confs confs confs confs

448
3 1.42 1.13 1.00 1.51 1.38 1.34 1.28 1.30 1.27

512
3 1.30 1.26 0.95 1.34 1.31 1.33 1.34 1.31 1.28

576
3 1.38 1.16 1.02 1.42 1.39 1.27 1.31 1.35 1.30

gested for Carver do perform better than the original version
of the application. However, the speedup difference between
post-harmony runs conducted on the umd-cluster with umd-
cluster configurations and Hopper configurations is rather
significant. Upon closer look at the parameter values, we
observed that for umd-cluster and Carver, Active Harmony
only fuses the first and the third kernels in the streaming
operation. While on Hopper, the first, the third and the fifth
kernels are fused together. Furthermore, on Hopper, the second
and the fourth kernels are fused as well. We suspect that the
poor performance can be attributed to the properties and size
of the instruction cache on umd-cluster. It is also possible
that excessive application of loop-fusion causes more register
spills on umd-cluster than for the other two platforms, thereby
degrading the performance of the PMLB [18]. This result
argues tuning not only for specific architecture but also for
specific processor implementation. In the future, we plan to
look at the question of how the configurations found for
different input datasets for the same harmonized application
relate to each other.

It is also interesting to see that the post-harmony runs
conducted on Carver using Hopper configurations provide
similar speedups when compared to the post-harmony runs
conducted on Carver using Carver configurations. The same is
true for post-harmony runs conducted on Hopper. We attribute
this to the processor architecture similarity of the two systems.

In the work presented in this paper, we focused exclusively
on optimizing computation at per-core level. Our future work
will look into communication auto-tuning. We believe that the
difference in the interconnect technology between the Carver
and Hopper systems will show the benefits of tuning for
specific interconnect technology.

VI. RELATED WORK

Several techniques have been proposed to dynamically adapt
a program to a given input and the runtime environment.
CPO (Continuous Program Optimization) [5] uses monitoring
agents that collect information from all layers of an applica-
tion execution stack. This information is used to model the
application behavior and predict the relative benefit of using
large pages for different application data structures. Autopilot
[19] is an online tuning framework for parallel applications.
Based on application request patterns and observed system per-
formance, Autopilot’s real-time adaptive control mechanism
automatically chooses and configures resource management
algorithms.

AppLes [3] and Odyssey [16] both are application-centric
tools and emphasize application level resource awareness. Ap-
plications adapt by (re)allocating the resources based upon a
customized scheduling to maximize their performance. Rather
than leaving the adaptation decisions to applications, our
approach uses a centralized server to control such decisions.

Dynamic code-generation and runtime loading of different
versions of code-sections is a technique that has been used
both in the context of dynamic software updating [15] and
auto-tuning [24]. ADAPT [24] is a compiler-supported in-
frastructure for high-level adaptive program optimization. It
allows developers to leverage existing compilers and opti-
mization tools by describing a runtime heuristic for applying
techniques in a domain specific language, ADAPT Language.
ADAPT supports remote dynamic compilation, parameteriza-
tion and run-time sampling, allowing developers the flexibility
in heuristic development. Our work is distinct from ADAPT
in two ways. First, we target SPMD-based parallel applica-
tions and use the parallelism to our advantage by evaluating
multiple parameter configurations within one search iteration.
Second, our system is designed to tune multiple code-sections
simultaneously.

MATE [14] performs dynamic tuning in three basic and con-
tinuous phases: monitoring, performance analysis and applica-
tion modification. This environment dynamically and automat-
ically instruments a running application to gather information
about the application’s behavior. The analysis phase receives
events, searches for bottlenecks, detects their causes and gives
solutions on how to overcome them. Finally, the application is
dynamically tuned by applying a solution described by simple
performance models. Our work is distinct from MATE in that
we use effective and light-weight algorithms to search for
optimal parameters.

VII. FUTURE WORK

There are several natural extensions of our parallel code
generation and tuning framework.

