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Abstract
Thepastdecadehasseena wealthof research on timese-

ries representations,becausethe manipulation,storage, and
indexing of large volumesof raw timeseriesdata is imprac-
tical. Thevastmajority of research hasconcentratedon rep-
resentationsthat are calculatedin batch modeandrepresent
each valuewith approximatelyequalfidelity. However, thein-
creasingdeploymentof mobiledevicesandreal timesensors
has brought homethe needfor representationsthat can be
incrementallyupdated,andcanapproximatethedatawith fi-
delityproportionalto its age. Thelatter propertyallowsusto
answerqueriesaboutthe recentpastwith greaterprecision,
sincein manydomainsrecentinformationis moreusefulthan
older information.We call such representationsamnesic.

While there hasbeenpreviouswork on amnesicrepresen-
tations,the classof amnesicfunctionspossiblewasdictated
by the representationitself. In this work, we introducea
novel representationof time seriesthat can representarbi-
trary, user-specifiedamnesicfunctions.For example, a mete-
orologistmaydecidethatdatathat is twiceasold cantolerate
twiceasmuch error, andthus,specifya linear amnesicfunc-
tion. In contrast,aneconometristmightoptfor anexponential
amnesicfunction. We proposeonlinealgorithmsfor our rep-
resentation,anddiscusstheir properties.Finally, weperform
an extensiveempirical evaluationon

���
datasets,and show

that our approach canefficientlymaintaina high quality am-
nesicapproximation.

1 Intr oduction

Time seriesare one of the most frequently encountered
forms of data. Many applicationsin diversedomains,pro-
ducevoluminousamountsof time series[29, 26]. Examples
of suchapplicationsexist in finance[29], medicine[21], me-
teorology, oceanography[26], manufacturing,network man-
agement[17], sensornetworks[11], andotherdomains.

The sheernumberandsizeof the time serieswe needto
manipulatein many of thereal-world applicationsmentioned
above dictatestheneedfor a morecompactrepresentationof
time seriesthantheraw dataitself. A plethoraof representa-
tionshavebeenproposedfor timeseriesapproximation[19].

The problemof approximatingtime seriesbecomesmore
interestingandchallengingin the context of streamingtime
series,wheredatavaluesarecontinuouslygenerated,poten-
tially forever. In this situation,we cannotapply approxima-
tion techniquesthat requireknowledgeof the entire series,
suchassingularvaluedecomposition[6] andmostsymbolic
approaches[2]. Furthermore,all currenttime seriesrepre-
sentationstreat every point of the time seriesequally. This
meansthat,whencomputingtheapproximation,thetime po-
sition of a point doesnot make a differencein the fidelity of
its approximation.This may be desirablefor someapplica-
tions,suchasarchiving, however, thereexist many realworld
situationswherewe would like to take into accountthe time
dimensionin theapproximationof the time series.The intu-
ition behindthis requirementmaybestatedasfollows. While
we arewilling to acceptsomemargin of error in theapproxi-
mation,we would like themostrecentdatato have low error,
andwe would be moreforgiving of error in older data. We
call this kind of time seriesapproximationamnesic, sincethe
fidelity of approximationdecreaseswith time,andit therefore
requireslessmemoryfor theeventsfurtherin thepast.

Thepotentialutility of sucharepresentationhasbeendoc-
umentedin many domains.Considerthefollowingmotivating
examples.� TheEnvironmentalObservationandForecastingSystem

[26] is a large-scaledistributedsystemdesignedto mon-
itor, model, and forecastwide-areaphysicalprocesses
suchas river systems. They note that in their current
model, the loss of a repeaterstationresultsin the loss
of realtime information.Allowing thestationsto record
somedatato a buffer canmitigatethis problem. How-
ever, sincethestationdoesnot know how long it will be
offline andhasa finite buffer, amnesicapproximationis
theonly logical way to recordthedata.� NASA is developingrobotsto be usedin an urbanset-
ting [15]. Typical applicationsinclude searchand res-
cue,andinspectionof hazardousenvironments.In many
situations,informationaboutthe pathtraversedmustbe
known if the robot is to back up to a more promising
avenueof explorationafter reachinga deadend. Power
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Figure 1. Depiction of an amnesicapproximation, using
the piecewiselinear approximation technique.

and size constraintsprohibit the robot from storing all
thedatawith perfectfidelity, sotheutility of anamnesic
approximationhasbeennotedfor this domain[15].� Hussainet al. [17] proposea framework for classifying
denialof serviceattacksusing(amongotherthings)tem-
poralinformation.They explicitly notethattheutility of
informationis in proportionto its age.

Althoughthiswork suggeststhattheusefulnessof datacan
diminishwith age,wenotethattherateatwhich its utility de-
caysdependsontheapplication.Thefunctionthatdetermines
theamountof error we cantolerateat eachpoint in the time
seriesis calledan amnesicfunction. Ideally, we would like
to allow arbitraryamnesicfunctions,sothatwecanmatchthe
requirementsof awidevarietyof applications.For example,a
meteorologistmaydecidethatdatathatis twiceasold cantol-
eratetwice asmucherror, andthus,specifya linear amnesic
function. In contrast,an econometristusingclassicmodels
might well specify an exponentialamnesicfunction. Fig-
ure1 depictsanamnesicapproximationof astatictimeseries,
andthe amnesicfunction thatwasused.Note thataswe get
to olderpoints(to theright) theapproximationgetscoarser.

In this paper, we describea framework for online am-
nesicapproximationof streamingtimeseries.Wecharacterize
thedifferentclassesof amnesicfunctions,andpresentcorre-
spondingalgorithmsfor performingamnesicapproximation.
We studytwo variationsof theproblem.First, thecasewhen
we areinterestedin approximatingtheentiretime seriesseen
sofar. We referto this caseastheunrestrictedwindow. Sec-
ond,thesliding windowcase,whereat any point in time, we
areonly interestedin a fixednumberof the lastvaluesof the
time series. In Figure2 we show how the approximationof
a time serieschangesasa functionof time, for five different
timestamps.In this example,we useanunrestrictedwindow
to approximatetheSpaceShuttleSTS-57dataset,usingpiece-
wiselinearapproximationwith tenlinearsegments.Thetime
progressesform right to left (i.e., themostrecentpoint is the
left-most point). We observe that the approximationof the
most recentpoints always remainsaccurate,while it grace-
fully degradesateachtime stepfor theolderpoints.

While somerecentwork [8, 5] hasproposedtoolsandtech-
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Figure 2. Exampleof online amnesicapproximation.

niquesfor computingspecialcasesof amnesicapproximations
of time series,aswe discussin Section6, thesesolutionsare
specific and rather restrictive in the variety of applications
they can accommodate.In particular, the typesof amnesic
functionsthey can useare dictatedby the representationof
thetimeseries.In contrast,our framework is generalandable
to operatewith a wide classof amnesicfunctions,which are
definedby theuser.

