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Abstract—It has recently been proposed that Internet energy a huge opportunity by allowing for “follow the renewables”
costs, both monetary and environmental, can be reduced by routing.
exploiting temporal variations and shifting processing todata Research is only beginning to quantify the benefits of

centers located in regions where energy currently has low &b. . . )
Lightly loaded data centers can then tumn off surplus serves. IS approach, e.g., [10] and [11]. Many questions remain.

This paper studies online algorithms for determining the number ~ For example: Does “follow the renewables” routing make it
of servers to leave on in each data center, and then uses thesgossible to attain “net-zero” Internet-scale services?aiNib

algorithms to study the environmental potential of geograpical the optimal mix of renewable energy sources (e.g. wind and
load balancing (GLB). A commonly suggested algorithm for ths  g4|r) for an Internet-scale service? To address thesdiou®s

setting is “receding horizon control” (RHC), which computes the £ ical stud . | d t f
provisioning for the current time by optimizing over a window W€ P€riorm a numerical study using real-world traces for

of predicted future loads. We show that RHC performs well Workloads, electricity prices, renewable availabilitgta center
in a homogeneous setting, in which all servers can serve alllocations, etc. Surprisingly, our study shows that windrgpe

jobs equally well; however, we also prove that differencesni s significantly more valuable than solar energy for “follow
propagation delays, servers, and electricity prices can e&se RHC {0 renewables” routing. Commonly, solar is assumed to be

perform badly, So, we introduce variants of RHC that are guar . - .
anteed to perform as well in the face of such heterogeneity.iese MOre valuable given the match between the peak traffic period

algorithms are then used to study the feasibility of powerig a and the_ peak period for s_olar energy. wind energy |QCk3 this
continent-wide set of data centers mostly by renewable sooes, correlation, but also has little correlation across lawadi and

and to understand what portfolio of renewable energy is most s available during both night and day; thus the aggregantel wi
effective. energy over many locations exhibits much less variatiom tha
that of solar energy [12].
I. INTRODUCTION Our numerical results suggest that using GLB for “follow
) ) ) the renewables” routing can provide significant environtaken

Energy consumption of data centers is a major concejBnefits. However, achieving this is a challenging algarith
to both operators and society. Electricity for Internesc task. The benefits come from dynamically adjusting the nouti
systems costs millions of dollars per month [1] and, thougihg service capacity at each location, but the latter incurs
ICT uses only a small percentage of electricity today, thesjgnificant “switching cost” in the form of latency, energy
growth of electricity in ICT exceeds nearly all sectors o€ theonsumption, and/or wear-and-tear. Further, predictafrtae
economy. For these reasons, and more, ICT must play its Ratire workload, renewable availability, and electricjtyice
in reducing our dependence on fossil fuels. are inaccurate beyond the short term. Thus online algosithm

This can be achieved by using renewable energy to povégé required for GLB.
data centers. Already, data centers are starting to be pdwer Although the distant future cannot be known, it is often
by a greener portfolio of energy [2], [3], [4]. However, aefi possible to estimate loads a little in the future [13]. These
ing a goal of powering data centeesitirely with renewable predictions can be used by algorithms such as Receding Hori-
energy is a significant challenge due to the intermittenay apon Control (RHC), also known as Model Predictive Control,
unpredictability of renewable energy. Most studies of pom® to perform geographical load balancing. RHC is commonly
data centerentirely with renewable energy have focused oproposed to control data centers [14], [15] and has a long
powering individual data centers, e.g., [5], [6]. These énawistory in control theory [16]. In RHC, an estimate of the nea
shown that it is challenging to power a data center using ofbture is used to design a tentative control trajectoryydhe
local wind and solar energy without large-scale storage, dfitst step of this trajectory is implemented and, in the nemet
to the intermittency and unpredictability of these sources step, the process repeats.

The goal of this paper is twofold: (i) to illustrate that the-g  Due to its use in systems today, we begin in Section IlI
ographical diversity of Internet-scale services can $icemtly by analyzing the performance of RHC applied to the model
improve the efficiency of the usage of renewable energy, asidSection Il. In particular, we study its competitive rattbe
(ii) to develop online algorithms that can realize this poi@. worst case ratio of the cost of using RHC to the cost of using

Many papers have illustrated the potential for using “geptimal provisioning based on perfect future knowledge. We
ographical load balancing” (GLB) to exploit the diversit§ oprove that RHC does work well in some settings, e.g., in
Internet-scale service and provide significanst savinggor a homogeneous setting (where all servers are equally able
data centers; see [1],[7]-[9]. The goal of the current paperto serve every request) RHC is + O(1/w)-competitive.
different. It is to explore the environmental impact of GLB his can be much tighter than the competitive ratio of 3
within Internet-scale systems. In particular, using GLBr¢e obtained by schemes unaware of future loads [17]. Howaver, i
ducecostcan actually increase total energy usage: reducing tpeneral, RHC can perform badly for the heterogeneous gsttin
average price of energy shifts the economic balance away froeeded for geographical load balancing. In general, RHC is
energy saving measures. However, more positively, if data+ Q(3/eq)-competitive, where5 measures the switching
centers have local renewable energy available, GLB previdmst ande, is the cost of running an idle server. This can



be large and, surprisingly, does not dependuorThat is, the load at each data center, and also the energy cost of the
worst case bound on RHC does not improve as the prediction active servers at each data center with particular load.
window grows. (i) The switching cosincurred by toggling servers into and

Motivated by the weakness of RHC in the general context out of a power-saving mode between timeslots (including
of geographical load balancing, we design a new algorithm in  the delay, migration, and wear-and-tear costs).

Section Il called Averaging Fixed Horizon Control (AFHC). We describe each of these in detail below.