A. Exploiting spatial locality of PRO
In the future, we plan to exploit PRO’s spatial locality7

to generate code-variants speculatively in anticipation of the
search algorithm needing them. This speculative generation of
code-variants uses knowledge of what the search algorithm
will likely do in the next search step. With the code-server

7In the realm of Parallel Rank Ordering algorithm and related direct search
methods, spatial locality refers to the likelihood of evaluating a given point
in the search space is higher if a nearby point was just evaluated.

11

P a r a m e t e r C o n f i g u r a t i o n s

Or ig i na l
S i m p l e x

P a r a m e t e r 1

 P a r a m e t e r 2 E

E E

E

EE

E
E

,,

B l a c k : R e f l e c t i o n P o i n t s
G r e y : E x p a n s i o n / S h r i n k P o i n t s
W h i t e : O r i g i n a l s i m p l e x p o i n t s

E (E x p a n s i o n N o t S h o w n)

Fig. 13. Exploiting PRO’s Spatial Locality

continuously generating the anticipated code-variants, we can
shorten the search_stall phase (see figure 2-(b)).

PRO’s spatial locality derives from the fact that a reflection
step in PRO is followed by either a shrink step or an expansion
step. Therefore, irrespective of what the best point in the sim-
plex will turn out to be, we can easily enumerate an exhaustive
list of possible points for the next search step. The dedicated
code-servers can utilize this list to continuously generate code
in the background. We provide a graphical illustration of this
strategy in Figure 13. The figure shows a two-dimensional
search space. PRO uses a 4-point simplex. The first search
step evaluates the original simplex points (white points). The
black points constitute all possible reflection points that could
potentially be evaluated in the second search step. Finally, the
grey points constitute all possible expansion and shrink points
for the third search step. Some expansion points are not shown
to reduce clutter on the figure.

In the worst case, this scheme will require O(N 2), where
N is the size of the simplex, number of code-variants to be
generated and maintained dynamically at each search step.

B. Retiring unreachable code-variants

For large-scale production runs, the number of code-variants
generated grows fairly rapidly. Therefore, it is useful to have a
mechanism to periodically retire (discard as not be used again)
code-variants — an idea analogous to garbage-collection. The
decision to retire a given code-variant will be based on the
distance between the current simplex points and the point the
variant is associated with. Put simply, if the code-variant is
not reachable8 within n number of search steps, it is retired.
The value of n can be determined empirically.

8Reachability is determined by testing whether multiple simplex transfor-
mation steps can produce the given point.

C. Online Tuning for AMR Codes
Active Harmony’s online tuning capability can help Adap-

tive Mesh Refinement (AMR) codes. Rather than relying on
one global grid resolution, AMR codes have the ability to
change the underlying granularity of the mesh or grid locally
during a single production run of the application [13]. Areas
in the domain that need finer grid resolution (e.g. area near the
heat source in heat diffusion problem) can benefit from AMR
technique because this allows shifting of the computational
resources to the parts of the domain that need these resources
the most. This dynamic change in the mesh structure also
changes the execution characteristics of the application. Thus,
an offline auto-tuner cannot adequately address the auto-tuning
needs for AMR codes. Instead, Active Harmony’s online
adaptive code-generation and tuning is better suited to tune
AMR codes. Our runtime auto-tuner can help AMR codes
react to the changes in workloads and suggest different code-
variants based on the grid resolution.

D. Power Auto-tuning
As we are entering the era of exascale systems, the key

problem that the HPC community is trying to address is
the “power wall” problem. The problem arises from the
fact that as compute nodes (consisting of multi/many-cores)
become increasingly powerful, they also become increasingly
power-hungry. The problem is further exacerbated by the
fact that these cores do need to be cooled down as well.
Going forward, we see the power-aware computing research
in the HPC community focus in two main areas. The first
area of research will consist of projects [2], [9] that are
involved in developing simple and low-cost hardware and
software solutions to construct the power consumption profile
of scientific applications. The second area of research will be
led by auto-tuners that utilize the information provided by the
first to automatically generate code-variants that reduce the
power foot-print of different code-sections.