Our contributionscanbesummarizedasfollows.� We introducethe notion of generalamnesicfunctions.
We presenta taxonomyof thesefunctions,discusstheir
properties,anddescribehow they affect the solutionof
theproblemof onlineamnesicapproximation.� We formulate the above problem as an optimization
problem,wherewe wish to minimizethe reconstruction
error given the availableamountof memoryfor the ap-
proximation. We study two importantvariationsof it,
namely, theunrestrictedandthesliding window cases.� Weproposeefficientalgorithmsfor solvingtheaboveop-
timization problems. The time complexity of the algo-
rithmswe proposeis independentof thesizeof thetime
series.Thetime to processeachnew point is essentially
constant(logarithmicon thenumberof segmentsusedin
the approximation).Thesearethe first algorithmspro-
posedfor solvingthegeneralcaseof theproblem.� We present an extensive experimental evaluation of
our techniques,using more than 40 syntheticand real
datasets.The experimentsshow theapplicability of our
approach,andthequality of solutionsof our algorithms.

Therestof thepaperis organizedasfollows. In Section2
we give thenecessarybackground.In Section3 we introduce
somenew terminologyandformally definethe problemswe
study. Thealgorithmswe proposearepresentedin Section4,
andSection5discussestheexperimentalevaluation.Section6
reviewsrelatedwork, andSection7 concludesthepaper.
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2 T� ime SeriesApproximation

A time series,��� �
	 , is a seriesof datapoints,eachonear-
riving at a distinct time instance�
� . ��� ����� ��	 definesa range
of datapoints. Whenthe total numberof datapoints in the
time series,� , is known in advance,we call the time series
static, andwe saythat is haslength � . Whendatapointsare
arriving continuously, in a streamingfashion,thevalueof �
representsthenumberof datapointsseenin thetimeseriesso
far, andwe call the time seriesstreaming. The focusof our
work is on streamingtime series.

Severaltechniqueshavebeenproposedin theliteraturefor
the approximationof time series,including DiscreteFourier
Transform(DFT) [25, 10], DiscreteCosineTransform(DCT),
Piecewise Aggregate Approximation (PAA) [28], Discrete
WaveletTransform(DWT) [23, 7], AdaptivePiecewiseCon-
stant Approximation(APCA) [6, 22], Piecewise Linear Ap-
proximation(PLA) [20], PiecewiseQuadratic Approximation
(PQA), andothers.Beforewe considerwhich of theserepre-
sentationsis bestsuitedfor thetaskathand,it is naturalto ask
which is best,simply in termsof reconstructionaccuracy. In
orderto answerthis question,weexperimentallycomparethe
above approachesusingmany real-world datasets.We con-
ductedsuchanexperimenton

���
diversetime seriesfrom the

UCRTimeSeriesDataMining Archive[1].
For our experiment,we randomlyextracteda subsequence

of length ����� from eachtimeseries,andapproximatedit with
eachof therepresentationsunderconsideration,usinga ��� to� compressionratio. This wasa fair comparison,using the
sameamountof memoryfor eachrepresentation,andapply-
ing all possibleoptimizationsfor all representations.How-
ever, for the piecewise polynomial approaches,the optimal
representationrequiresquadratictime to produce,and we
usedawell known nearlinear-timealgorithminstead[18, 20].
We measuredthequality of theapproximationusingtheroot
meansquarederror. We repeatedthis procedure� ��� times,
averagedtheresults,andnormalizedtheperformanceof each
representationby dividing by the bestperformingapproach.
Finally weaveragedall

���
scoresasshown in Table1.

The resultsmay appearsurprising,becausethereis little
differencebetweenall theapproaches.In fact,similar results
have beendocumentedelsewhereaswell [19, 6]. Theoverall
conclusionfrom this experimentis thefollowing. If we want
to choosea representationfor thetaskof approximatingtime
series,thenwe shouldnot choosetherepresentationbasedon
approximationfidelity, but ratheronotherfeatures.

Oneimportantfeaturemaybethevisualappearanceof the
representation,sincein many applicationdomainswe arein-
terestedin visualizingthetimeseries.In Figure3 we visually
compareall representations1 on animportantandfamiliarex-
ample,anelectrocardiogram.We show just oneexamplefor
brevity. For a fair comparison,we usean equalnumberof
bytesfor eachapproach(asdiscussedabove). Although the

1Weomit theresultfor DCT sinceit is indistinguishablefrom DFT.
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Figure 3. Comparison of (top to bottom) APCA, PLA,
PQA, DWT (Haar), and DFT (”k oski ecg.dat” dataset[1]).

quality of visualizationfor a representationis subjective, we
feel thatthePLAapproach(secondfrom top) is thebestof the
approaches.

When consideringthe alternative representationsin the
context of amnesicapproximation,it is notobvioushow some
of themcanaccommodatethe requirementsof this new en-
vironment. The DWT representationis intrinsically coupled
with approximatingsequenceswhoselengthisapowerof two,
whichseverelyrestrictsthechoicesof amnesicfunctions.Us-
ing waveletswith sequencesthathave otherlengthsrequires
ad-hocmeasuresthatreducethefidelity of theapproximation,
and increasethe complexity of the implementation. While
DFT hasbeensuccessfullyadaptedto incrementalcomputa-
tion [29], it is not clearthat it canbeadaptedto performam-
nesicapproximation,sinceeachDFT coefficient corresponds
to a globalcontribution to theentiretime series.Thesameis
truefor DCT aswell.

In contrastto theabove,thepiecewisepolynomialmethods
offer several desirablepropertiesfor the taskat hand. Much
is alreadyknown abouttheir incrementalcalculation,andbe-
causeeachsegmentis independentof eachother, we canre-
ducethefidelity of ”older” segmentssimplyby mergingthem
with their neighbors,without affecting ”newer” segments.
The only questionremainingis which piecewise polynomial
techniqueto use.WedecideonPLA for thefollowing reasons.
Piecewiselinearapproximationsarealreadywidely usedand
acceptedin themedicalandfinancialdomains[16, 21]. There
aremany useful distancemeasuresdefinedon PLA, includ-
ing weighedmeasures[20], timewarping[27], Markov model
basedmeasures[12] and lower boundingapproximationsto
theEuclideandistance.
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DFT DCT PAA DWT (Haar) DWT (Daub12) APCA PLA PQA
0.951 0.923 0.948 0.948 0.902 0.893 0.940 0.927

Table 1. Comparison among various techniques for time series approximation.
2.1 Propertiesof PLA Approximation

In PLA, we approximatethe datapoints in a time series
usinga numberof linear segmentswhoseendsneednot be
contiguous[20]. The PLA approximationschemehassome
desirablepropertiesthatallow incrementalcomputationof the
solution.Thesepropertiesarenecessaryin orderfor thealgo-
rithm to beableto operateefficiently on largedatasets.In the
following paragraphswe presentthesepropertiesin theform
of theorems,andwe discusstheir applicationsin Section4.

Assumewe have � data points of a time series, ��� �
	 ,��� �!�"� , andwe usethemto fit two line segments(us-
ing leastsquares).Let the first line, #%$ , approximatepoints� to & , &(')� , andthe secondline, #�* , approximatepoints&�+,� to � . In addition,supposeweuseasingleline segment
to approximateall the points � to � , call it #-$/. * . The above
threelinesaredepictedin the top graphof Figure4. Related
to thesethreelinesaretheerrors 0!1
#-$32 , 0!14# * 2 , and 0514#-$/. * 2 .
The error of a segment # is computedaccordingto the for-
mula 0!14#%25687:9<;�=>1?��� ��	A@B#�� ��	C2 * , where � rangesover all
thepointsin segment# , ��� ��	 is thevalueof point � in thetime
series,and #�� ��	 is theestimatefor point � givenby segment # .

