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Abstract

In this online appendix we provide proofs and additional results to the

paper “A Dynamic Model of Altruistically-Motivated Transfers”.

Contents

1 His equations 2

2 Our equilibrium concept versus the literature 3
2.1 Discontinuous strategies: a fundamental issue in differential games 3
2.2 Why the viscosity concept does not solve the problem . . . . . . 4

2.2.1 A brief illustration of the viscosity principle in a control
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Why the viscosity solution does not solve the discontinuity
issues in differential games . . . . . . . . . . . . . . . . . . 6

2.3 How our concept deals with discontinuity . . . . . . . . . . . . . 8
2.3.1 An example where the ODE for the state does not satisfy

the Lipschitz condition . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Constructing the value function at boundaries: policy-

dependent flow utility and higher dimensions . . . . . . . 10

3 Technical note on subgame-perfection 10

∗Daniel Barczyk: Department of Economics, McGill University, daniel.barczyk@mcgill.ca.
Matthias Kredler: Departamento de Economı́a, Universidad Carlos III de Madrid,
matthias.kredler@uc3m.es. We thank Jess Benhabib, Juan Pablo Rincón-Zapatero, the editor
and two anonymous referees for useful discussions and comments. Matthias Kredler acknowl-
edges research funding by the Spanish Ministerio de Ciencia e Innovación, reference number
SEJ2007-62908.

1



4 Special cases 11
4.1 Commitment equilibrium . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Proof for Proposition 3 (SS equilibrium) . . . . . . . . . . . . . . 12
4.3 Wealth-pooling (WP) . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.1 Solving the WP model . . . . . . . . . . . . . . . . . . . . 13
4.3.2 Proof for Proposition 4 (WP equilibrium) . . . . . . . . . 14

5 NT-regions: dynamics at steady state 15
5.1 Singularity of Euler equation at SS-NT boundary . . . . . . . . . 16

6 Restrictions from value matching (VM) 19
6.1 Properties of c′

∗
(·) and c∗(·) . . . . . . . . . . . . . . . . . . . . . 22

6.2 Properties of k∗(c) and k′
∗
(c′) . . . . . . . . . . . . . . . . . . . . 22

6.3 Find c′ given c to solve her VM . . . . . . . . . . . . . . . . . . . 23
6.4 Characterization of γ-functions . . . . . . . . . . . . . . . . . . . 25
6.5 Find (c, c′) to solve both VM-conditions . . . . . . . . . . . . . . 27

7 Ruling out more equilibria 29
7.1 No smooth equilibria . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 No transfers-when-constrained equilibria with three regions . . . 30
7.3 No FT-to-SS equilibrium . . . . . . . . . . . . . . . . . . . . . . . 33

8 The Model with a shock 33
8.1 Mathematical analysis . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1 His equations

Throughout the paper, we have only stated equations for her (player 1). For
the reader’s convenience, this section provides the mirror-symmetric versions
for him (player 2).

His no-borrowing constraint is k′t ≥ 0. When broke, his transfers are con-
strained: k′t = 0 implies g′t = 0. For his consumption when broke, analogous
to 1 in the paper, we have

c′
∗
t =

{

c′t if k′t > 0 or gmt > 0

min
{
c′t, gft

}
otherwise.

His HJB in k-k′-space is, analogous to equation (15) in the paper:

ρv′ = max
c′,g′

{u(c′) + α′u(c) + (rk′ − c′ − g′ + g)v′k′ + (rk − c− g + g′)v′k} .

The FOC is uc(c
′) = v′k′ and the Euler equation is, analogous to (16) in the

paper:
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d

dt

[
uc(ct)

]
= (ρ− r)uc(c

′) +
[
v′k − α′uc(c)

]
ck′ +

[
v′k − uc(c

′)
]
gk′ .

In P -K-space his HJB is, analogous to (25) in the paper:

ρV ′ =α′ lnC − C
1 + α′

ρ
− C(1− P )V ′

P −GV ′
P+

+ max
C′≥0

{

lnC ′ − C ′ 1 + α′

ρ
+ C ′PV ′

P

}

+ max
G′≥0

{G′V ′
P }.

The corresponding FOC is, analogous to (28) in the paper:

1

C ′
=

1 + α′

ρ
− PV ′

P ,

and the Euler equation is, analogous to (29) in the paper:

d

dt
V ′
P (T ) =

[
PC ′ − (1− P )C −G+G′

]
V ′
PP = (1)

=
[
ρ− C − C ′

]
V ′
P +

[
1

C ′
− α′

C
+ V ′

P

]

CP +GPV
′
P .

His value function in a SS-region is, analogous to equation (A.4) in the paper:

ρV ′SS
= (1 + α′)(ln ρ− 1) + ln(1− P ) + α′ lnP.

The ODE for his transfers in a FT-region is, analogous to (A.6) in the paper:

G′
P =

α′

1 + α′
ρ− C. (2)

His value function in a WP region is, analogous to (A.7) in the paper:

ρV ′WP
= lnC ′

WP + α′ lnCWP − (C ′
WP + CWP )

1 + α′

ρ
.

2 Our equilibrium concept versus the literature

2.1 Discontinuous strategies: a fundamental issue in dif-
ferential games

Building on the discussion in Fudenberg & Tirole’s (1993) textbook (“Game
Theory”, p.525), we first review a fundamental problem in the specification of
differential games. The conventional approach builds on the theory of ordinary
differential equations (ODEs) and optimal-control theory. The fundamental ex-
istence and uniqueness result for ODEs requires the function f(·) in the following
differential equation to be Lipschitz-continuous:

ẋt = f(xt),
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where the dot denotes the time-derivative. In a 2-player differential game with
Markov strategies, one specifies

ẋt = g(s1(xt), s2(xt)),

where si is the strategy by player i. Usually g is assumed to be a C1 function.
Then, in order for the ODE theorem to apply, we also need the strategies si to
be C1. So one restricts the strategy space to C1 functions.

The problem arises when we want to check if a strategy s1 is a best response
to s2. Even when s2 is C1, for the Pontryagin maximum principle to apply we
need to allow the agent to choose s1 in a space of functions that also contains
piecewise-C1 functions (which may have local jumps). What might go wrong is
the following: s1 may be the best response among all C1 functions (and thus
be consistent with equilibrium), but the maximum principle tells us it is not
optimal because it is dominated by some s̃1 that is discontinuous.

Is it then a good idea to extend the strategy space to piecewise C1 functions?
No, because then payoff functions are not well-defined any more. If the law of
motion g(s1(·), s2(·)) is a discontinuous function of the state, then existence and
uniqueness for the ODE is not ensured any more. So this does not work either.

2.2 Why the viscosity concept does not solve the problem

Viscosity solutions are the agreed-upon concept that tells us in which sense the
Hamilton-Jacobi-Bellman equation (HJB) from optimal-control theory holds as
a partial differential equation (PDE).1 It becomes important when the value
function has kinks. Even in simple control problems (i.e. one-player games)
such situations can easily arise. We will first illustrate the viscosity principle
in a simple control problem and then discuss why it does not solve the above-
mentioned discontinuity issues in differential games.

2.2.1 A brief illustration of the viscosity principle in a control prob-
lem

Consider a traveler in the desert who obtains disutility of -1 for each unit of
time she spends in the desert. x ∈ [−1, 1] designates the traveler’s location,
and there is an oasis located at x = −1 and x = 1. The game is over when
the traveler reaches an oasis. The traveler controls her speed and direction, but
can travel at a maximum speed of 1, i.e. |ẋ| ≤ 1. The solution to the traveler’s
problem is, of course, to set ẋ = 1 if x > 0 and ẋ = −1 if x < 0 and ẋ ∈ {−1, 1}
if x = 0, and the value function v will be given by the distance to the next oasis.
But we will now follow standard control theory to see why we need the viscosity
principle already in this seemingly innocent example.

Bellman’s principle for the traveler is

v(xt) = max
|ẋ|≤1

{−1 ·∆t+ v(xt+∆t)} s.t. xt+∆t = xt + ẋ∆t,

1The seminal paper is Crandall & Lions (1983). An excellent tutorial for viscosity solutions
is Bressan (2010), which we largely follow here.
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from which we obtain the HJB

0 = −1 + max
|ẋ|≤1

{ẋvx} .

The optimal policy given vx(x) is to set ẋ = 1 if vx ≥ 0 and ẋ = −1 if vx < 0.
This implies that v satisfies the following boundary-value problem:

0 = −1 + |vx|, s.t. v(−1) = v(1) = 0. (3)

This is a first-order ODE, and we are looking for a solution v(x), x ∈ [−1, 1]. Let
us first try to find a solution v that is differentiable everywhere. Note that at a
critical point x∗ we would have vx(x

∗) = 0, which clearly does not satisfy (3).
Thus v cannot have any local minimum or maximum on (−1, 1). This leaves as
the only possible solution v(x) = 0 for all x, which does not work either.

Let us now try a weaker concept and try functions that are differentiable
almost everywhere and satisfy (3) whenever its derivative exists. It will turn
out that this concept is too weak since it does not lead to any useful uniqueness
results. (3) tells us that v must either have slope 1 or −1 on its smooth parts.
But apart from the true value function, there are infinitely many other “saw-
tooth” functions that change their slope more than once and satisfy the two
boundary conditions. A simple example is a function that takes minima at
x ∈ {−a, a} and a local maximum at 0. If the traveler took this value function
at face value for locally deciding where to go, he would walk towards the middle
of the desert on (−a, a), which is a lethal policy. Given the traveler’s policy
on [−1, 1] \ 0, the only sensible interpretation at 0 is that the traveler will stay
at x = 0 forever and thus obtains v = −∞, which contradicts the suggested
solution. But our current solution concept does not give us any restriction at
the point x = 0 that would rule out this nonsensical behavior.

Viscosity solutions will give us the correct restrictions at such points and
leave the correct value function as the only solution to (3). The term viscosity
solution comes from the fact that v can be obtained as a limit of smooth solutions
to the PDE

F (x, vǫ,∇vǫ) = ǫ∆vǫ, (4)

i.e. we have v = limǫց0 v
ǫ. F (·) gives the PDE we want to solve as a function

of x, v and the gradient ∇v, which is in our case the right-hand side of (3).
∆ denotes the Laplacian, which in one dimension equals the second derivative.2

Adding second derivatives ensures a smooth solution to the PDE; the constant
ǫ is related to the “thickness” of a fluid in physics applications of PDEs, thus
the name “viscosity solution”.

