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Abstract
Recurrent neural network models with an atten-
tion mechanism have proven to be extremely
effective on a wide variety of sequence-to-
sequence problems. However, the fact that soft
attention mechanisms perform a pass over the
entire input sequence when producing each el-
ement in the output sequence precludes their use
in online settings and results in a quadratic time
complexity. Based on the insight that the align-
ment between input and output sequence ele-
ments is monotonic in many problems of interest,
we propose an end-to-end differentiable method
for learning monotonic alignments which, at test
time, enables computing attention online and in
linear time. We validate our approach on sen-
tence summarization, machine translation, and
online speech recognition problems and achieve
results competitive with existing sequence-to-
sequence models.

1. Introduction
Recently, the “sequence-to-sequence” framework
(Sutskever et al., 2014; Cho et al., 2014) has facilitated
the use of recurrent neural networks (RNNs) on sequence
transduction problems such as machine translation and
speech recognition. In this framework, an input sequence
is processed with an RNN to produce an “encoding”; this
encoding is then used by a second RNN to produce the
target sequence. As originally proposed, the encoding is
a single fixed-length vector representation of the input
sequence. This requires the model to effectively compress
all important information about the input sequence into a
single vector. In practice, this often results in the model
having difficulty generalizing to longer sequences than
those seen during training (Bahdanau et al., 2015).

An effective solution to these shortcomings are attention
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mechanisms (Bahdanau et al., 2015). In a sequence-to-
sequence model with attention, the encoder produces a se-
quence of hidden states (instead of a single fixed-length
vector) which correspond to entries in the input sequence.
The decoder is then allowed to refer back to any of the en-
coder states as it produces its output. Similar mechanisms
have been used as soft addressing schemes in memory-
augmented neural network architectures (Graves et al.,
2014; Sukhbaatar et al., 2015) and RNNs used for sequence
generation (Graves, 2013). Attention-based sequence-to-
sequence models have proven to be extremely effective on
a wide variety of problems, including machine translation
(Bahdanau et al., 2015; Luong et al., 2015), image cap-
tioning (Xu et al., 2015), speech recognition (Chorowski
et al., 2015; Chan et al., 2016), and sentence summariza-
tion (Rush et al., 2015). In addition, attention creates an
implicit soft alignment between entries in the output se-
quence and entries in the input sequence, which can give
useful insight into the model’s behavior.

A common criticism of soft attention is that the model must
perform a pass over the entire input sequence when pro-
ducing each element of the output sequence. This results
in the decoding process having complexity O(TU), where
T and U are the input and output sequence lengths respec-
tively. Furthermore, because the entire sequence must be
processed prior to outputting any symbols, soft attention
cannot be used in “online” settings where output sequence
elements are produced when the input has only been par-
tially observed.

The focus of this paper is to propose an alternative at-
tention mechanism which has linear-time complexity and
can be used in online settings. To achieve this, we first
note that in many problems, the input-output alignment is
roughly monotonic. For example, when transcribing an
audio recording of someone saying “good morning”, the
region of the speech utterance corresponding to “good”
will always precede the region corresponding to “morn-
ing”. Even when the alignment is not strictly monotonic,
it often only contains local input-output reorderings. Sep-
arately, despite the fact that soft attention allows for as-
signment of focus to multiple disparate entries of the input
sequence, in many cases the attention is assigned mostly to
a single entry. For examples of alignments with these char-
acteristics, we refer to e.g. (Chorowski et al. 2015 Figure
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2; Chan et al. 2016 Figure 2; Rush et al. 2015 Figure 1;
Bahdanau et al. 2015 Figure 3), etc. Of course, this is not
true in all problems; for example, when using soft attention
for image captioning, the model will often change focus
arbitrarily between output steps and will spread attention
across large regions of the input image (Xu et al., 2015).

Motivated by these observations, we propose using hard
monotonic alignments for sequence-to-sequence problems
because, as we argue in section 2.2, they enable computing
attention online and in linear time. Towards this end, we
show that it is possible to train such an attention mecha-
nism with a quadratic-time algorithm which computes its
expected output. This allows us to continue using standard
backpropagation for training while still facilitating efficient
online decoding at test-time. On all problems we studied,
we found these added benefits only incur a small decrease
in performance compared to softmax-based attention.