AFHC works by taking the average ab + 1 Fixed Hori- 1) Operating cost: The operating cost is the sum of the
zon Control (FHC) algorithms. Alone, each FHC algorithrdelay cost and the energy cost. Each is described below.
seems much worse than RHC, but by combining them AFHCDelay cost: The delay cost captures the lost revenue
achieves a competitive ratio df+ O(1/w), superior to that incurred because of the delay experienced by the requests. T
of RHC. We evaluate these algorithms in Section IV underodel this, we define;(d) as the lost revenue associated with
real data center workloads, and show that the improvementijpb experiencing delayat timet, which is an increasing and
worst-case performance comes at no cost to the average-caswex function. The delay has two components: the network
performance. delay experienced while the request is outside of the data

Note that the analysis of RHC and AFHC applies to a vetenter and the queueing delay experienced while the request
general model. It allows heterogeneity among both the joissat the data center.
and the servers, whereas systems studied analyticallgaiyppi ~ We model thenetwork delaysy a fixed delayd, ; s expe-
have homogeneous servers [17]-[19] or disjoint colletionenced by a request from sourgeto data centers during
thereof [20]. timeslot¢t. We make no requirements on the structure of the

dt.5,s- We assume that these delays are known within the
Il. MoDEL prediction windoww.

Our focus is on understanding how to dynamically pro- To model thequeueing delaywe let gs(zs,s, > ; A jys)
vision the (active) service capacity in geographicallyedse denote the queueing delay at data centeiven z; , active
data centers serving requests from different regions sm asservers and an arrival rate 3f ; \; ; ;. Further, for stability,
minimize the “cost” of the system, which may include botive must have thagj/\t,j,s < x4 sits, Where pg is the
energy and quality of service. In this section, we introduservice rate of a server at data centerThus, we define
a simple but general model for this setting. Note that thg(z¢s, > ; A js) =00 for 3 . A ;s > @y spts.
model generalizes most recent analytic studies of bothmijma Combining the above gives the following model for the total
resizing within a local data center and geographical lodelay costD, s at data centes during timeslott:
balancing among geographically distributed data cengegs,

. . J
including [10],[21],[17],[1]. Dis = Z)\t,j,srt (qs (xt,s, Zj/ )\t,j/,s) + 6t1j,5) N )
A. The workload J=1

We consider a discrete-time model whose timeslot match&e assume thab; , is jointly convex inz; ; and ), ; .. Note
the timescale at which routing decisions and capacity protfiat this assumption is satisfied by most standard queueing
sioning decisions can be updated. There is a (possibly lofigmulae, e.g., the mean delay under M/GI/1 Processor Sari
interval of interest € {1,...,T}. There areJ geographically (PS) queue and the 95th percentile of delay under the M/M/1.
concentrated sources of requests, and the mean arrivaatrate Energy cost:To capture the geographic diversity and vari-
time ¢ is denoted by\; = (\;)je(1,...s}, Where), ; is the ation over time of energy costs, we I¢t . (zss,>_; Ar.j.s)
mean request rate from sourgeat time t. We set), = 0 denote the energy cost for data centeduring timeslott
for t < 1 andt > T. In a real system] could be a year, a givenz, s active servers and arrival rade;; \; ; ;. For every

timeslot could bel0 minutes. fixedt, we assume thaf s (z1,s, >, Ae,js) is jointly convex in
xt,s and X, ; ;. This formulation is quite general, and captures,
B. The Internet-scale system for example, the common charging plan of a fixed price per

We model an Internet-scale system as a collectionSof KWh plus an additional “demand charge” for the peak of the
geographically diverse data centers, where data centgels average power used over a sliding 15 minute window [22].
is modeled as a collection df/, homogeneous servetdve Additionally, it can capture a wide range of models for serve
seek the values of two key GLB parameters: power consumption, e.g., energy costs as an affine funcfion o

(i) M.« the amount of traffic routed from sourgeo data the load, see [23], or as a polynomial function of the speed,

centers at timet. such thatzs Ao = A see [24], [25]_. One important property ¢f  for our results
(i) 0 — (1)t , } wherexS:1e {705 ﬁ'} is the IS €0, the minimum cost per timeslot for an active server of
t — t,s)se{l,..., Sty t,s gy s

: . types. i.e., fro(@ts,) > €0,5%t s
nu_mb_e ' qf active servers at data ce_ni_e&_t timet. The total energy cost of data centeduring timeslott is
The objective is to choosk, ; ; andx, to minimize the “cost”

of the system, which can be decomposed into two components: Eis = frs (xt,s, Zj )\tﬁj,s) . 2

(i) The operating costincurred by using active servers. It o _ o
includes both the delay cost (revenue loss) which depend€) Switching costFor the switching cost, let, be the cost

on the dispatching rule through network delays and tie transition a server from the sleep state to the active stat
data centers. We assume that the cost of transitioning from

INote that a heterogeneous data center can simply be viewetliiple the active to the sleep State_(js'f this .iS not the case, we can
data centers, each having homogeneous servers. simply fold the corresponding cost into the cghtincurred



in the next power-up operation. Thus the switching cost fextended-value extension, i.e., defining-) to be co outside
changing the number of active servers fram; s to z; s is  its domain.
B " To see how the optimization problem (3) fits into this general
A(i-1,5,21,5) = Bs (1,5 = Tp-1,5)" framework, we just need to defirkg(z;) for feasiblez; as the
where ()" = max(0, z). The constanp, includes the costs optimal value to the following optimization ovey, ; ; given
of (i) the energy used toggling a server, (i) the delay s fixed:

migrating state, such as data or a virtual machine (VM), when . s

toggling a server, (iii) increased wear-and-tear on theessr nin Zs:l (Et,s + Dys) (5)
toggling, and (iv) the risk associated with server togglitfg e s

only (i) and (ii) matter, therns, is either on the order of the s.t. Z . Mjs = Mgy Vi

cost to run a server for a few seconds (waking from suspend- N >0 iy
to-RAM or migrating network state [26] or storage state )27] tjs =0y VI VS

or several minutes (to migrate a large VM [28]). However, ior infeasiblez; (v, ¢ [0, M, for some s) we define
(iii) is included, theng; becomes on the order of the cost tg,(z;) = co. We can see that the optimal workload dispatching
run a server for an hour [29]. Finally, if (iv) is consideré@h has been captured by the definition/gfz;). Note that other
our conversations with operators suggest that their pexdeirestrictions of workload dispatching may be incorporatgd b
risk that servers will not turn on properly when toggled ighhi the definition ofh;(xz;) similarly.

so 3; may be even larger. Intuitively, this general model seeks to minimize the sum of
L a sequence of convex functions when “smooth” solutions are
C. Cost optimization problem preferred, i.e., it is aonline smooth convex optimizatipnob-