We can add noise to our traveler’s problem to give an interpretation to the
vanishing viscosity solutions in our example. Specifically, we add Brownian
motion to the control problem above, which may be interpreted as random
factors affecting the speed of travel. The ∆t-problem is then

v(xt) = max
|ẋ|≤1

{−1 ·∆t+ E [v(xt+∆t)]} s.t. xt+∆t = xt + ẋ∆t+ ǫ∆Bt,

2See Bressan’s tutorial p.11, Theorem 4.3.
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where ǫ > 0 is the strength of the stochastic disturbance. Using the Ito rule, we
obtain the HJB

0 = −1 +
ǫ2

2
vxx + max

|ẋ|≤1
{ẋvx}

Upon substituting the optimal policy – which is the same as in the deterministic
case – into the HJB we obtain an ODE that is in the form of (4):

1− |vx| =
ǫ2

2
vxx,

to which a smooth solution must exist. At a critical point x∗ we have that
vx(x

∗) = 0. If x∗ was a local maximum, then vxx(x
∗) < 0, which would contra-

dict the HJB. But x∗ may be a local minimum, since then vxx(x
∗) > 0, which is

consistent with the HJB. Thus, v can only have local minima, and indeed there
must be a unique (and thus global) minimum x∗. For x < x∗ we have vx < 0,
and for x > x∗ we have vx > 0. The solutions are given by downward-facing U-
shapes with x∗ = 0 (by symmetry), the solutions getting spikier as ǫ gets small.
We conclude that in the limit, the solution must be given by v = −1+ |x|. This
is indeed the correct solution to our original control problem.3

2.2.2 Why the viscosity solution does not solve the discontinuity
issues in differential games

We will now show in two examples why and how the viscosity approach fails to
solve the issues that we face in our differential game.
Case 1: The law of motion is discontinuous. We extend the above setting
of the traveler to two players. We may now think of two persons on a boat who
are on a lake and want to reach the shore. Each of them has a paddle and can
influence direction and speed of the boat. Given the players’ controls y ∈ [−1, 1]
and y′ ∈ [−1, 1], the law of motion for the boat is

ẋt =
1
2yt +

1
2y

′
t.

As before, each agent obtains one unit of disutility for each unit of time spent on
the lake. The efficient solution, in which both players cooperate in rowing to the
closest shore, should be supported by any reasonable equilibrium concept. But
we will see that in purely technical terms, the viscosity approach fails already
in this simple example.

To see this, consider the control problem that player 1 faces when agent 2
plays the efficient equilibrium strategy. Let y′ = 1 for x ≥ 0 and y′ = −1 for
x < 0. The function F is then defined by

F (x, vx, y) = −1 + vx ·
{

1
2 + 1

2y if x ≥ 0,

− 1
2 + 1

2y, if x < 0.

3We refer the reader to Fleming & Soner (2006), p.60-61, for additional examples where
the value function is not differentiable.
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The theorems from viscosity theory do not apply because F is discontinuous
in x. Furthermore, theorems from ODE theory cannot be applied either when
F is not Lipschitz-continuous in x.4

Case 2: measure-valued controls. Consider the setting in our paper,
and restrict attention to the case where players use homogeneous strategies.
Then it is natural to conjecture that there exists an equilibrium where the poor
player is lifted out of poverty by a mass transfer from the rich player and then
both are self-sufficient ever after. Unfortunately, the viscosity concept does not
deal with the case of measure-valued controls, so it doesn’t allow us to make
progress on this front either. With our concept, however, we are able to rule
out this type of equilibrium when altruism is imperfect (see the Prodigal-Son
Dilemma, Theorem 3 in the paper).

It is worthwhile to point out that a naive reading of the equilibrium defini-
tion in differential games can lead to trouble when it comes to measure-valued
controls. One may argue as follows: a mass transfer implies that no time is
spent in a mass-transfer region, so we should disregard consumption policies in
such a region when calculating the player’s value from equilibrium when the
game starts off in such a region. The problem with this kind of reasoning is
that it may allow for equilibria with threats in mass-transfer regions that are
not credible.

To see this, consider the following example. It is plausible to conjecture
an equilibrium with a SS-region between α′/(1 + α′) and 1/(1 + α), which is
the largest-possible range a SS-region can cover (see Lemma 7 in the paper).
When the fraction of wealth owned by him is large, i.e. 0 ≤ P < α′/(1 + α′),
he provides a mass-transfer to her, filling up her bank account instantaneously
so that P = α′/(1 + α′). Vice versa, if the fraction she owns is large, i.e.
1/(1 + α) < P ≤ 1 she provides a mass transfer to him. Suppose that the
transfer recipient’s strategy is to set C = 0 in the region where (s)he receives
a mass transfer. In order to find out if this is an equilibrium, let us check for
potential deviations from the equilibrium strategies. Given her strategy to set
C = 0 for P < α′/(1 + α′), he has to give a mass transfer in order to ensure
that no time is spent in that region, as otherwise his utility is −∞. Given
that the donor provides a mass transfer, C = 0 is indeed a best response for
her if P < α′/(1 + α′). So the suggested profile could indeed be considered an
equilibrium under a naive reading of optimality.

However, we argue that such threats inside mass-transfer regions are not
credible. In order to evaluate deviations for the potential donor it seems nat-
ural to consider what would happen if the economy remained inside the mass-
transfer-region for a short period of time ∆t. Then the recipient’s threat C = 0

4See Olsder (2002) for a discussion in a deterministic setting; see Mannucci (2004) who deals
with discontinuous policies in a stochastic setting; and again see Bressan’s (2010) tutorial,
theorem 10.1. One may think that the above game of two rowers may be solved by introducing
noise into the problem in the spirit of vanishing viscosity solutions. But it turns out that, at
least in this example, this leads to a non-standard boundary problem in stochastic differential
equations since player 2’s strategy should still be discontinuous. See Øksendal (2010), chapter
9, for more on boundary problems in stochastic settings.
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is actually not credible. Our equilibrium concept does this by breaking the
∆t-game into a transfer and a consumption stage and by requiring subgame-
perfection in the latter.

2.3 How our concept deals with discontinuity

We have just seen how our equilibrium concept deals with determining best re-
sponses in the case of measure-valued controls. We will now see how it deals with
discontinuity of policies and the associated kinks in value functions. Since our
concept takes directional derivatives into account at boundaries, it is still well-
defined at these points, even if the other player’s strategy is discontinuous. It is
straightforward to see that this equilibrium concept selects the optimal strategy
and value function in the case of the desert wanderer (Section 2.2.1) just as
the viscosity principle does. In the differential rowing game from Section 2.2.2,
our equilibrium definition also tells us that the efficient strategy profile is an
equilibrium: in the middle of the river, both agents optimally coordinate on
going to the right. At all other points of the state space, it coincides with the
optimality requirements from the standard HJB.

In these examples, there is no ambiguity of how to interpret the law of motion
for x at the boundary x = 0 since the economy moves away from this point. It
is similarly unproblematic when a boundary is such that the path of the state
crosses the boundary: we can solve the ODE up to the boundary and then solve
another ODE from the boundary onward.5 If the equilibrium laws of motion
are such, however, that the economy moves into a region from a boundary point
but is then immediately repelled back towards the boundary, then we cannot
solve for the path of the state using standard ODE techniques. We now present
an example of how our equilibrium still makes reasonable predictions in such
a case, and how we may interpret the equilibrium law of motion as “jiggering”
around the boundary.

2.3.1 An example where the ODE for the state does not satisfy the
Lipschitz condition

Consider the following game. A father is rowing with his son on a river. The
boat’s position on the river is denoted by x ∈ [−1, 1]: -1 and 1 are the shores,
0 is the middle. Both the father and the son have a paddle, but the father
is stronger than the son. The law of motion is ẋ = (1 − α)yf + αys, where
yi ∈ [−1, 1] is the control of agent i and α ∈ (0, 1

2 ) is the relative strength of the
son. The father wants to keep the boat in the middle of the river because there
is the risk of damaging the boat at the shores where the water gets shallow; his
flow payoff is uf (x) = −|x|. The son has no concerns about safety, he just wants
action. His flow payoff is 0 if ẋ 6= 0, and -1 if ẋ = 0. Both players discount the
future at rate ρ.

5The reasoning from Lemma 4 in the paper implies that policies on the boundary must
equal the limiting policies inside the region where the economy moves, so that it is obvious
how the ODE should be interpreted right at the boundary.
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We will now show that the following strategies are an equilibrium according
to our concept. Both players row towards the middle of the river whenever
x 6= 0. When x = 0, the father sets yf = 0 and the son sets ys = 1. The
equilibrium law of motion is thus

ẋ =







1 if x < 0

α if x = 0

−1 if x > 0.

This law of motion has no solution as an ODE in the conventional sense at
x = 0. However, it is reasonable to interpret the path as the boat zig-zagging
(jiggering) around the middle of the river once it gets there. We now show how
to construct the value functions and to verify that the proposed profile is an
equilibrium according to our concept.

The son’s equilibrium value function is obviously vs(x) = 0. He is best-
responding for all x since he ensures that there is action at all x. As for the
father, we have the HJB

ρvf (x) = −|x|+ max
yf∈[−1,1]

{[
(1− α)yf + (2αIx<0 − α)

]
vfx(x)

}

, (5)

where vfx(x) is understood to be the directional derivative and Ix<0 is the indi-
cator function for the set [−1, 0). We will first obtain the father’s value at the
“steady state” x = 0. When cutting time into intervals of length ∆t, we may
interpret the law of motion as moving a distance α∆t to the right from 0 and
then returning to 0 within a time interval of length ∆̃t = α∆t. This process
repeats itself over and over. The father’s value from this path is clearly lower-
bounded by

∫∞

0
e−ρt(−|α∆t|)dt = −α∆t

ρ
, since −α∆t is the worst flow payoff

the father can have on the interval [0, α∆t]. The upper bound for the father’s
value is 0. Taking the limit as ∆t → 0 the two bounds converge, and the only
sensible value to assign is vf (0) = 0.

We now use the equilibrium policies in the father’s HJB (5) to obtain an
ODE for vf . vf will obviously be decreasing on [0, 1], so we have

vfx(x) = −x− ρvf (x) for x ∈ [0, 1]. (6)

With the boundary condition vf (0) = 0, this ODE can easily be solved for vf

on [0, 1].6 By symmetry, we obtain vf on the range [−1, 0) as vf (−x) = vf (x).
The ODE (6) also tells us that vf is flat at x = 0, i.e. vfx(0) = 0. So yf = 0 is
indeed optimal for the father at x = 0, and the HJB (5) is fulfilled everywhere.
The father is also best-responding, which proves that the suggested profile is
an equilibrium according to our concept. We interpret the law of motion of the
boat around x = 0 in equilibrium as the saw-tooth paths described above.

An interesting special case is the one without discounting (ρ = 0). The
ODE (6) for vf becomes vfx = −x, and the value function has the simple

6There is a closed form for vf which we do not present since it does not add anything to
the analysis.
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quadratic form vf (x) = − 1
2x

2. Note that in this case, the construction of
the value vf (0) = 0 at the boundary does not go through any more, but the
strategy profile still fulfills best responding, so it still constitutes an equilibrium
according to our definition.

2.3.2 Constructing the value function at boundaries: policy-dependent
flow utility and higher dimensions

The calculation of the value at the boundary, vf (0), was especially simple in the
above game because the father’s flow utility did not depend on policies (yf , ys)
and thus converged to u(0) = 0. If flow utility depends on policies, things
may become slightly more complicated. We suggest the following procedure for
this case. Fix again a short time interval ∆t during which the policies yf (0)
and ys(0) are played and calculate the time interval ∆̃t it takes for the state to
return to the boundary (in the above game: ∆̃t = α∆t). Then assign flow utility
u[0, yf (0), ys(0)]∆t+u[x∆t, y

f (x∆t), y
s(x∆t)]∆̃t over the time horizon ∆t+∆̃t,

where x∆t = 0+ ẋ|x=0∆t is the state after having moved away from x = 0 over a
time interval ∆t. After taking limits as ∆t → 0 and integrating over t = [0,∞)
will give a reasonable candidate value for vf (0).

