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These are the technical notes the paper whose title appears above.

1. Firms

1.1. General Setup

The intermediate good producer’s technology is:

yt(i) = �tKt(i)f

µ
ztht(i)

Kt(i)

¶
− φz∗t ,

where �t has mean unity and
zt

zt−1
= µzt,

and

z∗t = Υ
α

1−α
t zt,

Let
Υt

Υt−1
= µΥt, µz∗t =

z∗t
z∗t−1

.

The time series representations of µzt and µΥt are provided below. Note that

µz∗t = (µΥt)
α

1−α µzt,

so that

µ̂z∗t =
α

1− α
µ̂Υt + µ̂zt.

A hat over a variable, say γt, means γ̂t = dγt/γ, where γ is the value of the variable in

nonstochastic steady state.

Also, Kt denotes the services of capital:

Kt = utK̄t.

The law of motion for capital has the following form:

K̄t+1(i) = (1− δ)K̄t(i) + F (It(i), It−1(i)).

In addition, investment adjustment costs are given by:

F (It(i), It−1(i)) = (1− S

µ
It(i)

It−1(i)

¶
)It(i).

The function, S, is restricted to satisfy the following properties: S(µΥµz∗) = S0(µΥµz∗) = 0,

and κ ≡ S00(µΥµz∗) > 0. For checking purposes, the following S function was used:

S

µ
It(i)

It−1(i)

¶
= S

µ
it(i)µz∗tµΥt

it−1(i)

¶

S(x) = (µz∗µΥ)
2 [S00]

µ
x2

2 (µz∗µΥ)
2 −

x

µz∗µΥ
+
1

2

¶
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The present discounted value of profits of the intermediate good firm are:

Et

∞X

j=0

βjΛt+j{Pt+j(i)yt+j(i)−Pt+jRt+j(ν)wt+j(i)ht(i)−Pt+jΥ
−1
t+jIt+j(i)−Pt+j

£
a(ut+j)Υ

−1
t+j

¤
K̄t+j},

where ν denotes the fraction of the wage bill that must be financed in advance, and Λt+j

is the Lagrange multiplier on currency in the Lagrangian representation of the household

problem. If Rt is the gross nominal rate of interest, then

Rt(ν) = νRt + 1− ν.

Linearizing this,

R̂t(ν) =
νR

νR+ 1− ν
R̂t.

Here, Λt is the shadow value of a dollar to the household, the owner of the intermediate good

firm and τ denotes a subsidy to the intermediate good firm.

Final goods are produced according to the following production function:

Yt =

∙Z 1

0

Yjt

1
λf,t dj

¸λf,t
, 1 ≤ λf <∞

and

Pt =

∙Z 1

0

Pt(i)
1

1−λf,t di

¸1−λf,t

.

The the intermediate good firm must satisfy the demand curve:
µ

Pt

Pt(i)

¶θ

Yt = yt(i), θ =
λf

λf − 1
To see where the aggregate condition involving prices comes from, take each side of the above

to the power 1/λf and integrate:

Y
1
λf

t

Z 1

0

µ
Pt

Pt(i)

¶ 1
λf−1

di =

Z 1

0

yt(i)
1
λf di.

Now, raise each side to the power λf :

Yt

"Z 1

0

µ
Pt

Pt(i)

¶ 1
λf−1

di

#λf
=

∙Z 1

0

yt(i)
1
λf di

¸λf
= Yt.

Then,

P

λf
λf−1
t

"Z 1

0

µ
1

Pt(i)

¶ 1
λf−1

di

#λf
= 1,

"Z 1

0

µ
1

Pt(i)

¶ 1
λf−1

di

#λf
= P

−λf
λf−1
t

∙Z 1

0

(Pt(i))
1

1−λf di

¸1−λf

= Pt
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In working with the firm’s problem, it is useful to substitute out for hours worked in

terms of the amount of output produced, the capital stock and the technology shocks:

yt(i) + φz∗t
�tKt(i)

= f

µ
ztht(i)

Kt(i)

¶

ht(i) =
Kt(i)

zt
f−1

µ
yt(i) + φz∗t
�tKt(i)

¶

We will be differentiating f−1 so it will be useful to have an expression for this. Thus, let

y = f(x), so that dy/dx = f 0(x). Now, x = f−1(y), so that dx/dy = (f−1(y))
0
= 1/ (f 0(x)) .

Writing the intermediate good firm’s objective in Lagrangian form, and letting λt+j =

Λt+jPt+j,

Et

∞X

j=0

βjλt+j{pt+j(i)yt+j(i)−Rt+j(ν)wt+jht+j(i)−Υ−1t+jIt+j(i)−
£
a(ut+j)Υ

−1
t+j

¤
K̄t+j

+µt+j

∙
(1− δ)K̄t+j(i) + (1− S

µ
It+j(i)

It+j−1(i)

¶
)It+j(i)− K̄t+j+1(i)

¸
}

Substitute out for hours worked:

Et

∞X

j=0

βjλt+j{pt+j(i)yt+j(i)−Rt+j(ν)wt+j
Kt+j(i)

zt+j
f−1

µ
yt+j(i) + φz∗t+j

�t+jKt+j(i)

¶

−Υ−1t+jIt+j(i)−
£
a(ut+j(i))Υ

−1
t+j

¤
K̄t+j(i)

+µt+j

∙
(1− δ)K̄t+j(i) + (1− S

µ
It+j(i)

It+j−1(i)

¶
)It+j(i)− K̄t+j+1(i)

¸
}.

Next, substitute out for output using the demand function and for the physical stock of

capital:

Et

∞X

j=0

βjλt+j{pt+j(i)
1−θYt+j −Rt+j(ν)wt+j

ut+j(i)K̄t+j(i)

zt+j
f−1

Ã
pt+j(i)

−θYt+j + φz∗t+j

�t+jut+j(i)K̄t+j(i)

!

−Υ−1t+jIt+j(i)−
£
a(ut+j(i))Υ

−1
t+j

¤
K̄t+j(i)

+µt+j

∙
(1− δ)K̄t+j(i) + (1− S

µ
It+j(i)

It+j−1(i)

¶
)It+j(i)− K̄t+j+1(i)

¸
}.

The functional form for a used when performing checks is:

a(u) = au2 + bu+ c

a = 0.5ρ̃σa

b = ρ̃(1− σa)

c = ρ̃((σa/2)− 1)
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We adopt the following scaling of variables:

Ct = ctz
∗
t

It = itΥtz
∗
t

Yt = ytz
∗
t

K̄t+1 = k̄t+1z
∗
tΥt

wt = z∗t w̃t,

qt =
Qt

z∗tPt

1.2. Capital Utilization Decision (First-failed-Try)

Consider the first order condition with respect to ut+j(i) :

{−Rt+j(ν)wt+j(i)
K̄t+j(i)

zt+j
f−1

Ã
pt+j(i)

−θYt+j + φz∗t+j

�t+jut+j(i)K̄t+j(i)

!

