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This work presents a nonlinear model reduction approach for systems of
equations stemming from the discretization of partial differential equations
with nonlinear terms. Our approach constructs a reduced system with proper
orthogonal decomposition and the discrete empirical interpolation method
(DEIM); however, whereas classical DEIM derives a linear approximation of
the nonlinear terms in a static DEIM space generated in an offline phase, our
method adapts the DEIM space as the online calculation proceeds and thus
provides a nonlinear approximation. The online adaptation uses new data to
produce a reduced system that accurately approximates behavior not antic-
ipated in the offline phase. These online data are obtained by querying the
full-order system during the online phase, but only at a few selected compo-
nents to guarantee a computationally efficient adaptation. Compared to the
classical static approach, our online adaptive and nonlinear model reduction
approach achieves accuracy improvements of up to three orders of magnitude
in our numerical experiments with time-dependent and steady-state nonlin-
ear problems. The examples also demonstrate that through adaptivity, our
reduced systems provide valid approximations of the full-order systems out-
side of the parameter domains for which they were initially built in the offline
phase.

1 Introduction

Model reduction derives reduced systems of large-scale systems of equations, typically
using an offline phase in which the reduced system is constructed from solutions of the
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full-order system, and an online phase in which the reduced system is executed repeat-
edly to generate solutions for the task at hand. In many situations, the reduced systems
yield accurate approximations of the full-order solutions but with orders of magnitude
reduction in computational complexity. Model reduction exploits that often the so-
lutions are not scattered all over the high-dimensional solution space but instead they
form a low-dimensional manifold that can be approximated by a low-dimensional (linear)
reduced space. In some cases, however, the manifold exhibits a complex and nonlinear
structure that can only be approximated well by the linear reduced space if its dimension
is chosen sufficiently high. Thus, solving the reduced system can become computation-
ally expensive. We therefore propose a nonlinear approximation of the manifold. The
nonlinear approximation is based on adapting the reduced system while the computa-
tion proceeds in the online phase, using newly generated data through limited queries
to the full-order system at a few selected components. Our online adaptation leads to a
reduced system that can more efficiently capture nonlinear structure in the manifold, it
ensures computational efficiency by performing low-rank updates, and through the use
of new data it avoids relying on pre-computed quantities that restrict the adaptation to
those situations that were anticipated in the offline phase.
We focus on systems of equations stemming from the discretization of nonlinear partial

differential equations (PDEs). Projection-based model reduction employs Galerkin or
Petrov-Galerkin projection of the equations onto a low-dimensional reduced space that is
spanned by a set of basis vectors. Proper orthogonal decomposition (POD) is one popu-
lar method to construct such a set of basis vectors [41]. Other methods include truncated
balanced realization [33] and Krylov subspace methods [21, 23]. In case of nonlinear sys-
tems, however, projection alone is not sufficient to obtain a computationally efficient
method, because then the nonlinear terms of the PDE entail computations that often
render solving the reduced system almost as expensive as solving the full-order system.
One solution to this problem is to approximate the nonlinear terms with sparse sampling
methods. Sparse sampling methods sample the nonlinear terms at a few components and
then approximately represent them in a low-dimensional space. In [3], the approxima-
tion is derived via gappy POD. The Gauss-Newton with approximated tensors (GNAT)
method [10] approximates the nonlinear terms in the low-dimensional space by solving
a low-cost least-squares problem. We consider here the discrete empirical interpolation
method (DEIM) [12], which is the discrete counterpart of the empirical interpolation
method [4]. It samples the nonlinear terms at previously selected DEIM interpolation
points and then combines interpolation and projection to derive an approximation in a
low-dimensional DEIM space. The approximation quality and the costs of the DEIM
interpolant directly influence the overall quality and costs of the reduced system. We
therefore propose to adapt this DEIM interpolant online to better capture the nonlinear
structure of the manifold induced by the solutions of the nonlinear system.
Adaptivity has attracted much attention in the context of model reduction. Offline

adaptive methods extend [42, 26] or weight [14, 15] snapshot data while the reduced
system is constructed in the offline phase; however, once the reduced system is gener-
ated, it stays fixed and is kept unchanged online. Online adaptive methods change the
reduced system during the computations in the online phase. Most of the existing online
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adaptivity approaches rely on pre-computed quantities that restrict the way the reduced
system can be updated online. They do not incorporate new data that become available
online and thus must anticipate offline how the reduced system might change. Interpo-
lation between reduced systems [1, 17, 34, 46], localization approaches [20, 18, 2, 36, 19],
and dictionary approaches [27, 31] fall into this category of online adaptive methods.
In contrast, we consider here online adaptivity that does not solely rely on pre-

computed quantities, but incorporates new data online and thus allows changes to the
reduced system that were not anticipated offline. There are several approaches that
incorporate new data by rebuilding the reduced system [16, 32, 39, 44, 38, 35, 45, 29];
however, even if an incremental basis generation or an h-refinement of the basis [9] is em-
ployed, assembling the reduced system with the newly generated basis often still entails
expensive computations online. An online adaptive and localized approach that takes
new data into account efficiently was presented in [43]. To increase accuracy and stabil-
ity, a reference state is subtracted from the snapshots corresponding to localized reduced
systems in the online phase. This adaptivity approach incorporates the reference state
as new data online but it is a limited form of adaptivity because each snapshot receives
the same update.
We develop an online adaptivity approach that adapts the DEIM space and the DEIM

interpolation points with additive low-rank updates and thus allows more complex up-
dates, including translations and rotations of the DEIM space. We sample the nonlinear
terms at more points than specified by DEIM to obtain a non-zero residual at the sam-
pling points. From this residual, we derive low-rank updates to the basis of the DEIM
space and to the DEIM interpolation points. This introduces online computational costs
that scale linearly in the number of degrees of freedom of the full-order system but it
allows the adaptation of the DEIM approximation while the computation proceeds in the
online phase. To avoid the update being limited by pre-computed quantities, our method
queries the full-order system during the online phase; however, to achieve a computa-
tionally efficient adaptation, we query the full-order system at a few components only.
Thus, our online adaptivity approach explicitly breaks with the classical offline/online
splitting of model reduction and allows online costs that scale linearly in the number of
degrees of freedom of the full-order system.
The following Section 2 briefly summarizes model reduction for nonlinear systems. It

then motivates online adaptive model reduction with a synthetic optimization problem
and gives a detailed problem formulation. The DEIM basis and the DEIM interpolation
points adaptivity procedures follow in Sections 3 and 4, respectively. The numerical
results in Section 5 demonstrate reduced systems based on our online adaptive DEIM
approximations on parametrized and time-dependent nonlinear systems. Conclusions
are drawn in Section 6.

2 Model reduction for nonlinear systems

We briefly discuss model reduction for nonlinear systems. A reduced system with POD
and DEIM is derived in Sections 2.1 and 2.2, respectively. Sections 2.3 and 2.4 demon-
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strate on a synthetic optimization problem that the approximation quality of the reduced
system can be significantly improved by incorporating data that become available on-
line, but that the classical model reduction procedures do not allow a computationally
efficient modification of the reduced system in the online phase.

2.1 Proper orthogonal decomposition

We consider the discrete system of nonlinear equations

Ay(µ) + f(y(µ)) = 0 (1)

stemming from the discretization of a nonlinear PDE depending on the parameter µ =
[µ1, . . . , µd]

T ∈ D with parameter domain D ⊂ R
d. The solution or state vector y(µ) =

[y1(µ), . . . , yN (µ)]T ∈ R
N is an N -dimensional vector. We choose the linear operator

A ∈ R
N×N and the nonlinear function f : RN → R

N such that they correspond to
the linear and the nonlinear terms of the PDE, respectively. We consider here the
case where the function f is evaluated component-wise at the state vector y(µ), i.e.,
f(y(µ)) = [f1(y1(µ)), . . . , fN (yN (µ))]T ∈ R

N , with the nonlinear functions f1, . . . , fN :
R → R, y 7→ f(y). The Jacobian of (1) is J(µ) = A+ Jf (y(µ)), with

Jf (y(µ)) = diag(f ′
1(y1(µ)), . . . , f

′
N (yN (µ)))

and the first derivatives f ′
1, . . . , f

′
N of f1, . . . , fN with respect to y. Note that the following

DEIM adaptivity scheme can be extended to nonlinear functions f with component
functions f1, . . . , fN that depend on multiple components of the state vector with the
approach discussed for DEIM in [12, Section 3.5]. Note further that (1) is a steady-
state system but that all of the following discussion is applicable also to time-dependent
problems. We also note that we assume well-posedness of (1).
We derive a reduced system of the full-order system (1) by computing a reduced basis

with POD. Let Y = [y(µ1), . . . ,y(µM )] ∈ R
N×M be the snapshot matrix. Its columns

are the M ∈ N solution vectors, or snapshots, of (1) with parameters µ1, . . . ,µM ∈ D.
Selecting the snapshots, i.e., selecting the parameters µ1, . . . ,µM ∈ D, is a widely stud-
ied problem in the context of model reduction. Many selection algorithms are based on
greedy approaches, see, e.g., [42, 40, 8, 37], and especially for time-dependent problems
[25]. We do not further consider how to best select the parameters of the snapshots here,
but we emphasize that the selection of snapshots can significantly impact the quality of
the reduced system. POD constructs an orthonormal basis V = [v1, . . . ,vn] ∈ R

N×n of
an n-dimensional space that is a solution to the minimization problem

min
v1,...,vn∈RN

M∑

i=1

‖y(µi)−
n∑

j=1

(vT
j y(µi))vj‖

2
2 .