The rest of this paper is structured as follows: In the follow-
ing section, we develop an interpretation of soft attention as
optimizing a stochastic process in expectation and formu-
late a corresponding stochastic process which allows for
online and linear-time decoding by relying on hard mono-
tonic alignments. In analogy with soft attention, we then
show how to compute the expected output of the mono-
tonic attention process and elucidate how the resulting al-
gorithm differs from standard softmax attention. After giv-
ing an overview of related work, we apply our approach to
the tasks of sentence summarization, machine translation,
and online speech recognition, achieving results competi-
tive with existing sequence-to-sequence models. Finally,
we present additional derivations, experimental details, and
ideas for future research in the appendix.

2. Online and Linear-Time Attention
To motivate our approach, we first point out that softmax-
based attention is computing the expected output of a sim-
ple stochastic process. We then detail an alternative process
which enables online and linear-time decoding. Because
this process is nondifferentiable, we derive an algorithm for
computing its expected output, allowing us to train a model
with standard backpropagation while applying our online
and linear-time process at test time. Finally, we propose
an alternative energy function motivated by the differences
between monotonic attention and softmax-based attention.

2.1. Soft Attention

To begin with, we review the commonly-used form of
soft attention proposed originally in (Bahdanau et al.,
2015). Broadly, a sequence-to-sequence model produces
a sequence of outputs based on a processed input se-
quence. The model consists of two RNNs, referred to

as the “encoder” and “decoder”. The encoder RNN pro-
cesses the input sequence x = {x1, . . . , xT

} to produce
a sequence of hidden states h = {h1, . . . , hT

}. We re-
fer to h as the “memory” to emphasize its connection to
memory-augmented neural networks (Graves et al., 2014;
Sukhbaatar et al., 2015). The decoder RNN then produces
an output sequence y = {y1, . . . , yU}, conditioned on the
memory, until a special end-of-sequence token is produced.

When computing y

i

, a soft attention-based decoder uses a
learnable nonlinear function a(·) to produce a scalar value
e

i,j

for each entry h

j

in the memory based on h

j

and the de-
coder’s state at the previous timestep s

i�1. Typically, a(·)
is a single-layer neural network using a tanh nonlinearity,
but other functions such as a simple dot product between
s

i�1 and h

j

have been used (Luong et al., 2015; Graves
et al., 2014). These scalar values are normalized using the
softmax function to produce a probability distribution over
the memory, which is used to compute a context vector c

i

as
the weighted sum of h. Because items in the memory have
a sequential correspondence with items in the input, these
attention distributions create a soft alignment between the
output and input. Finally, the decoder updates its state to s

i

based on s

i�1 and c

i

and produces y
i

. In total, producing
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where f(·) is a recurrent neural network (typically one or
more LSTM (Hochreiter & Schmidhuber, 1997) or GRU
(Chung et al., 2014) layers) and g(·) is a learnable nonlinear
function which maps the decoder state to the output space
(e.g. an affine transformation followed by a softmax when
the target sequences consist of discrete symbols).

To motivate our monotonic alignment scheme, we observe
that eqs. (2) and (3) are computing the expected output of
a simple stochastic process, which can be formulated as
follows: First, a probability ↵

i,j

is computed independently
for each entry h

j

of the memory. Then, a memory index k

is sampled by k ⇠ Categorical(↵
i

) and c

i

is set to h

k

. We
visualize this process in fig. 1. Clearly, eq. (3) shows that
soft attention replaces sampling k and assigning c

i

= h

k

with direct computation of the expected value of c
i

.
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Figure 1. Schematic of the stochastic process underlying
softmax-based attention decoders. Each node represents a
possible alignment between an entry of the output sequence
(vertical axis) and the memory (horizontal axis). At each output
timestep, the decoder inspects all memory entries (indicated in
gray) and attends to a single one (indicated in black). A black
node indicates that memory element hj is aligned to output yi. In
terms of which memory entry is chosen, there is no dependence
across output timesteps or between memory entries.

2.2. A Hard Monotonic Attention Process

The discussion above makes clear that softmax-based at-
tention requires a pass over the entire memory to compute
the terms ↵

i,j

required to produce each element of the out-
put sequence. This precludes its use in online settings, and
results in a complexity of O(TU) for generating the out-
put sequence. In addition, despite the fact that h represents
a transformation of a sequence (which ostensibly exhibits
dependencies between subsequent elements), the attention
probabilities are computed independent of temporal order
and the attention distribution at the previous timestep.