Now imaginethatwe keep #-$ and # * , andthrow away the
original � points,andthatwe want to usea singleline seg-
mentto approximateall theoriginal points.Theconstruction
of this new line, #-$/. * , canbebasedonly on theinformationin# $ and #�* , andweprovethat # $/. * is thesameas # $D. * . Sincewe
nolongerhavetheoriginalpoints,weassumethatall � points
lie on line segments# $ and #�* , andwebuild # $/. * basedonthis
assumption.This situationis depictedin thebottomgraphof
Figure4. Theresidualerrorof thisnew line is 0!1 # $D. *�2 . Unlike
thepreviouscases,this is theerrorbetweenthepointson line# $/. * andthe pointson lines # $ and #�* . (Rememberthat line#-$/. * is not calculatedbasedon theoriginal pointsof thetime
series.)It turnsout thatwecanalsocalculate0!14# $D. *�2 without
theneedto referto theoriginal � points.
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Figure 4. Combining two regressionlines.

We can now prove the following theoremsregardingthe

processof merging two line segmentsinto one.

Theorem1 [Computing the New Line Segment.]Theline
segment#-$/. * , built fromthetwoline segments#-$ and # * , is the
sameastheline segment# $D. * , built fromtheoriginal pointsof
thetimeseries2. Thatis, #-$D. * 6 #-$/. * .
Theorem2 [Computing the New Err or.] Theerror of the
line segmentapproximatingall the original data pointscan
be computedas the sumof the errors of the two individual
line segments,andtheerror betweenthosetwo line segments
andtheline calculatedbasedonthosetwo. Thatis, 0514# $/. *%2E60514#-$<2F+G0!1
# * 2F+G0!1 #-$D. * 2 .

Anotherinterestingpropertyof PLA is thatfor thecompu-
tationof theerror 051 #-$/. * 2 we do not needto processindivid-
ually all the pointscorrespondingto line segment # $D. * . We
caninsteadavoid the linearcomplexity of this procedureand
computethe valueof 0!1 # $D. *�2 in constanttime, accordingto
thefollowing lemma.

Lemma 1 [Computing the Err or BetweenTwo Segments.]
Theerror, 051 # $/. *�2 , of a line segment, # $D. * , which wascon-
structedfromtwo line segments,#-$ and # * , canbecomputed
with a closedform formula3 in time HI1
��2 , regardlessof the
lengthof theline segments.

Theintuition behindLemma1 is thatwe cancomputetheer-
ror betweentwo linesasa summationover thecorresponding
discretepoints,by taking into accountthe offsetsandslopes
of thetwo lines.Theaboveformulationleadsto aclosedform
formulafor thecomputationof theerror.

Thepropertiesof PLA, presentedin Theorems1 and2 and
Lemma1, form the basisfor the designof the online algo-
rithmswe propose.Thesepropertiesenableour algorithmsto
merge two line segments,andcalculateexactly the resulting
line segmentalongwith its residualerrorin constanttime.

3 ProblemFormulation

In the following paragraphswe establishsomeadditional
terminologynecessaryfor therestof thepaper. Then,we for-
mally definetheproblemsthatwe addresswith this work.

3.1 AmnesicFunctions

As wementionedearlier, weneedawayto specifyfor each
point in time theamountof errorallowedfor theapproxima-
tion of thetimeseries.In orderto achievethisgoal,weusethe

2A similar resulthasalsoappearedelsewhere[8].
3Theformularequirestheintroductionof additionalnotation,andweomit

it dueto lackof space.
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amnesicfunction J�1?KL2 , which returnstheacceptableapprox-
imationerror for point KM6N�
OP@G�
� , where �
O is thecurrent
time, and � � is the time that point ��� �
	 arrived. The time � O
refersto thetime whenthe lastdatapoint arrived,andcorre-
spondsto position KG6 � of the amnesicfunction. Note that
thefunction J�1?KL2 is only definedfor KRQ � , since�
�S�G�
O .

A key propertythat an amnesicfunction hasto satisfy is
themonotonicityproperty.

Definition 1 [Monotonic AmnesicFunctions.] An amnesic
function, J�1CKT2 , is called monotonicif and only if J�1CKT2,�J�1?KU+V��2 , for everyvalueof K in its domain.

The approximationof a time seriesis a lossy compression
technique,whichby definitionis irreversible.Thus,themono-
tonicity propertyposesa naturalrestrictionin our setting. It
ensuresthat if at time � we cantoleratesomeerror 0XWD1C��� �
	Y2
in theapproximationof point ��� �
	 , thenwewill not requestan
approximationof thesamepoint ��� �
	 with error 0ZWC[\1C��� �
	C2]'0XWD1C��� �
	C2 , atany time �
^`_,� .

We now definea taxonomyof amnesicfunctions(refer to
Figure5). As we discussin thenext section,eachclassin the
taxonomyhasits own specialcharacteristics,which have to
be taken into accountwhendesigningan efficient algorithm
for theamnesicapproximationof timeseries.

PiecewiseConstant: The piecewiseconstantfunction is the
simplestform thatanamnesicfunctioncanassume(with
theexceptionof theconstantfunction,which is a trivial
case,andwe do not discussit here).It hasthefollowing
generalform.acbYd�e`fhg"i3j , k]l dImon j/pq�q/qi/r ,

n rtsLj l dAu
wherev $%w �3��� w v3x areconstants,suchthat v $ 'y�3����',v<x .
We referto eachstepof thefunctionasa section, to dis-
tinguishit from thesegmentsusedin theapproximation.

Linear: A linear function has the generalform: J�1CKT2V6z KU+M{ , z w {|_ � .
PiecewiseLinear: The generalform of a piecewise linear

functionwith } sectionsis asfollows.acbYd~e�f(g"� j dc�R� j , k]l dImon jDpq/q/q� r d]��� r ,
n rtsLj l dLu

where z 9o� � � w\��� ��2 , �����G��} , {T$R_ � , and { * 6z $D�~$E+M{T$ w �3��� w { x 6 z x�� $D� xT� $S+|{ xT� $ .
Continuous: Theamnesicfunctionsof thisclasscantakeany

form not subsumedby the previous classes.The only
restrictionis thatthefunctionis monotonic(accordingto
Definition1). Wedonotrequirethatthesefunctionshave
aclosedform formula.

Wealsodefinetwo formsof amnesicfunctions,namely, the
relative, ��J�1?KL2 , andtheabsolute, JcJ�1CKT2 , amnesicfunctions.

(d) continuous

(b) linear

(c) piecewise linear

(a) piecewise constant

c1

c

cL

2

1d d dL−12

1d d dL−12

Figure 5. The differ ent classesof amnesicfunctions.

Relative: A relativeamnesicfunctiondeterminestherelative
approximationerror we can toleratefor every point in
the time series. Whenwe usea relative amnesicfunc-
tion, we essentiallyweight the error of somedatapoint
by the inverseof theamnesicfunctioncorrespondingto
thatpoint, so that 0!1CKT2�6�0!1CKT2 � ��J�1CKL2 . For example,
therelative amnesicfunction �]J�1CKT2c6�K , specifiesthat
whenweapproximateapoint thatis twiceasold,wewill
accepttwice asmucherror.