Another feature that makes the above example simple is that the state is
one-dimensional. With a higher-dimensional state, we may return to a different
location, x∆t+∆̃t, on the boundary after one zig-zag motion (i.e. after a time

interval ∆t + ∆̃t). In this case, we suggest to write an HJB with flow util-
ity u[0, yf (0), ys(0)]∆t + u[x∆t, y

f (x∆t), y
s(x∆t)]∆̃t, the directional derivative

∇(x
∆t+∆̃t−0)v(0) and a law of motion ẋ ∝ (x∆t+∆̃t − 0) that takes the economy

along the boundary. For this approach to work it is essential, of course, that
the boundary is sufficiently well-behaved.

3 Technical note on subgame-perfection

It is a hallmark of subgame perfection that the partial derivatives c′k, ck′ , g′k,
gk′ are present in the Euler equations. These derivatives tell us about the
other player’s “threats” in case one deviated from the equilibrium policy. These
threats have to be credible in the sense of subgame perfection, i.e. agents’ policies
must be mutual best responses on these neighboring paths as well. But this
implies that both agents’ HJBs (and thus Euler equations) have to hold in an
entire neighborhood of the path under consideration. Indeed, the equilibrium
concept requires that both agents’ HJBs be fulfilled for every point in the state
space, so we have to find a solution for the system of PDEs given by his and
her HJB on the entire k-k′-plane. This is also related to the fact that the usual
classical calculus-of-variations arguments do not apply: we cannot construct a
deviation from the optimal path that reverts to the optimal path, as becomes
clear from Figure 4 in the paper.

Only in the special cases of α = α′ = 0 and α = α′ = 1 do the partial
derivatives c′k etc. disappear. Then, we can solve an ODE (and not a PDE) for
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consumption along the equilibrium path in the spirit of Pontryagin’s maximum
principle. In this special case, we do not have to take into account information
from neighboring equilibrium paths.

4 Special cases

This section presents the commitment equilibrium and its proof as well as proofs
related to the following modifications of our environment:

1. Transfers are ruled out (self-sufficiency, SS).

2. There are no property rights (wealth-pooling, WP).

All equations referenced in the proofs are understood to be those in the paper.

4.1 Commitment equilibrium

First, we have a brief look at a modification of our setting in which agents have
the possibility to commit to future consumption and transfers. A commitment
strategy is defined as a set of functions of time B = {C(t), Gf (t), Gm(t)}. It is
understood that ct = C(t)Kt etc. and that {Kt, Pt} follow the laws of motion
given by (20) and (21) in the paper.7

Definition 1 (Commitment equilibrium) A (homogeneous) commitment equi-
librium is a pair of strategies B(t) = [C(t), Gf (t), Gm(t)] and B′(t) = [C ′(t), G′

m(t), G′
f (t)]

such that B maximizes her criterion v0 at t = 0 given B′, and B′ maximizes v′0
at t = 0 given B.

We now show that under commitment, an efficient equilibrium exists in which
players give transfers only at t = 0 and are self-sufficient ever after:

Proposition 1 (Commitment) The following strategies are a commitment
equilibrium:

• She gives an initial mass transfer Gm(0) = max{Pt=0− 1
1+α

, 0}. She gives
no transfers for all t > 0 and sets C(t) = ρ(Pt=0 −Gm(0)) for all t.

• He gives an initial mass transfer G′
m(0) = max{ α′

1+α′
− Pt=0, 0} but gives

no transfers for all t > 0. He sets C ′(t) = ρ(1− Pt=0 +G′
m(0)) for all t.

The equilibrium allocation is efficient for any initial distribution of wealth, Pt=0.
Furthermore, any efficient consumption allocation may be implemented by choos-
ing an appropriate Pt=0.

7We define realized consumption when she is broke as c∗t = C∗

t Kt, where C∗(t) =
min{C(t), G′

f
(t)}. She will thus never set C(t) = 0.
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We note that in this equilibrium, the richer agent gives an initial transfer to
implement her/his preferred allocation if the initial wealth share Pt=0 is outside
the range [P ∗

0 , P
∗
1 ] spanned by the weight η ∈ [0, 1] in the Pareto solution (14) in

the paper. This is also the type of equilibrium that obtains in a static altruism
setting in which a transfer stage precedes the consumption stage. In essence,
commitment removes the dynamic component from the game.
Proof: We first prove our claims about efficiency of the equilibrium. First,
it is obvious that the equilibrium for Pt=0 ∈ (P ∗

0 , P
∗
1 ) map one-to-one to the

solutions of the planner’s problem indexed by η ∈ (0, 1) as given by (14) in
the paper. For all other initial conditions, the mass transfers induce efficient
allocations with Pareto weights η ∈ {0, 1}. So the equilibrium is efficient, and
any efficient allocation is an equilibrium for some Pt=0.

It remains to show that the proposed strategies are indeed a commitment
equilibrium. First, note that if Pt=0 ≥ P ∗

1 her strategy is definitely a best
response since it attains her preferred allocation among all feasible allocations
since it corresponds to the solution of the Pareto problem with η = 1.

Consider now the case Pt=0 < P ∗
1 . Define her lifetime wealth as w0 =

k0 +
∫∞

0
e−rt(g′t − gt)dt. The value of the equilibrium allocation for Pt=0 then

gives us an upper bound for the payoff that is attainable by any {ct, c′t} for a
given lifetime wealth w0 = Pt=0K0, as is clear from the Pareto problem.8 Define
this upper bound as v̄(w0). Now note that any positive transfer by her would
reduce lifetime wealth to w̃0 < w0, and the payoff of any such deviation would
be upper-bounded by v̄(w̃0) < v̄(w0). Thus giving positive transfers must be
sub-optimal if P < P ∗

1 . Given that she gives no transfers, her consumption
strategy is then obviously optimal by the above arguments.

By the same arguments, his equilibrium strategy is a also a best response,
which concludes the proof. �

4.2 Proof for Proposition 3 (SS equilibrium)

Proof: Consider first the case where at least one player is altruistic, say α > 0.
Then, she would obtain a value of minus infinity under SS when he is broke
since C ′

SS = 0. So she should respond with a mass transfer at this point, which
shows that self-sufficiency is not an equilibrium when α+ α′ > 0.

Consider now the case α = α′ = 0. Given that the other player never gives
transfers, the best response is obviously to respond with zero transfers and
follow the consumption rule of an SS saver. Thus the SS policies constitute an
equilibrium, which is clearly efficient.

Finally, we have to establish that the SS-policies are the unique equilibrium
if α = α′ = 0. Note that the SS policies are feasible for any initial conditions,
so the value for each player in equilibrium is lower-bounded by the SS value
for both players. If there was a profitable deviation from the SS strategy for
her, then the time-0 value of this deviation would exceed the value from the

8Note that there might be additional restrictions on consumption paths coming from bor-
rowing constraints that are due to the timing of transfers which may make it infeasible to
reach this upper bound.
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SS equilibrium. But the value to him would still have to be at least the value
from SS since it is a lower bound. Thus a profitable deviation by her must
lead to a Pareto improvement. But this is impossible, since any SS allocation
is Pareto-efficient when α = α′ = 0 (see Section 2.3 in the paper). �

First, it should be pointed out that this proof also applies to non-Markovian
strategies, so there are no tit-for-tat strategies either that could implement non-
SS equilibria under selfishness. Second, it is interesting to note that the proof
for uniqueness of the SS equilibrium does not go through in a stochastic set-
ting, when potential gains from mutual insurance arise: then there are possible
Pareto improvements from risk sharing which can raise value functions above
the SS levels.

4.3 Wealth-pooling (WP)

4.3.1 Solving the WP model

Consider the following WP game: the physical environment is as specified in the
paper, but players have no property rights, i.e. they consume out of a common
asset pool K. We consider homogeneous strategies, i.e. players’ strategies are
characterized by numbers CWP and C ′

WP , which give us the consumption rates
out of the common asset stock. The law of motion for K is then

K̇t = rKt − CWPKt − C ′
WPKt.

Let V WP (K) be her value function. Her HJB then reads:

ρV WP = α ln(C ′
WPK) + (r − C ′

WPK)V WP
K +max

C≥0

{
ln(CK)− CKV WP

K

}
.

The first-order condition (FOC) for C is

1

CWP

= V WP
K K.

Taking derivatives of her HJB with respect toK gives us the Euler equation (EE)

ρV WP
K =

1 + α

K
+ (r − CWP − C ′

WP )(V
WP
K +KV WP

KK ).

Taking the derivative of the FOC in K shows that KV WP
KK = −V WP

K , so the
last term in the EE vanishes. Using again the FOC in the EE then shows that
WP consumption rates are as claimed in the paper, i.e.

CWP =
ρ

1 + α
, C ′

WP =
ρ

1 + α′
,

where we note that his consumption rate C ′
WP may be derived in a way entirely

analogous to hers.
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4.3.2 Proof for Proposition 4 (WP equilibrium)

Proof: We first show point 1 of the proposition.
Consider first the case α = α′ = 1. For any pair of transfer strategies

that make the wealth-pooling (consumption) allocation feasible, both agents
are clearly best-responding since they obtain their globally-preferred allocation.
So the wealth-pooling strategies are an equilibrium.

Second, we turn to the case α + α′ < 2. Consider the situation where the
more-altruistic agent is bankrupt: without loss of generality, let P = 0 and
α > α′. Then given that her strategy is C(0) = CWP he should set transfers

to Gf (0) = α′C ′
WP , which lowers her consumption to α′

1+α′
< CWP = 1

1+α
K

(the inequality holds since α′

1+α′
< 1

2 ≤ 1
1+α

). This implements his globally
preferred allocation and thus dominates the wealth-pooling outcome. So we
have found a profitable deviation, and thus wealth-pooling cannot be sustained
in equilibrium.

We now proceed to show point 2 of the proposition. Let Ṽ (P,K) be her value
and Ṽ ′ his value. Since the criteria by which players rank allocations coincide
in the case of perfect altruism, it follows that Ṽ (P,K) = Ṽ ′(P,K) for all P .
Order-0 optimality implies that Ṽ is weakly increasing in P and Ṽ ′ is weakly
decreasing in P , by the same argument as in Proposition 2 in the paper. So it
must be that Ṽ is invariant in P for fixed K. We may thus drop the argument P
and write a value function Ṽ pa(K) only in K. The HJB (equation (25) in the
paper) becomes

ρṼ pa(K) = max
C

{lnC + lnC ′ + 2 lnK + (r − C − C ′)KṼ pa
K }.

