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Abstract

Thepastdecadehasseena wealthof reseach ontime se-
ries representationsbecausehe manipulation,storage, and
indexing of large volumesof raw time seriesdata is imprac-
tical. Thevastmajority of reseach hasconcentatedon rep-
resentationshat are calculatedin batch modeand represent
ead valuewith approximatelyequalfidelity. However, thein-
creasingdeploymentf mobiledevicesandreal time sensos
has brought homethe needfor representationghat can be
incrementallyupdated . and can approximatethe datawith fi-
delity proportionalto its age. Thelatter propertyallowsusto
answerqueriesaboutthe recentpastwith greater precision,
sincein manydomainsrecentinformationis more usefulthan
olderinformation.We call sudh representationgamnesic

While there hasbeenpreviouswork on amnesiaepresen-
tations, the classof amnesicfunctionspossiblewasdictated
by the representationitself. In this work, we introducea
novel representationof time seriesthat can representarbi-
trary, userspecifiedamnesidunctions.For example a mete-
orologistmaydecidethat datathatis twiceasold cantolerate
twice as mud error, and thus,specifya linear amnesidunc-
tion. In contrast,aneconometrismightoptfor anexponential
amnesidunction. We proposeonline algorithmsfor our rep-
resentationanddiscusgheir properties.Finally, we perform
an extensiveempirical evaluation on 40 datasetsand show
that our approad can efficiently maintaina high quality am-
nesicapproximation.

1 Intr oduction

Time seriesare one of the most frequently encountered
forms of data. Many applicationsin diversedomains,pro-
ducevoluminousamountsof time series[29, 26]. Examples
of suchapplicationsexist in finance[29], medicine[21], me-
teorology oceanography26], manugcturing,network man-
agemenf17], sensomnetworks[11], andotherdomains.

The sheernumberandsize of the time serieswe needto
manipulatein mary of the real-world applicationamentioned
above dictatesthe needfor a morecompactrepresentationf
time seriesthantheraw dataitself. A plethoraof representa-
tionshave beenproposedor time seriesapproximatior{19].
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The problemof approximatingtime seriesbecomesnore
interestingand challengingin the context of streamingtime
series,wheredatavaluesare continuouslygeneratedpoten-
tially forever. In this situation,we cannotapply approxima-
tion techniquegthat require knowledge of the entire series,
suchassingularvalue decompositiorj6] andmostsymbolic
approache$2]. Furthermoreall currenttime seriesrepre-
sentationdreat every point of the time seriesequally This
meanghat, whencomputingthe approximationthetime po-
sition of a point doesnot make a differencein the fidelity of
its approximation. This may be desirablefor someapplica-
tions,suchasarchiing, however, thereexist mary realworld
situationswherewe would lik e to take into accountthe time
dimensionin the approximationof the time series.The intu-
ition behindthis requirementnaybe statedasfollows. While
we arewilling to acceptsomemagin of errorin the approxi-
mation,we would lik e the mostrecentdatato have low error,
andwe would be moreforgiving of errorin older data. We
call thiskind of time seriesapproximatioramnesig¢sincethe
fidelity of approximatiordecreasewith time, andit therefore
requiredessmemoryfor theeventsfurtherin the past.

Thepotentialutility of sucharepresentatiohasbeendoc-
umentedn mary domains.Considetthefollowing motivating
examples.

e TheEnvironmentalObsenationandForecastingSystem
[26] is alarge-scaldistributedsystemdesignedo mon-
itor, model, and forecastwide-areaphysical processes
suchasriver systems. They note thatin their current
model, the loss of a repeaterstationresultsin the loss
of realtime information. Allowing the stationsto record
somedatato a buffer canmitigate this problem. How-
ever, sincethe stationdoesnot know how longit will be
offline andhasa finite buffer, amnesicapproximationis
theonly logical way to recordthe data.

e NASA is developingrobotsto be usedin an urbanset-
ting [15]. Typical applicationsinclude searchand res-
cue,andinspectionof hazardougnvironments.ln mary
situations,informationaboutthe pathtraversedmustbe
known if the robotis to back up to a more promising
avenueof explorationafter reachinga deadend. Pawver
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Figure 1. Depiction of an amnesicapproximation, using
the piecewisdinear approximation technique.

and size constraintsprohibit the robot from storing all
thedatawith perfectfidelity, sothe utility of anamnesic
approximatiorhasbeennotedfor this domain[15].

e Hussainetal. [17] proposea framawork for classifying
denialof serviceattacksusing(amongotherthings)tem-
poralinformation. They explicitly notethatthe utility of
informationis in proportionto its age.

Althoughthiswork suggestshattheusefulnessf datacan
diminishwith age we notethattherateatwhichits utility de-
caysdepend®ntheapplication.Thefunctionthatdetermines
the amountof errorwe cantolerateat eachpointin the time
seriesis calledan amnesicfunction. Ideally, we would like
to allow arbitraryamnesidunctions,sothatwe canmatchthe
requirementsf awide varietyof applicationsFor example a
meteorologistnaydecidethatdatathatis twice asold cantol-
eratetwice asmucherror, andthus, specifya linear amnesic
function. In contrast,an econometrisusing classicmodels
might well specify an exponentialamnesicfunction.  Fig-
urel depictsanamnesi@approximatiorof a statictime series,
andthe amnesidunction thatwasused. Note that aswe get
to olderpoints(to theright) the approximatiorgetscoarser

In this paper we describea framework for online am-
nesicapproximatiorof streamingime series We characterize
the differentclasseof amnesidunctions,and presentcorre-
spondingalgorithmsfor performingamnesicapproximation.
We studytwo variationsof the problem. First, the casewhen
we areinterestedn approximatinghe entiretime seriesseen
sofar. We referto this caseasthe unrestrictedwindow Sec-
ond, the sliding windowcase whereat ary pointin time, we
areonly interestedn a fixed numberof the lastvaluesof the
time series. In Figure 2 we shav how the approximationof
atime serieschangesasa function of time, for five different
timestamps.n this example,we usean unrestrictedvindow
to approximatahe SpaceShuttleSTS-57datasetusingpiece-
wiselinearapproximatiorwith tenlinearseggments.Thetime
progresseform right to left (i.e., the mostrecentpointis the
left-most point). We obsene that the approximationof the
most recentpoints always remainsaccurate while it grace-
fully degradesat eachtime stepfor theolderpoints.

While somerecentwork [8, 5] hasproposedoolsandtech-
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Figure 2. Example of online amnesicapproximation.

niguesfor computingspeciaktase®f amnesi@pproximations
of time seriesaswe discussin Section6, thesesolutionsare
specific and rather restrictive in the variety of applications
they canaccommodate.In particular the typesof amnesic
functionsthey canuseare dictatedby the representationof
thetime series.In contrastpourframework is generalandable
to operatewith a wide classof amnesidfunctions,which are
definedby theuser.