Absolute: An absoluteamnesicfunctionspecifies,for every
point in thetimeseries,themaximumallowableerrorfor
the approximation. The error 0!1CKT2 , at point K , should
satisfytheinequality 0!1?KL2���J�J�1CKL2 .

Whenwe have to applyanamnesicfunctionto a segment# , wepick asinglepoint from thesegment,onwhichweapply
theamnesicfunction.Nevertheless,thiscomputationrefersto
theentiresegment.Without lossof generality, for therestof
thispaperweassumethatsegment# is representedby its most
recentpoint, ��� � = 	 . Then,whenwe wantto applyanamnesic
function to # , we simply considerthe point of the amnesic
functioncorrespondingto point ��� � = 	 . Wecanalsoapplymore
elaborateschemes.For example,wecouldconsidertakingthe
averagevalue of the amnesicfunction correspondingto the
first, middle,andlastpointsof # .
3.2 Problemsfor AmnesicApproximation

Undertheassumptionsdiscussedabove,we wantto main-
tain a PLA model � with � segmentsfor a streamingtime
serieswith anunrestrictedwindow. More formally, we define
thefollowing two problems.

Problem1 [Unr estricted Window with Relative Amnesic
(URA)] Given the number of segments � and a relative
amnesicfunction ��J�1?KL2 , find an approximation � using� segments that at each time step minimizes the error051C��������� �R	Y2S6y7��9�� $ 1?0!1
# 9 2 � ��J�1C�
O�@�� =�� 2\2 .
Problem2 [Unr estricted Window with Absolute Amnesic
(UAA)] GivenanabsoluteamnesicfunctionJcJ�1CKT2 , construct

5



a model � with theminimumnumberof segments� , subject
to theconstraints 0!1
# 9 2��:JcJ�1C�
O�@�� =�� 2 , �X�|���:� .

We are looking for online algorithmsthat, when a new
point arrives, they updatethe approximationmodel in sub-
lineartime on thenumberof segments.Notethat in theURA
andUAA problemstheoptimizationobjective is different. In
theURAproblemwe seekto minimizetheapproximationer-
ror given the memoryspaceusedby PLA, while in the UAA
problemwe want to minimize thespaceusedin theapproxi-
mationgiventhemaximumerrorallowed.

Following the definition of the problemsfor the unre-
strictedwindow, we now definethe correspondingproblems
for thecasewhereweconsiderthesliding window model.

Problem3 [Sliding window with RelativeAmnesic(SRA)]
Givena sliding windowof length   , thenumberof segments� anda relativeamnesicfunction ��J�1?KL2 , findanapproxima-
tion � using � segmentsthatat each timestepminimizesthe
error 051C��� � Oc��¡I¢ $-��� � O 	Y2E6 7 �9�� $ 1?0!1
# 9 2 � �]J�1C� O @�� = � 2�2 .
Problem4 [Sliding window with Absolute Amnesic
(SAA)] Givena slidingwindowof length   , andanabsolute
amnesicfunction JcJ�1?KL2 , construct a model � with the
minimumnumberof segments� , subjectto the constraints0!1
# 9 2���J�J�1C� O @�� = � 2 , �X�|���:� .

4 Algorithms for AmnesicApproximation

We now describealgorithmsfor the URA andSRAprob-
lems. In the experimentalevaluationwe show thatour algo-
rithms performvery closeto optimal. At the endof the sec-
tion, we briefly discusssolutionsfor UAAandSAA.

4.1 UnrestrictedWindow with RelativeAmnesic

4.1.1 Optimal Solution

Theoptimalsolutionfor theURAproblemcanbeobtainedus-
ing dynamicprogramming[4]. Note that in orderto get the
optimal solutionin a streamingenvironment,we have to run
the dynamicprogrammingalgorithm every time that a new
datapoint arrives. The reasonis that we cannotreusethe
computationsmadeduringthepreviousstep,becausetheam-
nesicfunction causesthe approximationerror of eachpoint,
andtheir interrelationships,to changeat every time step.The
time complexity for the dynamicprogrammingalgorithmisHI1?� * ��2 , which rendersthis approachinapplicablefor the
online versionof the problem. Nevertheless,in the experi-
mentalsectionwe show thatour algorithmsalwaysfind a so-
lution thatis verycloseto optimal.

4.1.2 The GrAp-R Algorithm

In thissectionwepresenttheskeletonof ouralgorithm,GrAp-
R, for solvingtheURAproblem.

At eachtime step, the algorithm mergesthe consecutive
pair of segmentswhosemergewill resultin theleastapprox-
imation error, amongall possiblemerges. The pair of seg-
mentsthat shouldbe merged, #�£ and #�£�¢ $ , is given by the
heapstructure¤ . We merge thosein onesegment, # £ . £�¢ $ ,
accordingto Theorems1 and2. Thenwecomputetheapprox-
imation error that would resultby merging the new segment
with eachoneof its two neighbors,#�£�� $ and #�£�¢F* , accord-
ing to Lemma1. We usethesevaluesfor theerrorsto update
theheap¤ , in orderto reflectthenew setof possiblemerges.
Thismergeresultsin asparesegment,whichwe assignto the
newly arrived point of the time series. Onceagainwe have
to computethe approximationerror whenmerging this seg-
mentwith its neighbor, andupdatetheheap¤ . A high-level
descriptionof thealgorithmis depictedin Figure6.

1 let ¥ beamin-priority queueon theapproximationerrorsresultingfrom
merging eachpair of consecutive segments;

2 let ¦¨§ª©ª« bea time-eventqueue;
3 procedureGrAp-R()
4 whenanew point, ¬¨­ ®�¯ , of thetime seriesarrivesat time °?±
5 pick theminimumelementfrom ¥ , andmergethecorresponding

segments,²�³ and ² ³S´ j , into anew segment ² ³¶µ ³S´ j ;
6 update¥ with theerrorsof merging ² ³¶µ ³S´ j with its two

neighboringsegments;
7 assignanew segment, ²\·A¸ ¹»º , to thenewly arrivedpoint, ¬¨­ ®�¯ ;
8 update¥ with theerrorof merging ²�·¼¸ ¹»º with its neighboring

segment;
9 ManageEvents( ¦¨§ , °?± , ²\³ , ² ³S´ j , ² ³¶µ ³S´ j );
10 return;

Figure 6. The skeletonof the GrAp-R algorithm

The GrAp-R algorithm also makes use of a time-event
queue0�� . This structurekeepstrackof theway that thede-
pendenciesamongthe segmentsusedfor the approximation
changeas a result of the amnesicfunction. The procedure
thatmanagesthesedependenciesis ManageEvents(), andwe
describeit in moredetail in thenext paragraphs.

In the following subsectionswe elaborateon the way the
framework of theGrAp-Ralgorithmdescribedabovechanges
whenwe considerthedifferentclassesof amnesicfunctions.
We discussthe specificdetailsof eachcase,andpresentthe
timeandspacecomplexitiesof thesolutionswe propose.