For optimal policies we obviously have C(K) = C ′(K) for all K since his HJB
is the same. We may thus write

ρṼ pa(K) = max
C

{2 lnC + 2 lnK + (r − 2C)KṼ pa
K (K)}

︸ ︷︷ ︸

≡Hpa(K)

. (7)

We note that this is the HJB pertaining to a standard savings problem for a
family with two individuals. Ṽ pa must be continuous and piecewise C1 since Ṽ
is piecewise smooth. We now show that there cannot be kinks in Ṽ pa ei-
ther. Consider two sequences K + 1

n
and K − 1

n
. limn→∞ Ṽ pa(K − 1

n
) =

limn→∞ Ṽ pa(K+ 1
n
) on the left-hand side of (7) implies limn→∞ Hpa(K− 1

n
) =

limn→∞ Hpa(K + 1
n
) on the right-hand side. Since Hpa is strictly decreasing

and continuous, it follows that limn→∞ Ṽ pa
K (K − 1

n
) = limn→∞ Ṽ pa

K (K + 1
n
)

and thus there cannot be a kink at K. From the standard consumption-savings
(or Merton) problem we know that the unique smooth solution to (7) is the
value function associated with the Pareto problem in (11) in the paper, where
α = α′ = 1. Agents’ consumption strategies thus must be C = C ′ = ρ/2 and
transfers are as claimed in point 2a. �
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5 NT-regions: dynamics at steady state

This section will study the Euler equations inside NT-regions for the special
case where c = c′ and thus Ṗ = 0, i.e. at stationary points. We first treat
the general case where the consumption rates do not equal the SS consumption
rates; Subsection 5.1 then studies the special case where c = c′ = ρ (i.e. both
players consume at the SS rates). The latter case is especially difficult because
the Euler equations have a singularity at this point.

We first bring the Euler equations (equation (1) for him and equation (29)
in the paper for her) for NT-regions in (P,K)-space in a convenient form, using
both C,C ′ and c, c′. In a no-transfer region with G = G′ = 0, when using the
FOC (equation (28) in the paper for her) for consumption, we can obtain the
following Euler equations in consumption rates (C,C ′) out of the total wealthK:

−Ṗ
CP

C2
=

[
1

C
− 1 + α

ρ

]{

(ρ− C − C ′)− Ṗ

(1− P )

}

+

[(
1 + α

ρ
− P

C

)

− α
(1− P )

C ′

]

C ′
P ,

Ṗ
C ′

P

C ′2
= −

[
1

C ′
− 1 + α′

ρ

]{

(ρ− C − C ′) +
Ṗ

P

}

+

[(
1 + α′

ρ
− (1− P )

C ′

)

− α′P

C

]

CP .

It is then instructive to replace some of the terms in (C,C ′) in the above equa-
tions by consumption rates (c, c′) out of agents’ own assets (k, k′), for which we
recall that C = cP and C ′ = c′(1− P ):

−
[
1− P

C

(
c′ − c

c

)]

︸ ︷︷ ︸

≡q1(P,c,c′)

CP =

[
1

C
− 1 + α

ρ

]

[ρ− c′]

︸ ︷︷ ︸

≡q3(P,c,c′)

+

[(
1

ρ
− 1

c

)

+ α

(
1

ρ
− 1

c′

)]

︸ ︷︷ ︸

≡q2(c,c′)

C ′
P ,

(8)

−
[
P

C ′

(
c− c′

c′

)]

︸ ︷︷ ︸

≡q′1(P,c,c′)

C ′
P = −

[
1

C ′
− 1 + α′

ρ

]

[ρ− c]

︸ ︷︷ ︸

≡q′3(P,c,c′)

+

[(
1

ρ
− 1

c′

)

+ α′

(
1

ρ
− 1

c

)]

︸ ︷︷ ︸

≡q′2(c,c
′)

CP ,

(9)

where we now see that the cases c = c′, c = ρ and c′ = ρ are special. Indeed,
if c = c′ = ρ, all terms vanish and there is a singularity if we approach the
SS rates (see the discussion in Subsection 5.1).

For the case c = c′ = c0 6= ρ, we have q1 = q′1 = 0 and thus

CP = −
1
C′

− 1+α′

ρ

1 + α′

(

c0 − ρ
1
ρ
− 1

c0

)

≤ 0, C ′
P =

1
C
− 1+α

ρ

1 + α

(

c0 − ρ
1
ρ
− 1

c0

)

≥ 0.

The inequalities follow from the parentheses always being positive and the fact
that C ≤ ρ/(1 + α) and C ′ ≤ ρ/(1 + α′), which in turn follows from VP ≥ 0
(see Proposition 2 in the main paper) and the FOC (equation (28) in the main
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paper). From the identities c = CP and c′ = C ′(1− P ) it then follows that

cP =
CP − c

P
< 0, c′P =

C ′
P + c′

1− P
> 0.

So it must be that Ṗ > 0 immediately to the right of a stationary point P ∗ and
Ṗ < 0 immediately to the left of P ∗. Thus P ∗ is an unstable steady state, as
claimed in the paper.

5.1 Singularity of Euler equation at SS-NT boundary

In the following subsection, we show that the dynamics of the economy are the
same in the neighborhood of an SS-region as in the neighborhood of a “regular”
steady state with c = c′ 6= ρ: the economy moves away from the SS-region. To
do this, we analyze the system of Euler equations in the neighborhood of the SS
consumption rates c = c′ = ρ. We first note that value-matching implies that
the limit consumption rates in the NT-region must be the SS ones, since this is
the only solution to the system of HJBs in this case (see case 4 in Section 6.5).

For convenience, we reproduce the Euler equations entirely in “small” con-
sumption rates, using the above-defined functions {qi}:

q1PcP + q2(1− P )c′P = −q1c+ q2c
′ − q3, (10)

q′2PcP + q′1(1− P )c′P = q′1c− q′2c
′ + q′3.

In the case c = c′ = ρ, the Euler equations per se cannot tell us anything
about the derivatives cP and c′P since q1 = q2 = q3 = q′1 = q′2 = q′3 = 0
in (10) – any pair (cP , c

′
P ) is a solution to the above system for given (P, c, c′).

However, in a neighborhood around the rates (ρ, ρ) the equations still contain
information since the q-functions have not yet vanished. We will study solutions
to the system of Euler equations in the neighborhood of (c, c′, P ) = (ρ, ρ, P ) by
linearizing the Euler equations around this point. This technique is equivalent
to applying L’Hospital’s Rule in multiple dimensions – we don’t divide zero by
zero but study derivatives instead.

We first calculate the partial derivatives of (qi, q
′
i)

3
i=1 in (c, c′) at (c, c′) =

(ρ, ρ) for a given P – note that all derivatives in P vanish since c = c′ = ρ and
thus q1 = q′1 = q2 = q′2 = 0:

∂q1
∂c

= −1− P

Pρ2
,

∂q1
∂c′

=
1− P

Pρ2
;

∂q′1
∂c

=
P

(1− P )ρ2
,

∂q′1
∂c′

= − P

(1− P )ρ2
;

∂q2
∂c

=
1

ρ2
,

∂q2
∂c′

=
α

ρ2
;

∂q′2
∂c

=
α′

ρ2
,

∂q′2
∂c′

=
1

ρ2
;

∂q3
∂c

= 0,
∂q3
∂c′

=
(1 + α)− 1

P

ρ
;

∂q′3
∂c

=
(1 + α′)− 1

1−P

ρ
,

∂q′3
∂c′

= 0.

We then use these derivatives to linearize the system of ODEs around (ρ, ρ, P ),
where P is arbitrary – note that all terms in ∆P vanish. In matrix from, we
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have for a small deviation (∆c,∆c′,∆P ) from (ρ, ρ, P ) to a first order:

[

∆c

(
∂q1
∂c

P ∂q2
∂c

(1− P )
∂q′2
∂c

P
∂q′1
∂c

(1− P )

)

+∆c′

(
∂q1
∂c′

P ∂q2
∂c′

(1− P )
∂q′2
∂c′

P
∂q′1
∂c′

(1− P )

)](
cP
c′P

)

=

= ∆c

(

−∂q1
∂c

ρ+ ∂q2
∂c

ρ− ∂q3
∂c

∂q′1
∂c

ρ− ∂q′2
∂c

ρ+
∂q′3
∂c

)

+∆c′

(

−∂q1
∂c′

ρ+ ∂q2
∂c′

ρ− ∂q3
∂c′

∂q′1
∂c′

ρ− ∂q′2
∂c′

ρ+
∂q′3
∂c′

)

.

Note that multiplying ∆c and ∆c′ by the same constant leaves us with the same
solutions. This is to be expected when we linearize: the solutions are the same
on any ray going away from (ρ, ρ) in the (c, c′)-space, only the angle matters.
We thus set ∆c = sinφ and ∆c′ = cosφ for φ ∈ [0, 2π) to study all rays leading
away from (ρ, ρ). Simplifications yield

1

ρ

[

sinφ

(
P − 1 1− P
α′P P

)

+ cosφ

(
1− P (1− P )α
P −P

)]

︸ ︷︷ ︸

≡A(φ)

(
cP
c′P

)

=

= sinφ

(
1
P

0

)

+ cosφ

(
0

− 1
1−P

)

.

First, we see that the system will have the same solutions for for φ + π and φ,
since sin(φ+π) = − sinφ and cos(φ+π) = − cos(π). Multiplying the system by
−1 (or going into the exactly opposite direction in (c, c′)-space) yields of course
the same solutions, so we may restrict our analysis to the half-circle (−π/2, π/2].
See Figure 1 to gain some intuition.

If A(φ) is invertible (i.e. |A(φ)| 6= 0), then the unique solution is given by

(
cP
c′P

)

(φ) =
1

A(φ)

(
sin2 φ+ α cos2 φ

−α′ sin2 φ− cos2 φ

)

.

We see that cP and c′P must always be of opposite sign, so arrows in phase
space must point north-west, as is evident in the figure. This also immediately
implies that there cannot be any path coming from or going into the north-east
quadrant, so we can restrict our analysis to the north-west quadrant, which
means considering only the interval φ ∈ [−π/2, 0].

The following argument shows that indeed |A(φ)| < 0 on this range, so there
is a unique solution to the system. Consider the determinant of A(φ):

detA(φ) = −P (1− P )
[
(1 + α′) sin2 φ+ (1 + α) cos2 φ− (1− αα′) cosφ sinφ

]
.

The following shows that A(φ) < 0 for all φ:

0 <
(√

1 + α′ sinφ−
√
1 + α cosφ

)2

=

=(1 + α′) sin2 φ+ (1 + α) cos2 φ− 2
√
1 + α′

√
1 + α sinφ cosφ ≤ − A(φ)

P (1− P )
,
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where the last step follows from 2
√
1 + α′

√
1 + α > 1 ≥ 1−αα′ for any (α, α′).

So we conclude that the above system has a unique solution for all φ.
We conclude that cP (φ) < 0 and c′P (φ) > 0 for all directions φ. Note

that since sin(φ + π) = − sinπ and cos(φ + π) = − cos(φ), A(φ) = A(φ + π)
and cP (φ + π) = cP (π). So completing half a circle leads to the same vector
direction, as is evident in Figure 1.