We address these shortcomings by first formulating a
stochastic process which explicitly processes the memory
in a left-to-right manner. Specifically, for output timestep
i we begin processing memory entries from index t

i�1,
where t

i

is the index of the memory entry chosen at output
timestep i (for convenience, letting t0 = 1). We sequen-
tially compute, for j = t

i�1, ti�1 + 1, t
i�1 + 2, . . .

e

i,j

= a(s
i�1, hj

) (6)
p

i,j

= s(e
i,j

) (7)
z

i,j

⇠ Bernoulli(p
i,j

) (8)

where a(·) is a learnable deterministic “energy function”
and s(·) is the logistic sigmoid function. As soon as we
sample z

i,j

= 1 for some j, we stop and set c

i

= h

j

and t

i

= j, “choosing” memory entry j for the context
vector. Each z

i,j

can be seen as representing a discrete
choice of whether to ingest a new item from the memory
(z

i,j

= 0) or produce an output (z
i,j

= 1). For all sub-
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Figure 2. Schematic of our novel monotonic stochastic decoding
process. At each output timestep, the decoder inspects memory
entries (indicated in gray) from left-to-right starting from where
it left off at the previous output timestep and chooses a single
one (indicated in black). A black node indicates that memory
element hj is aligned to output yi. White nodes indicate that a
particular input-output alignment was not considered because it
violates monotonicity. Arrows indicate the order of processing
and dependence between memory entries and output timesteps.

sequent output timesteps, we repeat this process, always
starting from t

i�1 (the memory index chosen at the previ-
ous timestep). If for any output timestep i we have z

i,j

= 0
for j 2 {t

i�1, . . . , T}, we simply set c
i

to a vector of ze-
ros. This process is visualized in fig. 2 and is presented
more explicitly in algorithm 1 (appendix A).

Note that by construction, in order to compute p
i,j

, we only
need to have computed h

k

for k 2 {1, . . . , j}. It follows
that our novel process can be computed in an online man-
ner; i.e. we do not need to wait to observe the entire input
sequence before we start producing the output sequence.
Furthermore, because we start inspecting memory elements
from where we left off at the previous output timestep (i.e.
at index t

i�1), the resulting process only computes at most
max(T, U) terms p

i,j

, giving it a linear runtime. Of course,
it also makes the strong assumption that the alignment be-
tween the input and output sequence is strictly monotonic.

2.3. Training in Expectation

The online alignment process described above involves
sampling, which precludes the use of standard backpropa-
gation. In analogy with softmax-based attention, we there-
fore propose training with respect to the expected value of
c

i

, which can be computed straightforwardly as follows.
We first compute e

i,j

and p

i,j

exactly as in eqs. (6) and (7),
where p

i,j

are interpreted as the probability of choosing
memory element j at output timestep i. The attention dis-
tribution over the memory is then given by (see appendix C
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for a derivation)
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We provide a solution to the recurrence relation of eq. (10)
which allows computing ↵

i,j

for j 2 {1, . . . , T} in parallel
with cumulative sum and cumulative product operations in
appendix C.1. Defining q

i,j

= ↵

i,j

/p

i,j

gives the following
procedure for computing ↵

i,j

:

e
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= a(s
i�1, hj

) (11)
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q
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where we define the special cases of q

i,0 = 0, p
i,0 = 0

to maintain equivalence with eq. (9). As in softmax-
based attention, the ↵

i,j

values produce a weighting over
the memory, which are then used to compute the con-
text vector at each timestep as in eq. (3). However, note
that ↵

i

may not be a valid probability distribution becauseP
j

↵

i,j

 1. Using ↵

i

as-is, without normalization, ef-
fectively associates any additional probability not allocated
to memory entries to an additional all-zero memory loca-
tion. Normalizing ↵

i

so that
P

T

j=1 ↵i,j

= 1 has two issues:
First, we can’t perform this normalization at test time and
still achieve online decoding because the normalization de-
pends on ↵

i,j

for j 2 {1, . . . , T}, and second, it would re-
sult in a mismatch compared to the probability distribution
induced by the hard monotonic attention process which sets
c

i

to a vector of zeros when z

i,j

= 0 for j 2 {t
i�1, . . . , T}.

Note that computing c

i

still has a quadratic complexity be-
cause we must compute ↵

i,j

for j 2 {1, . . . , T} for each
output timestep i. However, because we are training di-
rectly with respect to the expected value of c

i

, we will train
our decoders using eqs. (11) to (14) and then use the on-
line, linear-time attention process of section 2.2 at test time.
Furthermore, if p

i,j

2 {0, 1} these approaches are equiva-
lent, so in order for the model to exhibit similar behavior at
training and test time, we need p

i,j

⇡ 0 or p
i,j

⇡ 1. We
address this in section 2.5.