The norm ‖ · ‖2 is the Euclidean norm. The POD basis vectors in the matrix V ∈ R
N×n

are the n left-singular vectors of Y corresponding to the n largest singular values. The
POD-Galerkin reduced system of (1) is obtained by Galerkin projection as

Ãỹ(µ) + V Tf(V ỹ(µ)) = 0 , (2)
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with the reduced linear operator Ã = V TAV ∈ R
n×n, the reduced state vector ỹ(µ) ∈

R
n, and the reduced Jacobian Ã + V TJf (V ỹ(µ))V ∈ R

n×n. For many problems, the
solution y(µ) of (1) is well approximated by V ỹ(µ), even if the number of POD basis
vectors n is chosen much smaller than the number of degrees of freedom N of system
(1). However, in case of nonlinear systems, solving the reduced system (2) instead of (1)
does not necessarily lead to computational savings because the nonlinear function f is
still evaluated at all N components of V ỹ(µ) ∈ R

N .

2.2 Discrete empirical interpolation method

DEIM approximates the nonlinear function f in a low-dimensional space by sampling
f at only m ≪ N components and then approximating all other components. This can
significantly speed up the computation time of solving the reduced system to determine
the reduced state vector ỹ(µ) ∈ R

n.
DEIM computes m ∈ N basis vectors by applying POD to the set of nonlinear snap-

shots
{f(y(µ1)), . . . ,f(y(µM ))} ⊂ R

N . (3)

This leads to the DEIM basis vectors that are stored as columns in the DEIM basis U ∈
R
N×m. DEIM selects m pairwise distinct interpolation points p1, . . . , pm ∈ {1, . . . , N}

and assembles the DEIM interpolation points matrix P = [ep1 , . . . , epm ] ∈ R
N×m, where

ei ∈ {0, 1}N is the i-th canonical unit vector. The interpolation points are constructed
with a greedy approach inductively on the basis vectors in U [12, Algorithm 1]. Thus,
the i-th interpolation point pi can be associated with the basis vector in the i-th column
of the DEIM basis U . The DEIM interpolant of f is defined by the tuple (U ,P ) of the
DEIM basis U and the DEIM interpolation points matrix P . The DEIM approximation
of the nonlinear function f evaluated at the state vector y(µ) is given as

f(y(µ)) ≈ U(P TU)−1P Tf(y(µ)) , (4)

where P Tf(y(µ)) samples the nonlinear function at m components only. The DEIM
interpolation points matrix P and the DEIM basis U are selected such that the matrix
(P TU)−1 ∈ R

m×m has full rank.
We combine DEIM and POD-Galerkin to obtain the POD-DEIM-Galerkin reduced

system
Ãỹ(µ) + V TU(P TU)−1P Tf(V ỹ(µ)) = 0 . (5)

We assume well-posedness of (5). The Jacobian is

J̃(µ) = Ã
︸︷︷︸

n×n

+V TU(P TU)−1

︸ ︷︷ ︸

n×m

J̃f (P
TV ỹ(µ))

︸ ︷︷ ︸

m×m

P TV
︸ ︷︷ ︸

m×n

,

where we use the fact that the nonlinear function is evaluated component-wise at the
state vector and follow [12] to define

J̃f (P
TV ỹ(µ)) = J̃f (P

Tyr(µ)) = diag(f ′
p1(y

r
p1(µ)), . . . , f

′
pm(y

r
pm(µ))) ,

5



ACDL Technical Report TR-14-1

with yr(µ) = [yr1(µ), . . . , y
r
N (µ)]T = V ỹ(µ). Solving (5) with, e.g., the Newton method

evaluates the nonlinear function f at the interpolation points given by P only, instead of
at all N components. The corresponding computational procedure of the POD-DEIM-
Galerkin method is split into an offline phase where the POD-DEIM-Galerkin reduced
system is constructed and an online phase where it is evaluated. The one-time high
computational costs of building the DEIM interpolant and the reduced system in the
offline phase are compensated during the online phase where the reduced (5) instead of
the full-order system (1) is solved for a large number of parameters.

2.3 Problem formulation

Let (U0,P 0) be the DEIM interpolant of the nonlinear function f , with m DEIM basis
vectors and m DEIM interpolation points, that is built in the offline phase from the
nonlinear snapshots f(y(µ1)), . . . ,f(y(µM )) ∈ R

N with parameters µ1, . . . ,µM ∈ D.
We consider the situation where in the online phase the application at hand (e.g., opti-
mization, uncertainty quantification, or parameter inference) requests M ′ ∈ N solutions
ỹ(µM+1), . . . , ỹ(µM+M ′) ∈ R

n of the POD-DEIM-Galerkin reduced system (5), with pa-
rameters µM+1, . . . ,µM+M ′ ∈ D. Solving the POD-DEIM-Galerkin reduced system re-
quires DEIM approximations of the nonlinear function at the vectors V ỹ(µM+1), . . . ,V ỹ(µM+M ′) ∈
R
N . Note that for the sake of exposition we ignore that an iterative solution method (e.g.,

Newton method) might also require DEIM approximations at intermediate iterates of the
reduced state vectors. We define ŷ(µi) = y(µi) for i = 1, . . . ,M and ŷ(µi) = V ỹ(µi)
for i = M + 1, . . . ,M + M ′. Then, the online phase consists of k = 1, . . . ,M ′ steps,
where, at step k, the nonlinear function f(ŷ(µM+k)) is approximated with DEIM. We
therefore aim to provide at step k a DEIM interpolant that approximates f(ŷ(µM+k))
well.
The quality of the DEIM approximation of f(ŷ(µM+k)) depends on how well the

nonlinear function f(ŷ(µM+k)) can be represented in the DEIM basis and how well the
components selected by the DEIM interpolation points represent the overall behavior of
the nonlinear function at ŷ(µM+k); however, when the DEIM interpolant is built offline,
the reduced state vectors ỹ(µM+1), . . . , ỹ(µM+M ′) are not known, and thus the DEIM
basis and the DEIM interpolation points cannot be constructed to explicitly take the
vectors ŷ(µM+1), . . . , ŷ(µM+M ′) into account. Rebuilding the interpolant online would
require evaluating the nonlinear function at full-order state vectors and computing the
singular value decomposition (SVD) of the snapshot matrix, which would entail high
computational costs. We therefore present in the following a computationally efficient
online adaptivity procedure to adapt a DEIM interpolant with only a few samples of the
nonlinear function that can be cheaply computed in the online phase.

2.4 Motivating example

Before presenting our adaptivity approach, we motivate online adaptive DEIM inter-
polants by illustrating on a synthetic optimization problem that incorporating data from
the online phase can increase the DEIM approximation accuracy. Let Ω = [0, 1]2 ⊂ R

2
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Figure 1: The plot in (a) shows the path of the optimization algorithm to the optimum µ̃∗

of 1Tn g̃(µ) with g̃ using m = 100 DEIM basis vectors. The DEIM interpolant
g̃ is evaluated at only a few selected points but these points are not known
when the DEIM interpolant is constructed. The results in (b) show that if the
DEIM interpolant is rebuilt from snapshots corresponding to those points, the
optimization algorithm converges faster to the optimum than with the original
DEIM interpolant built from snapshots corresponding to a uniform grid in the
parameter domain D.
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be the spatial domain and let D = [0, 1]2 ⊂ R
2 be the parameter domain of the nonlinear

function g : Ω×D → R that is defined as

g(x,µ) =
µ1µ2 exp(x1x2)

exp(20‖x− µ‖22)
. (6)

We discretize g in the spatial domain on an equidistant 40× 40 grid with N = 1600 grid
points with spatial coordinates x1, . . . ,xN ∈ Ω, and obtain the vector-valued function
g : D → R

N with the i-th component gi(µ) = g(xi,µ). We are then interested in
the parameter µ∗ that maximizes 1TNg(µ), where 1N = [1, . . . , 1]T ∈ R

N . We do not
directly evaluate g but first derive a DEIM interpolant g̃ of g and then search for µ̃∗

that maximizes the approximate objective 1Tn g̃(µ) with 1Tn = [1, . . . , 1]T ∈ R
n.

In the offline phase we neither know the optimal parameter µ∗ nor the path of the
optimization algorithm to the optimum and thus cannot use this information when
constructing the DEIM interpolant. Thus, we build the interpolant from M = 400
snapshots corresponding to the parameters on a 20×20 equidistant grid in the parameter
domain D. We run an optimization algorithm, here Nelder-Mead [28], which evaluates
the DEIM interpolant at M ′ parameters µ1, . . . ,µM ′ ∈ D, see Figure 1a. The starting
point is [0.5, 0.5] ∈ D. To demonstrate the gain of including information from the online
phase into the DEIM interpolant, we generate new nonlinear snapshots by evaluating
the nonlinear function g at those M ′ parameters and then construct a DEIM interpolant
from them. We rerun the Nelder-Mead algorithm with the new DEIM interpolant and
report the optimization error,

‖µ∗ − µ̃∗‖2
‖µ∗‖2

, (7)

for the original and the new DEIM interpolant in Figure 1b. The new interpolant,
which takes online data into account, achieves an accuracy improvement by four orders
of magnitude compared to the original DEIM interpolant built from offline data only.
This is certainly not a practical approach, because it requires solving the problem twice,
but it shows that the DEIM approximation accuracy can be significantly improved by
incorporating data from the online phase. We therefore present in the following a more
practical way to adapt the DEIM interpolant online.