+Rt+j(ν)wt+j
ut+j(i)K̄t+j(i)

zt+j

1

f 0
³
f−1

³
pt+j(i)−θYt+j+φz∗t+j
�t+jut+j(i)K̄t+j(i)

´´ pt+j(i)
−θYt+j + φz∗t+j

�t+jut+j(i)K̄t+j(i)2

−a0(ut+j(i))Υ
−1
t+jK̄t+j(i)}

= 0

Let’s specialize a little to see if it simplifies....

f = x1−α, so f 0 = (1− α)x−α and f−1(y) = y1/(1−α).

Then,

{−Rt+j(ν)wt+j(i)
ut+j(i)

− 1
1−α K̄t+j(i)

zt+j

Ã
pt+j(i)

−θYt+j + φz∗t+j

�t+jK̄t+j(i)

! 1
1−α

+Rt+j(ν)wt+j
ut+j(i)

− α
1−α

(1− α)zt+j

Ã
pt+j(i)

−θYt+j + φz∗t+j

�t+jK̄t+j(i)

! 1
1−α

−a0(ut+j(i))Υ
−1
t+jK̄t+j(i)}

= 0

or,

µ
pt(i)

−θYt + φz∗t
�tK̄t(i)

¶ 1
1−α Rt(ν)wt

zt

∙
ut(i)

(1− α)
− K̄t(i)

¸

= ut(i)
1

1−αa0(ut(i))Υ
−1
t K̄t(i).
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or,

µ
pt(i)

−θYt + φz∗t
�tK̄t(i)

¶ 1
1−α Rt(ν)wt

zt

∙
ut(i)

(1− α)
− K̄t(i)

¸

= δ0 (ut(i))
( 1
1−α+δ1)Υ−1t K̄t(i).

Note that the object to the left of the equality is −∞ for ut(i) = 0 and converges to

µ
pt(i)

−θYt + φz∗t
�tK̄t(i)

¶ 1
1−α Rt(ν)wt

zt

1

(1− α)

as ut(i)→∞. Tough to get anything closed form out of this!

1.2.1. A much simpler setup.

Start with perfect competition....

p (uk)α h1−α − a(u)k − wh, a(u) =
δ0

1 + δ1
u1+δ1

a0(u) = δ0u
δ1, a00(u) = δ0δ1u

δ1−1 > 0.

fonc:

αuα−1pkαh1−α = δ0u
δ1k,

so,

αpkα−1h1−α = δ0u
δ1+1−α

u =

µ
αpkα−1h1−α

δ0

¶ 1
δ1+1−α

.

Then, the ‘reduced form’ problem, after substituting out for optimized capital utilization, is:

p

µ
αpkα−1h1−α

δ0

¶ α
δ1+1−α

kαh1−α − δ0
1 + δ1

µ
αpkα−1h1−α

δ0

¶ 1+δ1
δ1+1−α

k − wh

or,

p

µ
αp

δ0

¶ α
δ1+1−α

(k)
α 1+ α−1

δ1+1−α h
(1−α) 1+ α

δ1+1−α

− δ0
1 + δ1

µ
αp

δ0

¶ 1+δ1
δ1+1−α

(k)
1+(α−1) 1+δ1

δ1+1−α (h)
(1−α)

1+δ1
δ1+1−α − wh

or,

p

µ
αp

δ0

¶ α
δ1+1−α

(k)
α

δ1
δ1+1−α h

(1−α)
1+δ1

δ1+1−α

− δ0
1 + δ1

µ
αp

δ0

¶ 1+δ1
δ1+1−α

(k)
1+(α−1) 1+δ1

δ1+1−α (h)
(1−α)

1+δ1
δ1+1−α − wh

7



But,

1 + (α− 1) 1 + δ1
δ1 + 1− α

=
δ1 + 1− α+ (α− 1) (1 + δ1)

δ1 + 1− α

=
−α+ α (1 + δ1)

δ1 + 1− α

=
αδ1

δ1 + 1− α

so,

p

µ
αp

δ0

¶ α
δ1+1−α

(k)
α

δ1
δ1+1−α h

(1−α)
1+δ1

δ1+1−α

− δ0
1 + δ1

µ
αp

δ0

¶ 1+δ1
δ1+1−α

(k)
1+(α−1) 1+δ1

δ1+1−α (h)
(1−α)

1+δ1
δ1+1−α − wh

= p

µ
αp

δ0

¶ α
δ1+1−α

(k)
α

δ1
δ1+1−α h

(1−α)
1+δ1

δ1+1−α

− δ0
1 + δ1

µ
αp

δ0

¶ 1+δ1
δ1+1−α

(k)
α

δ1
δ1+1−α (h)

(1−α)
1+δ1

δ1+1−α − wh

=

"
p

µ
αp

δ0

¶ α
δ1+1−α − δ0

1 + δ1

µ
αp

δ0

¶ 1+δ1
δ1+1−α

#
(k)

α
δ1

δ1+1−α h
(1−α)

1+δ1
δ1+1−α − wh

=

"
p

δ1+1
δ1+1−α

µ
α

δ0

¶ α
δ1+1−α − δ0

1 + δ1

µ
αp

δ0

¶ 1+δ1
δ1+1−α

#
(k)

α
δ1

δ1+1−α h
(1−α)

1+δ1
δ1+1−α − wh

=

"µ
α

δ0

¶ α
δ1+1−α − δ0

1 + δ1

µ
α

δ0

¶ 1+δ1
δ1+1−α

#
p

δ1+1

δ1+1−α (k)
α

δ1
δ1+1−α h

(1−α)
1+δ1

δ1+1−α − wh

What are the degree of returns to scale?

α
1 + δ1

δ1 + 1− α
+ (1− α)

1 + δ1
δ1 + 1− α

=
1 + δ1

δ1 + 1− α
.

Looks like increasing returns! Note too, that there is less curvature on hours worked. For

example, if δ1 = 0, then the production function is linear in hours worked.
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1.3. Capital First Order Condition

Et

∞X

j=0

βjλt+j{pt+j(i)
1−θYt+j −Rt+j(ν)wt+j

ut+j(i)K̄t+j(i)

zt+j
f−1

Ã
pt+j(i)

−θYt+j + φz∗t+j

�t+jut+j(i)K̄t+j(i)

!