Our contritutionscanbe summarizedsfollows.

e We introducethe notion of generalamnesicfunctions.
We presenta taxonomyof thesefunctions,discusstheir
propertiesand describehow they affect the solutionof
the problemof onlineamnesiapproximation.

e We formulate the above problem as an optimization
problem,wherewe wish to minimize the reconstruction
error given the available amountof memoryfor the ap-
proximation. We study two importantvariationsof it,
namely the unrestrictecandthe sliding window cases.

¢ We proposeefficientalgorithmsfor solvingtheabove op-
timization problems. The time compleity of the algo-
rithmswe proposeis independenbf the sizeof thetime
series.Thetime to processachnew pointis essentially
constan{logarithmiconthe numberof sggmentsusedin
the approximation). Theseare the first algorithmspro-
posedor solvingthegenerakaseof the problem.

e We presentan extensive experimental evaluation of
our techniques,using more than 40 syntheticand real
datasets.The experimentsshaw the applicability of our
approachandthe quality of solutionsof our algorithms.

Therestof the paperis organizedasfollows. In Section2
we give the necessarpackgroundln Section3 we introduce
somenew terminologyandformally definethe problemswe
study Thealgorithmswe proposearepresentedn Section4,
andSectionb discussetheexperimentakvaluation.Sectioné
reviews relatedwork, andSection7 concludeghe paper



2 Time SeriesApproximation
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A time series,T'[i], is a seriesof datapoints,eachonear-

riving at a distincttime instancet;. T'i..j] definesa range v

of datapoints. Whenthe total numberof datapointsin the
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time series, N, is known in advance,we call the time series F//\//\’—r’/\/ﬂw—‘

static andwe saythatis haslength V. Whendatapointsare |

arriving continuouslyin a streamingfashion thevalueof N
representshe numberof datapointsseenin thetime seriesso
far, andwe call the time seriesstreaming The focus of our
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work is on streamingime series. 0
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Severaltechniqueshave beenproposedn theliteraturefor
the approximationof time series,including Discrete Fourier
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Transform(DFT) [25, 10], DiscreteCosineTransform(DCT),
Piecavise Aggregate Approximation (PAA) [28], Discrete
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WaveletTransform(DWT) [23, 7], AdaptivePiecavise Con-
stant Approximation (APCA) [6, 22], Pieceawvise Linear Ap-
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proximation(PLA) [20], Piecavise Quadmatic Approximation :

(PQA), andothers.Beforewe considerwhich of theserepre-
sentationss bestsuitedfor thetaskathand,it is naturalto ask
whichis best,simply in termsof reconstructioraccurag. In
orderto answetthis questionwe experimentallycomparethe
above approachesising mary real-world datasets.We con-
ductedsuchanexperimenton 40 diversetime seriesfrom the
UCR Time SeriesDataMining Archive[1].

For our experiment,we randomlyextracteda subsequence
of length512 from eachtime seriesandapproximatedt with
eachof the representationsnderconsiderationysinga 16 to
1 compressiorratio. This was a fair comparisonusingthe
sameamountof memoryfor eachrepresentationandapply-
ing all possibleoptimizationsfor all representations How-
ever, for the piecavise polynomial approachesthe optimal
representatiommequiresquadratictime to produce,and we
usedawell known nearlineartime algorithminstead18, 2Q.
We measuredhe quality of the approximationusingthe root
meansquarederror. We repeatedhis procedurel(00 times,
averagedheresults,andnormalizedthe performancef each
representatiotoy dividing by the bestperformingapproach.
Finally we averagedll 40 scoresasshovn in Tablel.

The resultsmay appearsurprising,becausehereis little
differencebetweerall the approachesln fact, similar results
have beendocumentelsavhereaswell [19, 6]. The overall
conclusionfrom this experimentis the following. If we want
to choosea representatioffor the taskof approximatingime
seriesthenwe shouldnot chooseherepresentatiobasecn
approximatiorfidelity, but ratheron otherfeatures.

Oneimportantfeaturemaybethevisualappearancef the
representatiorsincein mary applicationdomainswe arein-
terestedn visualizingthetime series.In Figure3 we visually
compareall representatiortson animportantandfamiliar ex-
ample,an electrocardiogram\We shawv just one examplefor
brevity. For a fair comparisonwe usean equalnumberof
bytesfor eachapproach(asdiscussedibore). Althoughthe

1We omit theresultfor DCT sinceit is indistinguishabldrom DFT.
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Figure 3. Comparison of (top to bottom) APCA, PLA,
PQA, DWT (Haar), and DFT ("k oski_ecgdat” dataset[1]).

quality of visualizationfor a representatioiis subjectve, we
feelthatthe PLA approach{secondrom top)is the bestof the
approaches.

When consideringthe alternatve representationsn the
context of amnesia@pproximationit is notobvioushow some
of them canaccommodatehe requirementf this new en-
vironment. The DWT representatioiis intrinsically coupled
with approximatingsequencewhoseengthis apowerof two,
which severelyrestrictsthe choicesof amnesidunctions.Us-
ing waveletswith sequencethathave otherlengthsrequires
ad-hocmeasureghatreducethefidelity of theapproximation,
and increasethe complexity of the implementation. While
DFT hasbeensuccessfullyadaptedo incrementacomputa-
tion [29], it is not clearthatit canbe adaptedo performam-
nesicapproximationsinceeachDFT coeficientcorresponds
to aglobal contribution to the entiretime series. The sameis
truefor DCT aswell.

In contrasto theabove, thepiecavise polynomialmethods
offer several desirablepropertiesfor the taskat hand. Much
is alreadyknown abouttheir incrementakalculation,andbe-
causeeachsggmentis independenbf eachother, we canre-
ducethefidelity of "older” sggmentssimply by memgingthem
with their neighbors,without affecting "newer” segments.
The only questionremainingis which piecavise polynomial
techniqudo use.We decideon PLA for thefollowing reasons.
Piecevise linearapproximationarealreadywidely usedand
acceptedn themedicalandfinancialdomaing16, 21]. There
aremary usefuldistancemeasureglefinedon PLA, includ-
ing weighedmeasuref20], timewarping[27], Markov model
basedmeasure$12] andlower boundingapproximationso
the Euclideandistance.



DFT | DCT | PAA | DWT (Haar)

DWT (Daub12)

APCA | PLA | PQA

0.951| 0.923| 0.948 0.948

0.902 0.893 | 0.940| 0.927

Table 1. Comparison among various techniques for time series approximation.