2.4. Modified Energy Function

While various “energy functions” a(·) have been proposed,
the most common to our knowledge is the one proposed in
(Bahdanau et al., 2015):

a(s
i�1, hj

) = v

> tanh(Ws

i�1 + V h

j

+ b) (15)

where W and V are weight matrices, b is a bias vector,1
and v is a weight vector. We make two modifications to
eq. (15) for use with our monotonic decoder: First, while
the softmax is invariant to offset,2 the logistic sigmoid is
not. As a result, we make the simple modification of adding
a scalar variable r after the tanh function, allowing the
model to learn the appropriate offset for the pre-sigmoid
activations. Note that eq. (13) tends to exponentially de-
cay attention over the memory because 1 � p

i,j

2 [0, 1];
we therefore initialized r to a negative value prior to train-
ing so that 1 � p

i,j

tends to be close to 1. Second, the
use of the sigmoid nonlinearity in eq. (12) implies that our
mechanism is particularly sensitive to the scale of the en-
ergy terms e

i,j

, or correspondingly, the scale of the energy
vector v. We found an effective solution to this issue was
to apply weight normalization (Salimans & Kingma, 2016)
to v, replacing it by gv/kvk where g is a scalar parame-
ter. Initializing g to the inverse square root of the attention
hidden dimension worked well for all problems we studied.

The above produces the energy function

a(s
i�1, hj

) = g

v

>

kvk tanh(Ws

i�1 + V h

j

+ b) + r (16)

The addition of the two scalar parameters g and r prevented
the issues described above in all our experiments while in-
curring a negligible increase in the number of parameters.

2.5. Encouraging Discreteness

As mentioned above, in order for our mechanism to exhibit
similar behavior when training in expectation and when us-
ing the hard monotonic attention process at test time, we
require that p

i,j

⇡ 0 or p
i,j

⇡ 1. A straightforward way to
encourage this behavior is to add noise before the sigmoid
in eq. (12), as was done e.g. in (Frey, 1997; Salakhutdinov
& Hinton, 2009; Foerster et al., 2016). We found that sim-
ply adding zero-mean, unit-variance Gaussian noise to the
pre-sigmoid activations was sufficient in all of our exper-
iments. This approach is similar to the recently proposed
Gumbel-Softmax trick (Jang et al., 2016; Maddison et al.,
2016), except we did not find it necessary to anneal the
temperature as suggested in (Jang et al., 2016).

Note that once we have a model which produces p
i,j

which
are effectively discrete, we can eschew the sampling in-
volved in the process of section 2.2 and instead simply set
z

i,j

= I(p
i,j

> ⌧) where I is the indicator function and ⌧

is a threshold. We used this approach in all of our exper-
iments, setting ⌧ = 0.5. Furthermore, at test time we do
not add pre-sigmoid noise, making decoding purely deter-

1b is occasionally omitted, but we found it often improves per-
formance and only incurs a modest increase in parameters, so we
include it.

2That is, softmax(e) = softmax(e+ r) for any r 2 R.
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ministic. Combining all of the above, we present our dif-
ferentiable approach to training the monotonic alignment
decoder in algorithm 2 (appendix A).

3. Related Work
(Luo et al., 2016) and (Zaremba & Sutskever, 2015) both
study a similar framework in which a decoder RNN can
decide whether to ingest another entry from the input se-
quence or emit an entry of the output sequence. Instead of
training in expectation, they maintain the discrete nature of
this decision while training and use reinforcement learning
(RL) techniques. We initially experimented with RL-based
training methods but were unable to find an approach which
worked reliably on the different tasks we studied. Empir-
ically, we also show superior performance to (Luo et al.,
2016) on online speech recognition tasks; we did not at-
tempt any of the tasks from (Zaremba & Sutskever, 2015).
(Aharoni & Goldberg, 2016) also study hard monotonic
alignments, but their approach requires target alignments
computed via a separate statistical alignment algorithm in
order to be trained.