−Υ−1t+jIt+j(i)−
£
a(ut+j(i))Υ

−1
t+j

¤
K̄t+j(i)

+µt+j(i)

∙
(1− δ)K̄t+j(i) + (1− S

µ
It+j(i)

It+j−1(i)

¶
)It+j(i)− K̄t+j+1(i)

¸
}.

It is useful to write out the firm’s objective in detail:

λt{pt(i)
1−θYt −Rt(ν)wt

ut(i)K̄t(i)

zt
f−1

µ
pt(i)

−θYt + φz∗t
�tut(i)K̄t(i)

¶
−Υ−1t It(i)−

£
a(ut(i))Υ

−1
t

¤
K̄t(i)

+µt(i)

∙
(1− δ)K̄t(i) + (1− S

µ
It(i)

It−1(i)

¶
)It(i)− K̄t+1(i)

¸
}

+βλt+1{pt+1(i)
1−θYt+1 −Rt+1(ν)wt+1

ut+1(i)K̄t+1(i)

zt+1
f−1

µ
pt+1(i)

−θYt+1 + φz∗t+1
�t+1ut+1(i)K̄t+1(i)

¶

−Υ−1t+1It+1(i)−
£
a(ut+1(i))Υ

−1
t+1

¤
K̄t+1(i)

+µt+1(i)

∙
(1− δ)K̄t+1(i) + (1− S

µ
It+1(i)

It(i)

¶
)It+1(i)− K̄t+2(i)

¸
}

+....

Differentiating this with respect to K̄t+1(i) :

−λtµt(i) + βλt+1{−Rt+1(ν)wt+1
ut+1(i)

zt+1
f−1

µ
pt+1(i)

−θYt+1 + φz∗t+1
�t+1ut+1(i)K̄t+1(i)

¶

+Rt+1(ν)wt+1
ut+1(i)K̄t+1(i)

zt+1
f−10

µ
pt+1(i)

−θYt+1 + φz∗t+1
�t+1ut+1(i)K̄t+1(i)

¶
pt+1(i)

−θYt+1 + φz∗t+1
�t+1ut+1(i)K̄t+1(i)2

−a(ut+1(i))Υ
−1
t+1 + µt+1(i)(1− δ)}

Write

ρt+1(i) = −Rt+1(ν)wt+1
1

zt+1
f−1

µ
pt+1(i)

−θYt+1 + φz∗t+1
�t+1ut+1(i)K̄t+1(i)

¶

+Rt+1(ν)wt+1
K̄t+1(i)

zt+1
f−10

µ
pt+1(i)

−θYt+1 + φz∗t+1
�t+1ut+1(i)K̄t+1(i)

¶
pt+1(i)

−θYt+1 + φz∗t+1
�t+1ut+1(i)K̄t+1(i)2

We can think of ρ(i) as the ‘shadow rental rate of capital services’. This can be seen by

noting that if ρt(i) were a rental rate treated exogenously by the firm, then the firm would

choose to rent Kt(i) = ut(i)K̄t(i). To see this, let

MPK,t =
dyt(i)

dKt
=

dyt(i)

ut(i)dK̄t

=
MPK̄,t

ut(i)
,

9



so thatMPK is the marginal product of a unit of capital services, andMPK̄ is the marginal

product of a unit of physical capital. Also, MPL is the marginal product of labor. Cost

minimization by a firm which hires factors in competitive markets implies:

Rt(ν)wt(i)

MPL,t
=

ρt(i)

MPK,t
=

ut(i)ρt(i)

MPK̄,t

.

In our setup,

MPL,t = �tf
0

µ
ztht(i)

ut(i)K̄t(i)

¶
zt

MPK̄,t = �tut(i)f

µ
ztht(i)

ut(i)K̄t(i)

¶
− �tut(i)K̄t(i)f

0

µ
ztht(i)

ut(i)K̄t(i)

¶
ztht(i)

ut(i)K̄t(i)2

Then,

ρt+1(i) = −Rt+1(ν)wt+1
1

zt+1

µ
pt+1(i)

−θYt+1 + φz∗t+1
�t+1ut+1(i)K̄t+1(i)

¶ 1
1−α

+Rt+1(ν)wt+1
1

zt+1

1

1− α

µ
pt+1(i)

−θYt+1 + φz∗t+1
�t+1ut+1(i)K̄t+1(i)

¶ α
1−α pt+1(i)

−θYt+1 + φz∗t+1
�t+1ut+1(i)K̄t+1(i)

MPK̄,t

MPL,t
Rt(ν)wt(i)

=
�tut(i)f

³
ztht(i)

ut(i)K̄t(i)

´
− �tut(i)K̄t(i)f

0
³

ztht(i)
ut(i)K̄t(i)

´
ztht(i)

ut(i)K̄t(i)2

�tf 0
³

ztht(i)
ut(i)K̄t(i)

´
zt

Rt(ν)wt(i)

=

⎡
⎣
ut(i)f

³
ztht(i)

ut(i)K̄t(i)

´

f 0
³

ztht(i)
ut(i)K̄t(i)

´
zt
− ht(i)

K̄t(i)

⎤
⎦Rt(ν)wt(i)

=

⎡
⎣
ut(i)f

³
ztht(i)

ut(i)K̄t(i)

´

f 0
³

ztht(i)
ut(i)K̄t(i)

´
zt
− ut(i)

zt

ztht(i)

ut(i)K̄t(i)

⎤
⎦Rt(ν)wt(i)

=

∙
1

zt
ut(i)f

−10
µ
pt(i)

−θYt + φz∗t
�tut(i)K̄t(i)

¶
pt(i)

−θYt + φz∗t
�tut(i)K̄t(i)

− ut(i)

zt
f−1

µ
pt(i)

−θYt + φz∗t
�tut(i)K̄t(i)

¶¸
Rt(ν)wt(i)

= ut(i)ρt(i),

where ρt(i) is as defined as above.

So, we can write the first order condition for K̄t+1(i) as follows:

λt = βλt+1

ut(i)ρt+1(i)− a(ut+1(i))Υ
−1
t+1 + µt+1(i)(1− δ)

µt(i)
,

with the understanding that ρt+1(i) is as defined above. Note that this is the same as

the first order condition for capital obtained in CEE, where it is the household that is

accumulating the capital, and identifying ρt+1(i) with the market rental rate of capital.