2.1 Propertiesof PLA Approximation

In PLA, we approximatethe datapointsin a time series
using a numberof linear sgmentswhoseendsneednot be
contiguous[20]. The PLA approximationschemehassome
desirablepropertieghatallow incrementatomputatiorof the
solution. Thesepropertieaarenecessaryn orderfor thealgo-
rithm to be ableto operateefficiently on large datasetsln the
following paragraphsve presenthesepropertiesn theform
of theoremsandwe discusgheir applicationgn Section4.

Assumewe have N data points of a time series, T'[4],
1 < i < N, andwe usethemto fit two line sggments(us-
ing leastsquares).Let thefirst line, s;, approximatepoints
1ton, n < N, andthe secondine, s5, approximatepoints
n + 1to N. In addition,supposeve useasingleline segment
to approximateall the points1 to NV, call it s1 2. Theabove
threelinesaredepictedin the top graphof Figure4. Related
to thesethreelinesarethe errorsE(s1), E(s2), andE(s1,2).
The error of a sggments is computedaccordingto the for-
mulaE(s) = >, (T[] - s[4])?, wherej rangesover all
thepointsin sggments, T'[4] is thevalueof pointj in thetime
seriesands[j] is theestimatefor point j givenby segments.

Now imaginethatwe keeps; ands,, andthrow away the
original NV points,andthatwe wantto usea singleline seg-
mentto approximateall the original points. The construction
of this new line, 373, canbebasednly on theinformationin
s1 andsy, andwe provethatsy 5 isthesameass; ». Sincewe
nolongerhavetheoriginal points,we assumehatall N points
lie online segmentss; ands,, andwe build 573 basednthis
assumptionThis situationis depictedin the bottomgraphof
Figure4. Theresidualerrorof thisnew line is E(37z). Unlike
thepreviouscasesthisis the errorbetweerthe pointsonline
51,2 andthe pointson lines s; ands,. (Remembethatline
512 is not calculatedbasedon the original pointsof thetime
series.)lt turnsoutthatwe canalsocalculateE (s 2) without
theneedto referto the original NV points.
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Figure 4. Combining two regressionlines.

We cannow prove the following theoremsregardingthe

procesof meiging two line sggmentsinto one.

Theorem1 [Computing the New Line Segment.] Theline
s@mentsy 2, built fromthetwoline segmentss; andss,, is the
sameastheline sggments; », built fromtheoriginal pointsof
thetimeseries. Thatis, s12 = 31,5.

Theorem?2 [Computing the New Error.] Theerror of the
line sgmentapproximatingall the original data points can
be computedas the sumof the errors of the two individual
line sggmentsandthe error betweerthosetwo line sgments
andtheline calculatedbasedonthosetwo. Thatis, E(s;2) =
E(s1) + E(5:) + E(513).

Anotherinterestingpropertyof PLA is thatfor the compu-
tationof theerror E(31,3) we do not needto processndivid-
ually all the points correspondingo line sggments; ;. We
caninsteadavoid the linear compleity of this procedureand
computethe valueof E(372) in constantime, accordingto
thefollowing lemma.

Lemma 1l [Computing the Err or BetweenTwo Segments.]
Theerror, E(372), of a line sgment, 37 3, which was con-
structedfromtwo line sggmentss; and sz, canbe computed
with a closedform formula® in time O(1), regardlessof the
lengthof theline segments.

Theintuition behindLemmal is thatwe cancomputethe er-
ror betweertwo linesasa summatiorover the corresponding
discretepoints, by taking into accountthe offsetsand slopes
of thetwo lines. Theabove formulationleadsto a closedform
formulafor the computatiorof theerror.

Thepropertieof PLA, presentedn Theoremsl and2 and
Lemmal, form the basisfor the designof the online algo-
rithmswe propose Thesepropertiesenableour algorithmsto
merge two line segments,and calculateexactly the resulting
line segmentalongwith its residualerrorin constantime.

3 Problem Formulation

In the following paragraphsve establishsomeadditional
terminologynecessaryor therestof the paper Then,we for-
mally definethe problemsthatwe addresswith this work.

3.1 AmnesicFunctions
As we mentioneckarlier we needawayto specifyfor each

pointin time the amountof error allowedfor the approxima-
tion of thetime series.In orderto achieve thisgoal,we usethe

2A similar resulthasalsoappearealsavhere[8].
3Theformularequiregheintroductionof additionalnotation,andwe omit
it dueto lack of space.



amnesidunction A(z), which returnsthe acceptablepprox-
imation errorfor pointz = ty — t;, wheret is the current
time, andt; is the time that point T'[¢] arrived. Thetime ¢y
refersto thetime whenthe lastdatapoint arrived,andcorre-
spondso positionz = 0 of the amnesidunction. Note that
thefunction A(z) is only definedfor z > 0, sincet; < ty.

A key propertythat an amnesicfunction hasto satisfyis
themonotonicityproperty

Definition 1 [Monotonic Amnesic Functions.] An amnesic
function, A(z), is called monotonicif and only if A(z) <
A(z + 1), for everyvalueof z in its domain.

The approximationof a time seriesis a lossy compression
techniquewhichby definitionis irreversible. Thus,themono-
tonicity propertyposesa naturalrestrictionin our setting. It
ensureghatif attime ¢t we cantoleratesomeerror E*(T'[i])
in theapproximatiorof pointT'[:], thenwe will notrequesan
approximationof the samepoint T'[] with error E*' (TTi]) <
EY(TTi]), atary timet' > t.

We now definea taxonomyof amnesidunctions(referto
Figure5). As we discusdn the next section,eachclassin the
taxonomyhasits own specialcharacteristicsyhich have to
be taken into accountwhendesigningan efficient algorithm
for theamnesiapproximatiorof time series.

PiecewiseConstant: The piecavise constantfunctionis the
simplestform thatanamnesidunctioncanassumeéwith
the exceptionof the constanfunction, which is a trivial
caseandwe do notdiscusst here).It hasthe following

generafform.
a ,0<z<ds;
Az) = ..
cc ,dr-1<ux,
wherecy, . .., ¢y, areconstantssuchthate; < ... < ¢g.

We referto eachstepof thefunctionasa section to dis-
tinguishit from the sggmentsusedin the approximation.

Linear: A linear function hasthe generalform: A(z) =
ax + B3,a,8 > 0.

Piecewisd_inear: The generalform of a piecavise linear
functionwith L sectiongs asfollows.

arz+ 41 ,0<x<d;
A(x)=< ...

arr+PBr ,dr-1 <z,

wherea; € [0,7/2),1 < j < L, > 0,andp; =
aidy + B1,...,BL = ar—1dr—1 + Br-1.