4.1.3 PiecewiseConstant AmnesicFunctions

Whentheamnesicfunctionbelongsto theclassof piecewise
constantfunctions,achangeto therelativeorderingof thepair
of segmentsthatshouldbemergedduringthenext stepof the
algorithmonly happenswhenasegmentcrossesadiscontinu-
ity betweentwo sectionsof theamnesicfunction.

Example1 Assumewehavetheamnesicfunction ½ a�bYd�e�f�¾�u k]ldBm¿¾ k and ½ a�bYd�eÀf�Á�u�dBÂ¿¾ k . Let Ã j µ Ä and ÃDÅ�µ Æ be two pairs
of segments,candidatesfor merging, that, at the current time, are
at positions

d�f¿Ç
and
dofNÈ

, and haveerrors É b Ã j µ Ä ecf(Á andÉ b Ã Å�µ Æ e�f�È , respectively(Figure 7(a)). Then,their relativeerrors

6



are É b Ã j µ Ä e�Ê ½ a�b?Ç�e�fNÁ and É b ÃDÅ�µ Æ e�Ê ½ acb?È�e�fËÈ , which means
that ÃDÅ�µ Æ is thefirst candidatefor merging. However, after threetime
instances,when Ã j µ Ä first getsto thepoint

d�f�¾ k , its error becomesÉ b Ã j µ Ä e�Ê ½ acb�¾ k e>fV¾�m É b ÃDÅ�µ Æ e�Ê ½ acb?Ì�eÍf:È (Figure 7(b)). Thus,Ã j µ Ä is nowthecandidatepair for merging.

(b)(a)

s1,2s3,4

2 7 10

1

4

s1,2s3,4

10

1

4

50 0

Figure 7. Event examplefor piecewiseconstant.

In orderto keeptrackof thesechanges,we needto main-
taintheheap¤ , and,in addition,atime-eventqueue0�� . The
heap ¤ determinesthe next pair of segmentsthat shouldbe
merged.Thequeue0�� flagsthetimesatwhich thesegments
crossa discontinuityin the amnesicfunction(rememberthat
during thesecomputationswe assumethat eachsegment is
representedby its mostrecentpoint). Whenthis happens,we
updatethepositionof thesegmentin the heap,andwe com-
putethe next time that it will crossa discontinuity. Figure8
shows the ManageEvents()procedurefor the caseof piece-
wise constantamnesicfunctions. The GrAp-Ralgorithmre-
mainsasdiscussedearlier.

1 procManageEvents(queue¦¶§ , time ° , segments² ³ , ² ³S´ j , ² ³¶µ ³S´ j )
2 remove from ¦¨§ any eventscorrespondingto segments² ³ and ² ³S´ j ;
3 if (next event Î in ¦¨§ is scheduledfor time °TÏI°CÐ¶Ñ�°�Ò�Ó )
4 remove Î , relatedto segments² Ð µ j and ² Ð µ Ä , from ¦¨§ ;
5 updatein ¥ thepositionof thepair ²�Ð µ j and ²�Ð µ Ä ;
6 computethenew time whenthepair ² Ð µ j and ² Ð µ Ä will crossa

discontinuity;
7 insertin ¦¨§ thenew event(if any);
8 insertin ¦¨§ any new dependenciesidentifiedconcerning² ³¶µ ³S´ j ;
9 return;

Figure 8. The ManageEvents() procedure for piecewise
constantamnesicfunctions.

Thefollowing theoremstatesthespaceandtime complex-
ity of thealgorithm.

Theorem3 Thespacecomplexity of GrAp-R with a piece-
wiseconstantamnesicfunction is HI14��2 , and the time com-
plexity to processeach new point is HI1CÔ�Õ�Ö¶��2 .
Proof: ThealgorithmneedsHI1?��2 spaceto storethe � seg-
mentsusedin theapproximation.A heapstructureis usedto
determinethe pair of segmentsthat will be mergedat each
stepof thealgorithm.TheheaprequiresHI1?��2 spaceto store
the �×@�� adjacentpairsof segments.Finally, we mustkeep
trackof thetimeswhensegmentscrossa discontinuityof the
amnesicstepfunction. At eachpoint in time we only need
to maintainin the time-eventqueueonesuchevent for every
segment.Therefore,thequeuehasa worstspacecomplexity

of HI14��2 , and HI14��2 is the overall spacecomplexity of the
algorithmaswell.

At eachtime unit, the algorithm can pick from the heap
thepair of segmentsto merge,andidentify in the time-event
queuethe segmentsthat crossa discontinuity, in HI1\��2 time.
The time to merge two segmentsis constant,becauseof the
Theorems1 and 2, and Lemma1. The time to updatethe
heapis HI1CÔ�Õ�Ö¶��2 , and,sincethesizeof thetime-eventqueue
is HI1?��2 , the time to insertor deleteaneventfrom thequeue
is HI1CÔ�Õ�Ö¶��2 (whenthe queueis implementedusingskiplists
[24], or any otherequivalentdatastructurethat offers loga-
rithmic searchtimes). Thus,the overall time complexity for
eachiterationis HI1CÔ�Õ�Ö¶��2 . Ø

Both the procedureManageEvents()and Theorem3 as-
sumethat only a single segment is crossinga discontinuity
at eachtime step. The extensionof the algorithmto handle
multiple segmentsis straightforward. However, notethat the
above situationdoesnot ariseoften, especiallywhen more
thana few segmentsare involved. Hence,its impacton the
performanceis very small. The sameargumentshold for all
thealgorithmsdescribedin therestof thissection.

4.1.4 Linear AmnesicFunctions

In the caseof linear amnesicfunctions, eachevent in 0��
specifiesthetimeatwhichtherelativeorderingof themerging
errorof two pairsof segmentschanges.It turnsout that,if we
know theapproximationerrorof eachsegmentandtheclosed
formulaof theamnesicfunction,wecancomputethetimesat
which thesechangeswill occur. Wereferto thosetimesasthe
crosspoints.

Example2 Assumewe havethe amnesicfunction ½ a�bYd�e]f)d��¾�u�dÙÂ k . Let Ã j µ Ä and Ã<Å�µ Æ be two pairs of segments,candi-
datesfor merging, that were createdat the current time, at posi-
tions
d)fÛÚ

and
dËfÛÈ

, and have errors É b Ã j µ Ä e�fÜÈ<Á andÉ b ÃDÅ�µ Æ e�f�¾<È , respectively(Figure 9(a)). Then,their relativeerrors
are É b Ã j µ Ä e�Ê ½ acbCÚ%eÍf�Ý q Á and É b Ã Å�µ Æ e�Ê ½ acb?È�eSf:Á , which means
that Ã j µ Ä is thefirst candidatefor merging. However, after four time
instances,when Ã j µ Ä first getsto thepoint

d�f�¾ k , its error becomesÉ b Ã j µ Ä e�Ê ½ a�b�¾ k e]f)È q ÈRÞ É b Ã Å�µ Æ e�Ê ½ a�bCÚ%ecf ¾ q Ç (Figure 9(b)).
Thus,Ã Å�µ Æ is nowthecandidatepair for merging.

(b)(a)
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3,4s 1,2s

62
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s3,4
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Figure 9. Event examplefor piecewiseconstant.