Given the workload and cost models above, we model tlan. This class of problems has many important applicafions
Internet-scale system as a cost-minimizer. In particula, including more general capacity provisioning in geograply
formalize the goal of the Internet-scale system as choositigtributed data centers, video streaming [30] in which en-
the routing policy)\. ; ; and the number of active servers, coding quality varies but large changes in encoding quality
at each time so as to minimize the total cost duririg, 7']. are visually annoying to users, automatically switchedoapt

This can be written as follows: networks (ASONS) in which there is a cost for re-establighin
a lightpath [31], and power generation with dynamic demand,
T 5 since the cheapest types of generators typically have ughy h
mAm ZZ&’S + Dy + (15 20s)  (3) switching costs [32].
Fhette =l E. Performance metric
s.t. Z Mjs =N j, V4Vj In order to evaluate the performance of the online algo-
s=1 e ’

N >0, VEVEY rithms we disquss, we focusnon th_e standard n(_)tion _of the
tijys = W PV VS competitive ratio The competitive ratio of an algorithd is
0==xz0s <@ts < Ms, Vi, Vs defined as the maximum, taken over all possible inputs, of
The above optimization problem is jointly convex .., cost(A)/cost(OPT'), wherecost(A) is the objective function
andz; s, thus in many cases the solution can be found easi (4_) under algorithmA and OPT 'S the S)ptlmal Off"”e
offling i.e., given all the information i1, T']. However, our algorithm. In the general context, the “inputs” are the fioTts

goal is to findonline algorithms for this optimization, i.e., 1/:+(-)}, which are able to capture the time-varying workload,

algorithms that determing, ; , andz; , using only informa- “electricity price, propagation delays and so on in our gapigr

tion up to timet + w wheréw > 0 is called the “prediction @ l0ad balancing problem. .
window”. Based on the structure of optimization (3), we can Actually the geographical load balancing problem (3) and

see that\, ., can be solved easily at timeslbbncex; , are the generalization (4) are instances of the class of prablem

. : : : -known as “Metrical Task Systems (MTSs)”. MTSs have re-
gfedc.)rﬁi?:fas the challenge for the online algorithms is to deClceived considerable study in the algorithms literaturel @n

is known that if no further structure is placed on them, then
D. Generalizations the best deterministic algorithm for a MTS has competitive
Although the optimization problem (3) is very genera}r tilrc])ﬁﬁirglpic:]rtéc;r;agrtgbﬁ?nnumber of system states [33], whic
3!{.6ad3|’|’ the ?nrn?halgol?thr_ns and results |r|1 fth|s papekr. a9Note that the analytic results of Section IIl focus on the

itionally apply to the foflowing, more general framework. competitive ratio, assuming that the service has a finite-dur

T T tion, i.e.T < oo, but allowing arbitrary sequences of convex

min th(xt) + Zd(xt—h%&) (4) functions {h.(-)}. Thus, the analytic results provide worst-
- t=1 case (robustness) guarantees. However, to provide realbst
subject to 0 < z; € RS, 20 = 0. estimates, we also consider case studies using real-wades

. for {h:(-)} in Section IV.
wherez; has a vector value anh,(-)} are convex functions.

Importantly, this formulation can easily include variousAS IIl. A LGORITHMS AND RESULTS

constraints on mean queueing delay or the queueing delayVe can now study and design online algorithms for geo-
violation probability. In fact, a variety of additional bods on graphical load balancing. We start by analyzing the perfor-
x¢ can be incorporated implicitly into the functiors(-) by mance of the classic Receding Horizon Control (RHC). This



uncovers some drawbacks of RHC, and so in the second paithef heterogeneous setting, which is required to model the
this section we propose new algorithms which address thegeographical load balancing.

We defer the proofs to Appendix. Theorem 3. In the heterogeneous setting ¢& 2), given any

A. Receding Horizon Control (RHC) w >0, RHC is> (1 + max,(08s/eo,s))-competitive.
RHC is classical control policy [16] that has been proposed|n particular, for anyw > 0 the competitive ratio in the

for dynamic capacity provisioning in data centers [14],][15 peterogeneous setting is at least as large as the comeetitiv

Informally, RHC works by, at timer, solving the cost 4ii in the homogeneous setting with no predictions= 0).
optimization over the windowr, 7+w) given the starting state st surprisingly (and problematically), this highlightisat

i YRS YW1 J . " .
1. Formally, defineX7(z, ) as the vector infR”)" RHC may not see any improvement in the competitive ratio

indexed byt € {r,...,7+ w}, which is the solution to asw is allowed to grow.
7w 4w The proof, given in Appendix D involves constructing a
min > hilw) + > d(mi1, ) (6) workload such that servers at different data centers turn on
A —— t—r and off in a cyclic fashion under RHC, whereas the optimal
subject to 0 < z; € RS. solution is to avoid such switching. Therefoféy ()} result-

ing in bad competitive ratio are not any weird functions but
Algorithm 1 (Receding Horizon Control: RHC)For all ¢ < include practical cost functions for formulation (3). Ndtet
0, set the number of active serversi@nc: = 0. At each the larger the prediction window is, the larger the number
timeslotr > 1, set the number of active servers to of data centers must be in order to achieve this worst case.
@) The results above highlight that, though RHC has been
widely used, RHC may result in unexpected bad performance
In studying the performance of RHC there is a clear divide some scenarios, i.e., it does not have “robust” perforaan
between the following two cases: guarantees. The reason that RHC may perform poorly in the
1) The homogeneous setting & 1): This setting considers heterogeneous setting is that it may change provisionireg du
only one class of servers, and thus corresponds to a sirigléwrongly) assuming that the switching cost would get paid
data center with homogeneous servers. Under this settiaf, within the prediction window. For the geographical load
only the number of active servers is important, not whidpalancing case, the electricity price based on the avétiabf
servers are active, i.ex, is a scalar. renewable power (e.g., wind or solar) may change drambtical
2) The heterogeneous setting & 2): This setting allows for during a shot time period. It is very hard for RHC to de-
different types of servers, and thus corresponds to a singide which data centers to increase/decrease capacitpwtith
data center with heterogeneous servers or to a collectlsrowing the entire future information, thus RHC may have to
of geographically diverse data centers. Under this settirfange its decisions and shift the capacity among datarsente
we need to decide the number of active servers of eadtry frequently, which results in a big switching cost. Neti
type, i.e.,z; is a vector. that this does not happen in the homogeneous setting where
To start, let us focus on the homogeneous setting (i.W€ don't need to decide which data center to use, and the new

the case of dynamic resizing capacity within a homogened[]é)rmation obtained in the following timeslots would only
data center). In this case, RHC performs well: it has a smBlrkeé RHC correct its decision monotonically (increase but
competitive ratio that depends on the minimal cost of arvactinot decrease the provisioning by Lemma 3).