Continuous: Theamnesidunctionsof this classcantake ary
form not subsumedy the previous classes. The only
restrictionis thatthefunctionis monotonic(accordingo
Definition1). We donotrequirethatthesefunctionshave
aclosedform formula.

We alsodefinetwo formsof amnesidunctions,namelythe
relative RA(z), andtheabsolute AA(z), amnesidunctions.

CL
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(c) piecewise linear (d) continuous

Figure 5. The differ ent classeof amnesicfunctions.

Relative: A relatve amnesidunctiondeterminesherelative
approximationerror we can toleratefor every point in
the time series. Whenwe usea relative amnesicfunc-
tion, we essentiallyweight the error of somedatapoint
by the inverseof the amnesidunction correspondingo
thatpoint, sothat E(z) = E(z)/RA(z). For example,
therelative amnesidunction RA(z) = z, specifiegthat
whenwe approximatea pointthatis twice asold, we will
acceptwice asmucherror.

Absolute: An absoluteamnesidunction specifiesfor every
pointin thetime seriesthe maximumallowableerrorfor
the approximation. The error E(z), at point z, should
satisfytheinequality E(z) < AA(x).

Whenwe have to apply anamnesidunctionto a segment
s, we pick asinglepointfrom thesggment,onwhichwe apply
theamnesidunction. Neverthelessthis computatiorrefersto
the entiresggment. Without lossof generality for the restof
this papemwe assumehatsegments is representetly its most
recentpoint, T'[i;]. Then,whenwe wantto applyanamnesic
function to s, we simply considerthe point of the amnesic
functioncorrespondingo pointT'[i]. We canalsoapplymore
elaborateschemeskFor example we couldconsideitakingthe
averagevalue of the amnesicfunction correspondingo the
first, middle,andlastpointsof s.

3.2 Problemsfor Amnesic Approximation

Undertheassumptionsliscussedbove, we wantto main-
tain a PLA model Q with K segmentsfor a streamingtime
serieswith anunrestrictedvindow. More formally, we define
thefollowing two problems.

Problem1 [Unrestricted Window with Relative Amnesic
(URA)] Given the numberof sggments K and a relative
amnesicfunction RA(z), find an approximation @ using
K sgmentsthat at ead time step minimizesthe error

E(T[L.N)) = X, (B(s;)/RA(ty —1.,)).

Problem2 [Unrestricted Window with Absolute Amnesic
(UAA)] GivenanabsoluteamnesidunctionA A(z), construct



a model@ with the minimumnumberof sggmentsk, subject
totheconstaints E(s;) < AA(ty —t,;), 1 <j < K.

We are looking for online algorithmsthat, when a nen
point arrives, they updatethe approximationmodelin sub-
lineartime on the numberof sggments.Notethatin the URA
andUAA problemsthe optimizationobjectie is different. In
the URA problemwe seekto minimize the approximatiorer-
ror giventhe memoryspaceusedby PLA, while in the UAA
problemwe wantto minimize the spaceusedin the approxi-
mationgiventhe maximumerrorallowed.

Following the definition of the problemsfor the unre-
strictedwindow, we now definethe correspondingproblems
for thecasewherewe considerthe sliding window model.

Problem3 [Sliding window with Relative Amnesic(SRA)]

Givena sliding windowof lengthW, the numberof sggments
K andarelativeamnesidunctionR A(z), findanapproxima-
tion @) using K sggmentghat at eat time stepminimizeghe

eror E(T[tn—wa1-tn]) = Y jey (E(sj)/RA(tn — ts,)).

Problem4 [Sliding window with Absolute Amnesic
(SAA)] Givena sliding windowof lengthW, andan absolute
amnesicfunction AA(z), constructa model @) with the
minimumnumberof sggmentsK, subjectto the constaints
E(sj) < AA(ty —t,),1 < j < K.

4 Algorithms for Amnesic Approximation

We now describealgorithmsfor the URA and SRAprob-
lems. In the experimentalevaluationwe shawv that our algo-
rithms performvery closeto optimal. At the end of the sec-
tion, we briefly discusssolutionsfor UAAandSAA

4.1 Unrestricted Window with Relative Amnesic

4.1.1 Optimal Solution

Theoptimalsolutionfor the URAproblemcanbeobtainedus-
ing dynamicprogramming4]. Notethatin orderto getthe
optimal solutionin a streamingenvironment,we have to run
the dynamic programmingalgorithm every time that a new
datapoint arrives. The reasonis that we cannotreusethe
computationsnadeduringthe previousstep,becauseéhe am-
nesicfunction causeghe approximationerror of eachpoint,
andtheir interrelationshipsto changeat every time step.The
time compleity for the dynamicprogrammingalgorithmis
O(N?K), which rendersthis approachinapplicablefor the
online versionof the problem. Neverthelessjn the experi-
mentalsectionwe show thatour algorithmsalwaysfind a so-
lution thatis very closeto optimal.

4.1.2 The GrAp-R Algorithm

In thissectionwe presentheskeletonof ouralgorithm,GrAp-
R, for solvingthe URAproblem.

At eachtime step, the algorithm meigesthe consecutre
pair of sgmentswhosememgewill resultin the leastapprox-
imation error, amongall possiblememges. The pair of sey-
mentsthat shouldbe memged, s,, ands,,,+1, is given by the
heapstructureH. We memgethosein onese@ment,s,, 1,
accordingo Theoremd and2. Thenwe computetheapprox-
imation error that would resultby meiging the new segment
with eachoneof its two neighborss,,—1 ands,,+2, accord-
ing to Lemmal. We usethesevaluesfor the errorsto update
theheapH, in orderto reflectthe new setof possiblememges.
This memgeresultsin a sparesegment,which we assigrto the
newly arrived point of the time series. Onceagainwe have
to computethe approximationerror when meiging this seg-
mentwith its neighbor andupdatethe heapH. A high-level
descriptionof the algorithmis depictedn Figure6.

1let H beamin-priority queueon theapproximatiorerrorsresultingfrom
memging eachpair of consecutie segments;

2let EQ = () beatime-eventqueue;

3 procedureGrAp-R()

4 whenanew point, T3], of thetime seriesarrivesattime ¢ty

5 pick theminimumelementrom H, andmegethecorresponding
S@MENtS s, ands,, 1, iNto anew segments,, m41;

6 updateH with theerrorsof meging sy, ,m41 with its two
neighboringsggments;

7 assignanew segment,s[;], to thenewly arrived point, T'[i];

8 updateH with theerrorof memging spp;) with its neighboring
sgment;

9 ManageEventS EQ, tn, Sm, Sm+1, Sm,m+1);

10 return;

Figure 6. The skeletonof the GrAp-R algorithm

The GrAp-R algorithm also makes use of a time-event
queueE(Q. This structurekeepstrack of theway thatthe de-
pendenciemamongthe sggmentsusedfor the approximation
changeas a result of the amnesicfunction. The procedure
thatmanageshesedependencieis ManageEvents()andwe
describdt in moredetailin the next paragraphs.