Also, µt(i) corresponds to the ‘price of capital’.
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1.4. Investment First Order Condition

λt{pt(i)
1−θYt −Rt(ν)wt

ut(i)K̄t(i)

zt
f−1

µ
pt(i)

−θYt + φz∗t
�tut(i)K̄t(i)

¶
−Υ−1t It(i)−

£
a(ut(i))Υ

−1
t

¤
K̄t(i)

+µt(i)

∙
(1− δ)K̄t(i) + (1− S

µ
It(i)

It−1(i)

¶
)It(i)− K̄t+1(i)

¸
}

+βλt+1{pt+1(i)
1−θYt+1 −Rt+1(ν)wt+1

ut+1(i)K̄t+1(i)

zt+1
f−1

µ
pt+1(i)

−θYt+1 + φz∗t+1
�t+1ut+1(i)K̄t+1(i)

¶

−Υ−1t+1It+1(i)−
£
a(ut+1(i))Υ

−1
t+1

¤
K̄t+1(i)

+µt+1(i)

∙
(1− δ)K̄t+1(i) + (1− S

µ
It+1(i)

It(i)

¶
)It+1(i)− K̄t+2(i)

¸
}

+....

Differentiating the firm’s objective with respect to It(i) :

λt{−Υ−1t + µt(i)

∙
1− S

µ
It(i)

It−1(i)

¶
− S0

µ
It(i)

It−1(i)

¶
It(i)

It−1(i)

¸
}

+βλt+1µt+1(i)S
0

µ
It+1(i)

It(i)

¶µ
It+1(i)

It(i)

¶2

1.5. Capital Utilization First Order Condition (Second Try)

Differentiating with respect to ut(i) :

−Rt(ν)wt
K̄t(i)

zt
f−1

µ
pt(i)

−θYt + φz∗t
�tut(i)K̄t(i)

¶

+Rt(ν)wt
K̄t(i)

zt
f−10

µ
pt(i)

−θYt + φz∗t
�tut(i)K̄t(i)

¶
pt(i)

−θYt + φz∗t
�tut(i)K̄t(i)

−a0(ut(i))Υ
−1
t K̄t(i)

= 0

Divide by K̄t(i) :

−Rt(ν)wt
1

zt
f−1

µ
pt(i)

−θYt + φz∗t
�tut(i)K̄t(i)

¶

+Rt(ν)wt
1

zt
f−10

µ
pt(i)

−θYt + φz∗t
�tut(i)K̄t(i)

¶
pt(i)

−θYt + φz∗t
�tut(i)K̄t(i)

−a0(ut(i))Υ
−1
t

= 0,

or

ρt(i) = a0(ut(i))Υ
−1
t .
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Interestingly, if there were a competitive rental market for capital with the rental rate of

capital services being ρt(i), then this would be the firms’ efficiency condition for choosing

ut(i).

1.6. Scaling and Linearizing the Firm’s First Order Conditions

1.6.1. Some Useful Aggregation Results

Define the aggregate stock of physical capital:

K̄t =

Z 1

0

k̄t(i)di,

so that

dK̄t =

Z 1

0

dk̄t(i)di,

or,

K̄ b̄Kt =

Z 1

0

k̄(i)b̄kt(i)di.

But, in steady state production across firms, and hence their useage of capital, is equal. As

a result, K = k(i) for all i, and

b̄Kt =

Z 1

0

b̄kt(i)di.

Also,

dYt =
θ

θ − 1

∙Z 1

0

yt(i)
θ−1
θ di

¸ θ
θ−1−1 θ − 1

θ

∙Z 1

0

yt(i)
θ−1
θ
−1dyt(i)

¸
di

= Y
1
θ
t

∙Z 1

0

yt(i)
θ−1
θ ŷt(i)

¸
di.

But, in steady state yt(i) = Y for all i, so that

dYt = Y
1
θ

∙Z 1

0

Y
θ−1
θ ŷt(i)

¸
di

= Y
1
θY

θ−1
θ

∙Z 1

0

ŷt(i)

¸
di,

so that,

Ŷt =

Z 1

0

ŷt(i)di. (1.1)
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1.6.2. The Utilization Rate of Capital

The first order condition for capital is:

Υtρt(i) = ρ̃t(i) = a0(ut(i)),

so that

ρ̃b̃ρt(i) = a00ût(i),

or,

b̃ρt(i) =
a00

ρ̃
ût(i) =

a00

a0
ût(i) = σaût(i),

say, where

σa =
a00

a0
.

Also, note that, in steady state:

ρ̃ = a0. (1.2)

1.6.3. The Investment First Order Condition

Now consider the first order condition for investment:

λtΥ
−1
t = λtµt(i)

∙
1− S

µ
It(i)

It−1(i)

¶
− S0

µ
It(i)

It−1(i)

¶
It(i)

It−1(i)

¸

+βλt+1µt+1(i)S
0

µ
It+1(i)

It(i)

¶µ
It+1(i)

It(i)

¶2

First, we scale this. Multiplying by z∗t and making use of It(i) = it(i)Υtz
∗
t ,

z∗t λt = z∗t λtΥtµt(i)

∙
1− S

µ
it(i)Υtz

∗
t

it−1(i)Υt−1z∗t−1

¶
− S0

µ
it(i)Υtz

∗
t

it−1(i)Υt−1z∗t−1

¶
it(i)Υtz

∗
t

it−1(i)Υt−1z∗t−1

¸

+β
z∗t
z∗t+1

z∗t+1λt+1
Υt

Υt+1
Υt+1µt+1(i)S

0

µ
it+1(i)Υt+1z

∗
t+1

it(i)Υtz∗t

¶µ
it+1(i)Υt+1z

∗
t+1

it(i)Υtz∗t

¶2

or, using the notation introduced above:

λz∗,t = λz∗,tµ̃t(i)

∙
1− S

µ
it(i)

it−1(i)
µΥ,tµz∗,t

¶
− S0

µ
it(i)

it−1(i)
µΥ,tµz∗,t

¶
it(i)

it−1(i)
µΥ,tµz∗,t

¸

+β
1

µz∗,t+1
λz∗,t+1

1

µΥ,t+1

µ̃t+1(i)S
0

µ
it+1(i)

it(i)
µΥ,t+1µz∗,t+1

¶µ
it+1(i)

it(i)
µΥ,t+1µz∗,t+1

¶2

Evaluating this in steady state and taking into account that S = S0 = 0 in steady state, we

find

µ̃ = 1.
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Log-linearizing this expression:

λz∗λ̂z∗,t = λz∗

(
λ̂z∗,t + b̃µt(i) +

\∙
1− S

µ
it(i)

it−1(i)
µΥ,tµz∗,t

¶
− S0

µ
it(i)

it−1(i)
µΥ,tµz∗,t

¶
it(i)

it−1(i)
µΥ,tµz∗,t

¸)