Active Harmony is well positioned to make contributions
to the second area of research. An obvious starting point
is to redefine the objective function from application-level
performance (e.g. execution time, cache hits) to a system-level
metric that captures power consumption (e.g. FLOPS/watt).
We can then use the compiler-based auto-tuning design pre-
sented in this paper to find code-variants that reduce power
consumption.

We expect application developers and library writers to
implement and evaluate alternative implementations of key
algorithms (e.g. data distribution, collective communication)
to make their code ready for exascale systems. Each of these
alternatives can have drastically different power consumption
and performance profiles. For example, an implementation
which aims at reducing the power consumption by limiting
inter-node communication can increase computational load at
core-level. Active Harmony can help developers quantify this
tradeoff and make choices that balance application perfor-
mance and power consumption. Active Harmony can also help

12

limit the load on some overused resource (e.g. interconnect) by
switching to algorithms that reduce the load on the resource.

VIII. CONCLUSION

In this paper, we presented our runtime compilation and
tuning infrastructure designed to improve the performance
of parallel applications within a single execution. Since the
system does not rely on any specific code-generation system,
new code transformations can be easily incorporated within
our system. We showed that for two programs, auto-tuning
improves performance without training runs.

Even if the intent is to auto-tune an application for a
specific machine and leave it fixed, runtime code-generation
is useful. By generating and trying multiple configurations in
a single run, we greatly reduce the time required to auto-tune
a program.

Our system enables application developers to write applica-
tions once and adjust the application execution automatically
when run on new systems. We demonstrated the value of
our system by applying it on real application codes. The
performance improvement of up to 46% for a 512-core par-
allel application execution can be achieved within a single
execution of the application.

IX. ACKNOWLEDGEMENTS

The work supported in part by DOE grants DE-FC02-
06ER25763 and ER25925 and NSF grant EIA-0080206. This
research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

REFERENCES

[1] http://cseweb.ucsd.edu/groups/hpcl/scg/KeLP1.4/. [last accessed: Feb,
2010].

[2] D. Bedard, Min Yeol Lim, R. Fowler, and A. Porterfield. Powermon:
Fine-grained and integrated power monitoring for commodity computer
systems. In Proceedings of the IEEE SoutheastCon ’10, pages 479 –484,
2010.

[3] Francine Berman and Richard Wolski. Scheduling From the Perspective
of the Application. In HPDC ’96: Proceedings of the 5th IEEE
International Symposium on High Performance Distributed Computing,
page 100, Washington, DC, USA, 1996. IEEE Computer Society.

[4] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan.
A Practical Automatic Polyhedral Program Optimization System. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 2008.

[5] C. Cascaval, E. Duesterwald, P.F. Sweeney, and R. W. Wisniewski.
Multiple page size modeling and optimization. Parallel Architectures
and Compilation Techniques, 2005. PACT 2005. 14th International
Conference on, pages 339–349, 17-21 Sept. 2005.

[6] National Energy Research Scientific Computing Center. www.nersc.gov.
[7] Chun Chen. Model-Guided Empirical Optimization for Memory Hier-

archy. PhD thesis, University of Southern California, 2007.
[8] Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth. Active

harmony: towards automated performance tuning. In Supercomputing
’02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing,
pages 1–11, Los Alamitos, CA, USA, 2002. IEEE Computer Society
Press.

[9] Xizhou Feng, Rong Ge, and K.W. Cameron. Power and energy profiling
of scientific applications on distributed systems. In Proceedings of
the 19th International Parallel and Distributed Processing Symposium,
page 34, 2005.

[10] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David
Parello, Marc Sigler, and Olivier Temam. Semi-automatic composition
of loop transformations for deep parallelism and memory hierarchies.
International Journal of Parallel Programming, 34(3):261–317, 2006.