Considerthegeneralcase,wherewe have a linearrelative
amnesicfunction, ��J�1?KL2¨6 z K�+ª{ , andwewantto compute
thetimewhentherelativeorderingof segments#-$ and # * will
change.(In fact,eachoneof #-$ and # * representsthe merge
of a pair of segments.)Let 0!14#-$�2 and 0!14# * 2 be theapproxi-
mationerrorsfor # $ and #�* , respectively. Finally, assumethat� =�ß is the time when # $ wascreated.This time is definedas
thetime whenthemostrecentpoint of # $ arrived. We define
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� =�à in asimilarway. Then,theircrosspoint,�\á , is givenby the
following equation.É b Ã j e��â bäã�åÍæ5ã�ç ß e¼�R� f É b Ã Ä e�5â bäã�åÍæ5ã�ç à e¼�R� , orã å f b �!â ã ç à æ5��e â É b Ã j eTæ�b �!â ã ç ß æ5�Te â É b Ã<Ä eb É b Ã j e�æ É b Ã3Ä e�e â�� q (1)

We only considerthe positive solutionsof this equation.
Note that it maybethecasethat their relative orderingnever
changes,that is, thereis no positive solution. Furthermore,
we do not needto computethe crosspointof eachsegment
with all the others. It sufficesto consideronly the segments
storedin neighboringnodesin theheap¤ , andmaintainthese
dependenciesup to dateasthe heapchanges.We now give
upperboundson thenumberof crosspointcomputationsthat
we have to perform as a result of changesin ¤ . All these
computationscanbeperformedin constanttime accordingto
Equation1.

Lemma 2 Assumewe haveprocesseda crosspoint,and the
heaphasbeenupdated.Thepossiblecrosspointswehaveto
computeareno more than

�
.

Lemma 3 Assumetwo segmentshavemerged,and the heap
hasbeenupdated.Thepossiblecrosspointswehaveto com-
puteare nomore than èCÔ�Õ�Ö¨�Ré�+V� .

Theabove lemmataguaranteethatthework we have to do
everytimetheheapchangesis minimal. TheManageEvents()
procedurefor thecaseof linearamnesicfunctionsis depicted
in Figure10.

1 procManageEvents(queue¦¶§ , time ° , segments² ³ , ² ³S´ j , ² ³¶µ ³S´ j )
2 remove from ¦¨§ any eventscorrespondingto segments² ³ and ² ³S´ j ;
3 if (next event Î in ¦¨§ is scheduledfor time °TÏI° Ð Ñ�°�Ò�Ó )
4 remove Î , relatedto segments²\Ð µ j and ²\Ð µ Ä , from ¦ ;
5 swapin ¥ thepositionsof ² Ð µ j and ² Ð µ Ä ;
6 computecrosspointsbetween² Ð µ j and ² Ð µ Ä andall their

new neighbors(i.e.,parentandchildrennodes)in ¥ ;
7 insertin ¦¨§ eventsfor any new crosspointsidentified;
8 insertin ¦¨§ any new crosspointsidentifiedconcerning² ³¨µ ³S´ j ;
9 return;

Figure 10. The ManageEvents() procedurefor linear am-
nesicfunctions.

The problemof keepingtrack of the crosspointsis remi-
niscentof thework in the areaof kinetic datastructures[3],
whereboundsare given on the numberof crosspointsthat
needto be considered.However, the above work examines
only linear motion, and doesnot apply to our problem. In
practice,the sizeof 0�� , ê 0��!ê , remainssmall, anddoesnot
affect theperformanceof ouralgorithms.

Thecomplexity of thealgorithmis asfollows.

Theorem4 The spacecomplexity of GrAp-R with a linear
amnesicfunctionis HI14�N+,ê 0��5ê 2 , andthetimecomplexity to
processeach new point is HI1?Ô�Õ�Ö¶� +MÔ�Õ�Öcê 0��!ê 2 .

Proof: The algorithm requires HI1?��2 spaceto store the �
segmentsandtheheap,and HI1�ê 0��!ê 2 spacefor thetime-event
queue.

At eachiteration, the time to find the pair of segments
to merge, and the segmentthat hasreacheda crosspoint,isHI1\��2 . We needHI1?Ô�Õ�Ö¶��2 time to updatetheheapafter those
changes,andLemmata3 and2 statethatthereis only a small
constantnumberof computationsthatwehaveto perform.We
alsoneedto updatethequeue,which takes HI1CÔ�Õ�Ö]ê 0��!ê 2 time.
Therefore,the overall time complexity for eachiteration isHI1?Ô�Õ�Ö¶�ë+GÔ�Õ�Öcê 0��!ê 2 . Ø
4.1.5 PiecewiseLinear AmnesicFunctions
Assumethattheamnesicfunctionis comprisedof } sections.
Then,we treateachsectionseparately, asin the caseof lin-
earamnesicfunctionsdiscussedabove. Wemaintain} heaps,
onefor eachsection,andasingletimeeventqueue.Thetime-
eventqueue,in additionto keepingtrackof all thecrosspoints,
alsomaintainsthetimesat which a segmentmovesfrom one
sectionto another. The above } heapscarry local informa-
tion, asto which is thebestpair of segmentsto mergewithin
eachsection. Then, at eachiteration of the algorithm, it is
easyto determinetheoverall bestpair of segmentsto merge,
eitherby performinga linearscanof thetop elementof the }
heaps,or by maintaininga heapof those} elements.For all
practicalpurposes,} is relatively small,in theorderof a few
dozens.Therefore,a linearscanis sufficiently fast,andavoids
theneedfor maintainingtheextraheapstructure,which in the
worst casehastime complexity HI1?}�Ô�Õ�Ö¶}¶2 . For the restof
thiswork, weonly considerthelinearscanapproach.

Thefollowing theoremgivesthespaceandtime complex-
ity of thealgorithm.

Theorem5 Thespacecomplexity of GrAp-R with a piece-
wiselinear amnesicfunctionis HI1?�ì+¿ê 0��!ê 2 , and the time
complexity to processeach new point is HI1?}V+h}!Ô�Õ�Ö � x +Ô�Õ�Ö]ê 0��5ê 2 .
Proof: We assumethat an equalnumberof segmentscorre-
spondsto eachsectionof the amnesicfunction4. The algo-
rithm requires HI1?��2 spacefor storing the � segmentsand
the } heaps(sinceall theheapscombinedstoreHI14��2 values).
Thespacerequiredby the time-eventqueueaccountsfor the
secondtermin thecomplexity function.Thisspaceis equalto
thenumberof crosspointsandthenumberof eventsrelatedto
segmentsmoving from onesectionto thenext. Therefore,we
needHI1?�í+Pê 0��!ê 2 spacein total.