server and the switching cost, and decays to one quickly asn the rest of this section we propose an algorithm with
the prediction window grows. Specifically: significantly better robustness guarantees than RHC.

rruC,: = X (TRHC,7—1)-

Theorem 1. In the homogeneous setting (= 1), RHC is B. Fixed Horizon Control
(1+ ﬁ)-competmve. In this section, we present a new algorithm, Averaging Fixed
Theorem 1 is established by showing that RHC is nfP'#on Cp_ntrol (AFHC), W.h.'Ch addresses the limitation of
worse than another algorithm >\//vhich ca% be proved to %C identified above. Specifically, AFHC achieves a compet-
I

(1+ 5__)_competitive. Given Theorem 1, it is natural tckve ratio for the heterogeneoys setting that matches dhat
(wt1l)eo o L . HC in the homogeneous setting.
wonder if the competitive ratio is tight. The following résu Intuitively, AFHC works by combinings + 1 different bad

highlights that there exist settings where the Ioencorm"’Ufcealgorithms, which each use a fixed horizon optimization, ae

RHC is quite close to the bound in Theorem 1. time 1 algorithm 1 solves and implements the cost optinorati
Theorem 2. In the homogeneous setting & 1), RHC is not for [1,1 + w], at time 2 algorithm 2 solves and implements
better than(wL+2 +1 -competitive. the cost optimization fof2, 2 + w], etc.

L)
. ) ) .. More formally, first consider a family of algorithms param-
It is interesting to note that [34] shows that a predictiopterized byk € [1,w + 1] that recompute their provisioning

window of w can improve the performance of a metrical tasﬂferiodically. Forallk =1,...,w+1,letQ, ={i:i=k
system by a factor of at mostw. If j/ep > 1 then RHC 1,4 (4+1)} 0 [—w, oo); this is the set of integers congruent
is approximately within a factor of 2 of this limit in thety 1. modulow + 1, such that the lookahead window at each

homogeneous case. o _ T € ) contains at least one> 1.
The two theorems above highlight that, with enough look-

ahead, RHC is guaranteed to perform quite well in the halgorithm 2 (Fixed Horizon Control, versioh: FHC*)). For
mogeneous setting. Unfortunately, the story is different all ¢ < 0, set the number of active servers:zt&}lc’t =0. At



timeslotr € Qy, forall t € {r,...,7 + w}, use (6) to set  _ * —
B _ xr (o0 g 3°° § o
Trac: = ¢ \TrHC,r—1) - (8) E 06 E 06
For notational convenience, we often sét) = «i) . §° g
Note that fork > 1 the algorithm starts from = k£ — (w+1) -§ 0.2 -§- 0.2
rather thanr = & in order to calculatec;%c’t fort < k. e PRETIYRrTarayra O 5 13 18 24 30 30 72 48
FHC can clearly have very poor performance. Howeve 2 hoﬁr 2 2 hoﬁr 2
surprisingly, by gveraging different versions of FHC weaibt (a) Trace 1 (b) Trace 2
an algorithm with better performance guarantees than RHC. Fig. 1. HP workload traces.

More specifically, AFHC is defined as follows. o ) )
i i i renewable availability, energy prices, etc, as descrilsovy’
Algorithm 3 (Averaging FHC: AFHC) At timeslotr € Q, 1) The workload:We consider 48 sources of requests, with

use FHG) to determine the provisioning!" . . ,:c(fﬁw, and one source at the center of each of the 48 continental USsstate
then setrsrppoy = Zsill xE”)/(w +1). We consider 10-minute time slots over two days.

. The workload); is generated from two traces at Hewlett-
Intuitively, AFHC seems worse than RHC because RHfackard Labs [6] shown in Figure 1. These are scaled propor-

uses the latest information to make the current decision afitha| to the number of internet users in each state, anteshif
AFHC relies on FHC which makes decisions in advance, thigStime to account for the time zone of that state.

ignoring some possibly valuable information. This intoitiis 2) The availability of renewable energyTo capture the
partially true, as shown in the following theorem, whichte$a ayailability of solar and wind energy, we use traces with
that RHC is not worse than AFHC for any workload in the@g minute granularity from [35], [36] for Global Horizontal

homogeneous setting (= 1). Irradiance (GHI) scaled to average 1, and power output of
Theorem 4. In the homogeneous settingS ( = 1), @ 30kW wind turbine. The traces of four states (CA, TX,
cost(RHC) < cost(AFHC). " IL, NC) are illustrated in Figure 2. Note thate do not

consider solar thermabecause of the significant infrastructure

Though RHC is always better than AFHC in the homog@-requires. Since these plants often incorporate a dagisihl
neous setting, the key is that AFHC can be significantly bettstorage [37], the results could be very different if solarthal
than RHC in the heterogeneous case, even when?2. were considered.