0.036 0.037 0.038 0.039 0.04 0.041 0.042 0.043 0.044

0.036

0.037

0.038

0.039

0.04

0.041

0.042

0.043

0.044

c

c’

ρ

ρ

dP/dt = 0 path through (ρ,ρ)

φ=π/2

φ=0

Figure 1: cP around (ρ, ρ) (for α = α′ = 0.2)

We are looking for the angle φ ∈ [0, π) of the path leading through (ρ, ρ).
Since sin2 φ+ cos2 φ = 1, the angle of the vector cP = (cP , c

′
P ) is

tan ξ(φ) = − (1− α) sin2 φ+ α

1− (1− α′) sin2 φ
≡ −N(φ)

D(φ)
.

It is easy to see that N ′(φ) has the opposite sign of D′(φ); tan ξ is maximized at
φ = 0 with value −α, it is decreasing on [0, π/2], takes its minimum at φ = π/2
with value −1/α′ and increases again on [π/2, π).

A path c̄(P ) going through (ρ, ρ) must be such that ξ(φ) = φ, or equivalently
– since tan(·) is a strictly increasing function on [−π/2, π/2)–:

tan ξ(φ) = tanφ.

Since tan ξ(φ) ≤ 0 for all φ and tan(φ) > 0 for φ > 0, there cannot be any solu-
tion to this fixed-point problem on the range (0, φ/2). On [−π/2, 0], there must
exist at least one fixed point since tan(φ) crosses the entire range of tan ξ(φ).
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So we conclude that it is possible that a SS-region borders an NT-region,
but that consumption rates (c, c′) must converge to (ρ, ρ) from a certain angle.
From the phase diagram, we see that c′ is increasing in P and c is decreasing
in P , so Ṗ < 0 if NT is to the left of SS and Ṗ > 0 if NT is to the right of NT.
So if a SS-region was contained as a steady state within a NT-region, we have
the same dynamics as with other steady states within NT-regions: the economy
would always move away from SS.

6 Restrictions from value matching (VM)

In order to construct (or rule out) equilibria with more than one region, it is
essential to characterize the conditions imposed by value-matching (VM) on
policies left and right of a boundary. This is especially challenging for NT-
regions; we provide a discussion of such boundaries in this section.

Consider two regions A and B, where A = Pi lies to the left of B = Pi+1.
We denote the boundary as P̃ = Pi. It turns out that it is convenient to work
with policies in terms of agents’ own wealth; we denote cA = limP→P̃− c(P ) as
the limit of consumption on the A-side. The notation for c′A, cB , gA and so forth
is analogous. The policies directly on the boundary are denoted by cK = c(P̃ )
etc., where K stands for “kink”. We write HA for the Hamiltonian using V −

p

and analogously HB for the Hamiltonian using V +
p .

The following proposition summarizes our results on the case where the value
functions are given on the A-side and we are looking for the consumption policies
on the B-side:

Proposition 2 (Discontinuities in policies) Consider a region A that lies
to the left of region B, separated by a boundary P̃ . Suppose that B is a NT-region,
and let values VA and V ′

A be given on the A-side. Then, in any homogeneous
MPE, we have:

1. If the consumption policies are cA = c′A = ρ on the A-side, then also
cB = c′B = ρ on the B-side.

2. If either cA 6= ρ or c′A 6= ρ, then there are at least two candidates for
the consumption policies {cB , c′B} consistent with value matching. One of
these candidates coincides with {cA, c′A}. Furthermore:

(a) If also region A is of NT-type, then

cA > c′A ⇔ cB < c′B ,

cA < c′A ⇔ cB > c′B ,

cA = c′A ⇔ cB = c′B .

(b) Let k(·, ·) and k′(·, ·) be given by (11) and (12). If either k(cA, c
′
A) ≤

k(ρ, ρ) or k′(cA, c
′
A) ≤ k(ρ, ρ), then there are exactly two solutions for
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(cB , c
′
B). These solutions have the following property: If he is under-

consuming in her eyes on the A-side, he must be over-consuming in
her eyes on the B-side:

α

c′A
>

1 + α

ρ
− 1

cA
⇔ α

c′B
>

1 + α

ρ
− 1

cB
.

The same is true reversing the inequalities, and for her under-/over-
consumption in a symmetric fashion.

Before we start to prove the proposition, we establish the following corollary,
which is what we will need to rule out the NT-NT-NT structure:

Corollary 1 (No attracting boundary between NT-regions) Consider re-
gions A, B separated by a boundary P̃ as in Proposition 2. If both A and B are
NT, then ṖA > 0 and ṖB < 0 (at the same time) cannot occur in any homoge-
neous MPE.

Proof: Since both A and B are NT, transfer motives are strictly negative at P̃
in both directions. Thus transfers by both players are zero on the kink and ṖK

is solely determined by cK and c′K . We will now show that it is impossible that
ṖK < 0. This would imply (cK , c′K) = (cA, c

′
A) by Lemma 4 in the paper, which

in turn implies ṖK = ṖB > 0, a contradiction. In the same way, ṖK > 0 is
ruled out. Finally, ṖK = 0 is impossible since there are no consumption policies
cK = c′K that are consistent with value matching by point 2a of Proposition 2.
This leads us to conclude that no such boundary exist in equilibrium. �

Repelling boundaries (i.e. ṖA < 0 and ṖB > 0) are possible if they satisfy
value matching. The policies on the two sides are characterized by Proposition 2.
Both the A- and the B-side policies are then possible policies on the boundary.

We now proceed to prove Proposition 2. The proof is constructive and
provides an algorithm for finding the second solution to the system of VM con-
ditions. In one specific case we were not able to prove that there are exactly
two solutions. Numerical exercises, however, suggest that also in this case there
exists no third solution.

To start, we first state her HJB (equation 20 in the paper) replacing VP in
terms of C using the FOC (equation 22 in the paper) and doing the same for
him:

ρV = α lnC ′ − C ′

1− P

[
1 + α

ρ
− P

C

]

lnC − 1,

ρV ′ = α′ lnC − C

P

[
1 + α′

ρ
− 1− P

C ′

]

+ lnC ′ − 1.

Now, expressing consumption rates in terms of the agents’ own wealth, i.e. using
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the identities c = C/P and c′ = C ′/(1− P )), we obtain

ρV = lnP + α ln(1− P ) + α ln c′ − c′
[
1 + α

ρ
− 1

c

]

︸ ︷︷ ︸

≡g(c,c′)

+ ln c− 1
︸ ︷︷ ︸

≡h∗(c)

,

ρV ′ = ln(1− P ) + α′ lnP + α′ ln c− c

[
1 + α′

ρ
− 1

c′

]

︸ ︷︷ ︸

≡g′(c,c′)

+ ln c′ − 1
︸ ︷︷ ︸

≡h∗(c′)

.

We see that two regimes (cA, c
′
A) and (cB , c

′
B) can only be consistent with value

matching if the following two VM conditions hold:

k(cA, c
′
A) ≡ g(cA, c

′
A) + h∗(cA) = g(cB , c

′
B) + h∗(cB) = k(cB , c

′
B), (11)

k′(cA, c
′
A) ≡ g′(cA, c

′
A) + h∗(c′A) = g′(cB , c

′
B) + h∗(c′B) = k′(cB , c

′
B). (12)

We see that this VM condition is independent of P̃ , which will facilitate our
analysis.

We now want to determine what the relevant range for consumption policies
is. The FOCs for consumption together with VP ≥ 0 and non-negativity of
consumption give us the following bounds:

0 ≤ C ≤ ρ

1 + α
, 0 ≤ c ≤ ρ

P̃ (1 + α)
; (13)

0 ≤ C ′ ≤ ρ

1 + α′
, 0 ≤ c ≤ ρ

(1− P̃ )(1 + α′)
. (14)

Note that these bounds do depend on P̃ , so we cannot neglect P̃ altogether
when trying to determine (cB , c

′
B) for a given pair (cA, c

′
A).

In order to characterize the solution, it will be crucial to study the derivatives
of k(·, ·). We start with the derivative in an agent’s own consumption:

∂k(c, c′)

∂c
=

1

c

(

1− c′

c

)

,
∂k′(c, c′)

∂c′
=

1

c′

(

1− c

c′

)

. (15)

Fixing c′, k is decreasing in c for c < c′ (i.e. above the diagonal of the (c, c′)-
plane) and increasing in c for c > c′ (below the diagonal). For given c, k is
minimized by c′ = c.

The derivative in the other agent’s consumption is

∂k(c, c′)

∂c′
=

α

c′
−
[
1 + α

ρ
− 1

c

]

,
∂k′(c, c′)

∂c
=

α′

c
−
[
1 + α′

ρ
− 1

c′

]

. (16)

Note that if the bracket on the right-hand side of (16) is negative (c ≤ ρ/(1+α)),
then an increase in c′ always leads to an increase in k. In this case, her marginal
value VP of having the wealth distribution tilted in her favor is so high that this
dominates the marginal value of common funds (1+α)/ρ; she would set infinite
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consumption for him if she had the choice. If the bracket is positive, ∂k/∂c′ is
strictly decreasing in c′ for fixed c.

We now introduce the following related maximization problem:

k∗(c) ≡ max
c′

k(c, c′),

c′
∗
(c) ≡ argmax

c′
k(c, c′) =

α

max
{

1+α
ρ

− 1
c
, 0
} . (17)

Since this is a strictly concave problem, the FOC (16) is sufficient. c′
∗
(c) has the

interpretation as the consumption rate that she would choose for him given c.
Note that we have c′

∗
= α/0 = ∞ in the case that 1/c is large. In (c, c′)-space,

k is increasing in c′ below the function c′
∗
(c) and decreasing in c′ above, as the

FOC (16) shows.

6.1 Properties of c′∗(·) and c∗(·)
Our goal will now be to show that (i) the unique intersection between the
functions c′

∗
(·) and c∗(·) in the (c, c′)-plane is at the point (ρ, ρ), (ii) the graph

of c′
∗
lies above the graph of c∗ for values c > ρ and (iii) c′

∗
lies below c∗ for

values c < ρ.
We first re-write c′

∗
(·) in the area where it is bounded:

c′
∗
(c) =

1

1
ρ
+ 1

α

(
1
ρ
− 1

c

) .

Now, we invert this function and then reverse the roles of the two players to
obtain the graph of c∗ in the (c, c′)-plane as a function c′ of c. We call the
inverted function c̃′ ≡ (c∗)−1:

c̃′(c) =
1

1
ρ
+ α′

(
1
ρ
− 1

c

) .

Inspection of the two functions makes clear that the claims (i)-(iii) are true
whenever αα′ < 1, see also Figure 2 for an illustration. The functions fall on
top of each other in the case α = α′ = 1.

6.2 Properties of k∗(c) and k′∗(c′)

By substituting c′
∗
(c) into k(c, c′), it can be verified that k∗(·) has the following

properties:9

1. k∗ is smooth and strictly convex.

9It is worthwhile noting that these properties do not depend on the choice u(c) = ln c

for instantaneous utility. They can be derived generally for concave utility functions u(·)
satisfying limc→0 u(c) = −∞ and limc→∞ u(c) = ∞ using only the convexity properties of
Legendre transforms.
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Figure 2: kA < kρ and k′A < k′ρ (case 1)

2. k∗ is uniquely minimized at c = ρ.

3. limc→0 k
∗(c) = limc→∞ k∗(c) = ∞.