[11] J.A. Joines and C.R. Houck. On the use of non-stationary penalty
functions to solve nonlinear constrained optimization problems with
GA’s. pages 579–584 vol.2, June 1994.

[12] Chunhua Liao, Daniel J. Quinlan, Richard Vuduc, and Thomas Panas.
Effective Source-to-Source Outlining to Support Whole Program Empir-
ical Optimization. In LCPC ’09: International Workshop on Languages
and Compilers for Parallel Computing, Newark, Delaware, 2009.

[13] D.F. Martin and K.L. Cartwright. Solving poisson’s equation using
adaptive mesh refinement. Technical Report UCB/ERL M96/66, EECS
Department, University of California, Berkeley, 1996.

[14] A. Morajko, P. Caymes-Scutari, T. Margalef, and E. Luque. MATE:
monitoring, analysis and tuning environment for parallel distributed
applications. Concurr. Comput. : Pract. Exper., 19(11):1517–1531, 2007.

[15] Iulian Neamtiu. Practical Dynamic Software Updating. PhD thesis,
University of Maryland, College Park, August 2008.

[16] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric
Tilton, Jason Flinn, and Kevin R. Walker. Agile application-aware
adaptation for mobility. SIGOPS Oper. Syst. Rev., 31(5):276–287, 1997.

[17] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos.
Iterative optimization in the polyhedral model: Part II, multidimensional
time . In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’08), pages 90–100, Tucson, Arizona, June
2008. ACM Press.

[18] Apan Qasem and Ken Kennedy. Profitable loop fusion and tiling using
model-driven empirical search. In ICS ’06: Proceedings of the 20th
annual international conference on Supercomputing, pages 249–258,
New York, NY, USA, 2006. ACM.

[19] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Autopilot: Adaptive
Control of Distributed Applications. In HPDC ’98: Proceedings of the
7th IEEE International Symposium on High Performance Distributed
Computing, page 172, Washington, DC, USA, 1998. IEEE Computer
Society.

[20] Gabriel Rivera and Chau-Wen Tseng. Tiling optimizations for 3D sci-
entific computations. In Proceedings of Supercomputing ’00, November
2000.

[21] Sebastien Ros. ”State of the Art Expression Evaluation”. http://www.
codeproject.com/KB/recipes/sota expression evaluator.aspx, November
2007.

[22] Vahid Tabatabaee, Ananta Tiwari, and Jeffrey K. Hollingsworth. Parallel
Parameter Tuning for Applications with Performance Variability. In SC
’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing,
page 57, Washington, DC, USA, 2005. IEEE Computer Society.

[23] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Jeffrey
Hollingsworth. A scalable auto-tuning framework for compiler opti-
mization. In 23rd IEEE International Parallel & Distributed Processing
Symposium, Rome, Italy, May 2009.

[24] Michael J. Voss and Rudolf Eigenmann. High-level adaptive program
optimization with ADAPT. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2001.

[25] Xingfu Wu, Valerie Taylor, Charles Lively, and Sameh Sharkawi.
Performance analysis and optimization of parallel scientific applications
on cmp cluster systems. In ICPPW ’08: Proceedings of the 2008
International Conference on Parallel Processing - Workshops, pages
188–195, Washington, DC, USA, 2008. IEEE Computer Society.

[26] Dazhi Yu and Sharath S. Girimaji. Multi-block lattice boltzmann
method: Extension to 3d and validation in turbulence. Physica A:
Statistical Mechanics and its Applications, 362(1):118 – 124, 2006.