As an alternative approach to monotonic alignments, Con-
nectionist Temporal Classification (CTC) (Graves et al.,
2006) and the RNN Transducer (Graves, 2012) both as-
sume that the output sequences consist of symbols, and add
an additional “null” symbol which corresponds to “produce
no output”. More closely to our model, (Yu et al., 2016b)
similarly add “shift” and “emit” operations to an RNN. Fi-
nally, the Segmental RNN (Kong et al., 2015) treats a seg-
mentation of the input sequence as a latent random variable.
In all cases, the alignment path is marginalized out via a
dynamic program in order to obtain a conditional probabil-
ity distribution over label sequences and train directly with
maximum likelihood. These models either require condi-
tional independence assumptions between output symbols
or don’t condition the decoder (language model) RNN on
the input sequence. We instead follow the framework of
attention and marginalize out alignment paths when com-
puting the context vectors c

i

which are subsequently fed
into the decoder RNN, which allows the decoder to condi-
tion on its past output as well as the input sequence. Our
approach can therefore be seen as a marriage of these CTC-
style techniques and attention. Separately, instead of per-
forming an approximate search for the most probable out-
put sequence at test time, we use hard alignments which
facilitates linear-time decoding.

A related idea is proposed in (Raffel & Lawson, 2017),
where “subsampling” probabilities are assigned to each en-
try in the memory and a stochastic process is formulated
which involves keeping or discarding entries from the input
sequence according to the subsampling probabilities. A dy-
namic program similar to the one derived in section 2.3 is

then used to compute the expected output which allows for
training with standard backpropagation. Our approach dif-
fers in that we utilize an RNN decoder to construct the out-
put sequence, and furthermore allows for output sequences
which are longer than the input.

Some similar ideas to those in section 2.3 were proposed
in the context of speech recognition in (Chorowski et al.,
2015): First, the prior attention distributions are convolved
with a bank of one-dimensional filters and then included in
the energy function calculation. Second, instead of com-
puting attention over the entire memory they only compute
it over a sliding window. This reduces the runtime com-
plexity at the expense of the strong assumption that mem-
ory locations attended to at subsequent output timesteps fall
within a small window of one another. Finally, they also
advocate replacing the softmax function with a sigmoid,
but they then normalize by the sum of these sigmoid acti-
vations across the memory window instead of interpreting
these probabilities in the left-to-right framework we use.
While these modifications encourage monotonic attention,
they do not explicitly enforce it, and so the authors do not
investigate online decoding.

In a similar vein, (Luong et al., 2015) explore only comput-
ing attention over a small window of the memory. In addi-
tion to simply monotonically increasing the window loca-
tion at each output timestep, they also consider learning
a policy for producing the center of the memory window
based on the current decoder state.

(Kim et al., 2017) also make the connection between soft
attention and selecting items from memory in expectation.
They consider replacing the softmax in standard soft atten-
tion with an elementwise sigmoid nonlinearity, but do not
formulate the interpretation of addressing memory from
left-to-right and the corresponding probability distributions
as we do in section 2.3.

(Jaitly et al., 2015) apply standard softmax attention in on-
line settings by splitting the input sequence into chunks and
producing output tokens using the attentive sequence-to-
sequence framework over each chunk. They then devise a
dynamic program for finding the approximate best align-
ment between the model output and the target sequence.
In contrast, our ingest/emit probabilities p

i,j

can be seen as
adaptively chunking the input sequence (rather than provid-
ing a fixed setting of the chunk size) and we instead train by
exactly computing the expectation over alignment paths.

4. Experiments
To validate our proposed approach for learning mono-
tonic alignments, we applied it to a variety of sequence-
to-sequence problems: sentence summarization, machine
translation, and online speech recognition. In the follow-
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ing subsections, we give an overview of the models used
and the results we obtained; for more details about hy-
perparamers and training specifics please see appendix D.
Incidentally, all experiments involved predicting discrete
symbols (e.g. phonemes, characters, or words); as a result,
the output of the decoder in each of our models was fed
into an affine transformation followed by a softmax non-
linearity with a dimensionality corresponding to the num-
ber of possible symbols. At test time, we performed a
beam search over softmax predictions on all problems ex-
cept machine translation. All networks were trained using
standard cross-entropy loss with teacher forcing against tar-
get sequences using the Adam optimizer (Kingma & Ba,
2014). All of our decoders used the monotonic attention
mechanism of section 2.3 during training to address the
hidden states of the encoder. For comparison, we report
test-time results using both the hard linear-time decoding
method of section 2.2 and the “soft” monotonic attention
distribution. We also present the results of a synthetic
benchmark we used to measure the potential speedup of-
fered by our linear-time decoding process in appendix F.