These figures illustrate two important features of renewabl
energy: spatial variation and temporal variation. In gaitr,
wind energy does not exhibit a clear pattern throughout &ye d
cost(RHC') > cost(AFHC). and there is little correlation across the locations caersid.
eIn contrast, solar energy has a predictable peak duringadke d

and is highly correlated across the locations.
In our investigation, we scale the “capacity” of wind and
Theorem 6. In both the homogeneous setting and the hete@o:ar-l_\Nhe? dOihn_ghSO, \(/:ivel Scalel' thehavailabgity Off wind and
i i Bs B} it solar linearly, which models scaling the number of genesato
geneous setting, AFHC Iél +MAXs e, ) CoOmpetitive. in a wind farm or solar installation, rather than the capeoft

The contrast between Theorems 3 and 6 highlights thach. We measure the “capacity’dbf renewables as the ratio
improvement AFHC provides over RHC. In fact, AFHC hasef the averagerenewable generation to the minimal energy
the same competitive ratio in the general (possibly heterogequired to serve the average workload. Thus, 2 means that
neous) case that RHC has in the homogeneous case. So, AHMCaverage renewable generation is twice the minimal gnerg
provides the same robustness guarantee for geographachl kequired to serve the average workload. We set capacityl
balancing that RHC can provide for a homogeneous local dasadefault, but vary it in Figures 5 and 7.
center. 3) The Internet-scale systemiVe consider the Internet-

scale system as a set of 10 data centers, placed at the centers
IV. CASE STUDIES of states known to have Google data centers [38], namely

In the remainder of the paper, we provide a detailed stuglifornia, Washington, Oregon, lllinois, Georgia, Ving,
of the performance of the algorithms described in the préexas, Florida, North Carolina, and South Carolina. Data
vious section. Our goal is threefold: (i) to understand tleenters contains), homogeneous servers, whelé, is set
performance of the algorithms (RHC and AFHC) in realisti®o be twice the minimal number of servers required to serve
settings; (i) to understand the potential environmengaldfits the peak workload of data centerunder a scheme which
of using geographical load balancing to implement “followoutes traffic to the nearest data center. Further, the railew
the renewables” routing; and (iii) to understand the optimavailability at each data center is defined by the wind/solar
portfolio of renewable sources for use within an Interretls trace from a nearby location, usually within the same state.
system.

Theorem 5. In heterogeneous settings (> 2), there exist
convex functiongh.(-)} such that

Moreover, the competitive ratio of AFHC is much bett
than that of RHC in the heterogeneous case.

2Note that the setup considered here is significantly moreméthan that

A. Experimental setup of [10], as follows. Most importantly, [10] did not model dehing costs
. - &and so did not consider online algorithms). Additionallye current work
This study uses the setup similar to that of [10], based @Qestigates the optimal renewable portfolio more catgfulsing multiple

real-world traces for data center locations, traffic woskls, traces and varying the renewable capacity among othershing
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Fig. 3. Total cost, normalized by the cost of OPT, versusiptiet window

. under RHC and AFHC
We set the energy cost as the number of active servers

excludingthose that can be powered by renewables. Note that |

this assumes that data centers operate their own wind aad s~ *2° o0 —
generations and pay no marginal cost for renewable ener ||~ f;h?: F--o T T T
Further, it ignores the installation and maintenance coéts 3 ~_ AFHC | gesp ==
renewable generation. Quantitatively, if the renewablergy § 2 - —LocAal| -7 TE’; p——ra
available at data centerat timet is r, 5, measured in terms of g - ° 3 —~ — —RHC
number of servers that can be powered, then the energy « *F~ —  AFHC
of data centes at timet is 0 75 E—
2 4 6 8 2 4 6 8
gt,s = Ds (xt,s — Tt75)+. (9) energy price 1/y switching cost B
. a) Effect of energy price, with (b) Effect of switching cost with delay
Here p; for each data center is constant, and equals to ching costs = 6. costy = 1.

industrial electricity price of each state in May 2010 [39Fig. 4. Impact of the energy price and switching cost whertdte renewable
This contrasts with the total power casizr; , typically used capacity isc = 1.
without owning renewable generation. ) . .

For delay cost, we set the round-trip network defay . and :‘Averag’!ng Fixed Horizon Control are denoted by “RHC”
to be proportional to the distance between source and d@f§l “AFHC", respectively. . .
center plus a constant (10 ms), resulting in round-tripytela ~ AS @ benchmark for comparison, we consider a system
[10 ms, 260 ms]. We model the queueing delays using parafféft does no geographical load balancing, but instead soute
M/Gl/1/Processor Sharing queues with the total I53d), ; . €dUests to the nearest data center and optimally adjusts th

divided equally among the, , active servers, each havinglumber of active servers at each location. We call this gyste
service ratgu, = 0.2(ms) L. Therefore, the delay cost of dataOCAL and use it to illustrate the benefits that come from

centers at timet is using geographical load balancing.

B. Experimental results

1

D s — A i, s J js | -

" ’YXJ.: b <Ms - Zj At,js/Tt,s 0, ) (10) With the foregoing setup, we performed several numerical

) ) ] experiments to evaluate the feasibility of moving toward

Here we consider linear lost revenue functioiid) = vd, |nternet-scale systems powered (nearly) entirely by reiésv
where~ is set to be 1. Measurements [40] show that a 500 "Bfergy and the optimal portfolios.
increase in delay reduces revenue by 20%, or 0.04%/ms. To gefy The performance of RHC and AFHGeographical load
a conservative estimate of the benefit from geographical l9gg|ancing is known to provide Internet-scale system opesat
balancing, we picky = 1, which is slightly higher than [40], S0 ¢4t savings. Let us first study the cost saving from geograph
that the penalty for the propagation delay of geograph@ad| ¢4 |oad balancing and how much of it can be achieved by the
balancing is high compared to the benchmark policy. Later Wgjine algorithms RHC and AFHC. Figure 3(a) shows the total
scalep, (with v =1 corresponding to the default setting) in,ost in the bad scenario with an artificial workload used @ th
Figure 4(a) to sho_w the impact of rela}tlvg energy cost toydelg,qof of Theorem 3 (with/ = (w + 1)2 types of jobs), which
cost as energy price possibly goes high in future, or theydejgystrates that AFHC may have much better performance in
penalty is lower for the systems. the worst case. The degradation in the performance of RHC

For the switching cost, we set = 6 by default, which asw grows is becauséd also grows. In contrast, Figure 3(b)
corresponds to the operating cost of an idle server for ab@bws the total cost of RHC and AFHC (with default settings
half an hour to one hour. We vary in Figure 4(b) to show put § = 6 min(p,), the same as in the bad scenario) under
its impact on cost saving. For the prediction window, we SpfP Trace 1. We can see that both RHC and AFHC are nearly
w = 3 by default, which corresponds to half an hour predictiagptimal for the real workload. Figure 3 confirms that AFHC is
of workload and renewable generation. We varyin Figure able to provide worst case guarantee without giving up much
3 to examine its impact on cost saving. performance in common cases.