In the following subsectionsve elaborateon the way the
framework of the GrAp-Ralgorithmdescribedabove changes
whenwe considerthe differentclasseof amnesidunctions.
We discussthe specificdetailsof eachcase,and presenthe
time andspacecompleities of the solutionswe propose.

4.1.3 PiecewiseConstant AmnesicFunctions

Whenthe amnesidunction belongsto the classof piecavise
constanfunctions,achangeo therelative orderingof thepair
of sggmentsthatshouldbe megedduringthe next stepof the
algorithmonly happensvhena segmentcrosses discontinu-
ity betweertwo sectionof theamnesidunction.

Example 1 Assumave havetheamnesidunctionRA(z) =1,0 <
z < 10 and RA(z) = 4,z > 10. Lets; > andss 4 betwo pairs
of sgments,candidatesfor meging, that, at the currenttime, are
at positionsz = 7 andz = 2, and haveerrors E(s1,2) = 4 and
E(ss,4) = 2, respectively(Figure 7(a)). Then,their relativeerrors



are E(s1,2)/RA(7) = 4 and E(s3,4)/RA(2) = 2, which means
that ss,4 is thefirstcandidatefor meging. However, after threetime

instanceswhens; » firstgetsto thepointz = 10, its error becomes
E(s1,2)/RA(10) = 1 < E(s3,4)/RA(5) = 2 (Figure 7(b)). Thus,

s1,2 is nowthe candidatepair for meging.

S34  S1.2 S34  S1.2
4 —_— 4 —_—
1 1
02 7 10 0 5 10
(a) (b)

Figure 7. Eventexamplefor piecewiseconstant.

In orderto keeptrack of thesechangesye needto main-
taintheheapH, and,in addition,atime-eventqueueE Q. The
heapH determineghe next pair of sggmentsthat shouldbe
merged. ThequeueEQ flagsthetimesatwhich the sgments
crossa discontinuityin the amnesicunction (remembetthat
during thesecomputationsve assumethat eachsegmentis
representeddy its mostrecentpoint). Whenthis happenswe
updatethe positionof the sggmentin the heap,andwe com-
putethe next time thatit will crossa discontinuity Figure8
shaws the ManageEvents(procedurefor the caseof piece-
wise constantamnesidunctions. The GrAp-Ralgorithmre-
mainsasdiscussearlier

1 procManageEwentgqueueEQ, time t, s@gmentss.,,, Sm+1, Sm,m+1)
remove from EQ ary eventscorrespondingo sggmentss,, andsm41;
if (next evente in EQ is scheduledor timet < te <t+ 1)

remove e, relatedto sggmentss. 1 andse 2, from EQ;

updatein H thepositionof thepair se,;1 andse,2;

computethe new time whenthepair s¢,1 andse,2 will crossa

discontinuity;

insertin EQ thenew event(if ary);
insertin EQ ary new dependencielentifiedconcerningsm,m+1;
return;

OO0 wWN
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Figure 8. The ManageEvents() procedure for piecewise
constantamnesicfunctions.

Thefollowing theoremstateghe spaceandtime complex-
ity of thealgorithm.

Theorem3 The spacecomplity of GrAp-R with a piece-
wise constantamnesicfunctionis O(K), and the time com-
plexity to processeac new paintis O(log K).

Proof: ThealgorithmneedsO(K) spaceto storethe K seg-
mentsusedin the approximation.A heapstructureis usedto
determinethe pair of sggmentsthat will be memgedat each
stepof thealgorithm. The heaprequiresO(K) spaceo store
the K — 1 adjacenpairsof sggments.Finally, we mustkeep
track of thetimeswhensegmentscrossa discontinuityof the
amnesicstepfunction. At eachpoint in time we only need
to maintainin the time-eventqueueonesucheventfor every
segment. Therefore the queuehasa worst spacecomplexity

of O(K), and O(K) is the overall spacecompleity of the
algorithmaswell.

At eachtime unit, the algorithm can pick from the heap
the pair of sgmentsto merge, andidentify in the time-event
gueuethe segmentsthat crossa discontinuity in O(1) time.
The time to memge two segmentsis constantbecausef the
Theoremsl and 2, andLemmal. The time to updatethe
heapis O(log K), and,sincethe sizeof thetime-eventqueue
is O(K), thetime to insertor deletean eventfrom the queue
is O(log K') (whenthe queueis implementedusing skiplists
[24], or ary other equialentdatastructurethat offers loga-
rithmic searchtimes). Thus,the overall time complexity for
eachiterationis O(log K). O

Both the procedureManageEvents()and Theorem3 as-
sumethat only a single sgmentis crossinga discontinuity
at eachtime step. The extensionof the algorithmto handle
multiple segmentsis straightforvard. However, notethatthe
above situation doesnot arise often, especiallywhen more
thana few seggmentsareinvolved. Hence,its impacton the
performancas very small. The sameargumentshold for all
thealgorithmsdescribedn therestof this section.

4.1.4 Linear AmnesicFunctions

In the caseof linear amnesicfunctions, eacheventin EQ
specifieghetime atwhichtherelative orderingof themeiging
errorof two pairsof segmentschangeslt turnsoutthat,if we
know the approximatiorerrorof eachsegmentandtheclosed
formulaof theamnesidunction,we cancomputethetimesat
whichthesechangesvill occur We referto thosetimesasthe
crosspoints

Example 2 Assumewe havethe amnesicfunction RA(z) = = +

1,z > 0. Letsi,» and s34 be two pairs of segments,candi-

datesfor meging, that were createdat the current time, at posi-

tionsz = 6 andz = 2, and haveerrors E(s1,2) = 24 and

E(s3,4) = 12, respectively{Figure 9(a)). Then,their relativeerrors

are E(s1,2)/RA(6) = 3.4 and E(s3,4)/ RA(2) = 4, which means
that s1 2 is thefirst candidatefor meiging. However, after four time

instanceswhens » firstgetsto thepointz = 10, its error becomes
E(s1,2)/RA(10) = 2.2 > E(s3,4)/RA(6) = 1.7 (Figure 9(b)).

Thus,ss,4 is nowthe candidatepair for meging.

S34 S1.2 S34 S12
1/ 1/
02 6 0 6 10

(a) (b)

Figure 9. Event examplefor piecewiseconstant.