In terms of time, the algorithm at each iteration
needs HI1?Ô�Õ�Ö]ê 0��!ê 2 time to update the time-event queue,HI14}�Ô�Õ�Ö � x 2 time to updatethe } heaps,and HI14}¶2 time to
pick thebestpair of segmentsto merge. Ø

4This assumptionis realisticbecauseof the following observation. The
sectionsof the amnesicfunction that refer to the newer valuesof the time
serieswill tendto beof finer granularityandencompassa smallerportionof
the time seriesthanthesectionsreferringto theolder values.Yet, they will
requirea higherratio of segmentsperdatapoint, sincethe requirementsfor
accuracy in thenewer datapointsis higherthanthatfor theolderones.
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4.1.6 ContinuousAmnesicFunctions

When the amnesicfunction is continuous,we identify two
cases.First, theamnesicfunctionhasa closedform formula.
In this case,we cancomputethecrosspointsof thesegments,
and we proceedas with the linear amnesicfunctions. Sec-
ond,whentheamnesicfunctiondoesnot have a closedform
formula,we replacethecontinuousfunctionwith a piecewise
linear approximationusing } sections.Then,we proceedas
with the piecewise linear amnesicfunctions. We construct} heaps,andsearchin thosefor the bestpair of segmentto
merge.Sincetheresultingamnesicfunctionis anapproxima-
tion of theoriginal function,insteadof examiningonly thetop
elementfrom eachheap,we considerthetop-î elements.We
calculatetheexacterror(i.e.,basedonthecontinuousamnesic
function)of thoseelements,andpick thebestpairof segments
amongthem. This techniqueprovesto work very well, even
for small î . We deferfurtherdiscussionto thefull versionof
thispaper.

Thefollowing theoremgivesthespaceandtime complex-
ity of thealgorithm(theproof is similar to thecaseof piece-
wiselinearamnesicfunctions).

Theorem6 Assumewe approximatea continuousamnesic
function with } piecewise linear sections. Further, assume
that we considerthe top-î elementsof each heapin order to
identify the bestpair of segmentsto merge. Then,the space
complexity of GrAp-R with a continuousamnesicfunctionisHI1?�×+(ê 0��!ê 2 , and the timecomplexity to processeach new
point is HI14î-}�+G}�Ô�Õ�Ö � x +|Ô�Õ�Öcê 0��!ê 2 .
4.2 Sliding Windows With RelativeAmnesic

In this sectionwe discussalgorithmsthatsolve theonline
amnesicapproximationproblemfor a sliding window of a
streamingtime series.Assumea sliding window of size   ,
andthatwe usePLA to build a build anapproximationmodel� with � segments.We refer to the sideof the sliding win-
dow from which new pointsenterthe window asthestart of
the sliding window. We call end of the sliding window the
sidefrom wherepointsexit, andlast segment,thesegmentof� thatapproximatesthepointsof theseriesat theendof the
slidingwindow.

Theskeletonof thealgorithmsfor theslidingwindowscase
is the sameasthe onepresentedin the previous section,for
the amnesicapproximationof time seriesin an unrestricted
window. The only differenceis that we now have to adjust
theapproximationsuchthat thereis no segmentthatrefersto
datapointsbeyondtheendof thesliding window. In orderto
achieve this goal,we simply discardthe lastsegmentassoon
asit getsentirely out of the sliding window, andwe reuseit
at the startof the window. Observe though,that the amnesic
functionis moretolerableto theapproximationerror towards
the endof the sliding window. Then,a questionthat arises
naturallyis whetherit is possiblefor thelastsegmentto con-
tinue growing by merging with the secondto last segment,

andconsequentlynever fall out of theboundariesof theslid-
ing window. Thefollowing lemmaaddressesthis question.

Lemma 4 The last segmentof model � will never grow to
representtheentire setof pointsbeyondtheendof thesliding
window.

The above lemmaguaranteesthat a sliding window am-
nesicapproximationwill never degenerateto an unrestricted
window approximationof thetimeseries,but doesnotgiveus
a boundon thesizeof the lastsegment. In Section5 we ex-
perimentallyshow that thesizeof the lastsegmentis always
relatively small.

4.3 Algorithms for AbsoluteAmnesicFunctions

Whenwe useabsoluteamnesicfunctions,thereis no re-
strictionin thenumberof segmentsthatwemayusefor theap-
proximation.Furthermore,we cancalculatethe time whena
neighboringpairof segmentswill beeligibleto merge.Hence,
in this casewe do not have to keep track of the segments
whosemergewill resultin theleastadditionalerror, andsub-
sequently, thereis noneedto maintaina heapstructureon the
adjacentpairsof segments,aswe did for thecaseof therela-
tiveamnesicfunctions.

The algorithmsfor the UAA andSAAproblemsarebased
onthecorrespondingalgorithmspresentedfor therelativeam-
nesicfunctions. The only difference,asdiscussedabove, is
thatthereis no needfor a priority queuestructure.We do not
discussthesealgorithmsany further, dueto lackof space.

5 Experimental Evaluation

We implementedour algorithmsand conducteda series
of experimentsto evaluatetheir efficiency. We also imple-
mentedthe optimal algorithm,usingdynamicprogramming,
andthetraditionalBottomUpalgorithmfor PLA [18], to com-
pareagainstour techniques.

In order to evaluateour algorithms,we usedan exten-
sive setof real-world datasets.Theseare

���
datasetscoming

from diversefields, including finance,medicine,biometrics,
chemistry, astronomy, robotics,networking andindustry, and
covering the completespectrumof stationary/non-stationary,
noisy/smooth,cyclical/non-cyclical, symmetric/asymmetric,
etc. [1]. Whennot explicitly mentioned,the resultsreported
areaveragesoverall

���
datasets.Someof thedatasetsusedin

ourexperimentsareillustratedin Figure11. For all theexper-
imentsshown here,we employeda piecewise linearamnesic
function.Theresultsfor otheramnesicfunctionsaresimilar.

5.1 Comparison to BottomUp

In thefirst setof experiments,wecomparetheperformance
of GrAp-R to BottomUp, which is essentiallya comparison
betweenanonlineandthecorrespondingoffline algorithm.
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Figure 11. Someof the datasetsusedin our experiments.
Figure 12 depictsthe approximationerror and computa-

tion timefor GrAp-RandBottomUp, for asingledataset.(We
get similar graphsfor all the datasetswe usedin our experi-
ments.) We usethe unrestrictedwindow modeland � � seg-
ments,andwe report the error andtime asa function of the
window size. Our onlinealgorithmconsistentlyprovidesap-
proximationsthatarevery closeto thosefoundby theoffline
algorithm. At the sametime our algorithm is much faster,
requiringonly constanttime for processingevery new point
(actually, aswediscussedin Section4, thetime is logarithmic
to � , but independentof � ). On the otherhand,BottomUp
hastimecomplexity HI14�(Ô�Õ�Ö¨�o2 .
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Figure 12. Typical progressionof error (top) and time
(bottom) for GrAp-R and BottomUp, for a single dataset
(unrestrictedwindow).
In thenext setof experiments,we quantifythedifferences

in the performanceof the two algorithms.We reportthe cu-
mulativerelativeerror, ï��]0 , which measurestherelative in-
creasein thecumulativeerrorwhenusingGrAp-R.ð ½�É f:¾ k�k â 7 ±ñ�ò j b É¶ó¼ô
õ�ö s�÷ bäø�ùú¾ q»q û�ü eFæ É¶ý¼þ\ÿäÿ�þ ³�� ö bäø�ùú¾ q»q û�ü e�e7 ±ñ�ò j É¶ý¼þ\ÿäÿ�þ ³�� ö bäø�ù»¾ q»q û�ü e
The secondmeasureof interestis the speedup,which mea-

sureshom many times fasterGrAp-R is when comparedto
BottomUp.