4) Algorithms: We use optimization (3) with energy cost This behavior under real workload is further illustrated in
(9) and delay cost (10) for the geographical load balanciriggure 4, which shows the total cost under GLB, RHC, AFHC,
We use “GLB” to denote the offline optimal solution to (3)and LOCAL as energy price or switching cost is increased.
The online solutions of algorithms Receding Horizon Contrdhe cost saving of GLB over LOCAL becomes large when
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capacity ¢ capacity ¢ Peak-to—Mean ratio Peak-to—Mean ratio
(a) Trace 1 (b) Trace 2 (a) Trace 1 (b) Trace 2
Fig. 5. Impact of the renewable capacity when solar pergenis. 20%. Fig. 7. Optimal portfolios for different PMRs and capagtie
1 1 under LOCAL, the optimal wind percentage is quite different
AN Washington N Trace 1 for each location because of different renewable generatio
5 0951 N *j:\c’)‘r’gggi B ool N — - Trace? qualities, as shown in Figure 6(a). There are also simigarit
o \ o . ~ . . . . .
S 09 \ = So___-7 for different locations, e.g., the optimal portfolios caimt both
E AN . E os solar and wind, and wind has a large percentage, 60%- 90%.
£ oss NI £” Once GLB is used, it becomes possible to aggregate wind
08 AN availability across geographical locations. This makesdwi
0 02 04 06 08 1 07 "2 o024 os os 1 Mmore yaluaple since wind is not correlated across Iargga geo-
wind ratio wind ratio graphical distances, and so when aggregated, the avayabil
(@) LOCAL using Trace 1 (b) GLB smoothes. As illustrated in Figure 6(b), the optimal reri@ea
Fig. 6. Impact of the mix of renewable energy used. portfolio for Trace 1 contains 80% wind. We can also see that

the optimal portfolio is affected significantly by the wookld

the energy price is high because GLB can save a great dgtdracteristics. Compared with Trace 1, Trace 2 has less bas
of energy cost at the expense of small increases in netwmgd during night, requiring less wind generation.
delay since requests can be routed to where energy is cheafhe impact of workload characteristics becomes more
or renewable generation is high. Moreover, the cost saving(ear in Figure 7, where we use load§, = A3, o =
GLB, RHC and AFHC over LOCAL looks stable for a wide) 1.25 1.5 1.75,2, to get different Peak-to-Mean ratios. For
range of switching cost. large diurnal Peak-to-Mean ratios the optimal portfolio ¢e

2) The impact of geographical load balancin@eograph- expected to use a higher percentage of solar because salar pe
ical load balancing is much more efficient at using renewalieclosely aligned with the workload peak, which is validhate
supply than LOCAL because it can route traffic to the daia Figure 7. Also, when renewable capacity is fairly largel an
center with higher renewable generation. Figure 5 illistawe plan to install extra capacity, since solar generatiom ca
the differences of brown energy usage as a function of thgeady provide enough power to serve the workload peak
capacity of renewable energy for both traces. The brown effound noon, the increased renewable capacity can then be
ergy consumption is scaled so that the consumption is 1 whgmost from wind generation to serve the workload during
there is no renewable & 0). Interestingly, Figure 5 highlights other times, especially night. This will make the solar aati
that when there is little capacity of renewables, both GLB amower in the optimal portfolios, which can be seen from the
LOCAL can take advantage of it, but that as the capacity lxies of different renewable capacities in Figure 7.
renewables increases GLB is much more efficient at using it,
especially for Trace 1. This is evident by the significanthyér
brown energy consumption of GLB that emerges at capacities
> 1. For Trace 1 in Figure 5(a), the capacities of renewablesThis paper studies online algorithms for geographical load
necessary to reduce brown energy usage to 10% and 5% um@dincing problem in Internet-scale systems via both theo-
LOCAL are 1.1 and 2.3, respectively, while those requiregdtical analysis and trace-based experiments. We show that
under GLB are only 0.8 and 0.9. Similar reductions can lge classical algorithm, Receding Horizon Control (RHC),
observed for Trace 2 in Figure 5(b). works well in homogeneous setting (where all servers are

As in Figures 3(b) and 4, the performance of RHC anshually able to serve every request). However, in general,
AFHC is again quite close to that of the optimal solutioRHC can perform badly for the heterogeneous settings needed
GLB, which reinforces that both RHC and AFHC are nearlpr geographical load balancing. Motivated by the weakness
optimal in common cases. Therefore we will show only GLBf RHC, we design a new algorithm called Averaging Fixed
and LOCAL for the remaining experiments. Horizon Control (AFHC) which guarantees good performance.

3) The optimal renewable portfolioWWe now move to the We evaluate RHC and AFHC under workloads measured on
guestion of what mix of solar and wind is most effective. A real data center. The numerical results show that RHC
priori, it seems that solar may be the most effective, sihee tand AFHC are nearly optimal for our traces, which implies
peak of solar availability is closely aligned with that oéttlata that the improvement in worst-case performance of AFHC
center workload. However, the fact that solar is not avélabcomes at negligible cost to the average-case performance.
during the night is a significant drawback, which makes wirithe experiments also reveal vital role of geographical load
necessary to power the data centers during night. Our sesblilancing in reducing brown energy consumption to (nearly)
lend support to the discussion above. For each data cemmo. We also perform a detailed study on the impact of

V. CONCLUDING REMARKS



workload characteristics and renewable capacity on thenapt [26]

renewable portfolio under GLB.
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APPENDIX

A. Notation

We first introduce some additional notation used in the
proofs. For brevity, for any vectoy we write y; ; =
(Yiy .., y;) foranyi < j.

Let 2* denote the offline optimal solution to optimization
(4), and OPT be the algorithm that uses Further, letX be
the result of RHC, and recall that®) is the result of FHE .

Let the cost durindty, t2] with boundary conditions be

ta
Gt (3353 78) = Y hu(y) + d(ws, 1)

t=t1

(11)

ta
+ Z d(xi—1, ) + d(xt,, TE).
t=t1+1

If zg is omitted, then by conventionp = 0 (and thus
d(xt,, TR) 0). If zg is omitted, then by convention
xs = x,—1. Note thatg, ., (z) depends on; only for
t1 —1 <1< ts.