Considerthe generalcase wherewe have a linearrelative
amnesidunction, RA(z) = az + 8, andwe wantto compute
thetime whentherelative orderingof sgmentss; ands, will
change.(In fact, eachoneof s; ands, representshe meige
of a pair of sggments.)Let E(s1) and E(s2) bethe approxi-
mationerrorsfor s; ands-, respectiely. Finally, assumehat
ts, is thetime whens; wascreated.This time is definedas
thetime whenthe mostrecentpoint of s; arrived. We define



ts, in asimilarway. Then,theircrosspointt,, is givenby the
following equation.
E(81) _ E(Sz) o
a-(te—ts)+B  a-(te—ts) + 5’

(a-tsy =B)-E(s1) = (- ts; — ) - E(s2) 0
(E(s1) — E(s2)) - '

We only considerthe positive solutionsof this equation.
Notethatit maybethe casethattheir relative orderingnever
changesthatis, thereis no positive solution. Furthermore,
we do not needto computethe crosspointof eachsegment
with all the others. It sufficesto consideronly the sgments
storedin neighboringhodesn theheapH, andmaintainthese
dependencieap to dateasthe heapchanges.We now give
upperboundson the numberof crosspointtomputationghat
we have to performasa resultof changesn H. All these
computationganbe performedin constantime accordingto
Equationl.

r

te =

Lemma 2 Assumewe haveprocessed crosspoint,and the
heaphasbeenupdated. The possiblecrosspointave haveto
computeare no more than4.

Lemma 3 Assumdwo sggmentshavemeiged, and the heap
hasbeenupdated. The possiblecrosspointsve haveto com-
puteare nomorethan[log K] + 1.

The above lemmataguarante¢hatthe work we have to do
everytime theheapchangess minimal. The ManageEvents()
procedurdor the caseof linearamnesidunctionsis depicted
in Figure10.

1 procManageEwentgqueueEQ, time t, s@gmentssm,,, Sm+1, Sm,m+1)
remove from EQ ary eventscorrespondingo sggmentss,, andsm41;
if (next evente in EQ is scheduledor timet < te < t+ 1)

remove e, relatedto sggmentsse,1 andse, 2, from E;

swapin H thepositionsof s¢;1 andse,2;

computecrosspointdbetweens. 1 ands. » andall their

new neighborgi.e., parentandchildrennodes)n H;

insertin EQ eventsfor ary new crosspointsdentified;
insertin EQ ary new crosspointsdentifiedconcernings,, ,m+1;
return;

OO wWN
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Figure 10. The ManageEvents() procedurefor linear am-
nesicfunctions.

The problemof keepingtrack of the crosspointds remi-
niscentof the work in the areaof kinetic data structues[3],
where boundsare given on the numberof crosspointsthat
needto be considered.However, the above work examines
only linear motion, and doesnot apply to our problem. In
practice the sizeof EQ, |EQ|, remainssmall, and doesnot
affectthe performanceof our algorithms.

The compleity of thealgorithmis asfollows.

Theorem4 The spacecompleity of GrAp-R with a linear
amnesidunctionis O(K + | EQ|), andthetime compleity to
processad new pointis O(log K + log|EQ)).

Proof: The algorithm requiresO(K) spaceto storethe K
sgmentsandtheheapandO(|EQ)|) spacdor thetime-event
queue.

At eachiteration, the time to find the pair of segments
to meme, and the sggmentthat hasreacheda crosspoint,is
0(1). We needO(log K) time to updatethe heapafterthose
changesandLemmata3 and?2 statethatthereis only asmall
constanhumberof computationghatwe haveto perform.We
alsoneedto updatethequeuewhichtakesO(log | EQ|) time.
Therefore,the overall time complexity for eachiterationis
O(log K + log |EQ)). O

4.1.5 Piecewisd.inear AmnesicFunctions
Assumethattheamnesidunctionis comprisedf L sections.
Then,we treateachsectionseparatelyasin the caseof lin-
earamnesidunctionsdiscusse@bore. We maintainZ heaps,
onefor eachsection,andasingletime eventqueue.Thetime-
eventqueuejn additionto keepingtrackof all thecrosspoints,
alsomaintainsthe timesat which a sggmentmovesfrom one
sectionto another The above L heapscarry local informa-
tion, asto which is the bestpair of sggmentsto merge within
eachsection. Then, at eachiteration of the algorithm, it is
easyto determinethe overall bestpair of sgmentsto mege,
eitherby performinga linearscanof thetop elementof the L
heapspr by maintaininga heapof thoseL elements.For all
practicalpurposes/ is relatively small,in the orderof afew
dozensThereforealinearscanis sufficiently fast,andavoids
theneedfor maintainingthe extraheapstructurewhichin the
worst casehastime compleity O(Llog L). For the restof
thiswork, we only considerthelinearscanapproach.

Thefollowing theoremgivesthe spaceandtime complex-
ity of thealgorithm.

Theorem5 The spacecompleity of GrAp-R with a piece-
wiselinear amnesidunctionis O(K + |EQ|), andthetime
compleity to processeac new pointis O(L + Llog % +
log |EQ]).

Proof: We assumehat an equalnumberof segmentscorre-
spondsto eachsectionof the amnesicfunctiorf. The algo-
rithm requiresO(K) spacefor storingthe K sggmentsand
the L heapgsinceall theheapsombinedstoreO(K) values).
The spacerequiredby the time-eventqueueaccountdor the
secondermin thecompleity function. This spacds equalto
thenumberof crosspoint@ndthe numberof eventsrelatedto
segmentsmoving from onesectionto the next. Thereforewe
needO(K + |EQ)|) spacen total.

In terms of time, the algorithm at each iteration
needsO(log |[EQ]|) time to updatethe time-event queue,
O(Llog ¥) time to updatethe L heaps,and O(L) time to
pick the bestpair of sggmentsto memge. O

4This assumptioris realistic becauseof the following obseration. The
sectionsof the amnesicfunction that refer to the newer valuesof the time
serieswill tendto be of finer granularityandencompasa smallerportion of
the time seriesthanthe sectionsreferringto the older values. Yet, they will
requirea higherratio of sggmentsper datapoint, sincethe requirementgor
accurag in the newer datapointsis higherthanthatfor the olderones.