Online Speech Recognition Online speech recognition
involves transcribing the words spoken in a speech utter-
ance in real-time, i.e. as a person is talking. This problem
is a natural application for monotonic alignments because
online decoding is an explicit requirement. In addition, this
precludes the use of bidirectional RNNs, which degrades
performance somewhat (Graves et al., 2013). We tested our
approach on two datasets: TIMIT (Garofolo et al., 1993)
and the Wall Street Journal corpus (Paul & Baker, 1992).

Speech recognition on the TIMIT dataset involves tran-
scribing the phoneme sequence underlying a given speech
utterance. Speech utterances were represented as se-
quences of 40-filter (plus energy) mel-filterbank spectra,
computed every 10 milliseconds, with delta- and delta-
delta-features. Our encoder RNN consisted of three uni-
directional LSTM layers. Following (Chan et al., 2016),
after the first and second LSTM layer we placed time re-
duction layers which skip every other sequence element.
Our decoder RNN was a single unidirectional LSTM. Our
output softmax had 62 dimensions, corresponding to the
60 phonemes from TIMIT plus special start-of-sequence
and end-of-sequence tokens. At test time, we utilized a
beam search over softmax predictions, with a beam width
of 10. We report the phone error rate (PER) after apply-
ing the standard mapping to 39 phonemes (Graves et al.,
2013). We used the standard train/validation/test split and
report results on the test set.

Our model’s performance, with a comparison to other on-
line approaches, is shown in table 1. We achieve better
performance than recently proposed sequence-to-sequence
models (Luo et al., 2016; Jaitly et al., 2015), though the

Table 1. Phone error rate on the TIMIT dataset for different online
methods.

Method PER

(Luo et al., 2016) (stacked LSTM) 21.5%
(Jaitly et al., 2015) (end-to-end) 20.8%
(Luo et al., 2016) (grid LSTM) 20.5%
Hard Monotonic Attention (ours) 20.4%
Soft Monotonic Attention (ours, offline) 20.1%
(Graves et al., 2013) (CTC) 19.6%

small size of the TIMIT dataset and the resulting variabil-
ity of results precludes making substantiative claims about
one approach being best. We note that (Jaitly et al., 2015)
were able to improve performance by precomputing align-
ments using an HMM system and providing them as a su-
pervised signal to their decoder; we did not experiment
with this idea. CTC (Graves et al., 2013) still outperforms
all sequence-to-sequence models. In addition, there re-
mains a substantial gap between these online results and
offline results using bidirectional LSTMs, e.g. (Chorowski
et al., 2015) achieves a 17.6% phone error rate using a
softmax-based attention mechanism and (Graves et al.,
2013) achieved 17.7% using a pre-trained RNN transducer
model. We are interested in investigating ways to close this
gap in future work.

Because of the size of the dataset, performance on TIMIT is
often highly dependent on appropriate regularization. We
therefore also evaluated our approach on the Wall Street
Journal (WSJ) speech recognition dataset, which is about
10 times larger. For the WSJ corpus, we present speech
utterances to the network as 80-filter mel-filterbank spec-
tra with delta- and delta-delta features, and normalized us-
ing per-speaker mean and variance computed offline. The
model architecture is a variation of that from (Zhang et al.,
2016), using an 8 layer encoder including: two convo-
lutional layers which downsample the sequence in time,
followed by one unidirectional convolutional LSTM layer,
and finally a stack of three unidirectional LSTM layers in-
terleaved with linear projection layers and batch normal-
ization. The encoder output sequence is consumed by the
proposed online attention mechanism which is passed into
a decoder consisting of a single unidirectional LSTM layer
followed by a softmax layer.

Our output softmax predicted one of 49 symbols, consist-
ing of alphanumeric characters, punctuation marks, and
start-of sequence, end-of-sequence, “unknown”, “noise”,
and word delimiter tokens. We utilized label smoothing
during training (Chorowski & Jaitly, 2017), replacing the
targets at time y

t

with a convex weighted combination of
the surrounding five labels (full details in appendix D.1.2).
Performance was measured in terms of word error rate
(WER) on the test set after segmenting the model’s predic-
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Table 2. Word error rate on the WSJ dataset. All approaches used
a unidirectional encoder; results in grey indicate offline models.

Method WER

CTC (our model) 33.4%
(Luo et al., 2016) (hard attention) 27.0%
(Wang et al., 2016) (CTC) 22.7%
Hard Monotonic Attention (our model) 17.4%
Soft Monotonic Attention (our model) 16.5%
Softmax Attention (our model) 16.0%

tions according to the word delimiter tokens. We used the
standard dataset split of si284 for training, dev93 for vali-
dation, and eval92 for testing. We did not use a language
model to improve decoding performance.