3 Online basis adaptivity

We adapt the DEIM interpolant at each step k = 1, . . . ,M ′ of the online phase by
deriving low-rank updates to the DEIM basis and the DEIM interpolation points matrix,
see Figure 2. The adaptation is initialized at the first step k = 1 in the online phase
with the DEIM interpolant (U0,P 0) from the offline phase, from which the adapted
interpolant (U1,P 1) is derived. This process is continued to construct at step k the
adapted interpolant (Uk,P k) from (Uk−1,P k−1). At each step k = 1, . . . ,M ′, the
adapted interpolant (Uk,P k) is then used to provide an approximation of the nonlinear
function at the vector ŷ(µM+k) = V ỹ(µM+k).
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Figure 2: The figure shows the work flow of the online phase of model reduction with
online adaptive DEIM interpolants. The DEIM interpolant is adapted with the
samples of the nonlinear function of the previous evaluations. The adaptation
requires neither additional snapshots nor nonlinear function evaluations at full
state vectors.

This section introduces the DEIM basis update. Section 3.1 proposes a residual re-
lating to the DEIM approximation quality of the nonlinear function. This residual is
exploited in Sections 3.2 and 3.3 to construct a basis update. The computational pro-
cedure and its computational complexity are discussed in Section 3.4. We close with
Section 3.5 on remarks on the properties of the basis update.

3.1 Residual

A DEIM interpolant (U ,P ) computes an approximation of the nonlinear function f

at a state vector y(µ) by sampling f(y(µ)) at the components defined by the DEIM
interpolation points, see Section 2.2. The DEIM approximation interpolates f(y(µ)) at
the DEIM interpolation points, and thus the residual,

U(P TU)−1P Tf(y(µ))− f(y(µ)) ,

is zero at the interpolation points, i.e.,
∥
∥P T

(
U(P TU)−1P Tf(y(µ))− f(y(µ))

)∥
∥
2
= 0 .

We now extend the set of m interpolation points {p1, . . . , pm} to a set of m + ms

pairwise distinct sampling points {s1, . . . , sm+ms
} ⊂ {1, . . . , N} with ms ∈ N and

ms > 0. The first m sampling points s1, . . . , sm coincide with the DEIM interpola-
tion points and the other ms points are drawn randomly with a uniform distribution
from {1, . . . , N} \ {p1, . . . , pm}. Note that we remark on the selection of the sampling
points in Section 3.5. The corresponding sampling points matrix,

S = [es1 , . . . , esm+ms
] ∈ R

N×(m+ms) ,
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is derived similarly to the DEIM interpolation points matrix P , see Section 2.2. The
nonlinear function f(y(µ)) is then approximated by Uc(y(µ)), where the coefficient
c(y(µ)) ∈ R

m is the solution of the over-determined regression problem

STUc(y(µ)) = STf(y(µ)) . (8)

With the Moore-Penrose pseudoinverse (STU)+ ∈ R
m×(m+ms), the solution of (8) is the

coefficient
c(y(µ)) = (STU)+STf(y(µ)) . (9)

In general, the m+ms sampling points lead to a residual

r(y(µ)) = Uc(y(µ))− f(y(µ)) (10)

that is non-zero at the sampling points, i.e., ‖STr(y(µ))‖2 > 0.

3.2 Adapting the DEIM basis

For the basis adaptation at step k, we define a window of size w ∈ N that contains the
vector ŷ(µM+k) and the vectors ŷ(µM+k−w+1), . . . , ŷ(µM+k−1) of the previous w − 1
steps. If k < w, then the previous w − 1 vectors also include snapshots from the offline
phase1, see Section 2.3. For the sake of exposition, we introduce for each step k a vector
k = [k1, . . . , kw]

T ∈ N
w, with ki = M + k − w + i, such that ŷ(µk1), . . . , ŷ(µkw) are the

vectors in the window.
At each step k, we generate m+ms sampling points and assemble the corresponding

sampling points matrix Sk. The first m sampling points correspond to the DEIM in-
terpolation points given by P k−1. The remaining sampling points are chosen randomly
as discussed in Section 3.1. We then construct approximations of the nonlinear function
f at the vectors ŷ(µk1), . . . , ŷ(µkw) with the DEIM basis Uk−1 but with the sampling
points matrix Sk instead of P k−1. For i = 1, . . . , w, the coefficient ck(y(µki)) ∈ R

m of
the approximation Uk−1ck(y(µki)) of f(ŷ(µki)) is derived following (9) as

ck(y(µki)) = (ST
kUk−1)

+ST
k f(ŷ(µki)) . (11)

The coefficients ck(ŷ(µk1)), . . . , ck(ŷ(µkw)) are put as columns in the coefficient matrix
Ck ∈ R

m×w.
We then derive two vectors αk ∈ R

N and βk ∈ R
m such that the adapted basis

Uk = Uk−1 + αkβ
T
k minimizes the Frobenius norm of the residual at the sampling

points given by Sk
∥
∥ST

k (UkCk − F k)
∥
∥
2

F
, (12)

where the right-hand side matrix F k = [f(ŷ(µk1)), . . . ,f(ŷ(µkw))] ∈ R
N×w contains as

columns the nonlinear function evaluated at the state vectors ŷ(µk1), . . . , ŷ(µkw). Note

that only ST
kF k ∈ R

(m+ms)×w is required in (12), and not the complete matrix F k ∈
R
N×w. Note further that F k may contain snapshots from the offline phase if k < w, see

1In this case, the ordering of the snapshots affects the online adaptivity process.
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the first paragraph of this subsection. We define the residual matrix Rk = Uk−1Ck−F k

and transform (12) into
‖ST

kRk + ST
kαkβ

T
kCk‖

2
F .

Thus, the vectors αk and βk of the update αkβ
T
k ∈ R

N×m are a solution of the mini-
mization problem

argmin
αk∈RN ,βk∈R

m

‖ST
kRk + ST

kαkβ
T
kCk‖

2
F . (13)

3.3 Optimality of basis update

We show in this section that an optimal update αkβ
T
k , i.e., a solution of the minimiza-

tion problem (13), can be computed from an eigenvector corresponding to the largest
eigenvalue of a generalized eigenproblem. We first consider five auxiliary lemmata and
then derive the optimal update αkβ

T
k in Theorem 1. In the following, we exclude the

trivial case where the matrices ST
kRk and Ck have zero entries only.

Lemma 1. Let ST
kRk ∈ R

(m+ms)×w and let α ∈ R
m+ms be the left and β ∈ R

w be the
right singular vector of ST

kRk corresponding to the singular value σ > 0. For a vector
z ∈ R

w, we have

‖ST
kRk −αzT ‖2F = ‖ST

kRk −ασβT ‖2F + ‖ασβT −αzT ‖2F . (14)

Proof. We have

‖ST
kRk −αzT ‖2F = ‖ST

kRk‖
2
F − 2αTST

kRkz + ‖αzT ‖2F

and
‖ST

kRk −ασβT ‖2F = ‖ST
kRk‖

2
F − 2αTST

kRkσβ + ‖ασβT ‖2F

and
‖ασβT −αzT ‖2F = ‖ασβT ‖2F − 2αTασβTz + ‖αzT ‖2F .

We show

−2αTST
kRkz = −2αTST

kRkσβ + 2‖ασβT ‖2F − 2αTασβTz . (15)

Using (ST
kRk)

Tα = σβ and αTα = 1, we find

‖ασβT ‖2F = σ2αTαβTβ = αTST
kRkσβ

and αTασβTz = αTST
kRkz, which shows (15), and therefore (14).

11
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Lemma 2. Let r ∈ N be the rank of ST
kRk ∈ R

(m+ms)×w, and let σ1 ≥ σ2 ≥ · · · ≥ σr >
0 ∈ R be the singular values of ST

kRk. Let further α′
i ∈ R

m+ms and β′
i ∈ R

w be the left
and the right singular vector, respectively, that correspond to a singular value σi. Set
a = −α′

i ∈ R
m+ms and let b ∈ R

m be a solution of the minimization problem

argmin
b∈Rm

‖σiβ
′
i −CT

k b‖
2
2 , (16)

then ‖ST
kRk+abTCk‖

2
F ≤ ‖ST

kRk‖
2
F holds, and ‖ST

kRk+abTCk‖
2
F < ‖ST

kRk‖
2
F holds

if ‖Ckβ
′
i‖2 > 0.