APPENDIX

We provide the Extended Backus Naur Form (EBNF)
grammar for the Constraint Specification Language below.
The syntax for expressions is adapted from an expression
evaluator example written in ANTLR [21]. This expression
syntax closely resembles the C (and other high-level language)
EBNF syntax. We use the following convention to present the
CSL grammar. Symbols and strings that appear as a part of
the parameter specification are “double-quoted” (e.g. “search”,

13

“+”). Unquoted curly brackets (i.e. { and }) are used for better
readability of the grammar. Symbols ?, * and + have the
following meaning:
?: Symbol (or a group of symbols in curly brackets) can appear
zero or one time.
*: Symbol (or a group of symbols in curly brackets) can appear
zero or multiple times.
+: Symbol (or a group of symbols in curly brackets) has to
appear at least once and can appear multiple times.

<param space> ::= "search" "space" <param space name>
"{"

<space body>
"}"

<space body> ::= {<constant decl>}*
{<code region decl>}*
{<region set decl>}*
{<param decl>}+
{<constraint decl>}*
{<constraint spec>}*
{<grouping info>}*
{<ordering info>}*

<param space name> ::= <ident>

Constant Declaration Part:
<constant decl> ::= "constants" "{" {<constants>}+ "}"

<constants>::=<param type> <const name>"="<dval>";"

<const name> ::= <ident>

Code Region and Region Set Declaration Part:
<code region decl> ::= "code_region" <region name> ";"

<region name> ::= <ident>

<region set decl> ::= "region_set" <region set name>
"["
<region name> <region name list>
"]"";"

<region set name> ::= <ident>

<region name list> ::= <region name> {"," <region name>}*

Parameter Declaration Part:
<param decl> ::= "param" <param name> <param type>

"{"
<drestrc>{<def spec>}?{<reg spec>}?

"}"

<param name> ::= <ident>

<param type> ::= "int"
| "float"
| "string"
| "bool"
| "mixed"

Domain Specification:
<drestrc>::="range" "["<dval>":"<dval>(":"<dval>)?"]"";"

|"prange" "["<dval>":"<dval>":" <dval>"]"";"
|"array" "[" arr ("," "[" arr "]")* "]" ";"

<array> ::= <dval> ("," <dval>)*

<dval> ::= <int>
| <float>
| <str>
| <bool>

<def spec> ::= "default" <int> ";"
| "default" <float> ";"
| "default" <str> ";"
| "default" <bool> ";"

<reg spec> ::= "region" <region set name> ";"

Constraint Declaration Part:
<constraint decl> ::= "constraint" <constraint name>

"{" <expr> ";" "}"

<constraint name> ::= <ident>

<expr> ::= <logicalexpr>

<logicalexpr> ::= <boolandexpr>{"||"<boolandexpr>}*

<boolandexpr> ::= <eqexpr>{"&&"<eqexpr>}*

<eqexpr> ::= <relexpr>{("="|"!=")<relexpr>}*

<relexpr> ::= <addexpr>{("<"|"<="|">"|">=")<addexpr>}*

<addexpr> ::= <multexpr> {("+"|"-")<multexpr>}*

<multexpr> ::= <powexpr> {("*"|"/"|"%")<powexpr>}*

<powexpr> ::= <unaryexpr> {"ˆ" <unaryexpr>}*

<unaryexpr> ::= <primexpr>
| "!" <primexpr>
| "-" <primexpr>

<primexpr> ::= "(" <logicalexpr> ")"
| <dval>
| <param ref>

<param ref> ::= <ident> | <ident> "." <ident>
| <ident> "." "value"

Bind everything together with specification:
<constraint spec> ::= "specification"

"{"
<specexpr>";"

"}"

<specexpr> ::= <primspecexpr>(("&&"|"||")<primspecexpr>)*

<primspecexpr> ::= "(" <specexpr> ")"
| <constraint name>

Parameter Grouping:
<grouping info> ::= "groups"

"{" {<set decl>}+ "}"

<set decl> ::= "set" "["
<param ref> {"," <param ref>}*

"]" ";"

Parameter Ordering:
<ordering info> ::= "ordering"

"{" <param list> "}" ";"

<param list> ::= <param name>
| <param name> {"," <param name>}+

14