For any algorithmA € {RHC, FHC, AFHC,OPT?}, the
total cost iscost(A) = g1 r(x4).

B. Proof of Theorems 6

Lemma 1. Sinced(-) satisfies triangle inequality, we have

cost(FHC®) < cost(OPT) + Z d(x(Tk_)l,xi_l).
TEQ



Proof: For everyk = 1,...,w+ 1 and everyr € Q, Proof: The proof is by induction. By hypothesig;_; <
X;_1. We need to prove that if, | < X, 1, theni, < X..

T+w T+w

Jrosw(@®) = 3" he(aM) + 37 d(a(?,, 2 (M) Notice thati, is the first entry of a vector minimizing
t=r t=r grk(z;2-—1). Similarly X, is the first entry of a vector
4w T+w minimizing g-.r (2, X-—1). If k = 7+w, we haver, < X,
< Z he(zy) + Z d(zy_q,x}) by Lemma 2 and the tie-break rule of RHC. Otherwise, i.e.,
— t—r+1 k < 7+ w, we know thatX, is the first entry of a vector
(k) % x minimizing g x(; X-1;2},,,) with j , > 0. By Lemma
+d(z:2y, 27 ) ;)d(xffl’xf) 2 and the RHC tie-break we again have < X.. ]
=Grrtw(@”) +d(z, 20, 27 y). (12) Next comes the first main lemma used to prove Theorem 4.

Summing the above over € (), establishes the lemma.m . .
Proof of Theorem 6:Substitutingd(z,y) = 8- (y — «)* Lemma 4. In the homogeneous setting & 1), each version

into Lemma 1, by the convexity df, (and thusg 1), k of FHC allocates fewer servers than RHC:
(k)
cost(AFHC) 1o glyT(:c(k)) TpHe S TRHC- (13)
cost(OPT) — w+1 — cost(OPT) Hencezaruc < zruc.
G- T: xi_q 0 - T: ri_q Proof: Let X = zryc be the result of RHC, and =
< 1 + t=1 < t=1 (k)

(w + 1)cost(OPT) — L (w+ 1)L he(zf)  ZFEC The proofis by induction. By definitiom;, = X, = 0.
T . - To see that, _; < X,_; impliesz, < X, notice thatz, is

B 1% <14 max Bs the first entry of a vector minimizing; x(z;z._1) for some
(w+ 1)eg - ZtT:lfC? - s (w+1)egs k € [r,7 + w], with K + 1 € Q. The implication follows

where the second step uses Lemma 1, and the last step ﬁ%ﬁl;seegig?: 3 and establishes (13). The proof fofrrc ﬁ'

the facts that; /e ; < max, f;/eos, and0 < 31 a7 | <

Zthl x; elementwise as{; = 0. B Lemma 5. In the homogeneous settin§ & 1), for any given
vectorz < zrpc, we haveg, r(zrpe) < g1.7(x).

C. Proofs of Theorems 1 and 4

The following lemma says that the optimal solution [oyy] Proof: Denote X = zgrpc. It is sufficient to construct
is non-decreasing in the initial conditian_; and the final a sequence of vectos such that:¢! = =z, ¢ = X, for
condition ;1. t <7, andg; r(£7) is nonincreasing im. The sequence can be

: constructed inductively with the additional invarig§it < X
Lemma 2. Let § = 1. Given constantsr; 1, ;1 as follows y ATt <
R, let " = (z/,...,2]) be a vector minimizing el i I c
9i(z:2i_1;2541). Then for lanyjifl_z 2oy and iy > ;At stageiT,~ we calcu ate {7 ANpr RH Tto_ get
5 there exists a vectof’ = (2. 2%) minimizin X7(Xr—1) = (&7, ..., Trsw). Note thati, = X, > {7 since
JHb oAy 9 £™ < X by the inductive hypothesis. Moreovet. ., <

(e A i > i
9i,j(@; &i—1; &j41) such thati® > 2. X+ +4 by Lemma 3.
Proof: Sincez" and #/ minimize their respective ob- If 7, > ¢7 .+ €lementwise, then replace elements

jectives, we havey; ;(z"/; zi—1; 2j41) < 9i5 (875 2i1505101)  to74+w in €7 10 gete™ ! = (6] .1, Frrbus Epuinr) >

andgi ; (2; Zi—158j41) < gij (275 2513 Z541). Ifthereisan ¢ Then g, ., (6711) < g1,44(€7) by the optimality
2 such that the latter holds with equality, then we can choase 7. ... Since €, < Fryw and d(z,y) = Bly —
’ ! _ : . Tow < )
2;) = x; and consider the problem with; 11 ; recursively. x)T is non-increasing in its first argument, we also have
Otherwise, i.e., the latter is a strict inequality, summthg .\ +(¢7t1) < g, 1 2(€7). Therefore,g, p(€711) <
two inequalities and canceling terms gives a0 T(§Tj- Finally, to see that™*! < X, note thaté™ < X
(Iﬁj—xiq)ﬂ- (jz:j—j?i—l)-’_‘i- (ij+1_£;j)++ (Ij+1_x§j)+ and, ;4. < X, ;14 a@s remarked above.
ij . " ij Otherwise, let € [T+ 1, 7+w] be the minimum index that
i V4 (0 ) B A XA , ,
<@ o) (@ —de) T (B —af) T @ 8% g e Lete T = (6 s, & p) > £ Note that
Since #;—1 > x;—1 and #;41 > xj.1, it follows that k > 7+ 1 sincei, = X,; this ensureg] = X, for ¢ < 7.
either 2/ < ¥ or 2% < x;? by the submodularity of Again, (™1 < X as in the previous case. It remains to prove

. : : +1
o(z,y) = (x—y)™T. In either case, we can continue recurswel?,LT(g ) < g1,7(87)-

consideringg; 1 ; in the former case og; ;1 in the latter. Let ua = &, 1, up = & o Ua = T, -1 and
Finally we havei® > z%. B Up = T ;4w Let vectors(ua, up), (ta,up), (ua,up) and
The next technical lemma says that RHC has larger solutiqias,, ) be indexed byt € {r,...,7 + w}. To see how

than related algorithms that look less far ahead. replacingé’. ,._, by z, ,_. affects the cost ifl, T, note

Lemma 3. Consider a system in the homogeneous setting G (€ = g1r(€7)

(S = 1), and constants, X; 1 > 7,1 > 0, and k €

[t,t +w]. LetZ = (&y,..., &) minimizeg, (z; 1), and = grrtw((@4,u5)) = grrpw((Ua, up)).
let X = xrpc. Thenz < X; k. Now sincezy, < &, Tx—1 > &), ando(z,y) = (x —y)T is



submodular, we have the load such that: (a),+1 = 0, (b) Ay = A for all other
t e [1,7], and (c)A, =0 for ¢ & [1, 7.