Proof. Since a = −α′
i and because of Lemma 1, we find

‖ST
kRk + abTCk‖

2
F = ‖ST

kRk −α′
iσiβ

′
i
T ‖2F + ‖α′

iσiβ
′
i
T −α′

ib
TCk‖

2
F . (17)

The first term of the right-hand side of (17) equals
∑r

j 6=i σ
2
j . For the second term of the

right-hand side of (17), we have

‖α′
iσiβ

′
i
T −α′

ib
TCk‖

2
F = ‖σiβ

′
i −CT

k b‖
2
2 ≤ σ2

i ,

because ‖α′
i‖

2
2 = ‖β′

i‖
2
2 = 1. This shows that ‖ST

kRk + abTCk‖
2
F ≤ ‖ST

kRk‖
2
F because

‖ST
kRk‖

2
F =

∑r
j=1 σ

2
j . If ‖Ckβ

′
i‖2 > 0, then the rows ofCk, and thus the columns ofCT

k ,

cannot all be orthogonal to β′
i, and therefore a b ∈ R

m exists with ‖σiβ
′
i−CT

k b‖
2
2 < σ2

i ,
which shows ‖ST

kRk + abTCk‖
2
F < ‖ST

kRk‖
2
F .

We note that in [22] a similar update as in Lemma 2 is used to derive a low-rank
approximation of a matrix.

Lemma 3. There exist a ∈ R
m+ms and b ∈ R

m with ‖ST
kRk + abTCk‖

2
F < ‖ST

kRk‖
2
F

if and only if ‖ST
kRkC

T
k ‖F > 0.

Proof. Let ‖ST
kRkC

T
k ‖F = 0, which leads to

‖ST
kRk + abTCk‖

2
F = ‖ST

kRk‖
2
F + 2aTST

kRkC
T
k b+ ‖a‖22‖b

TCk‖
2
2

= ‖ST
kRk‖

2
F + ‖a‖22‖b

TCk‖
2
2 ,

and thus ‖ST
kRk + abTCk‖

2
F < ‖ST

kRk‖
2
F cannot hold. See Lemma 2 for the case

‖ST
kRkC

T
k ‖F > 0 and note that the right singular vectors span the row space of ST

kRk.

Lemma 4. Let Ck ∈ R
m×w have rank r < m, i.e., Ck does not have full row rank. There

exists a matrix Zk ∈ R
r×w, with rank r, and a matrix Qk ∈ R

m×r with orthonormal
columns such that

‖ST
kRk + abTCk‖

2
F = ‖ST

kRk + azTZk‖
2
F ,

for all a ∈ R
m+ms and b ∈ R

m, where zT = bTQk ∈ R
r.

12
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Proof. With the rank revealing QR decomposition [24, Theorem 5.2.1] of the matrix Ck,
we obtain a matrix Qk ∈ R

m×r with orthonormal columns and a matrix Zk ∈ R
r×w

with rank r, such that Ck = QkZk. This leads to

‖ST
kRk + abTCk‖

2
F = ‖ST

kRk + abTQkZk‖
2
F = ‖ST

kRk + azTZk‖
2
F .

Lemma 5. Let Ck ∈ R
m×w have rank m, i.e., full row rank, and assume ‖ST

kRkC
T
k ‖F >

0. Let β′
k ∈ R

m be an eigenvector corresponding to the largest eigenvalue λ ∈ R of the
generalized eigenvalue problem

Ck(S
T
kRk)

T (ST
kRk)C

T
k β

′
k = λCkC

T
k β

′
k , (18)

and set α′
k = −1/‖CT

k β
′
k‖

2
2S

T
kRkC

T
k β

′
k. The vectors α′

k and β′
k are a solution of the

minimization problem

argmin
a∈Rm+ms ,b∈Rm

‖ST
kRk + abTCk‖

2
F . (19)

Proof. We have ‖bTCk‖2 = 0 if and only if b = 0m = [0, . . . , 0]T ∈ R
m because Ck

has full row rank. Furthermore, since ‖ST
kRkC

T
k ‖F > 0, the vector b = 0m cannot be

a solution of the minimization problem (19), see Lemma 3. We therefore have in the
following ‖bTCk‖2 > 0. The gradient of the objective of (19) with respect to a and b is

[
2ST

kRkC
T
k b+ 2a‖bTCk‖

2
2

2Ck(S
T
kRk)

Ta+ 2‖a‖22CkC
T
k b

]

∈ R
m+ms+m . (20)

By setting the gradient (20) to zero, we obtain from the first m+ms components of (20)
that

a =
−1

‖bTCk‖
2
2

ST
kRkC

T
k b . (21)

We plug (21) into the remaining m components of the gradient (20) and find that the
gradient (20) is zero if for b the following equality holds

Ck(S
T
kRk)

T (ST
kRk)C

T
k b =

‖ST
kRkC

T
k b‖

2
2

‖bTCk‖
2
2

CkC
T
k b . (22)

Let us therefore consider the eigenproblem (18). First, we show that all eigenvalues of
(18) are real. The left matrix of (18) is symmetric and cannot be the zero matrix because
‖ST

kRkC
T
k ‖F > 0. The right matrixCkC

T
k of (18) is symmetric positive definite because

Ck has full row rank. Therefore, the generalized eigenproblem (18) can be transformed
into a real symmetric eigenproblem, for which all eigenvalues are real. Second, this also
implies that the eigenvalues of (18) are insensitive to perturbations (well-conditioned)
[24, Section 7.2.2]. Third, for an eigenvector b of (18) with eigenvalue λ, we have

13
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Algorithm 1 Adapt interpolation basis with rank-one update

1: procedure adaptBasis(Uk−1, P k−1)
2: Select randomly ms points from {1, . . . , N} which are not points in P k−1

3: Assemble sampling points matrix Sk by combining P k−1 and sampling points
4: Evaluate the components of the right-hand side matrix F k selected by Sk

5: Compute the coefficient matrix Ck, and Ck = QkZk following Lemma 4
6: Compute residual at the sampling points ST

kRk = ST
k (Uk−1Ck − F k)

7: Compute an α′
k and β′

k following Lemma 5
8: Set αk = Skα

′
k

9: Set βk = Qkβ
′
k

10: Update basis Uk = Uk−1 +αkβ
T
k

11: return Uk

12: end procedure

λ = ‖ST
kRkC

T
k b‖

2
2/‖b

TCk‖
2
2. Therefore, all eigenvectors of the generalized eigenproblem

(18) lead to the gradient (20) being zero, if the vector a is set as in (21).
If b does not satisfy (22), and thus cannot be an eigenvector of (18), b cannot lead to

a zero gradient and therefore cannot be part of a solution of the minimization problem
(19). Because for an eigenvector b we have that

‖ST
kRk + abTCk‖

2
F = ‖ST

kRk‖
2
F − 2

‖ST
kRkC

T
k b‖

2
2

‖bTCk‖
2
2

+ ‖a‖22‖b
TCk‖

2
2 = ‖ST

kRk‖
2
F − λ ,

and because of (21), we obtain that an eigenvector of (18) corresponding to the largest
eigenvalue leads to a global optimum of (19). This shows that α′

k and β′
k are a solution

of the minimization problem (19).

Theorem 1. If ‖ST
kRkC

T
k ‖F > 0, and after the transformation of Lemma 4, an optimal

update αkβ
T
k with respect to (13) is given by setting αk = Skα

′
k and βk = Qkβ

′
k, where

α′
k and β′

k are defined as in Lemma 5, and where Qk ∈ R
m×r is given as in Lemma 4.

If ‖ST
kRkC

T
k ‖F = 0, an optimal update with respect to (13) is αk = 0N ∈ R

N and
βk = 0w ∈ R

w, where 0N and 0w are the N - and w-dimensional null vectors, respectively.

Proof. The case ‖ST
kRkC

T
k ‖F > 0 follows from Lemmata 4 and 5. The case ‖ST

kRkC
T
k ‖F =

0 follows from Lemma 3.

3.4 Computational procedure

The computational procedure of the online basis update is summarized in Algorithm 1.
The procedure in Algorithm 1 is called at each step k = 1, . . . ,M ′ in the online phase.
The input parameters are the DEIM basis Uk−1 and the DEIM interpolation points ma-
trix P k−1 of the previous step k−1. First, ms random and uniformly distributed points

14
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are drawn from the set {1, . . . , N} ⊂ N such that the points are pairwise distinct from
the interpolation points given by P k−1. They are then combined with the interpolation
points into the sampling points, from which the sampling points matrix Sk is assembled.
With the sampling points matrix Sk, the matrix ST

kF k is constructed. We emphasize
that we only need ST

kF k ∈ R
(m+ms)×w and not all components of the right-hand side

matrix F k ∈ R
N×w. The coefficient matrix Ck is constructed with respect to the basis

Uk−1 and the right-hand side ST
kF k. Then the residual at the sampling points ST

kRk

is computed and the update αkβ
T
k is derived from an eigenvector of the generalized

eigenproblem (18) corresponding to the largest eigenvalue. Finally, the additive update
αkβ

T
k is added to Uk−1 to obtain the adapted basis Uk = Uk−1 +αkβ

T
k .