+βλz∗ [S
00]µΥµz∗d

µ
it+1(i)

it(i)
µΥ,t+1µz∗,t+1

¶

but,

d

µ
it+1(i)

it(i)
µΥ,t+1µz∗,t+1

¶

= µΥµz∗

\µ
it+1(i)

it(i)
µΥ,t+1µz∗,t+1

¶

= µΥµz∗
¡
ı̂t+1(i)− ı̂t(i) + µ̂Υ,t+1 + µ̂z∗,t+1

¢

Then,

λz∗λ̂z∗,t = λz∗

(
λ̂z∗,t + b̃µt(i) +

\∙
1− S

µ
it(i)

it−1(i)
µΥ,tµz∗,t

¶
− S0

µ
it(i)

it−1(i)
µΥ,tµz∗,t

¶
it(i)

it−1(i)
µΥ,tµz∗,t

¸)

+βλz∗ [S
00] (µΥµz∗)

2 £ı̂t+1(i)− ı̂t(i) + µ̂Υ,t+1 + µ̂z∗,t+1

¤

Now, taking into account that S = S0 = 0 when evaluated in steady state,

\∙
1− S

µ
it(i)

it−1(i)
µΥ,tµz∗,t

¶
− S0

µ
it(i)

it−1(i)
µΥ,tµz∗,t

¶
it(i)

it−1(i)
µΥ,tµz∗,t

¸

=
d
h
1− S

³
it(i)

it−1(i)
µΥ,tµz∗,t

´
− S0

³
it(i)

it−1(i)
µΥ,tµz∗,t

´
it(i)

it−1(i)
µΥ,tµz∗,t

i

1

= −S00
µ

it(i)

it−1(i)
µΥ,tµz∗,t

¶
it(i)

it−1(i)
µΥ,tµz∗,td

µ
it(i)

it−1(i)
µΥ,tµz∗,t

¶

= − [S00] (µΥµz∗)
2

\µ
it(i)

it−1(i)
µΥ,tµz∗,t

¶

= − [S00] (µΥµz∗)
2 £ı̂t(i)− ı̂t−1(i) + µ̂Υ,t + µ̂z∗,t

¤

Then,

λ̂z∗,t = λ̂z∗,t + b̃µt(i)− [S00] (µΥµz∗)
2 £ı̂t(i)− ı̂t−1(i) + µ̂Υ,t + µ̂z∗,t

¤

+β [S00] (µΥµz∗)
2 £ı̂t+1(i)− ı̂t(i) + µ̂Υ,t+1 + µ̂z∗,t+1

¤

and,

(∗ ∗ ∗∗) b̃µt(i) = [S
00] (µΥµz∗)

2 £ı̂t(i)− ı̂t−1(i) + µ̂Υ,t + µ̂z∗,t

¤
(1.3)

−β [S00] (µΥµz∗)
2 £ı̂t+1(i)− ı̂t(i) + µ̂Υ,t+1 + µ̂z∗,t+1

¤
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1.6.4. The Capital First Order Condition

Multiply the capital first order condition by z∗t :

z∗t λt = β
z∗t
z∗t+1

z∗t+1λt+1

ut+1(i)Υt+1ρt+1(i)− a(ut+1(i)) +Υt+1µt+1(i)(1− δ)
Υt+1
Υt
Υtµt(i)

.

Denote

µ̃t+1(i) = Υt+1µt+1(i), µz∗,t+1 =
z∗t+1
z∗t

, µΥ,t+1 =
Υt+1

Υt
, λz∗,t = z∗t λt, ρ̃t+1(i) = Υt+1ρt+1(i).

Then,

λz∗,t = β
1

µz∗,t+1
λz∗,t+1

ut+1(i)ρ̃t+1(i)− a(ut+1(i)) + µ̃t+1(i)(1− δ)

µΥ,t+1µ̃t(i)
,

or, in steady state,
µΥµz∗

β
= ρ̃+ 1− δ.

Then,

λ̂z∗,t = λ̂z∗,t+1 − µ̂z∗,t+1 − µ̂Υ,t+1 − b̃µt(i)

+ \£
ut+1(i)ρ̃t+1(i)− a(ut+1(i)) + µ̃t+1(i)(1− δ)

¤

Now,

\ut+1(i)ρ̃t+1(i)− a(ut+1(i)) + µ̃t+1(i)(1− δ) = d
ut+1(i)ρ̃t+1(i)− a(ut+1(i)) + µ̃t+1(i)(1− δ)

ρ̃+ 1− δ
,

where we have taken into account that in steady state, ut(i) = 1, and a(ut(i)) = 0. Then,

\ut+1(i)ρ̃t+1(i)− a(ut+1(i)) + µ̃t+1(i)(1− δ)

=
ρ̃
h
ût+1(i) + b̃ρt+1(i)

i
− da(ut+1(i)) + (1− δ)b̃µt+1(i)

ρ̃+ 1− δ

But,

da(ut+1(i)) = a0ût+1(i) = ρ̃ût+1(i),

where a0 denotes the derivative of a, evaluated in steady state. Then,

\ut+1(i)ρ̃t+1(i)− a(ut+1(i)) + µ̃t+1(i)(1− δ)

=
ρ̃
h
ût+1(i) + b̃ρt+1(i)

i
− ρ̃ût+1(i) + (1− δ)b̃µt+1(i)

ρ̃+ 1− δ

=
ρ̃b̃ρt+1(i) + (1− δ)b̃µt+1(i)

ρ̃+ 1− δ

Then,

(∗ ∗ ∗) λ̂z∗,t = λ̂z∗,t+1 − µ̂z∗,t+1 − µ̂Υ,t+1 − b̃µt(i) +
ρ̃b̃ρt+1(i) + (1− δ)b̃µt+1(i)

ρ̃+ 1− δ
(1.4)
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1.6.5. The Shadow Rental Rate of Capital

Now let’s go after ρ :

ρt(i) = Rt(ν)

µ
wt

zt

¶
f−1

µ
yt(i) + φz∗t
�tKt(i)

¶⎡
⎣

yt(i)+φz∗t
�tKt(i)

f 0
³
f−1

³
yt(i)+φz∗t
�tKt(i)

´´
f−1

³
yt(i)+φz∗t
�tKt(i)

´ − 1

⎤
⎦

Let’s simplify things:

yt(i) + φz∗t
�tKt(i)

= f

µ
ztht(i)

Kt(i)

¶
=

µ
ztht(i)

Kt(i)

¶1−α

,

so that
f
³

zt+1ht+1(i)
Kt+1(i)

´

f 0
³

zt+1ht+1(i)
Kt+1(i)

´
zt+1ht+1(i)
Kt+1(i)

− 1 = α

1− α

and
ztht(i)

Kt(i)
= f−1

µ
yt(i) + φz∗t
�tKt(i)

¶
=

µ
yt(i) + φz∗t
�tKt(i)

¶ 1
1−α

.