Our results on WSJ are shown in table 2. Our model, with
hard monotonic decoding, achieved a significantly lower
WER than the other online methods. While these figures
show a clear advantage to our approach, our model ar-
chitecture differed significantly from those of (Luo et al.,
2016; Wang et al., 2016). We therefore additionally mea-
sured performance against a baseline model which was
identical to our model except that it used softmax-based
attention (which makes it quadratic-time and offline) in-
stead of a monotonic alignment decoder. This resulted in
a small decrease of 1.4% WER, suggesting that our hard
monotonic attention approach achieves competitive perfor-
mance while being substantially more efficient. To get a
qualitative picture of our model’s behavior compared to the
softmax-attention baseline, we plot each model’s input-
output alignments for two example speech utterances in
fig. 4 (appendix B). Both models learn roughly the same
alignment, with some minor differences caused by ours be-
ing both hard and strictly monotonic.

Sentence Summarization Speech recognition exhibits
a strictly monotonic input-output alignment. We are in-
terested in testing whether our approach is also effective
on problems which only exhibit approximately monotonic
alignments. We therefore ran a “sentence summarization”
experiment using the Gigaword corpus, which involves pre-
dicting the headline of a news article from its first sentence.

Overall, we used the model of (Liu & Pan, 2016), modi-
fying it only so that it used our monotonic alignment de-
coder instead of a soft attention decoder. Because online
decoding is not important for sentence summarization, we
utilized bidirectional RNNs in the encoder for this task
(as is standard). We expect that the bidirectional RNNs
will give the model local context which may help allow
for strictly monotonic alignments. The model both took
as input and produced as output one-hot representations of
the word IDs, with a vocabulary of the 200,000 most com-
mon words in the training set. Our encoder consisted of

Table 3. ROUGE F-measure scores for sentence summarization
on the Gigaword test set of (Rush et al., 2015). (Rush et al.,
2015) reports ROUGE recall scores, so we report the F-1 scores
computed for that approach from (Chopra et al., 2016). As is
standard, we report unigram, bigram, and longest common subse-
quence metrics as R-1, R-2, and R-L respectively.

Method R-1 R-2 R-L

(Zeng et al., 2016) 27.82 12.74 26.01
(Rush et al., 2015) 29.76 11.88 26.96
(Yu et al., 2016b) 30.27 13.68 27.91
(Chopra et al., 2016) 33.78 15.97 31.15
(Miao & Blunsom, 2016) 34.17 15.94 31.92
(Nallapati et al., 2016) 34.19 16.29 32.13
(Yu et al., 2016a) 34.41 16.86 31.83
(Suzuki & Nagata, 2017) 36.30 17.31 33.88
Hard Monotonic (ours) 37.14 18.00 34.87
Soft Monotonic (ours) 38.03 18.57 35.70
(Liu & Pan, 2016) 38.22 18.70 35.74

Figure 3. Example sentence-summary pair with attention align-
ments for our hard monotonic model and the softmax-based at-
tention model of (Liu & Pan, 2016). Attention matrices are dis-
played so that black corresponds to 1 and white corresponds to
0. The ground-truth summary is “greece pumps more money and
personnel into bird flu defense”.

a word embedding matrix (which was initialized randomly
and trained as part of the model) followed by four bidirec-
tional LSTM layers. We used a single LSTM layer for the
decoder. For data preparation and evaluation, we followed
the approach of (Rush et al., 2015), measuring performance
using the ROUGE metric.

Our results, along with the scores achieved by other ap-
proaches, are presented in table 3. While the monotonic
alignment model outperformed existing models by a sub-
stantial margin, it fell slightly behind the model of (Liu
& Pan, 2016) which we used as a baseline. The higher
performance of our model and the model of (Liu & Pan,
2016) can be partially explained by the fact that their en-
coders have roughly twice as many layers as most models
proposed in the literature.