Algorithm 1 has linear runtime complexity with respect to the number of degrees of
freedom N of the full-order system. Selecting the sampling points is in O(msm) and
assembling the matrix Sk in O(N(m + ms)). The costs of assembling the coefficient
matrix are in O((m+ms)

3w), which do not include the costs of sampling the nonlinear
function. If the nonlinear function is expensive to evaluate, then sampling the non-
linear function can dominate the overall computational costs. In the worst case, the
nonlinear function is sampled at w(m + ms) components at each step k = 1, . . . ,M ′;
however, the runtime results of the numerical examples in Section 5 show that in many
situations these additional costs are compensated by the online adaptivity that allows
a reduction of the number of DEIM basis vectors m without loss of accuracy. We
emphasize once more that the nonlinear function is only sampled at the m +ms com-
ponents of the vectors ST

k ŷ(µk1), . . . ,S
T
k ŷ(µkw) ∈ R

m+ms and not at all N compo-
nents of ŷ(µk1), . . . , ŷ(µkw) ∈ R

N , cf. the definition of the coefficients in (11). Com-
puting the vectors ST

k ŷ(µk1), . . . ,S
T
k ŷ(µkw) ∈ R

m+ms from the reduced state vectors
ỹ(µk1), . . . , ỹ(µkw) ∈ R

n is in O((N+mn)w). The transformation described in Lemma 4
relies on a QR decomposition that requires O(mw2) operations [24, Section 5.2.9]. The
matrices of the eigenproblem (18) have size m×m, the left-hand side matrix is symmet-
ric, and the right-hand side matrix is symmetric positive definite. Therefore, the costs to
obtain the generalized eigenvector areO(m3) [24, p. 391]. Since usuallym ≪ N,ms ≪ N
as well as w ≪ N , it is computationally feasible to adapt the DEIM basis with Algo-
rithm 1 during the online phase.

3.5 Remarks on the online basis update

At each step k = 1, . . . ,M ′ new sampling points are generated. Changing the sampling
points at each step prevents overfitting of the basis update to only a few components of
the nonlinear function.
The greedy algorithm to select the DEIM interpolation points takes the growth of the

L2 error of the DEIM approximation into account [12, Algorithm 1, Lemma 3.2]. In
contrast, the sampling points in our adaptivity scheme are selected randomly, without
such an objective; however, the sampling points serve a different purpose than the DEIM
interpolation points. First, sampling points are only used for the adaptation whereas
ultimately the DEIM interpolation points are used for the DEIM approximation, see the
adaptivity scheme outlined at the beginning of Section 3. Second, a new set of sampling
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points is generated at each adaptivity step, and therefore a poor selection of sampling
points is quickly replaced. Third, many adaptivity steps are performed. An update
that targets the residual at a poor selection of sampling points is therefore compensated
quickly. Fourth, the adaptation is performed online and therefore a computationally
expensive algorithm to select the sampling points is often infeasible. The numerical
experiments in Section 5 demonstrate that the effect of the random sampling on the
accuracy is small compared to the gain achieved by the adaptivity.
Theorem 1 guarantees that the update αkβ

T
k is a global optimum of the minimization

problem (13); however, the theorem does not state that the update is unique. If multiple
linearly independent eigenvectors corresponding to the largest eigenvalue exist, all of
them lead to the same residual (12), and thus lead to an optimal update with respect
to (13).
The DEIM basis computed in the offline phase from the SVD of the nonlinear snap-

shots contains orthonormal basis vectors. After adapting the basis, the orthonormality
of the basis vectors is lost. Therefore, to obtain a numerically stable method, it is neces-
sary to keep the condition number of the basis matrix Uk low, e.g., by orthogonalizing
the basis matrix Uk after several updates, or by monitoring the condition number and
orthogonalizing if a threshold is exceeded. Note that monitoring the condition number
can be achieved with an SVD of the basis matrix Uk, with costs O(Nm2+m3), and thus
this is feasible in the online phase. Our numerical results in Section 5 show, however,
that even many adaptations lead to only a slight increase of the condition number, and
therefore we do not orthogonalize the basis matrix in the following. Furthermore, in our
numerical examples, the same window size is used for problems that differ with respect
to degrees of freedom and type of nonlinearity, which shows that fine-tuning the window
size to the current problem at hand is often unnecessary.

4 Online interpolation points adaptivity

After having adapted the DEIM basis at step k, we also adapt the DEIM interpolation
points. The standard DEIM greedy method is too computationally expensive to apply
in the online phase, because it recomputes all m interpolation points. We propose an
adaptivity strategy that exploits that it is often unnecessary to change allm interpolation
points after a single rank-one update to the DEIM basis. Section 4.1 describes a strategy
that selects at each step k = 1, . . . ,M ′ one interpolation point to be replaced by a new
interpolation point. The corresponding efficient computational procedure is presented
in Section 4.2.

4.1 Adapting the interpolation points

Let k be the current step with the adapted DEIM basis Uk, and let Uk−1 be the
DEIM basis and P k−1 be the DEIM interpolation points matrix of the previous step.
Let further {pk−1

1 , . . . , pk−1
m } ⊂ {1, . . . , N} be the interpolation points corresponding to

P k−1. We adapt the interpolation points by replacing the i-th interpolation point pk−1
i

16
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Algorithm 2 Adapt interpolation points after basis update

1: procedure adaptInterpPoints(Uk−1, P k−1, Uk)
2: Normalize basis vectors
3: Take dot product diag(UT

kUk−1) between the basis vectors of Uk and Uk−1

4: Find the index i of the pair of basis vectors which are nearest to orthogonal
5: Let uk ∈ R

N be the i-th column of the adapted basis Uk

6: Store all other m− 1 columns of Uk in Ûk ∈ R
N×(m−1)

7: Store all other m− 1 columns of P k−1 in P̂ k ∈ R
N×(m−1)

8: Approximate uk with DEIM interpolant (Ûk, P̂ k) as

ûk = Ûk(P̂
T
k Ûk)

−1P̂
T
kuk

9: Compute residual |ûk − uk| ∈ R
N

10: Let pki be the index of the largest component of the residual
11: if epk

i

is not a column of P k−1 then

12: Replace interpolation point pk−1
i of the i-th basis vector with pki

13: Assemble updated interpolation points matrix P k with (23)
14: else

15: Do not change interpolation points and set P k = P k−1

16: end if

17: return P k

18: end procedure

by a new interpolation point pki ∈ {1, . . . , N} \ {pk−1
1 , . . . , pk−1

m }. We therefore construct
the adapted interpolation points matrix

P k = P k−1 + (epk
i

− epk−1

i

)dT
i (23)

from the interpolation points matrix P k−1 with the rank-one update (epk
i

− epk−1

i

)dT
i ∈

R
N×m. The N -dimensional vectors epk

i

∈ {0, 1}N and epk−1

i

∈ {0, 1}N are the pki -th and

pk−1
i -th canonical unit vectors, respectively. The vector di ∈ {0, 1}m is the i-th canonical

unit vector of dimension m. The update (epk
i

− epk−1

i

)dT
i replaces the i-th column epk−1

i

of P k−1 with epk
i

, and thus replaces point pk−1
i with point pki .

Each column of P k−1, and thus each interpolation point, is selected with respect to
the basis vector in the corresponding column in Uk−1. The standard DEIM greedy pro-
cedure ensures this for P 0 built in the offline phase [12, Algorithm 1], and the following
adaptivity procedure ensures this recursively for the adapted DEIM interpolation points
matrix P k−1. We replace the point pk−1

i corresponding to the basis vector that was
rotated most by the basis update from Uk−1 to Uk. We therefore first compute the dot
product between the previous and the adapted basis vectors

diag(UT
kUk−1) . (24)
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If the dot product of two normalized basis vectors is one, then they are colinear and
the adapted basis vector has not been rotated with respect to the previous vector at
step k − 1. If it is zero, they are orthogonal. We select the basis vector uk ∈ R

N of
Uk that corresponds to the component of (24) with the lowest absolute value. Note
that after the adaptation, the adapted basis vectors are not necessarily normalized and
therefore need to be normalized before (24) is computed. The new interpolation point pki
is derived from uk following the standard DEIM greedy procedure. It then replaces the
interpolation point pk−1

i . All other interpolation points are unchanged, i.e., pkj = pk−1
j

for all j = 1, . . . ,m with j 6= i.

4.2 Computational procedure

Algorithm 2 summarizes the computational procedure to adapt the DEIM interpolation
points at step k. The inputs are the DEIM basis Uk−1 and the DEIM interpolation
points matrix P k−1 as well as the adapted DEIM basis Uk. The algorithm firsts selects
the index i of the column of the basis vector that was rotated most by the basis update.
This basis vector is denoted as uk ∈ R

N . Then, the DEIM interpolant (Ûk, P̂ k) is built
using available information from Uk and P k−1. The basis Ûk ∈ R

N×(m−1) contains
all m − 1 columns of Uk except for the i-th column. The matrix P̂ k is assembled
similarly from the interpolation points matrix P k−1. The DEIM approximation ûk of
uk is constructed with the interpolant (Ûk, P̂ k). The interpolation point pki is set to the
component with the largest absolute residual |ûk − uk| ∈ R

N . If pki is not already an
interpolation point, the DEIM interpolation points matrix P k is constructed with the
update (23), else P k = P k−1.
The runtime costs of Algorithm 2 scale linearly with the number of degrees of freedom

N of the full-order system (1). The dot product between the normalized basis vectors
is computed in O(Nm). The matrices Ûk and P̂ k are assembled in O(Nm) and the
DEIM approximation ûk is derived in O(m3). Computing the residual |ûk − uk| ∈ R

N

and finding the component with the largest residual has linear runtime costs in N .
Assembling the adapted interpolation points matrix P k is in O(N) because only one
column has to be replaced.