(9r,r+w((@a, UB)} N gT’T““w((uAluB)N)) Under AFHC: Attimet =1, FHC™) sees\y, ..., Ay,1 and
+ (grrt+w((ua, @B)) = grrtw((@a, @p))) (14) so uses\ servers in data centérfor the firstw timeslots and
=B((& — 1) — (& — &) turns off all servers at timeslat + 1. From timeslott = w+2

- - - - onwards, it sees = A until time 7', and so used servers in
+ (@ — 1) — (@ — Tu-1)") data centee until 7.

<0. For2 < i < w+ 1, FHC® initially sees a window of
loads in whichw or fewer time slots have non-zero load, and
S0 again chooses servers in data centelHowever, the last
Grr4w((UA, UB)) = grryw((Ta,uB)) > 0. slot in the first window, slot — 1, has loadA, and so servers
ngain on. In the second and subsequent windows, the cost of
Switching is greater than uses servers in data ceantettil 7.

But since(u 4, up) optimizes (6), we have

Thus the first bracketed term in (14) is non-positive, when

1.0 = g10(€7)) Thus its total cost is
< grrtw((@a,uB)) = grriw((ua, un)) cost(AFHC) = ——(f;AT + B, A)
<. - w41
Proof of Theorem 4:By Lemma 4 and AFHC, we have + ——(fihw + BiA + foA(T —w — 1) + BoA).
# < zpuc. By Lemma 5,91 7(vrrc) < 91,7(%). u w+1
Proof of Theorem 1:The bound on the competitive ratiounder RHC: RHC uses only servers in data centeforever,
of RHC follows from Theorems 4 and 6. m for the same reason &HC") for 2 < i < w + 1. Thus its
D. “Bad” instances for Receding Horizon Control (RHC) total cost is cost(RHC) = fLAT + Bi A

We now prove the lower bound results in Section IIl b
constructing instances that force RHC to incur large costs.
Proof of Theorem 2: Consider the operating cost
ht((Et) = €Tt for A < ay and ht((Et) = oo for At > 2.
Note that this cost function is convex. Now consider thevatri
pattern A\ = {\}1<i<r where A\yyq941 = A > 0 for
k = 0,1,... and other)\, are all 0. It is easy to see that
RHC will give the provisioningXy,,42)+1 = A and X; = 0

¥he choice ofT implies f1 (T — w) > fo(T —w — 1) + B,

nd thuscost(AFHC') < cost(RHC). [ |
Proof of Theorem 3:The proof will be by construction.

Consider an Internet-scale system wihdata centers and

types of jobs (e.g., workload from different locations).tLe
> S > w. Let the switching cost for servers in data

centers be 5, = [y + 2esw. Denote the type- workload

for othert. Thus we have at time¢ by A\, ; (j € {1,...,J}). Let the operating cost be
T T he(ze) = 325 (eo—se+C L1 Mt)ae,s for 5wy >
g1.10(X) = P 5 Ao + — m 5 0A ijl Mi,; andhy(z;) = oo otherwise, where > 0 is a small

) L L R constant and’ > max; [3s is a large constant. Intuitively, this

Now consider another provisioning policy = {i; = gperating cost function means that servers in data center

Abi<i<r. Its costisgy r(2) = T'Aeg + SA. Thus consume a little bit more energy wheiis smaller, and they are

g1, 7(X)/g1,7(x") > g1,7(X)/91,7(2) very inefficient at processing workload of types higher than

e + 3 1 3 Also, the SV\_/ltchmg cost increases slightly agcreases. This

= ~ may occur if all servers use roughly the same hardware, but

(w+2)(eo+4/T) w+2  (w+2)eo data centes store locally only data for jobs of types 1 to
asT — . [ Consider the workload trace which has; = A for ¢t =

Note that the cost function in the proof of Theorem 2 is,...,w+1andX,;—, = Afort =w+2,...,w+S. All the
applicable to data centers that impose a maximum load @fer arrival rates\; ; are zero. Then RHC would start with

each server (to meet QoS or SLA requirements). A servers in data centér(the cheapest to turn on) at timeslot
Proof of Theorem 5: When S = 2, the following 1, and then at each € [2,S] would switch off servers in

geographical load balancing instance causes(AFH(C) < data cente(t — 1) and turn onA servers in data center(the

cost(RHC). cheapest way to avoid the excessive cost of processingttype

Choose constantg;, > f» and 3, < 3, such that(w + Jobs using servers in data centewith s < ). For sufficiently
Dfi < (w+1Dfa+ B < (w+1)f1 + 58 andwf, + 3, < smalle, the optimal solution always uses servers in data
wfo + (2. These can simultaneously be achieved by choosi@?’lterS for t € [1,w+ S]. Therefore the total costs i, w+
an arbitraryf; — f» > 0, then choosingd, — 1 € (w,w + S| for smalle arecost(RHC) = A(w + S)eq + ASBy + O(e)

1)(f1 — f2), and then8y > (w + 1)(f1 — f2). and cost(OPT) = A(w + S)eg + ABy + O(e). Therefore,
Let the switching cost for data centérbe 3;. Let the cost(RHC) (S —1)8o
operating cost bé,(z;) = fizi 1+ faxea for Ay < a1 44 =1+ + Of(e).

andh(x;) = oo for A, > x;1 + x,». Note that this function cost(OPT) (w + S)eo + fo
is convex. In this system, the servers in the second datarcefor S > w andSey > [, and smalk, this ratio will approach
have lower operating cost but higher switching cost (e.g@rem 1 + 5y/eo, which implies the result. [ |
expensive, energy-efficient severs).

Choose constants > w+max(1, 32/(f1—f2)), andA > 0.
Now consider the cost of schemes AFHC and RHC under