Substituting:

ρt(i) =
α

1− α
Rt(ν)

µ
wt

zt

¶µ
yt(i) + φz∗t
�tKt(i)

¶ 1
1−α

Recall

z∗t = Υ
α

1−α
t zt, K̄t+1 = k̄t+1z

∗
tΥt, z∗t w̃t = wt

so that

ρt(i) =
α

1− α
Rt(ν)

z∗t w̃t

z∗t
Υ

α
1−α
t

µ
yt(i) + φz∗t
�tut(i)K̄t(i)

¶ 1
1−α

=
α

1− α
Rt(ν)w̃tΥ

α
1−α
t

Ã
yt(i) + φz∗t

�tut(i)k̄t(i)z∗t
¡
z∗t−1/z

∗
t

¢
(Υt−1/Υt)

Υ−1t

! 1
1−α

=
α

1− α
Rt(ν)w̃tΥ

α
1−α
t Υ

− 1
1−α

t

µ
yt(i) + φz∗t

�tut(i)k̄t(i)z∗t
µz∗,tµΥ,t

¶ 1
1−α

Then,

ρ̃t(i) = Υtρt(i) =
α

1− α
Rt(ν)w̃tΥtΥ

α
1−α
t Υ

− 1
1−α

t

µ
ỹt(i) + φ

�tut(i)k̄t(i)
µz∗,tµΥ,t

¶ 1
1−α

=
α

1− α
Rt(ν)w̃t

µ
ỹt(i) + φ

�tut(i)k̄t(i)
µz∗,tµΥ,t

¶ 1
1−α

where

yt(i) = z∗t ỹt(i).
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Log-linearizing:

b̃ρt(i) = R̂t(ν) + b̃wt +
1

1− α

³
\(ỹt(i) + φ)− �̂t − ût(i)− b̄kt(i) + µ̂z∗,t + µ̂Υ,t

´

Now,

\(ỹt(i) + φ) =
ỹb̃yt(i)

ỹ + φ
,

so,

b̃ρt(i) = R̂t(ν) + b̃wt +
1

1− α

µ
ỹ

ỹ + φ
b̃yt(i)− �̂t − ût(i)− b̄kt(i) + µ̂z∗,t + µ̂Υ,t

¶

= R̂t(ν) + b̃wt +
1

1− α

µ
ỹ

ỹ + φ
b̃yt(i)− �̂t − b̄kt(i) + µ̂z∗,t + µ̂Υ,t

¶
− 1

1− α
ût(i)

= R̂t(ν) + b̃wt +
1

1− α

µ
ỹ

ỹ + φ
b̃yt(i)− �̂t − b̄kt(i) + µ̂z∗,t + µ̂Υ,t

¶
− 1

1− α

1

σa

b̃ρt(i),

after substituting from the utilization condition. Then,

(∗ ∗ ∗) b̃ρt(i) =
R̂t(ν) + b̃wt +

1
1−α

³
ỹ

ỹ+φ
b̃yt(i)− �̂t − b̄kt(i) + µ̂z∗,t + µ̂Υ,t

´

1 + 1
1−α

1
σa

(1.5)

1.6.6. The Capital Evolution Equation

Turn now to the capital accumulation rule:

K̄t+1(i) = (1− δ)K̄t(i) + (1− S

µ
It(i)

It−1(i)

¶
)It(i).

Write this in terms of scaled variables:

k̄t+1(i)z
∗
tΥt = (1− δ)k̄t(i)z

∗
t−1Υt−1 + (1− S

µ
it(i)

it−1(i)
µΥ,tµz∗,t

¶
)it(i)Υtz

∗
t

Divide by z∗tΥt

k̄t+1(i) =
(1− δ)

µΥ,tµz∗,t
k̄t(i) + (1− S

µ
it(i)

it−1(i)
µΥ,tµz∗,t

¶
)it(i).

In steady state: ∙
1− (1− δ)

µΥµz∗

¸
=

i

k̄

Log-linearizing:

(∗ ∗ ∗) b̄kt+1(i) =
(1− δ)

µΥµz∗

hb̄kt(i)− µ̂Υ,t − µ̂z∗,t

i
+

i

k̄
ı̂t(i)

=
(1− δ)

µΥµz∗

hb̄kt(i)− µ̂Υ,t − µ̂z∗,t

i
+

∙
1− (1− δ)

µΥµz∗

¸
ı̂t(i)
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or,

ı̂t(i) =

b̄kt+1(i)− (1−δ)
µΥµz∗

hb̄kt(i)− µ̂Υ,t − µ̂z∗,t

i

1− (1−δ)
µΥµz∗

(1.6)

=
µΥµz∗

b̄kt+1(i)− (1− δ)
hb̄kt(i)− µ̂Υ,t − µ̂z∗,t

i

µΥµz∗ − (1− δ)

1.7. Marginal Cost

The marginal product of labor is:

MPL,t = (1− α)�tzt

µ
ztht(i)

Kt(i)

¶−α

But,

ht(i) =
Kt(i)

zt

µ
yt(i) + φz∗t
�tKt(i)

¶ 1
1−α

so that,

MPL,t = (1− α)�tzt

µ
ztht(i)

Kt(i)

¶−α

= (1− α)�tzt

µ
yt(i) + φz∗t
�tKt(i)

¶ −α
1−α

Marginal cost is:

st(i) =
Rt(ν)wt

MPL,t

=
Rt(ν)w̃tz

∗
t

(1− α)�tzt

µ
yt(i) + φz∗t
�tKt(i)

¶ α
1−α

=
Rt(ν)w̃tz

∗
t

(1− α)�tzt

µ
ỹt(i) + φ

�tut(i)k̄t(i)z∗t−1Υt−1
z∗t

¶ α
1−α

=
Rt(ν)w̃tΥ

α
1−α
t zt

(1− α)�tzt
(Υt−1)

−α
1−α

µ
ỹt(i) + φ

�tut(i)k̄t(i)
µz∗,t

¶ α
1−α

=
Rt(ν)w̃t

(1− α)�t

µ
ỹt(i) + φ

�tut(i)k̄t(i)
µz∗,tµΥ,t

¶ α
1−α

Linearizing this:

ŝt(i) = R̂t(ν) + b̃wt − �̂t +
α

1− α

h
\ỹt(i) + φ− �̂t − ût(i)− b̄kt(i) + µ̂z∗,t + µ̂Υ,t

i

= R̂t(ν) + b̃wt − �̂t +
α

1− α

∙
ỹ

ỹ + φ
b̃yt(i)− �̂t − ût(i)− b̄kt(i) + µ̂z∗,t + µ̂Υ,t

¸

= R̂t(ν) + b̃wt − �̂t +
α

1− α

∙
ỹ

ỹ + φ
b̃yt(i)− �̂t −

1

σa

b̃ρt(i)− b̄kt(i) + µ̂z∗,t + µ̂Υ,t

¸

18



It is of useful to express marginal cost in deviation from the economy-wide average:

ŝ+t (i) =
α

1− α

∙
ỹ

ỹ + φ
b̃y+t (i)−

1

σa

b̃ρ+t (i)− b̄k
+

t (i)

¸

But,

b̃ρt(i) =
R̂t(ν) + b̃wt +

1
1−α

³
ỹ

ỹ+φ
b̃yt(i)− �̂t − b̄kt(i) + µ̂z∗,t + µ̂Υ,t

´

1 + 1
1−α

1
σa

so,

b̃ρ+t (i) =
ỹ

ỹ+φ
b̃y+t (i)− b̄k

+

t (i)

1− α+ 1
σa

,

Substituting this into the expression for marginal cost:

ŝ+t (i) =
α

1− α

⎡
⎣ ỹ

ỹ + φ
b̃y+t (i)−

ỹ
ỹ+φ
b̃y+t (i)− b̄k

+

t (i)

σa (1− α) + 1
− b̄k

+

t (i)

⎤
⎦

=
α

1− α

σa (1− α)

σa (1− α) + 1

∙
ỹ

ỹ + φ
b̃y+t (i)− b̄k

+

t (i)

¸

When the fixed cost is positive, then we replace it by φ = (λf − 1)ỹ, or,

ŝ+t (i) =
ασa

σa (1− α) + 1

∙
1

λf

b̃y+t (i)− b̄k
+

t (i)

¸

This equation conveys some of the economics in the model. When σa =∞, then the ration
in front of the bracket is unity. This is the case when there is no variability in the utilization

of capital. As σa comes down and there is variability, then the ratio falls below unity. This

ratio controls the slope of the ith firm’s marginal cost with respect to its own production.

So, with more variable capital utilization, that slope flattens out. Indeed, when utilization

becomes infinitely elastic, the slope goes to zero. That is, when σa = 0 the ratio in front of

the bracket is zero. In this case, capital specificity should have no impact on the coefficient

on marginal cost. That is, ζ should be unity when σa = 0. Of course, driving σa to zero will

affect the responsiveness of st to a shock. It would be interesting to study an object like:

γ
dŝt

dshockt
.

Here we can see that changes in model specification will have different effects on these two

pieces. Driving σa to zero will drive γ up and the other term down.
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2. Households

Maximize utility:

∞X

t=0

βt{u(Ct − bCt−1, ht(j)) + Λt[Rt (Mt −Qt + (xt − 1)Ma
t ) +Aj,t +Wj,thj,t

+Qt +Dt − (1 + η (Vt))PtCt −Mt+1]},

where

u(Ct − bCt−1, ht(j)) = log (Ct − bCt−1)− ζtz(hj,t)

z(h) =
h1+σL

1 + σL
ψL

2.1. Money Demand

The first order condition for Qt is:

Rt = 1 + η0
µ
PtCt

Qt

¶µ
PtCt

Qt

¶2
,

since Rt, Pt, Ct, Qt are known after the monetary policy shock. Also,

η0 (V ) , η00 (V ) > 0,

where V denotes steady state velocity. Note that in steady state,

R = 1 + η0V 2,

where absence of an argument means the function is evaluated in steady state. Linearizing:

Rt − 1− η0 (Vt) (Vt)
2 = 0,

RR̂t − η00 (Vt) (Vt)
2 VtV̂t − 2η0 (Vt) (Vt)VtV̂t = 0

RR̂t −
∙
2 +

η00V

η0

¸
η0V 2V̂t = 0.

Using the steady state formula for R,

R̂t − [2 + ση]
R− 1

R
V̂t = 0,

where

ση =
η00V

η0

Since V̂t = ĉt − q̂t (see below),

R

R− 1
1

2 + ση
R̂t − ĉt + q̂t = 0,
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or,

q̂t = ĉt −
R

R− 1
1

2 + ση
R̂t.

Another way to write a variable with a hat is, q̂t = log(qt/q), so that the money demand

equation is:

log(qt/q) = log(ct/c)−
R

R− 1
1

2 + ση
log

µ
Rt

R

¶
,

so,
d log qt
d logRt

= − R

R− 1
1

2 + ση

What is called the ‘log-log representation’ of money demand is expressed in terms of the log

of the net interest rate. Using the fact, d log(Rt) = dRt/Rt = drt/Rt, where Rt = 1 + rt.

Then,

d log(Rt) =
drt
Rt

= rt
d log(rt)

Rt
= (Rt − 1)

d log(rt)

Rt
.

Then,
d log qt
d logRt

=
R

R− 1
d log qt
d log rt

,

or,

d log qt
d log rt

=
R− 1
R

d log qt
d logRt

= −R− 1
R

R

R− 1
1

2 + ση

= − 1

2 + ση
.

The ‘semi-elasticity representation’ of money demand based on:

d log qt
dRt

= − 1

R− 1
1

2 + ση
.

The interest semi-elasticity of money demand is measured as:

� = −100× d log(q)

400× dRt
,

so that in the model,

� =
1

R− 1
1

2 + ση

1

4
.

The mean interest rate over the period 1974 to 2003 (measured by the one-year treasury bill

rate) is 6.99 percent. This translates into R = 1+ 6.99/400 = 1.017. In this case, the upper

bound on � (achieved with ση = 0) is 7.15. This is reasonably high, and is almost the value

of 8 estimated by Lucas.
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It is interesting to adopt a functional form for the transactions technology. Stefanie and

Martin adopt:

η = AVt +
B

Vt
− 2
√
AB

ση =
η00V

η0
=

2BV −2

A−BV −2 =
2B

AV 2 −B

This functional form has the property, η0 = A−BV −2 = 0 implies

V =

µ
B

A

¶1/2
.

In this case, η = 0. Thus, when the nominal rate of interest is zero, velocity is set to the point

where there are no transactions costs in consumption. That is, the cost of consumption is

just PC.