5 Numerical results

We present numerical experiments to demonstrate our nonlinear model reduction ap-
proach based on online adaptive DEIM interpolants. The optimization problem intro-
duced in Section 2.3 is revisited in Section 5.1 and the time-dependent FitzHugh-Nagumo
system is discussed in Section 5.2. Section 5.3 applies online adaptive DEIM interpolants
to a simplified model of a combustor governed by a reacting flow of a premixed H2-Air
flame. The reduced system is evaluated at a large number of parameters to predict the
expected failure of the combustor.
All of the following experiments and runtime measurements were performed on com-

pute nodes with Intel Xeon E5-1620 and 32GB RAM on a single core using a MATLAB
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Figure 3: Optimization problem: The results in (a) show that our online adaptive DEIM
interpolant withm = 5 DEIM basis vectors (solid, blue) improves the optimiza-
tion error of the static DEIM interpolant with m = 5 basis vectors (dashed,
red) by five orders of magnitude. The online adaptive interpolant achieves
a similar accuracy as a static interpolant with m = 100 basis vectors (dash-
dotted, green). The reported error of the online adaptive interpolant is the
mean error over ten runs. The bars indicate the minimal and the maximal
error over these ten runs. The plot in (b) shows that for an accuracy of about
10−6 the online runtime of the optimization method with the online adaptive
DEIM interpolant is lower than the runtime with the static interpolant.

implementation. The nonlinear functions in this section can all be evaluated component-
wise, see Section 2.1.

5.1 Synthetic optimization problem

In Section 2.4 we introduced the function g : D → R
N and the parameter µ∗ ∈ D,

which is the maximum of the objective 1TNg(µ). We built the DEIM interpolant g̃

of g and searched for the maximum µ̃∗ ∈ D of the approximate objective 1Tn g̃(µ) to
approximate µ∗. The reported optimization error (7) showed that an accuracy of about
10−2 is achieved by a DEIM interpolant with 20 DEIM basis vectors built from nonlinear
snapshots corresponding to parameters at an equidistant 20× 20 grid in the parameter
domain D.

Let us now consider online adaptive DEIM interpolants of g. We set the window size
to w = 50, the number of sampling points to ms = 300, and we do not orthogonalize
the DEIM basis matrix Uk after the adaptation. Note that we need a large number of
samples ms here because the function g has one sharp peak and is zero elsewhere in
the spatial domain Ω. Note that ms = 300 is still less than the number of degrees of
freedom N = 1600. The optimization with Nelder-Mead consists of k = 1, . . . , 500 steps.
In each step k, the intermediate result µM+k found by Nelder-Mead is used to initiate
the adaptation of the DEIM interpolant following Sections 3 and 4. The adapted DEIM
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interpolant is then used in the subsequent iteration of the Nelder-Mead optimization
method. We compare the optimization error (7) obtained with the adaptive interpolants
to the error of the static interpolants. The static interpolants are constructed in the
offline phase and are not adapted during the online phase, see Section 2.3. The online
adaptive DEIM interpolants are initially constructed in the offline phase from the same
set of snapshots as the static interpolants.
Figure 3a summarizes the optimization error (7) corresponding to the static and the

online adaptive DEIM interpolants. To account for the random selection of the sampling
points, the optimization based on the adaptive DEIM interpolant is repeated ten times
and the mean, the minimal, and the maximal optimization error over these ten runs
are reported. After 500 updates, the online adaptive DEIM interpolant with five DEIM
basis vectors achieves a mean error below 10−6. This is an improvement of five orders
of magnitude compared to the static DEIM interpolant with five DEIM basis vectors.
The static DEIM interpolant requires 100 basis vectors for a comparable accuracy. The
spread of the optimization error due to the random sampling is small if considered
relative to the significant gain achieved by the online adaptation here. In Figure 3b we
report the online runtime of the Nelder-Mead optimization method. For the static DEIM
interpolant, the runtime for 65, 70, 75, 80, 85, 90, 95, 100 DEIM basis vectors is reported.
For the adaptive interpolant, the runtime corresponding to 200, 250, and 300 samples is
reported. The runtime of the optimization procedure with the static DEIM interpolants
quickly increases with the number of DEIM basis vectors m. The optimization procedure
based on our proposed online adaptive DEIM interpolants is fastest and leads to the most
accurate result in this example. Figure 4 shows the approximate objective 1Tn g̃(µ) with
an online adaptive DEIM interpolant. The blue cross indicates the optimum µ∗. After
75 updates, the online adaptive interpolant approximates the nonlinear function g well
near the optimum µ∗.

5.2 Time-dependent FitzHugh-Nagumo system

We consider the FitzHugh-Nagumo system to demonstrate our online adaptive approach
on a time-dependent problem. The FitzHugh-Nagumo system was used as a benchmark
model in the original DEIM paper [12]. It is a one-dimensional time-dependent nonlinear
system of PDEs modeling the electrical activity in a neuron. We closely follow [12] and
define the FitzHugh-Nagumo system as

ǫ∂ty
v(x, t) = ǫ2∂2

xy
v(x, t) + f(yv(x, t))− yw(x, t) + c ,

∂ty
w(x, t) = byv(x, t)− γyw(x, t) + c ,

with spatial coordinate x ∈ Ω = [0, L] ⊂ R, length L ∈ R, time t ∈ [0, T ] ⊂ R, state
functions yv, yw : Ω × [0, T ] → R, the second derivative operator ∂2

x in the spatial
coordinate x, and the first derivative operator ∂t in time t. The state function yv and
yw are voltage and recovery of voltage, respectively. The nonlinear function f : R → R

is f(yv) = yv(yv − 0.1)(1− yv) and the initial and boundary conditions are

yv(x, 0) = 0, yw(x, 0) = 0 , x ∈ [0, L] ,
∂xy

v(0, t) = −i0(t) , ∂xy
v(L, t) = 0, t ≥ 0 ,
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Figure 4: Optimization problem: The plots show the approximate objective function
1Tn g̃(µ) with the online adaptive DEIM interpolant g̃ with ms = 300 sample
points and m = 5 DEIM basis vectors. The interpolant adapts to the function
behavior near the optimal parameter µ∗ ∈ D marked by the cross.
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with i0 : [0, T ] → R and i0(t) = 50000t3 exp(−15t). We further set L = 1, ǫ = 0.015, T =
1, b = 0.5, γ = 2, and c = 0.05. More details on the implementation of the FitzHugh-
Nagumo system, including a derivation of the linear and nonlinear operators, can be
found in [11].
We discretize the FitzHugh-Nagumo system with finite differences on an equidistant

grid with 1024 grid points in the spatial domain and with the forward Euler method at
106 equidistant time steps in the temporal domain. The full-order system with the state
vector y(t) ∈ R

N has N = 2× 1024 = 2048 degrees of freedom. We derive a POD basis
V ∈ R

N×n and a POD-DEIM-Galerkin reduced system following [12]. The POD basis
and the DEIM interpolant are built from M = 1000 snapshots, which are the solutions of
the full-order system at every 1000-th time step. The state vector y(t) is approximated
by V ỹ(t), where ỹ(t) ∈ R

n is the solution of the reduced system.
We report the average of the relative L2 error of the approximation V ỹ(t) at every

1000-th time step but starting with time step 500. Thus, the error is measured at the
time steps half way between those at which the snapshots were taken. We again consider
static and online adaptive DEIM interpolants. The static interpolants are built in the
offline phase and are not adapted online. The online adaptive DEIM interpolants are
adapted at every 200-th time step. The window size is w = 5 to reduce the computational
costs of the online adaptation. The DEIM basis matrix is not orthogonalized after an
adaptation. We set the number of POD basis vectors to n = 10. The experiment is
repeated ten times and the mean, the minimal, and the maximal averaged relative L2

errors over these ten runs are reported. The results in Figure 5a show that adapting
the DEIM interpolant online improves the accuracy by up to two orders of magnitude
compared to the static interpolant. The accuracy of the solution obtained with the
adaptive reduced system is limited by the POD basis, which stays fixed during the
online phase. The spread of the error due to the random selection of the sampling
points is small. We report the online runtime of the forward Euler method for DEIM
basis vectors 2, 4, 6, and 8 in Figure 5b. It can be seen that the runtimes corresponding
to the static interpolants increase only slightly as the number of DEIM basis vectors is
increased. This shows that, for this problem, the runtime is not dominated by the DEIM
approximation and explains why online adaptivity improves the runtime only slightly
here.