The same is true for the function k′
∗
(·), making the obvious adjustments. The

above properties together with the derivatives (15) and (16) imply that the point
(ρ, ρ) is the saddle point of both functions k∗(·) and k′

∗
(·): Geometrically, c′

∗
(c)

is the ridge of a mountain (the maximal point of the k-surface keeping c fixed
and varying c′). At c = ρ, this ridge attains its lowest point. The equivalent
statements hold for k′

∗
(·) and c∗(·).

6.3 Find c′ given c to solve her VM

We will now study the following problem: given a fixed c, find c′ to solve
k(c, c′) = kA (her VM). In order to find the solution(s), it will be useful to
study the function gc(c′) ≡ g(c, c′). Obviously, gc(·) is smooth and concave,
and we have limc′→0 g

c(c′) = −∞.
There are two cases to consider:

1. c > ρ/(1 + α): gc(·) attains its unique maximum at c′
∗
(c) and we have

limc′→∞ gc(c′) = −∞. There are the following sub-cases:
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(a) k∗(c) > k(cA, c
′
A): There are two solutions; we denote the upper

solution by γ′
+(c) and the lower one by γ′

−(c). Of course, γ′
+(c) >

c′
∗
(c) > γ′

−(c).

(b) k∗(c) = k(cA, c
′
A): There is exactly one solution γ′(c) = c′

∗
(c).

(c) k∗(c) < k(cA, c
′
A): There is no solution.

This case corresponds to the area to the right of cl in Figure 2 where
c′

∗
< ∞.

2. c ≤ ρ/(1 + α): gc is globally increasing and limc′→∞ gc(c′) = ∞. Thus
there is exactly one value for c′ that solves VM, which we denote by γ′

−(c),
since it lies below c′

∗
(c) = ∞. This case corresponds to the area to the

left of cl in Figure 2 where c′
∗
= ∞.

The functions γ′
+ and γ′

− are drawn as thin solid lines in Figure 2. They corre-
spond to the locus where her VM is fulfilled. When drawing the analogous lines
γ+ and γ− for him (the dotted thin lines), the intersections of the two give us
the points where VM is fulfilled for both players, which are the solutions that we
are ultimately after. In the following, we will be concerned with characterizing
the γ-functions in order to be able to characterize these solutions.
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Figure 3: kA ≤ kρ and k′A ≥ k′ρ (case 2)
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6.4 Characterization of γ-functions

Since k(·, ·) is a smooth function, both γ′
−(·) and γ′

+(·) will be smooth functions
(on the range where they are defined). The implicit-function theorem gives us

∂γ′

∂c
=

dc′

dc
= −

1
c

(

1− c′

c

)

α
c′
−
(

1+α
ρ

− 1
c

) =
(c′ − c)c

cc′ + αc2 − 1+α
ρ

cc′
(18)

∂γ

∂c′
=

dc

dc′
= −

1
c′

(

1− c
c′

)

α′

c
−
(

1+α′

ρ
− 1

c′

) =
(c− c′)c′

c′c+ α′c′2 − 1+α′

ρ
c′c

, (19)

where of course we have to set c′ = γ′(c) along the graph of γ′(·) and c = γ(c′)
along the graph of γ(·). The denominator ∂g(c, c′)/∂c′ is equal to the bracket
in the altruistic-strategic distortion of her Euler equation (see equation 15 in
the paper). Along γ′

+(·), ∂g(c, c′)/∂c′ is always negative, which means that she
would prefer him to consume less (over-consumption). Along γ′

−, ∂g(c, c
′)/∂c′

is always positive, which means that she would prefer him to consume more
(under-consumption).

Furthermore, we see that the numerator in (18) is zero if and only if c = c′,
i.e. on the diagonal of the (c, c′)-plane; it is positive above the diagonal and
negative below. The denominator coincides with the FOC of the problem (17),
so it is zero on c′

∗
(c), positive below and negative above. So γ′

+ (which lies above
c′

∗
) is decreasing above the diagonal and increasing below it. γ′

− (which lies
below c′

∗
) is increasing above the diagonal and decreasing below. Furthermore,

γ′
+ and γ′

− have infinite slope at the point where they cross the function c′
∗
(c),

which is the point where the two solutions collapse to a single one; see the right
pink curve in Figure 4 for an illustration.

Since the diagonal c = c′ plays a crucial role, it is useful to study the function
k(·, ·) along it. Define

ksymm(c) ≡ k(c, c) = (1 + α)

(

ln c− c

ρ

)

.

It is clear that ksymm(·) is smooth, convex, uniquely maximized at c = ρ and
that limc→0 ksymm(c) = limc→∞ ksymm(c) = −∞.

We will now characterize the γ-functions. It turns out that the value of k(·)
on the saddle point kρ ≡ ksymm(ρ) = k(ρ, ρ) = (1 + α)(ln ρ− 1) plays a crucial
role in distinguishing different cases:

1. kA < kρ: for each c ∈ (0,∞), γ′
+(c) and γ′

−(c) exist since k∗(c) > kρ
for all c. By the properties of ksymm(·), there are exactly two numbers
cl (with 0 < cl < ρ) and ch (with ch > ρ) such that ksymm = kA. This
implies that γ′

− is a smooth function on (0,∞), is uniquely maximized
at cl, is increasing and above the diagonal for c < cl and decreasing and
below the diagonal for c > cl. γ

′
+ is a smooth function on (ρ/(1+α),∞), is

uniquely minimized at ch, is decreasing above the diagonal and increasing
below it. The situation is illustrated in Figure 2 by the solid thin lines.
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Figure 4: kA ≥ kρ and k′A ≥ k′ρ (case 3)

2. kA > kρ: By the properties of k∗(·), there are exactly two values c1 < ρ
and c2 > ρ such that k∗(c1) = k∗(c2) = kA. No solution c′ exist for
k(c, c′) = kA for given c ∈ (c1, c2) since k∗(c) < kA, so the γ-functions
are not defined on this range. Also note that the γ-functions cannot cross
the diagonal since ksymm(c) ≤ kρ < kA.Thus γ

′
− is an increasing function

that stays above the diagonal for c ∈ (0, c1) and a decreasing function that
stays below the diagonal for c ∈ (c2,∞). γ′

+ is a decreasing function above
the diagonal for c ∈ (0, c1) and an increasing function below the diagonal
for c ∈ (c2,∞). The situation is illustrated in Figure 4.

3. kA = kρ: By the same argument as in the case kA < kρ, γ′
+ and γ′

−

are defined for all values c ∈ (0,∞), if we allow the coincidence γ′
+(ρ) =

γ′
−(ρ) = ρ on the saddle point (ρ, ρ). Since k(·, ·) is differentiable, level

lines must be differentiable, too. So γ′
− must have the same slope just left

of ρ as γ′
+ has just right of ρ. Also, it must be that γ′

− has slope smaller
than unity just right of c = ρ: If γ′

− came out above the diagonal, (18)
tells us that its slope should be negative, which is a contradiction. So ρ <
γ′
+(c) < c for all c > ρ. This in turn implies that γ′

− comes out above the
diagonal just left of ρ and that γ′

−(c) > c for all c < ρ and ρ < γ′
+(c) < c.

For the other two branches, we clearly have γ′
+(c) > c′

∗
(c) > ρ for all

c < ρ and γ′
−(c) < c′

∗
(c) < ρ for all c > ρ. The situation is illustrated in

Figure 5.
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Another important property, which is independent of the different cases, is the
following: For c large enough, the function γ′

+(c) always exists, stays below the
diagonal and is increasing. As c goes to infinity, we have

lim
c→∞

γ′
+(c) = ∞, lim

c′→∞
γ+(c

′) = ∞.

To see this, proceed by way of contradiction and suppose that there was a
bound c̃′ to which γ′

+ converged. Then (18) would tell us that the slope of γ′
+

approaches unity as c grows large, which is a contradiction to γ′
+ being bounded.

6.5 Find (c, c′) to solve both VM-conditions

We can now finally look at the different types of solutions to the system (11)
and (12) of both VM-conditions. The following is an exhaustive list of the
cases that arise. (Note that the arguments also provide algorithms to find the
respective solutions.)

1. kA ≤ kρ and k′A ≤ k′ρ, where one of the inequalities is strict. Without loss
of generality, assume that cl ≤ c′l, i.e. γ

′
− crosses the diagonal closer to the

origin than γ− does.10 Then, there are exactly two solutions (see Figure 2
for an illustration):

(a) Following γ′
− to the right from cl on (i.e. on the range c > cl), there

must be a unique intersection point of γ′
− with γ− (since γ′

− is de-
creasing in c, and γ− is increasing in c′ for c′ < c′l ≤ ρ, see Subsec-
tion 6.4). This is a solution where both under-consume (we are on
the γ−-parts), cB < ρ, c′B < ρ and c > c′.

(b) Notice that cl is the lower solution to ln c − c/ρ − kA/(1 + α) = 0,
and c′l is the lower solution to ln c′ − c′/ρ − k′A/(1 + α′) = 0. It
is easy to see that cl ≤ c′l implies ch ≥ c′h for the upper solutions.
Now, proceed similarly as in 1a: Follow γ+ upward from c′h (i.e. on
the range c′ ≥ c′h). Since γ+ is increasing in c′ and γ′

+ is decreasing
in c on (ρ/(1 + α), ch), there must be a unique intersection point
(cB , c

′
B). This solution is such that both over-consume, cB > ρ,

c′B > ρ and c < c′. Note that on the other side of the diagonal (c >
c′), the γ-functions cannot intersect due to the properties described
in Subsection 6.4.

2. kA ≤ kρ and k′A ≥ k′ρ, where one of the inequalities is strict. Then, there
are exactly two solutions. See Figure 3 for an illustration.

(a) Again, follow γ′
− to the right starting at cl (i.e. on the range c > cl).

Note that γ− must cross c′
∗
(·) on its way to c∗(·) by the ordering of c∗

and c′
∗
described in Subsection 6.1. Since γ′

− always stays below c′
∗
,

there must be an intersection with γ+. Again, by the properties of
the γ-functions (see Subsection 6.4) this must be the only intersection

10Just reverse the roles of the two in case the crossing is the other way around.
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that γ′
− can have with γ− and γ+. The solution has the property that

both under-consume, cB ≥ c′B and c′B ≤ ρ.

(b) Now, consider γ′
+. By the properties of γ+ and γ−, it is clear that

γ′
+ yields a solution to the right of the diagonal. When following γ′

+

to the left from ch, γ
′
+ grows unbounded as c → ρ/(1 + α). Since

γ+ grows unbounded in c′, there must be a unique intersection of γ′
+

and γ+. At this solution, both over-consume, c ≤ c′ and c′ > ρ.

3. kA ≥ kρ and k′A ≥ k′ρ, where one of the inequalities is strict: There are
two sub-cases to consider, depending on the value of k′(·) at (c2, γ′(c2))

11;
see Figure 4 for an illustration (which corresponds to sub-case b). In sub-
case a, we can show that there are exactly two solutions, in sub-case b
there must be at least two (we could not rule out the possibility that there
are more).