������� n
	 � f 7 ±ñ�ò j ø��
� � ý�þ\ÿäÿ�þ ³�� ö bäøcùú¾ q q û�ü e7 ±ñ�ò j ø��
� � ó�ô
õ�ö s~÷ bäø�ù»¾ q»q û�ü e

In Figure13,wedepict ï���0 asafunctionof � and � , for
theunrestrictedwindow model.Using � � segments,ouralgo-
rithm performswithin ���h@M���
� of theoffline algorithm,for
streamsof length � ����� @�� ����� points(Figure13(a)).Though,
for increasing� we observe a very slow build-up of the rel-
ative error. In theexperimentof Figure13(b), thenumberof
segmentsweuseis ��� , ��� , and ��� of � . In thiscase,where
theratio � � � remainsfixed, ï���0 remainsrelatively stable
asweincrease� . In bothcases,ouralgorithmperformsbetter
asthenumberof segmentsincreases.
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Figure 13. Comparison of the approximation error be-
tweenGrAp-R and BottomUp (unrestrictedwindow).

Figure14 shows the speedupthatour algorithmachieves,
which translatesto oneor two ordersof magnitudefasterexe-
cutionthantheoffline algorithm(for theexperimentsweran).
We observe that the speedupincreasessignificantly for de-
creasing� . This is becausetheamountof work thatGrAp-R
doesremainsalmostconstant(dependson Ô�Õ�Ö¨� ), while Bot-
tomUprequireslotsof extraeffort for smallervaluesof � . As
expected,thespeedupgetslargerwhenwe increase� .

We alsorun thesameexperimentsfor thesliding window
model.Figure15 illustratestheresultsfor thespeedup,which
in this caseis mainly a functionof thewindow size( � does
not seemto affect the speedupin this case,becauseof the
particularchoicesof � andthe window size). The GrAp-R
algorithmis � � @�� � timesfasterthanBottomUp. Theresults
for the error aresimilar to thosefor the unrestrictedwindow
model,andareomitteddueto spacerestrictions.

Thetrendsfor theerrorandtimeremainthesameaswein-
crease� and � . All theaboveresultsshow thattheonlineal-
gorithmachievesconsiderablebenefitsin termsof speedwhile
losinglittle in approximationaccuracy, whencomparedto the
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Figure 14. Speedupof GrAp-R againstBottomUp (unre-
stricted window).
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Figure 15. Speedupof GrAp-R againstBottomUp (sliding
window).

offline algorithm.
With the next experiment,we addressa questionthatwas

raisedin light of Lemma4. In the sliding window model,
we temporarilyallow the last segmentof the approximation
model to grow beyond the endof the window, until it com-
pletely falls out of theboundariesof thewindow andwe dis-
cardit. Figure16depictstheaveragenumberof pointsoutside
the sliding window that arerepresentedby the last segment,
asa percentageof thewindow size.In all thecaseswe tested,
thisnumberrangesbetween� � ��@������ , andtherefore,is not
a restrictingfactorfor our representation.
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Figure 16. Number of excesspoints representedby
GrAp-R (sliding window).

5.2 Comparison to Optimal
In this sectionwe investigatehow our techniquescompare

to theoptimalalgorithm,Opt, implementedwith dynamicpro-
gramming.Unfortunately, dueto thehigh time complexity of
theoptimalalgorithm,thisexperimentis only possiblefor rel-
atively smalldatasets.

We usethesamesetof
���

datasetsandperformtheexper-
iment asfollows. From eachdataset,we randomlyextract a
subsequenceof length ����� , andsegmentit into ��� , ��� , and� � segments,usingbothalgorithmsunderconsideration.We
measuretherelative increasein error for theBottomUpalgo-
rithm,definedas 140���� WYW ��£����A@c0���� W 2 � 0���� W . A zerovaluefor
therelative errormeansthatBottomUphasfoundtheoptimal
solution.For eachdataset,andeachnumberof segments,we
averagetheresultsover � � randomlyextractedsubsequences,
andthenaveragetherelativeerroroverall

���
datasets.There-

sultsareshown in Table2. They clearlysuggestthatwe lose
little by usingBottomUpasopposedto Opt, sinceBottomUp
findssolutionsvery closeto optimal. Consequently, basedon
theexperimentswe presentedin thepreviousparagraphs,we
cansafelyconcludethatGrAp-Rperformscloseto optimal,as
well. Finally, the last columnof the tablereportshow much
slowerOptexecutes(morethantwo ordersof magnitude),and
illustratesthe inapplicability of the optimal algorithmfor an
onlineenvironment.

� b É�ý�þ\ÿäÿ�þ ³�� ö æ É! ~öDÿ e�Ê É� �ö/ÿ ø��
� �  �ö/ÿ Ê<ø��
� � ý¼þ\ÿäÿ�þ ³�� ö
16 0.058 112
32 0.051 137
64 0.042 173

Table 2. ComparisonbetweenBottomUp and optimal.

6 RelatedWork

Thereexistsan extensive literaturein the areaof time se-
riesapproximation[19]. Someof therepresentationsthathave
beenproposedincludethe Fourier transform[10, 25], many
differentwavelets[23, 7], piecewisepolynomials[28, 6], sin-
gular valuedecomposition[6] andsymbolicapproximations
[2]. Many of the above approximationtechniqueshave been
adaptedto work in anonlinefashion.For example,piecewise
constantapproximationcanbe createdonline with little loss
of accuracy [22], aswell as DFT [29]. Most of other time
seriesrepresentationshave been,or could trivially be,calcu-
latedin anincrementalfashion[18]. Therehasalsoappeared
work on datastreamsummarization,usingwavelets[13] and
histograms[14]. CohenandStrauss[9] presenta framework
for maintainingtime-decayingstreamaggregates,suchassum
andaverage.

Chenetal. [8] describeaframework for multi-dimensional
regressionanalysisof time serieswith a tilt time frame. Yet,
they donotexplicitly tailor their representationsto matchdif-
ferent amnesicfunctions. Bulut and Singh proposedusing
waveletsto represent”datastreamswhich arebiasedtowards
the more recentvalues” [5], and successfullyimplemented
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their method.Althoughthebiasto morerecentvaluescanbe
seenasa specialcaseof an amnesicfunction, the particular
function is dictatedby the hierarchicalnatureof the wavelet
transform. Our work removesall the restrictionsinherentin
theabove approaches.Theframework we proposetakesinto
accounttheform of theamnesicfunctionasanintegralpartof
the problem,andprovidesan effective andefficient solution
for a muchmoregeneralclassof amnesicfunctions.

7 Conclusions
We have introducedthe first methodto allow the online

approximationof streamingtime series,which allows arbi-
trary, user-definedreductionof quality with time. This kind
of approximationis of increasingimportancein many diverse
applicationdomains,suchas mobile and real-timedevices.
We justifiedour choiceof representationwith extensivecom-
parisonsto competingtechniques,anddescribedhow we can
adaptto allow arbitraryamnesicfunctionsfor streamingdata.
Weempiricallyevaluatedouralgorithmswith extensiveexper-
imentson

���
differentdatasets.Theresultsshow thatour al-

gorithmsoffer significantperformanceimprovementsoverthe
directcomputationalapproach,while maintainingthequality
of theapproximationcloseto optimal.Possibledirectionsfor
futurework includesupportingindexedsimilarity searchand
otherquerieson our representation.
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