For qualitative evaluation, we plot an example input-output
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pair and alignment matrices for our hard monotonic atten-
tion model and the softmax-attention baseline of (Liu &
Pan, 2016) in fig. 3 (an additional example is shown in
fig. 6, appendix B). Most apparent is that a given word
in the summary is not always aligned to the most obvi-
ous word in the input sentence; the hard monotonic de-
coder aligns the first four words in the summary reason-
ably (greek $ greek, government $ finance, approves $
approved, more $ more), but the latter four words have
unexpected alignments (funds $ in, to $ for, bird $ mea-
sures, bird $ flu). We believe this is due to the ability of
the multilayer bidirectional RNN encoder to reorder words
in the input sequence. This effect is also apparent in fig. 6/
(appendix B), where the monotonic alignment decoder is
able to produce the phrase “human rights criticism” despite
the fact that the input sentence has the phrase “criticism
of human rights”. Separately, we note that the softmax
attention model’s alignments are extremely “soft” and non-
monotonic; this may be advantageous for this problem and
partially explain its slightly superior performance.

Machine Translation We also evaluated our approach
on machine translation, another task which does not exhibit
strictly monotonic alignments. In fact, for some language
pairs (e.g. English and Japanese, English and Korean), we
do not expect monotonicity at all. However, for other pairs
(e.g. English and French, English and Vietnamese) only
local word reorderings are required. Our translation ex-
periments therefore involved English to Vietnamese trans-
lation using the parallel corpus of TED talks (133K sen-
tence pairs) provided by the IWSLT 2015 Evaluation Cam-
paign (Cettolo et al., 2015). Following (Luong & Manning,
2015), we tokenize the corpus with the default Moses tok-
enizer, preserve casing, and replace words whose frequen-
cies are less than 5 by <unk>. As a result, our vocab-
ulary sizes are 17K and 7.7K for English and Vietnamese
respectively. We use the TED tst2012 (1553 sentences) as a
validation set for hyperparameter tuning and TED tst2013
(1268 sentences) as a test set. We report results in both
perplexity and BLEU.

Our baseline neural machine translation (NMT) system is
the softmax attention-based sequence-to-sequence model
described in (Luong et al., 2015). From that baseline, we
substitute the softmax-based attention mechanism with our
proposed monotonic alignment decoder. The model uti-
lizes two-layer unidirectional LSTM networks for both the
encoder and decoder.

In (Luong et al., 2015), the authors demonstrated that un-
der their proposed architecture, a dot product-based energy
function worked better than eq. (15). Since our architec-
ture is based on that of (Luong et al., 2015), to facilitate
comparison we also tested the following variant:

a(s
i�1, hj

) = g(s>
i�1Wh) + r (17)

Table 4. Performance on the IWSLT 2015 English-Vietnamese
TED talks for our monotonic alignment model and the baseline
softmax-attention model of (Luong & Manning, 2015).

Method BLEU

(Luong & Manning, 2015) 23.3
Hard Monotonic, energy function eq. (16) 22.6
Hard Monotonic, energy function eq. (17) 23.0

where g and r are scalars (initialized as in section 2.4) and
W is a weight matrix.

Our results are shown in Table 4. To get a better pic-
ture of each model’s behavior, we plot input-output align-
ments in fig. 5 (appendix B). Most noticeable is that the
monotonic alignment model tends to focus attention later
in the input sequence than the baseline softmax-attention
model. We hypothesize that this is a way to compensate
for non-monotonic alignments when a unidirectional en-
coder is used; i.e. the model has effectively learned to fo-
cus on words at the end of phrases which require reorder-
ing, at which point the unidirectional encoder has observed
the whole phrase. This can be seen most clearly in the
example on the right, where translating “a huge famine”
to Vietnamese requires reordering (as suggested by the
softmax-attention model’s alignment), so the hard mono-
tonic alignment model focuses attention on the final word
in the phrase (“famine”) while producing its translation.
We suspect our model’s small decrease in BLEU compared
to the baseline model may be due in part to this increased
modeling burden.

5. Discussion
Our results show that our differentiable approach to enforc-
ing monotonic alignments can produce models which, fol-
lowing the decoding process of section 2.2, provide effi-
cient online decoding at test time without sacrificing sub-
stantial performance on a wide variety of tasks. We believe
our framework presents a promising environment for fu-
ture work on online and linear-time sequence-to-sequence
models. We are interested in investigating various exten-
sions to this approach, which we outline in appendix E.
To facilitate experimentation with our proposed attention
mechanism, we have made an example TensorFlow (Abadi
et al., 2016) implementation of our approach available on-
line3 and added a reference implementation to Tensor-
Flow’s tf.contrib.seq2seq module. We also pro-
vide a “practitioner’s guide” in appendix G.

3
https://github.com/craffel/mad
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