(a) k′(c2, γ
′(c2)) ≤ k′A: γ− must lie below (c2, γ

′(c2)) at c = c2. When
following γ′

− letting c increase from c2 on, at least one intersection
with γ− must take place since γ− must cut c∗ at some point, and c∗

is above c′
∗
, which again lies above γ′

−. This intersection must be
unique, because k′ strictly increases when we follow γ′

− south-east
by the derivatives of k′ (which are analogous to (15) and (16)). This
solution is such that c > c′ and that both under-consume.

(b) k′(c2, γ
′(c2)) > k′A: γ− must lie above (c2, γ

′(c2)) at c = c2. When
following γ′

+ letting c increase from c2 on, at least one intersection
with γ− must take place since γ′

+ grows unbounded. This intersection
must be such that c > ρ > c′, he over-consumes and she under-
consumes. In this case, we cannot rule out that another crossing
happens between γ− and γ′

+, so there might be another solution. We
could not find any such case computationally, though. Also, note
that this is the only case in which there can be mixed solutions, i.e.
where she over-consumes and he under-consumes.

We can follow the same procedure starting at the point (c′2, c
∗(c′2)) and

will find (at least) one more solution there.

4. kA = kρ and k′A = k′ρ: All γ-functions (for both agents) must contain the
point (ρ, ρ), which is one solution to the system. The properties of the
γ-functions imply that there cannot be any other solution in the entire
(c, c′)-space, see Figure 5 for an illustration.

We now summarize and return to the big picture. We can always find one
candidate solution (cB , c

′
B) for given (cA, c

′
A) that is different from (cA, c

′
A). This

solution is independent of P̃ . Of course we still have to check if it respects the
bounds given in (13) and (14), which depend on P . In one sub-case, we could
not rule out that there are even more solutions for (cB , c

′
B). But note that

11Recall that this is the locus where there is exactly one solution c′ for her VM given c, so
γ′

−
(c2) = γ′

+
(c2) = c′

∗(c2). We thus simply write γ′(c2).
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Figure 5: kA = kρ and k′A = kρ (case 4)

this does not weaken the point we make on the non-existence of NT-NT-NT
equilibria, i.e. Corollary 1: Even for potential third solutions, the boundary P̃
would have to be attracting. Thus, there cannot exist policies on the kink P̃
that are consistent with equilibrium.

7 Ruling out more equilibria

7.1 No smooth equilibria

In this section we show that there cannot be any smooth equilibria in the case
of imperfect altruism, i.e. 0 < α+ α′ < 2.

First, note that there cannot be an equilibrium consisting of one WP-region
by Proposition 4 in the paper. Second, there cannot be any equilibrium consist-
ing of a single FT-region. To see why, suppose that she was the donor in such
an equilibrium. Clearly, she would set C = CWP throughout. But he would
not tolerate this when he has the power to do so. By Lemma 3 in the paper, he
would set the transfer lower than her WP consumption at P = 0.

We are left with the possibility that there is an equilibrium consisting of a
single NT-region. Such an equilibrium will generically not exist, as we show
in the paper, since there are 4 boundary conditions (from the Party Theorem,
Theorem 2 in the paper) for 2 first-order ODEs. Figure 6 shows numerical
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results: we start at P = 0 with the boundary conditions provided by the Party
Theorem, then solve the two ODEs for consumption (coming from the EE) up
to P = 1, and then compare to the boundary conditions C(1) = CWP and
C ′(1) = C ′

lim imposed by the Party Theorem. We find that throughout the
parameter space, her consumption comes out too low and his too high.12 As we
move towards perfect altruism, the violations of the conditions become smaller
but they are always there.
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Figure 6: Boundary conditions for ODEs with one NT-region

We have now ruled out smooth equilibria that consist of one type of re-
gion. However, there might still be patched equilibria that are smooth on the
boundaries in the sense that policies are continuously differentiable. Note that
this cannot happen between FT and NT-regions since transfer functions are
linear and positive on FT but zero on NT. It could however be that NT-regions
smoothly turn into WP-regions (recall that transfers are indeterminate in those).
Since there can only be one WP-region (Lemma 9 in the paper), it must be
that this WP-region is then enclosed by two NT-regions which extend to the
boundaries of the state space. As we will see in the following section, such an
equilibrium does not exist.

7.2 No transfers-when-constrained equilibria with three
regions

Although no transfers-when-constrained equilibria exist in which there is one
MT-region (0, 1), it is still conceivable that equilibria exist in which two NT-
regions enclose a third region in the middle. Restricting our quest to symmetric
equilibria in the case α = α′, we have found numerically that no such equilibria
exist. By symmetry, the middle region can only be of NT, SS or WP type. We
did not study cases with more than three regions.

12Note that by Proposition 5 in the paper we only need to consider α and α′. By symmetry,
it is also sufficient to check only pairs {(α, α′) : α′ ≥ α}
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First consider the two cases in which the middle region is of SS- or WP-type.
These two cases are special since the value functions are pinned down in these
regions, see Lemmas 7 and 9 in the paper. We will try to construct an equilib-
rium as follows. The Party Theorem tells us the limiting consumption policies
at P = 0. We can then solve for {C,C ′} from the EE, (29) in the paper, for NT-
regions and check if one of the following two results occur: the value functions
converge at some point to 1) the SS value functions or 2) the WP value func-
tions. There is now one free boundary P1, but two value-matching conditions.
So we do not expect such an equilibrium to exist generically. Indeed, we have
conducted computations for the special case of symmetric altruism (α = α′) on
the entire range α ∈ (0, 1) and found that none of the two convergence results
occurs for any α. The intuition for the non-existence results is as in the case
of one NT-region. Since there are essentially two steady states bordering each
NT-region (SS/WP and 0), the economy might converge to either one from each
point in NT; it is extremely unlikely that the values of the two possibilities are
the same for both players, which leads to conflicts that cannot be resolved in a
deterministic setting.

Next, consider a potential NT-NT-NT equilibrium with two free boundaries
{P1, P2}. Since value functions are not pinned down in NT-regions, it is more
likely to find an equilibrium with this structure – we will now see why. As
mentioned before, we will look for a symmetric equilibrium with α = α′ and
boundaries (P1, 1− P1), so that P1 ∈ (0, 1

2 ) is the only free parameter.
Our equilibrium-construction strategy is as follows. Given the boundary

conditions at P = 0 from the Party Theorem, we can solve the ODEs for
consumption on NT up to the boundary P1 for a given value of P1. We then
infer consumption policies on the other side of P1 using Proposition 2. Using
again the ODEs for NT-regions, we proceed to solve for consumption policies
up to the point P = 1

2 . If his and her consumption policy are equal at this
point, we have found an equilibrium. If not, we vary the free boundary P1 until
consumption policies are equal at P = 1

2 .
13 Note that this problem is exactly

identified: we are varying one free parameter P1 to meet one criterion at P = 1
2 .

Indeed, using this procedure we can find symmetric value functions and con-
sumption policies for each α ∈ (0, 1) that satisfy the HJBs and Euler equations
inside the regions and that are consistent with value-matching at P1, see Fig-
ure 7 for an example.14 The figure shows the consumption rates (C,C ′) in the
upper-left and the value functions (V, V ′) in the upper-right panel. The vertical
dashed line represents the boundary P1. We see that value-matching is fulfilled
at P1. In the lower left panel, we have plotted players’ consumption rates (c, c′)
out of their own assets (k, k′). As mentioned before, Ṗ > 0 if and only if c′ > c
in NT-regions. So the economy steers towards P1 locally from both sides, so P1

becomes an additional steady state. Again, we have the problem that there are
“too many steady states” to which the economy can go. However, this time the

13Note that C( 1
2
) = C′( 1

2
) implies VP ( 1

2
) = −V ′

P ( 1
2
), and since then Ṗ = 0 at P = 1

2
it

also implies V ( 1
2
) = V ′( 1

2
) by the HJB.

14We found, however, that for values of α above 0.4 the transfer motive becomes positive
just left of P1, which is already inconsistent with equilibrium.
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Figure 7: Symmetric equilibrium candidate: Transfers only in bankruptcy (α =
α′ = 0.4, ρ = 0.04).

technical reason for ruling out the equilibrium is different from the cases before:
Corollary 1 tells us that there cannot be mutually best-responding policies at P1

since it is an attracting boundary between two NT-regions.
The economic intuition for why the equilibrium breaks down at P1 is the

following. She (the player with the locally convex value function) wants to
steer the economy away from P1 once the boundary is left. She does not bear
the downside consequences of over-consuming: if she is profligate and becomes
poor, he will provide for her and give transfers eventually. If she is frugal at P1,
however, no transfers will flow and she will thus reap all the benefits from savings
herself. For him, the situation is exactly the opposite. He is locally risk-averse
(V ′ is locally concave) and tries to contain the economy at the boundary. If
she over-consumes, he does not want to be the nice guy who is frugal, watches
her party and then pays transfers in the end, so he prefers to also be profligate.
This steers the economy back to P1. If she is frugal, he also has incentives to
be frugal since he will never have to give transfers.

If players had lotteries (or risky assets) at their disposition, then the locally
risk-loving agent would make use of these at P1.

15 This cannot be “counter-

15Laitner (1988) follows this route: he introduces a full set of lotteries into an altruistic
OLG setting in which generations overlap for one period in order to remove non-concavities
in the value functions.
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acted” in any way by the risk-averse agent, unlike in the deterministic case, and
enable the risk-loving agent to steer the economy away from P1. We will see
below how the introduction of a shock into the setting does indeed resolve the
tensions: chance decides to which side the economy moves at the critical point.

7.3 No FT-to-SS equilibrium

The Prodigal-Son Dilemma tells us that there cannot be an equilibrium where a
rich donor gives a mass transfer to a broke recipient and players are self-sufficient
ever after. In this section, we show that there cannot exist an equilibrium either
where the donor gives flow transfers to lift the poor player into self-sufficiency,
i.e. an equilibrium where the region structure is FT’-SS(-FT).

For the special case where the SS-region covers the maximally-possible range
(see Lemma 7 in the paper), we have the following theoretical result:

Proposition 3 Suppose that α′ > 0. If there is a SS-region PSS = ( α′

1+α′
, P2),

then there cannot exist a flow-transfer region PFT ′ = [0, α′

1+α′
) in equilibrium.

Analogously, supposing that α > 0, if there is a SS-region (PN−2,
1

1+α
), then

there cannot exist a flow-transfer region PFT = ( 1
1+α

, 1].