4.1.6 Continuous AmnesicFunctions

When the amnesicfunction is continuous,we identify two
cases First, theamnesidunction hasa closedform formula.
In this case we cancomputethe crosspoint®f the segments,
and we proceedas with the linear amnesicfunctions. Sec-
ond, whenthe amnesidunction doesnot have a closedform
formula,we replacethe continuousunctionwith a piecavise
linear approximationusing L sections.Then,we proceedas
with the piecevise linear amnesicfunctions. We construct
L heaps,andsearchin thosefor the bestpair of segmentto
meige. Sincetheresultingamnesidunctionis anapproxima-
tion of theoriginal function,insteadof examiningonly thetop
elementfrom eachheap,we considerthe top¢ elements We
calculateheexacterror(i.e.,basednthecontinuousamnesic
function)of thoseelementsandpick thebestpair of sggments
amongthem. This techniqueprovesto work very well, even
for smallq. We deferfurtherdiscussiorto the full versionof
this paper

The following theoremgivesthe spaceandtime complex-
ity of the algorithm (the proofis similar to the caseof piece-
wiselinearamnesidunctions).

Theorem6 Assumewe approximatea continuousamnesic
functionwith L piecewviselinear sections. Further, assume
that we considerthe top elementof each heapin orderto
identify the bestpair of sggmentsto meige. Then,the space
compleity of GrAp-R with a continuousamnesidunctionis
O(K + |EQ)|), andthetime compleity to processead new
pointis O(¢L + Llog % +log |EQ)).

4.2 Sliding Windows With Relative Amnesic

In this sectionwe discussalgorithmsthat solve the online
amnesicapproximationproblemfor a sliding window of a
streamingtime series. Assumea sliding window of size W,
andthatwe usePLAto build a build anapproximatiormodel
Q@ with K sggments.We referto the side of the sliding win-
dow from which new pointsenterthe window asthe start of
the sliding window. We call end of the sliding window the
sidefrom wherepointsexit, andlast segment,the sgmentof
Q thatapproximateshe pointsof the seriesat the endof the
sliding window.

Theskeletonof thealgorithmsfor theslidingwindows case
is the sameasthe one presentedn the previous section,for
the amnesicapproximationof time seriesin an unrestricted
window. The only differenceis that we now have to adjust
the approximationsuchthatthereis no segmentthatrefersto
datapointsbeyondthe endof the sliding window. In orderto
achieve this goal, we simply discardthe lastsegmentassoon
asit getsentirely out of the sliding window, andwe reuseit
atthe startof thewindow. Obsene though,thatthe amnesic
functionis moretolerableto the approximatiorerrortowards
the end of the sliding window. Then, a questionthat arises
naturallyis whetherit is possiblefor the last sggmentto con-
tinue growing by memging with the secondto last segment,

andconsequentiyever fall out of the boundarie®of the slid-
ing window. Thefollowing lemmaaddressethis question.

Lemma4 Thelast sggmentof model @ will never grow to
representhe entire setof pointsbeyondthe endof the sliding
window

The above lemmaguaranteeshat a sliding window am-
nesicapproximatiorwill never degenerateéo an unrestricted
window approximatiorof thetime seriesput doesnotgive us
a boundon the size of the lastsegment. In Section5 we ex-
perimentallyshow thatthe size of the last segmentis always
relatively small.

4.3 Algorithms for Absolute AmnesicFunctions

Whenwe useabsoluteamnesicfunctions,thereis no re-
strictionin thenumberf sggmentshatwe mayusefor theap-
proximation. Furthermorewe cancalculatethe time whena
neighboringpairof sggmentswill beeligibleto merge.Hence,
in this casewe do not have to keeptrack of the segments
whosememewill resultin the leastadditionalerror, andsub-
sequentlythereis no needto maintaina heapstructureonthe
adjacenfpairsof sggmentsaswe did for the caseof therela-
tive amnesidunctions.

The algorithmsfor the UAA and SAAproblemsare based
onthecorrespondinglgorithmspresentedor therelative am-
nesicfunctions. The only difference,asdiscussedbove, is
thatthereis no needfor a priority queuestructure.We do not
discusghesealgorithmsary further, dueto lack of space.

5 Experimental Evaluation

We implementedour algorithmsand conducteda series
of experimentsto evaluatetheir efficiency. We also imple-
mentedthe optimal algorithm, using dynamicprogramming,
andthetraditionalBottomUpalgorithmfor PLA[18], to com-
pareagainstourtechniques.

In order to evaluate our algorithms, we usedan exten-
sive setof real-world datasetsTheseare40 dataset€oming
from diversefields, including finance,medicine,biometrics,
chemistry astronomyrobotics,networking andindustry and
covering the completespectrumof stationary/non-stationary
noisy/smooth,cyclical/non-gsclical, symmetric/asymmetric,
etc. [1]. Whennot explicitly mentionedthe resultsreported
areaveragesverall 40 datasetsSomeof thedatasetsisedin
ourexperimentsareillustratedin Figure11. For all theexper
imentsshavn here,we employed a piecevise linearamnesic
function. Theresultsfor otheramnesidunctionsaresimilar.

5.1 Comparisonto BottomUp
In thefirst setof experimentswe compareheperformance

of GrAp-Rto BottomUp which is essentiallya comparison
betweeranonlineandthe correspondingffline algorithm.



Figure 11. Someof the datasetsusedin our experiments.

Figure 12 depictsthe approximationerror and computa-
tion time for GrAp-RandBottomUp for asingledataset(We
getsimilar graphsfor all the datasetsve usedin our experi-
ments.) We usethe unrestrictedvindow modeland 10 seg-
ments,andwe reportthe error andtime asa function of the
window size. Our online algorithmconsistentlyprovidesap-
proximationsthatarevery closeto thosefound by the offline
algorithm. At the sametime our algorithm is much faster
requiringonly constanttime for processingavery new point
(actually aswe discussedh Sectiond, thetime is logarithmic
to K, but independenbf ). On the otherhand,BottomUp
hastime compleity O(N log N).

T
— Online
— Static

2000

15001
1000

500

800 1000

400 600
window size

800 1000

Figure 12. Typical progressionof error (top) and time
(bottom) for GrAp-R and BottomUp, for a single dataset
(unrestricted window).

In the next setof experimentswe quantifythe differences
in the performanceof the two algorithms. We reportthe cu-
mulativerelative error, C RE, which measuresherelative in-
creasan the cumulatve errorwhenusingGrAp-R

E;V::L(EGTAP_R(T[]'"]']) - EBottomUp(T[]...j]))
Z?’:I EBottomUp(T[]...j])
The secondmeasureof interestis the speedupwhich mea-

sureshom mary times fasterGrAp-R is when comparedto
BottomUp

CRE =100 -

> Timesottomup(T[1..4])

Speedup =
E;.V:]_ TimeGrAp—R (T[l.]])