5.3 Expected failure rate

In this section, we compute the expected failure rate of a combustor with Monte Carlo
and importance sampling. We employ a POD-DEIM-Galerkin reduced system to speed
up the computation. Reduced systems have been extensively studied for computing
failure rates and rare event probabilities [6, 5, 30, 13]; however, we consider here POD-
DEIM-Galerkin reduced systems based on online adaptive DEIM interpolants that are
adapted while they are evaluated by the Monte Carlo method during the online phase.
Online adaptivity is well-suited for computing failure rates because it adapts the reduced
system to the failure boundaries where a high accuracy is required. Note that those
regions are not known during the offline phase.
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Figure 5: FitzHugh-Nagumo system: The plots show that adapting the DEIM inter-
polant of the FitzHugh-Nagumo reduced system at every 200-th time step in
the online phase improves the overall accuracy of the solution of the reduced
system by up to two orders of magnitude. The online runtime is not domi-
nated by the DEIM approximation here and thus the online adaptive DEIM
interpolants improve the runtime only slightly.
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Figure 6: Combustor: The figure shows the geometry of the spatial domain of the com-
bustor problem.
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Figure 7: Combustor: The plots show the temperature in the spatial domain Ω for two
parameters near the boundary of the parameter domain D.

5.3.1 Combustor model

Our simplified model of a combustor is based on a steady premixed H2-Air flame. The
one-step reaction mechanism underlying the flame is

2H2 +O2 → 2H2O

where H2 is the fuel, O2 is the oxidizer, and H2O is the product. Let Ω ⊂ R
2 be the

spatial domain with the geometry shown in Figure 6, and let D ⊂ R
2 be the parameter

domain. The governing equation is a nonlinear advection-diffusion-reaction equation

κ∆y(µ)− ω∇y(µ) + f(y(µ),µ) = 0, (25)

where µ ∈ D is a parameter and where y(µ) = [yH2
, yO2

, yH2O, T ]
T contains the mass

fractions of the species, H2, O2, and H2O, and the temperature. The constant κ =
2.0cm2/sec is the molecular diffusivity and ω = 50cm/sec is the velocity in x1 direction.
The function f(y(µ),µ) = [fH2

(y(µ),µ), fO2
(y(µ),µ), fH2O(y(µ),µ), fT (y(µ),µ)]

T is
defined by its components

fi(y(µ),µ) = − νi

(
ηi
ρ

)(
ρyH2

ηH2

)2(ρyO2

ηO2

)

µ1 exp
(

−
µ2

RT

)

, i = H2,O2,H2O

fT (y(µ),µ) = QfH2O(y(µ),µ) .

The vector ν = [2, 1, 2]T ∈ N
3 is constant and derived from the reaction mechanism,

ρ = 1.39× 10−3 gr/cm3 is the density of the mixture, η = [2.016, 31.9, 18]T ∈ R
3 are the

molecular weights in gr/mol, R = 8.314472J/(mol K) is the universal gas constant, and
Q = 9800K is the heat of reaction. The parameter µ = [µ1, µ2] ∈ D is in the domain
D = [5.5× 1011, 1.5× 1013]× [1.5× 103, 9.5× 103] ⊂ R

2 where µ1 is the pre-exponential
factor and µ2 the activation energy. With the notation introduced in Figure 6, we impose
homogeneous Dirichlet boundary conditions on the mass fractions on Γ1 and Γ3, and
homogeneous Neumann conditions on the temperature and mass fractions on Γ4,Γ5,
and Γ6. We further have Dirichlet boundary conditions on Γ2 with yH2

= 0.0282, yO2
=

0.2259, yH2O = 0, yT = 950K, and on Γ1,Γ3 with yT = 300K.

24



ACDL Technical Report TR-14-1

1e-06

1e-05

1e-04

1e-03

0 1000 2000 3000 4000 5000re
l
L
2
er
ro
r
in

re
gi
on

of
in
te
re
st

adaptivity step k

ms = 40 samples
ms = 60 samples
ms = 80 samples

1e-06

1e-05

1e-04

1e-03

1e-02

15000 16000 17000 18000 19000 20000re
l
L
2
er
ro
r
in

re
gi
on

of
in
te
re
st

online time [s]

static
adapt

(a) online adaptive DEIM interpolant (b) error w.r.t. online runtime

Figure 8: Combustor: The figure in (a) shows that adapting the DEIM interpolant to
the region of interest DRoI improves the relative L2 error of solutions with
parameters in DRoI by up to three orders of magnitude. The plot in (b) shows
that our online adaptive approach is more efficient than the static interpolant
with respect to the online runtime.

The PDE (25) is discretized with finite differences on an equidistant 73 × 37 grid in
the spatial domain Ω. The corresponding discrete system of nonlinear equations has
N = 10, 804 degrees of freedoms and is solved with the Newton method. The state
vector y(µ) ∈ R

N contains the mass fractions and temperature at the grid points.
Figure 7 shows the temperature field for parameters µ = [5.5 × 1011, 1.5 × 103] and
µ = [1.5 × 1013, 9.5 × 103]. We follow the implementation details in [7] where a POD-
DEIM-Galerkin reduced system [12] is derived.

5.3.2 Combustor: Region of interest

We demonstrate our online adaptivity procedures by adapting the DEIM interpolant to
a region of interest DRoI = [2 × 1012, 6 × 1012] × [5 × 103, 7 × 103] ⊂ D. We therefore
first construct a POD basis with n = 30 basis vectors from snapshots corresponding to
parameters at an 10×10 equidistant grid in the whole parameter domain D and derive a
DEIM interpolant with the corresponding nonlinear snapshots and m = 15 DEIM basis
vectors. We then adapt the DEIM interpolant online at state vectors corresponding to
parameters drawn randomly with a uniform distribution from the region of interest DRoI.
After each adaptivity step, the reduced system is evaluated at parameters stemming from
a 24× 24 equidistant grid in D from which 3× 3 parameters are in the region of interest
DRoI. We report the relative L2 error of the temperature with respect to the full-order
solution at the parameters in DRoI.
Figure 8a shows the error of the temperature field computed with a POD-DEIM-

Galerkin reduced system based on an online adaptive DEIM interpolant versus the
adaptivity step. Reported is the mean L2 error over ten runs, where the bars indi-
cate the minimal and the maximal error. The window size is set to w = 50. Online
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Figure 9: Combustor: The condition number of the basis matrix increases only slightly
after 10,000 adaptivity steps. It is therefore not necessary to orthogonalize the
basis online in this example.

adaptivity improves the accuracy of the solution of the POD-DEIM-Galerkin reduced
system by about three orders of magnitude in the region of interest after 3,000 updates.
The random selection of the sampling point leads only to a small spread of the error here.
The online runtimes corresponding to static and online adaptive DEIM interpolants are
reported in Figure 8b. The static interpolants are built in the offline phase from the
same set of nonlinear snapshots as the adaptive interpolants but they are not changed in
the online phase. The reported runtimes are for 10,000 online steps. In case of a static
DEIM interpolant, each step consists of solving the POD-DEIM-Galerkin reduced sys-
tem for a given parameter and computing the error. In case of adaptivity, additionally
to solving the POD-DEIM-Galerkin reduced system and computing the error, the DEIM
interpolant is adapted. For the static DEIM interpolants, the runtimes are reported for
10, 20, and 30 DEIM basis vectors. For the online adaptive DEIM interpolants, the num-
ber of DEIM basis vectors m = 15 is fixed but the number of samples ms is set to 40, 60,
and 80. Overall, the reduced systems based on the online adaptive DEIM interpolants
lead to the lowest online runtime with respect to the L2 error in the region of interest
DRoI.
After an online basis update, the orthogonality of the basis vectors is lost. Figure 9

shows that even after 10,000 updates, the condition number of the DEIM basis matrix
is still low and thus it is not necessary to orthogonalize the basis during the online
adaptation here. Note that the eigenproblem (18), from which the updates are derived,
is well-conditioned, see Lemma 5.

5.3.3 Combustor: Extended and shifted parameter domains

We now consider an online adaptive reduced system of the combustor problem that is
built from snapshots with parameters in a domain Doffline ⊂ D in the offline phase, but
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Figure 10: Combustor: Online adaptive reduced systems provide valid approximations
of the full-order solutions also for parameters outside of the domain Doffline for
which they were initially built. Accuracy improvements over static reduced
systems by up to three orders of magnitude are achieved.

which is then evaluated at parameters outside of Doffline in the online phase. We set
Doffline = [2× 1012, 6× 1012]× [5× 103, 7× 103] ⊂ D and build a POD-DEIM-Galerkin
reduced system from snapshots with parameters coinciding with an equidistant 10× 10
grid in Doffline. The number of POD basis vectors is set to n = 30. In case of online
adaptive DEIM interpolants, the window size is w = 50, and the number of samples is
ms = 60, see previous Section 5.3.2.
Consider now the online phase, where the reduced system is used to approximate the

full-order solutions with parameters at the equidistant 24× 24 grid in the domains

Di
E =

[
2× 1012, 6× 1012 + iδµ1

]
×
[
5× 103, 7× 103 + iδµ2

]
,

with δµ = [9 × 1011, 2.5 × 102]T ∈ R
2 and i = 0, . . . , 10. At each step i = 0, . . . , 10,

the domain is equidistantly extended. Figure 10a reports the relative L2 error of the
temperature field obtained with a static, a rebuilt, and an online adaptive reduced system
with m = 15 DEIM basis vectors. The static interpolant is fixed and is not changed in
the online phase. For the rebuilt interpolant, a DEIM basis is constructed from snapshots
corresponding to parameters at an equidistant 10×10 grid in the domain Di