Proof: His value-matching condition at α′

1+α′
implies that her consumption

in the FT-region is CFT = α′ρ
1+α′

. Then, her value-matching condition implies

that G′( α′

1+α′
) = 0. The ODE for transfers in a FT-region implies that G′

P =
0 throughout PFT ′ , which in turn implies G′(0) = 0. But this makes her
consumption zero at P = 0, which means he is clearly not best-responding. �

When we set the lower boundary of PSS higher than α′

1+α′
, we are not able

to rule out this type of equilibrium using only paper and pencil. But when
following the same route as in the lemma, this time solving the ODE for transfers
numerically, we can find the implied G′(0) for any parameter constellation and
any location of the kink P1 and then check if it is such that it can finance the
recipient’s consumption, i.e. G′(0) ≥ C(0). Proposition 1 in the paper tells us
that we may fix (ρ, r) = (1, 0) and vary only the tuple (α, α′). By Lemma 7 in

the paper, we know that P1 ∈ [P , P̄ ] =
[

α′

1+α′
, 1
1+α

]
, since this is the maximally-

possible range for a SS-region. Indeed, we find that the G′(0) we calculate from
the ODE is negative for all P1 ∈ [P , P̄ ] for all (α, α′)-pairs, which is not even

feasible. Figure 8 shows ln
(−G′(0)

C(0)

)
from this numerical exercise, where we have

parameterized the kink location by KinkRatio = (P1 − P )/(P̄ − P ) ∈ [0, 1].
This shows that this type of equilibrium cannot exist either.

8 The Model with a shock

Let us consider the following variation to our model: instead of a safe return r,
the agents now have access to a single asset with expected return r and vari-
ance σ2 (over a unit of time). So agents face an idiosyncratic shock to assets,
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for FT-SS structure

which can be either interpreted as idiosyncratic savings risk or as shocks to
expenditures (such as costs of house repair, medical treatment etc.). We first
present the mathematical analysis of the model (which the reader may skip on
the first reading) and then the economically relevant results.

8.1 Mathematical analysis

The laws of motion for assets turn into the following stochastic differential equa-
tions (SDEs):

dkt = (rkt − ct)dt+ σktdBt

dk′t = (rk′t − c′t)dt+ σk′tdB
′
t,

where Bt and B′
t are uncorrelated Brownian motions. Applying the Ito rule

to the functions K(k, k′) = k + k′ and P (k, k′) = k
k+k′

, the laws of motion in
P/K-space are

dKt =(r − Ct − C ′
t)Ktdt+ PtKtdBt + (1− Pt)dB

′
t,

dPt =
[
PtC

′
t − (1− Pt)Ct + Pt(1− Pt)(1− 2Pt)σ

2

︸ ︷︷ ︸

≡aP

]
dt+ (20)

+ Pt(1− Pt)σ(dBt − dB′
t),
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where we have introduced the notation aP for the drift of P . We see that the
second and third term on the right-hand side for the law of motion for P both
vanish when P → 0 or P → 1, i.e. shocks have a negligible impact on the asset
distribution when one player is very rich compared to the other.

Analogous to the deterministic case, we now integrate utility over time for
arbitrary K-linear strategies in order to determine the functional form of the
value function. Using the Ito rule, we find that

d lnKt =
(

r−C(Pt)−C ′(Pt)− σ2

2 [P 2
t +(1−Pt)

2]
)

dt+σ
[
PtdBt+(1−Pt)dB

′
t

]
.

Integrating and exponentiating we obtain

Kt = K0 exp

(
∫ t

0

r − C(Ps)− C ′(Ps)− σ2

2 [P 2
s + (1− Ps)

2]ds+

+ σ

∫ t

0

PsdBs + σ

∫ t

0

(1− Ps)dB
′
s

)

.

As in the deterministic model, we substitute this expression into the agent’s
criterion and obtain her value function:16

Ṽ σ(P0,K0) =E0

[
∫ ∞

0

e−ρt
[

ln
(
C(Pt)Kt

)
+ α ln

(
C ′(Pt)Kt)

]

dt

]

=

=
1 + α

ρ

(

lnK0 +
r

ρ

)

︸ ︷︷ ︸

=W (K0)

−

− E0

[ ∫ ∞

0

e−ρt
(
C(Pt) + C ′(Pt) +

σ2

2 [P 2
t + (1− Pt)

2]
)
dt

]

+

+ E0

[
∫ ∞

0

e−ρt
(
lnC(Pt) + α lnC ′(Pt)

)
dt

]

.

We add σ-superscripts to the value functions in order to distinguish them from
the deterministic ones. Just as in the deterministic case, we see that the value
function is additively separable in K and P . Indeed, the part in K takes
the same functional form as in the deterministic case. We define V σ(P ) ≡
Ṽ σ(P,K) −W (K). Recall that the SDE (20) for P does not depend on K, so
it valid to write V σ(·) as a function of P only.

In order to build intuition, we will now heuristically derive the HJB for the
stochastic case:

Ṽ σ(Pt,Kt) =α ln
(
C ′(Pt)Kt

)
∆t+max

C

{

ln
(
CKt

)
∆t+ e−ρ∆tEtṼ

σ(Pt+∆t,Kt+∆t)

}

.

16Here we use the fact that E0

∫ t

0
fsdBs = 0 for any Bt-measurable function ft.
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Using stochastic calculus, we expand the continuation value as follows:

e−ρ∆tṼ σ(Pt+∆t,Kt+∆t) ≃Ṽ σ(Pt,Kt)− ρṼ σ(Pt,Kt) + Ṽ σ
P ∆P + Ṽ σ

K∆K+

+ Ṽ σ
PP (∆P )2 + Ṽ σ

KK(∆K)2,

where we have used that Ṽ σ
PK = 0. In order to use the Ito rule, observe that as

∆t becomes small ∆Kt and ∆Pt are given by (20) and by stochastic calculus
we have

(dKt)
2 = σ2K2

t [P
2
t + (1− Pt)

2]dt,

(dPt)
2 = P 2

t (1− Pt)
2σ̃2dt,

(dKt)(dPt) = 2KtPt(1− Pt)(Pt − 1
2 )σ

2dt.

Using the closed forms for Ṽ σ
K = WK and Ṽ σ

KK = WKK , we can then derive the
following HJB:

ρṼ σ(P,K) =(1 + α) lnK + r
1 + α

ρ
+ α lnC ′ − C ′

[
1 + α

ρ
− PṼ σ

P

]

+

+max
C

{

lnC − C

[
1 + α

ρ
+ (1− P )Ṽ σ

P

]}

−

− 2P (1− P )(P − 1
2 )σ

2Ṽ σ
P + P 2(1− P )2σ2Ṽ σ

PP−

− 1 + α

ρ

σ2

2
[P 2 + (1− P )2].

Notice that the last term (a mere function of P ) stems from the Ito term in
Ṽ σ
KK – this term captures risk aversion with respect to dynasty resources K.

As noted before, diversification of dynasty assets minimizes this penalty when
assets are equitably shared.

We now use the decomposition Ṽ σ(P,K) = W (K)+V σ(P ) and the fact that
Ṽ σ
P = V σ

P , V σ
PP = Ṽ σ

PP to obtain a second-order differential equation for V σ(P ):

ρV σ =α lnC ′ − C ′

[
1 + α

ρ
− PV σ

P

]

− 1 + α

ρ

σ2

2
[P 2 + (1− P )2]+

+ max
C

{

lnC − C

[
1 + α

ρ
+ (1− P )V σ

P

]}

− (21)

− 2P (1− P )(P − 1
2 )σ

2V σ
P + P 2(1− P )2σ2V σ

PP .

We recognize the terms in C and C ′ from the deterministic HJB for V (equa-
tion 25 in the paper) and the constant in P as the penalty on uncertainty overK.
The last two terms are somewhat harder to interpret. The term in V σ

P arises
since there is a trend in P unrelated to consumption decisions which stems from
the fact that P is a concave function of k and k′. The term in V σ

PP captures
risk aversion with respect to the distribution of assets within the dynasty: if
the value function is concave in P , then this term is negative, which means that
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she is averse to the risk that the asset distribution is reshuffled. This risk is
independent of consumption decisions –since these cannot influence the agents’
risk – and depends only on the exogenous variance σ2.

We can proceed analogously for him to obtain his HJB for V ′σ(P ):

ρV ′σ =α′ lnC − C

[
1 + α′

ρ
+ (1− P )V ′σ

P

]

− 1 + α′

ρ

σ2

2
[P 2 + (1− P )2]+

+ max
C′

{

lnC ′ − C ′

[
1 + α′

ρ
− PV ′σ

P

]}

−

− 2P (1− P )(P − 1
2 )σ

2V ′σ
P + P 2(1− P )2σ2V ′σ

PP .

His complete value function in two variables is Ṽ ′
σ
(P,K) = W ′(K) + V ′σ(P ),

where

W ′(K) =
1 + α′

ρ

(

lnK +
r

ρ

)

.

Agents’ optimal consumption rules are the same as in the deterministic case:

Cσ∗ =
(

1+α
ρ

+ (1− P )V σ
P

)−1

, C ′σ∗
=
(

1+α′

ρ
− PV ′σ

P

)−1

.

8.2 Results

We now calculate the solution of the game by backward-iterating on the HJB.
We use a trinomial-grid method. The drift for P is aP , where consumption is
calculated from the FOC and transfers are set to zero in the interior of the state
space (we check later if transfer motives are really negative). The variance of
P is P 2(1− P )22σ2 (note that there are two Brownian motions). For the final
guess on the value function, we adopt different specifications for what happens
in the last interval ∆t on the time grid (e.g. we assume that the static altruism
game is played). The form of the final guess does not matter much, we always
end up with the same solution to the game.

Figure 9 shows the resulting equilibrium.
The upper-left panel shows players’ consumption C and C ′. Around the

middle of the state space they are very similar to SS consumption (the diagonal
dashed lines). When the asset distribution is imbalanced, the donor’s consump-
tion is close to WP consumption (the horizontal dashed lines). The vertical
dashed lines indicate the value of P where transfers would start to flow in a
static altruism model. The discontinuity of the poor player’s consumption at
the constraint highlights point 3 of the Party Theorem (Theorem 2 in the paper).

As for the value functions in the lower-left panel, we see that risk-lovingness
and risk-aversion follow the pattern already pointed out for the NT-NT-NT
structure in Section 7.2. The lower-right panel show the dynamics of the state
variable P . The drift of P is represented as a solid line, and 1-standard-deviation
bands as dashed lines. In the neighborhood of P = 0.5, we see that the economy
is basically stationary. However, the only absorbing states are P ∈ {0, 1}, which
are the only points in the state space where the shocks do not influence the asset
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Figure 9: Transfer-when-constrained equilibrium with shock (α = α′ = 0.5,
ρ = 0.04, r = 0, σ = 0.05)

distribution. Once one player is broke, no shock can bring him away from there.
We can see that when the initial asset distribution is imbalanced, immiseration
of the poorer player is likely to occur.

The strength of this equilibrium, in addition to being empirically plausible
and unique, is that it is stable with respect to the following objections that
can be brought forward against the tragedy-of-the-commons-type equilibrium:
it can be maintained under a finite horizon, and it survives the introduction of
a shock as well as the introduction of in-kind transfers.

Technically, the problem of over-identification that we faced in the determin-
istic setting with a single NT-region disappears for the following reason. We still
have four boundary conditions for consumption at P ∈ {0, 1}, but the ODEs for
consumption on the NT-region are now of second instead of first order because
we introduced Brownian motion (the shock). This makes the system exactly
identified, so a unique equilibrium is the natural outcome. Economically speak-
ing, the economy can now end up in either of the two steady states {0, 1} from
(almost) any starting point, so information from both sides enters the allocation
for any P ∈ (0, 1). As described above, randomness resolves the tensions that
arose in the deterministic setting.
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