10

In Figure13,wedepictC RE asafunctionof K andN, for
theunrestrictedvindow model.Using 50 segmentspur algo-
rithm performswithin 3% — 11% of the offline algorithm,for
stream®f length1000 — 3000 points(Figure13(a)). Though,
for increasingV we obsene a very slow build-up of therel-
ative error. In the experimentof Figure 13(b), the numberof
segmentswe useis 1%, 3%, and5% of N. In this casewhere
theratio N/ K remainsfixed, C RE remainsrelatively stable
asweincreaséV. In bothcasespuralgorithmperformsbetter
asthenumberof sggmentsincreases.
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Avg. % of Relative Error

30

50 50 150 250

(b) fixed N/ K
Figure 13. Comparison of the approximation error be-
tween GrAp-R and BottomUp (unrestricted window).

100 300 500

Figure 14 shows the speedughat our algorithmachieves,
whichtranslateto oneor two ordersof magnitudefasterexe-
cutionthanthe offline algorithm(for the experimentsve ran).
We obsenre that the speedupncreasessignificantly for de-
creasingK. Thisis because¢he amountof work that GrAp-R
doesremainsalmostconstan{depend®n log K'), while Bot-
tomUprequiredots of extraeffort for smallervaluesof K. As
expectedthe speedumetslargerwhenweincreasen.

We alsorun the sameexperimentgor the sliding window
model.Figurel5illustratestheresultsfor thespeedupwhich
in this caseis mainly a function of the window size (K does
not seemto affect the speedupin this case,becauseof the
particularchoicesof K andthe window size). The GrAp-R
algorithmis 10 — 30 timesfasterthanBottomUp Theresults
for the error are similar to thosefor the unrestrictedvindow
model,andareomitteddueto spacerestrictions.

Thetrendsfor theerrorandtime remainthesameaswein-
creasd( andN. All theaboveresultsshowv thattheonlineal-
gorithmachievesconsiderabl®enefitan termsof speedvhile
losinglittle in approximatioraccurag, whencomparedo the
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Figure 14. Speedupof GrAp-R againstBottomUp (unre-
stricted window).
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Figure 15. Speedupof GrAp-R againstBottomUp (sliding
window).

offline algorithm.

With the next experiment,we addressa questionthatwas
raisedin light of Lemma4. In the sliding window model,
we temporarilyallow the last sggmentof the approximation
modelto grow beyond the end of the window, until it com-
pletelyfalls out of the boundarieof the window andwe dis-
cardit. Figurel6depictstheaveragenumberof pointsoutside
the sliding window that are representedby the last segment,
asapercentagef thewindow size.In all the caseave tested,
thisnumberangedetweenl0% — 15%, andthereforejs not
arestrictingfactorfor our representation.
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9% |Seg. Outside Window]/ [Window|
@
8

Figure 16. Number of excesspoints represented by
GrAp-R (sliding window).
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5.2 Comparisonto Optimal

In this sectionwe investigatehow our techniquesompare
totheoptimalalgorithm,Opt, implementedvith dynamicpro-
gramming.Unfortunately dueto the high time compleity of
theoptimalalgorithm,this experimentis only possiblefor rel-
atively smalldatasets.

We usethe samesetof 40 datasetsaindperformthe exper
imentasfollows. From eachdatasetwe randomlyextracta
subsequencef length 512, and sggmentit into 16, 32, and
64 segments,usingboth algorithmsunderconsideration We
measurehe relative increasean errorfor the BottomUpalgo-
rithm, definedas(Egottomuvp—Eopt) / Eopt- A zerovaluefor
therelative errormeanghat BottomUphasfoundthe optimal
solution. For eachdatasetandeachnumberof sggmentswe
averagetheresultsover 10 randomlyextractedsubsequences,
andthenaveragetherelative erroroverall 40 datasetsThere-
sultsareshownn in Table2. They clearly suggesthatwe lose
little by usingBottomUpasopposedo Opt, sinceBottomUp
finds solutionsvery closeto optimal. Consequentlybasedon
the experimentswve presentedn the previous paragraphsye
cansafelyconcludehatGrAp-Rperformscloseto optimal,as
well. Finally, the last columnof the tablereportshow much
slower Optexecutegmorethantwo ordersof magnitude)and
illustratesthe inapplicability of the optimal algorithmfor an
onlineervironment.

K (EBottomUp - EOpt)/EOpt TimeOpt/TimeBottomUp
16 0.058 112
32 0.051 137
64 0.042 173

Table 2. Comparison betweenBottomUp and optimal.

6 RelatedWork

Thereexists an extensie literaturein the areaof time se-
riesapproximatiorf19]. Someof therepresentationthathave
beenproposednclude the Fourier transform[10, 25|, mary
differentwavelets[23, 7], piecavise polynomialg[28, 6], sin-
gular value decompositior{6] and symbolicapproximations
[2]. Many of the above approximatiortechniqueshave been
adaptedo work in anonlinefashion.For example,piecavise
constantapproximationcanbe createdonline with little loss
of accurag [22], aswell asDFT [29]. Most of othertime
seriesrepresentationkave been,or couldtrivially be, calcu-
latedin anincrementafashion[18]. Therehasalsoappeared
work on datastreamsummarizationusingwavelets[13] and
histogramg14]. CohenandStrausg9] presenta framewnork
for maintainingtime-decayingtreamaggregjatessuchassum
andaverage.

Chenetal. [8] describeaframework for multi-dimensional
regressioranalysisof time serieswith atilt time frame. Yet,
they do notexplicitly tailor their representationto matchdif-
ferentamnesicfunctions. Bulut and Singh proposedusing
waveletsto representdata streamswvhich arebiasedtowards
the more recentvalues” [5], and successfullyimplemented



their method.Althoughthe biasto morerecentvaluescanbe
seenasa specialcaseof an amnesicfunction, the particular
functionis dictatedby the hierarchicalnatureof the wavelet
transform. Our work removesall the restrictionsinherentin

the above approachesThe framewnork we proposetakesinto

accountheform of theamnesidunctionasanintegral partof

the problem,and providesan effective and efficient solution
for amuchmoregeneraklassof amnesidunctions.

7 Conclusions

We have introducedthe first methodto allow the online
approximationof streamingtime series,which allows arbi-
trary, userdefinedreductionof quality with time. This kind
of approximatioris of increasingmportancen mary diverse
applicationdomains,such as mobile and real-time devices.
We justified our choiceof representatiomwith extensive com-
parisongo competingtechniqguesanddescribechow we can
adaptto allow arbitraryamnesidunctionsfor streamingdata.
We empiricallyevaluateduralgorithmswith extensiveexper
imentson 40 differentdatasetsThe resultsshov thatour al-
gorithmsoffer significantperformancémprovementsoverthe
directcomputationabpproachwhile maintainingthe quality
of theapproximatiorcloseto optimal. Possibledirectionsfor
future work include supportingindexed similarity searchand
otherquerieson our representation.
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