E in each step
i = 0, . . . , 10. The online adaptive reduced system is adapted 5,000 times at step i with
respect to the domain Di

E , see Section 5.3.2. The results show that the static reduced
system quickly fails to provide valid approximations of the solutions of the full-order
system as the domain is extended. In contrast, the online adaptive approach is able to
capture the behavior of the full-order system also in the domains D1

E , . . . ,D
10
E that cover

regions outside of Doffline. An accuracy improvement by about one order of magnitude
is achieved. This is about the same accuracy improvement that is achieved with the
interpolant that is rebuilt in each step; however, our online adaptive interpolant avoids
the additional costs of rebuilding from scratch. Note that the full-order system becomes
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harder to approximate as the domain is increased and thus also the errors corresponding
to the online adaptive and the rebuilt reduced system grow with the size of the domain.
Figure 10b shows the accuracy results for the static, the rebuilt, and the online adap-

tive reduced system if the parameter domain is shifted instead of extended. The shifted
domains are

Di
S =

[
2× 1012 + iδµ1, 6× 1012 + iδµ1

]
×
[
5× 103 + iδµ2, 7× 103 + iδµ2

]
,

for i = 0, . . . , 10. The number of DEIM basis vectors is m = 10. The online adaptive
reduced system provides approximations that are up to three orders of magnitude more
accurate than the approximations obtained by the static system. The adaptive inter-
polant achieves about the same accuracy as the rebuilt interpolant again. Note that the
full-order system becomes simpler to approximate as the domain is shifted towards the
upper right corner of the parameter domain D, and thus the errors corresponding to the
online adaptive and the rebuilt system decrease.
The rebuilt and the online adaptive DEIM interpolant achieve a similar accuracy in

Figures 10a and 10b. In Figure 10b, the online adaptive DEIM interpolant achieves a
slightly higher accuracy than the rebuilt interpolant. This underlines that rebuilding
the interpolant from scratch, from snapshots corresponding to the shifted domain, does
not necessarily lead to an optimal DEIM interpolant with respect to accuracy. For the
experiment presented in Figure 10a, the online adaptive interpolant performs slightly
worse than the rebuilt interpolant. Overall, the differences between the rebuilt and
the online adaptive interpolant are small here, almost insignificant, and thus a more
extensive study is necessary for a general comparison of rebuilt and online adaptive
DEIM interpolants. Also note that other approaches based on rebuilding the DEIM
interpolant might be feasible in certain situations. For example, the DEIM bases could
be enriched with new basis vectors at each adaptivity step; however, note also that this
would lead to a different form of adaptivity than what we consider here, because we keep
the number of DEIM basis vectors fixed in the online phase.

5.3.4 Combustor: Expected failure rate

We now compute the expected failure rate of the combustor modeled by the advection-
diffusion-reaction equation of Section 5.3.1. We assume the combustor fails if the max-
imum temperature exceeds 2290K in the spatial domain Ω. This is a value near the
maximum temperature obtained with the parameters in the domain D. We then define
the random variable

T =

{

1 , if temperature > 2290K

0 , else
,

where we assume the parameters µ ∈ D are drawn from a normal distribution with mean

[8.67× 1012, 5.60× 103] ∈ D (26)
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Figure 11: Combustor: With the reduced system based on the static DEIM interpolant
11,761 out of 50,000 data points are misclassified. Online adaptivity reduces
the number of misclassified points to 326.

and covariance matrix [
2.08× 1024 8.67× 1014

8.67× 1014 6.40× 105

]

. (27)

Drawing the parameters from the given normal distribution leads to solutions with a
maximum temperature near 2290K. The indicator variable T evaluates to one if a failure
occurs and to 0 else. We are therefore interested in the expected failure rate E[T ].
We construct a POD-DEIM-Galerkin reduced system with n = 10 POD basis vectors

and m = 4 DEIM basis vectors from the M = 100 snapshots of the full-order system
with parameters stemming from an 10× 10 equidistant grid in D. We solve the reduced
system instead of the full-order system to speed up the computation. Note that we use
fewer POD and DEIM basis vectors here than in Sections 5.3.2 and 5.3.3 to reduce the
online runtime of the up to one million reduced system solves. The failure rate E[T ] is
computed with Monte Carlo and with Monte Carlo enhanced by importance sampling.
The biasing distribution of the importance sampling is obtained in a pre-processing step
by evaluating the reduced system at a large number of parameters and then fitting a
normal distribution to the parameters that led to a temperature above 2280K.
In Figure 11 we plot parameters drawn from the normal distribution with mean (26)

and covariance matrix (27) and color them according to the maximum temperature
estimated with the reduced system. The black dots indicate misclassified parameters,
i.e., parameters for that the reduced system predicts a failure but the full-order system
does not, and vice versa. The reduced system with a static DEIM interpolant with
four DEIM basis vectors leads to 11,761 misclassified parameters out of 50,000 overall
parameters. This is a misclassification rate of about 23 percent.
Let us now consider a reduced system with an online adaptive DEIM interpolant. We

adapt the interpolant after every 25-th evaluation. The number of samples is set again to
ms = 60 and the window size is w = 50. The misclassification rate of 23 percent obtained
with the static interpolant drops to 0.65 percent if online adaptivity is employed. This
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Figure 12: Combustor: The plots in (a) and (b) show that the root-mean-square error
of the expected failure E[T ] can be reduced by up to almost two orders of
magnitude if the reduced system is adapted online. In (c), the number of
DEIM basis vectors is increased such that the RMSE is limited by the number
of samples used for the mean computation rather than by the accuracy of the
POD-DEIM-Galerkin reduced system. Therefore, improving the accuracy of
the POD-DEIM-Galerkin reduced system by using the online adaptive DEIM
interpolant cannot improve the RMSE. The expected failure is computed with
Monte Carlo and Monte Carlo enhanced by importance sampling (IS).
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shows that the DEIM interpolant quickly adapts to the nonlinear function evaluations
corresponding to the parameters drawn from the specified distribution of µ. We evaluate
the root-mean-square error (RMSE) of the expected failure rate predicted by the reduced
system with a static DEIM interpolant and by a reduced system with an online adaptive
interpolant. The RMSE is computed with respect to the expected rate obtained from
one million evaluations of the full-order system. The averaged RMSEs over 30 runs
are reported in Figure 12. In case of the static DEIM interpolant, the reduced system
cannot predict the expected rate if only four DEIM basis vectors are used. Even with
six DEIM basis vectors, the RMSE for the static interpolant does not reduce below
10−3. A static DEIM interpolant with eight DEIM basis vectors is necessary so that the
number of samples used in the computation of the mean limits the RMSE rather than
the accuracy of the POD-DEIM-Galerkin reduced system. In case of the online adaptive
DEIM interpolant, an RMSE between one and two orders of magnitude lower than
with the static reduced system is achieved, if the accuracy of the POD-DEIM-Galerkin
reduced system limits the RMSE. This can be seen particularly well for Monte Carlo
enhanced by importance sampling. Note that the same POD-DEIM-Galerkin reduced
system and the same setting for the adaptive DEIM interpolant as in Section 5.3.2 is used.
Therefore, the runtime comparison between the static and adaptive DEIM interpolant
shown in Figure 8b applies here too.

6 Conclusions

We presented an online adaptive model reduction approach for nonlinear systems where
the DEIM interpolant is adapted during the online phase. We have shown that our
DEIM basis update is the optimal rank-one update with respect to the Frobenius norm.
In our numerical experiments, the online adaptive DEIM interpolants improved the
overall accuracy of the solutions of the reduced systems by orders of magnitude compared
to the solutions of the corresponding reduced systems with static DEIM interpolants.
Furthermore, our online adaptivity procedures have a linear runtime complexity in the
number of degrees of freedom of the full-order system and thus are faster than rebuilding
the DEIM interpolant from scratch.
Our adaptivity approach shows that it is unnecessary to solve the full-order system

or to fully evaluate it in order to adapt the reduced system in the online phase. We
directly adapt the reduced system with data that are generated by sampling the nonlinear
function at a few additional components. A natural extension of our adaptivity approach
would be to include other data such as the reduced state vector during Newton iterations
or time stepping. Our approach is particularly useful for situations in which it may be
desired to solve the reduced system for parameters that lead to a solution outside the
span of the snapshots generated in the offline phase. This is often the case in outer loop
applications—optimization, inverse problem and control—where the ultimate solution
path may be difficult to anticipate before the problem is solved. The adaptivity also
offers a path to robustness of the reduced system by mitigating against a potential poor
choice of snapshots in the initial construction of the reduced system.
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A topic of future research is an indicator that helps to decide how many sampling
points should be used. Depending on the computational costs of the indicator, it would
then also become feasible to decide adaptively during the online phase how many sam-
pling points should be used at the current adaptivity step. Also of interest could be
replacing the random selection of the sampling points with a deterministic algorithm.
In the offline phase, randomly selecting snapshots has been successfully replaced with
greedy algorithms, see, e.g., [42, 40, 25, 8]. The sampling points in our adaptivity scheme,
however, are repeatedly generated during the online phase, and therefore the challenge
will be deriving an algorithm that is computationally feasible to be run many times in
the online phase.
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