The rate of interest corresponding to a given velocity is:

R = 1 + η0(V )× V 2

= 1 +
£
A−BV −2¤V 2 = 1−B +AV 2,

or,

V 2 =
B − 1

A
+
1

A
R.

I ran a regression of V 2 (where V is NIPA personal consumption expenditures (services plus

nondurables, PCESV+PCND) in dollars, divided by the St. Louis Fed’s MZM measure of

money) on R (R was measured as the gross quarterly return on one-year T-bills). I recovered

A and B from the constant and slope terms in this regression (A = 0.0174 and B = 0.0187).

Using velocity, I computed the interest rate implied by this equation and, after converting

it to net, annual percentage terms, compared it to the actual interest rate. The results are

presented in the following graph. Velocity is displayed in the top panel. The predicted and
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actual interest rates are reported in the bottom panel.

1975 1980 1985 1990 1995 2000
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Predicted Net Nominal Interest Rate (APR), Actual One−Year Tbill

Predicted R
Actual R

The mean rate of interest in the sample is 7 percent per year. The mean level of velocity is

1.43. This is very nearly the value of V implied by the money demand equation at the mean

interest rate, which is 1.44. The value of ση at this last level of velocity and values of A and

B is 2.14. The interest rate semi-elasticity is 3.45.

In the computations, we used a different functional form:

η(V ) = AV +
B

V
+ C,

where

A = η0 × (1 + ση/2),

B = V 2η0ση/2

C = η −AV −B/V.

where η0 = η0(V ), and V is the steady state value of Vt, and

ση =
η00V

η0
.
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2.2. First Order Condition for Ct

The first order condition for Ct is:

Et

½
1

Ct − bCt−1
− βb

1

Ct+1 − bCt
− λt [(1 + η (Vt)) + η0 (Vt)Vt]

¾
= 0,

where

λt = ΛtPt.

Multiplying by z∗t and letting,

λz∗t ≡ z∗t λt = z∗tΛtPt,

we obtain:

Et

⎧
⎨
⎩

1
Ct
z∗t
− b

z∗t−1
z∗t

Ct−1
z∗t−1

− βb
z∗t+1
z∗t

Ct+1
z∗t+1

− bCt
z∗t

− λz∗t [(1 + η (Vt)) + η0 (Vt)Vt]

⎫
⎬
⎭ = 0,

or,

Et

(
1

ct − bµ−1z∗t
ct−1

− βb

µz∗t+1
ct+1 − bct

− λz∗t [(1 + η (Vt)) + η0 (Vt)Vt]

)
= 0. (2.1)

Linearizing the first term in braces:

d
1

ct − bµ−1z∗t
ct−1

=

Ã
1

c
¡
1− bµ−1z∗

¢
!2 ∙

cĉt −
bc

µz∗
ĉt−1 +

bc

µz∗
µ̂z∗t

¸

The second terms is:

d
βb

µz∗t+1
ct+1 − bct

= βb

Ã
1

µz∗t+1
ct+1 − bct

!2 h
µz∗c

³
µ̂z∗t+1

+ ĉt+1
´
− bcĉt

i

The last term is:

dλz∗t [(1 + η (Vt)) + η0 (Vt)Vt]

= λz∗ [(1 + η (V )) + η0 (V )V ] λ̂z∗t

+λz∗

∙
2 +

η00 (V )V

η0 (V )

¸
η0 (V )V V̂t

Finally,

Vt =
z∗t
z∗t

PtCt

Qt

=
ct
qt
,

so that

V̂t = ĉt − q̂t
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Et{−
Ã

1

c
¡
1− bµ−1z∗

¢
!2 ∙

cĉt −
bc

µz∗
ĉt−1 +

bc

µz∗
µ̂z∗t

¸

+βb

µ
1

c (µz∗ − b)

¶2 h
µz∗c

³
µ̂z∗t+1

+ ĉt+1
´
− bcĉt

i

−λz∗ [(1 + η (V )) + η0 (V )V ] λ̂z∗t − λz∗

∙
2 +

η00 (V )V

η0 (V )

¸
η0 (V )V × (ĉt − q̂t)}

= 0.

2.3. Mt+1 First Order Condition

The first order condition for Mt+1 is:

Et [−Λt + βΛt+1Rt+1] = 0.

Multiply by z∗tPt :

Et

∙
−λz∗t + β

z∗tPt

z∗t+1Pt+1
λz∗t+1Rt+1

¸
= 0,

or,

Et

∙
−λz∗t + β

1

πt+1µz∗,t+1
λz∗t+1Rt+1

¸
= 0.

Linearly expand this:

Et

∙
−λz∗λ̂z∗t + βd

λz∗t+1Rt+1

πt+1µz∗,t+1

¸
= 0

or,

Et

"
−λz∗λ̂z∗t + β

λz∗R

πµz∗

\λz∗t+1Rt+1

πt+1µz∗,t+1

#
= 0

or, dividing by λz∗ and taking into account βR/(πµz∗) = 1

E
h
−λ̂z∗t + λ̂z∗t+1 + R̂t+1 − π̂t+1 − µ̂z∗,t+1|Ωt

i
= 0.

2.4. The Wage Equation

The wage rate set by the household that gets to reoptimize today is W̃t. The household takes

into account that if it does not get to reoptimize next period, it’s wage rate then is

Wt+1 = πt (µz∗)
1−ϑ ¡µz∗,t+1

¢ϑ
W̃t,

where µz∗ is the steady state growth rate of z
∗
t . Note the partial indexation to the realized

growth rate of z∗t . The only economically interesting specification is ϑ = 0. We allow ϑ = 1

in order to be in a position to compare the reduced form expression - for checking purposes

- with the reduced form derived earlier when ϑ = 0.
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In period t+ l the wage is:

Wt+1 = πt (µz∗)
1−ϑ ¡µz∗,t+1

¢ϑ
W̃t

Wt+2 = πt+1πt

¡
µ2z∗
¢1−ϑ ¡

µz∗,t+2µz∗,t+1

¢ϑ
W̃t

...

Wt+l = πt+l−1 · · · πt+1πt

¡
µl
z∗
¢1−ϑ ¡

µz∗,t+l · · · µz∗,t+1

¢ϑ
W̃t.

The demand curve that the individual household faces is:

ht+j =

Ã
W̃t+j

Wt+j

! λw
1−λw

Ht+j =

Ã
πt+j−1 · · · πt+1πt

¡
µj
z∗
¢1−ϑ ¡

µz∗,t+j · · · µz∗,t+1

¢ϑ
W̃t

w̃t+jz∗t+jPt+j

! λw
1−λw

Ht+j.

Note:

Pt+j = πt+jPt+j−1

= ... = πt+jπt+j−1 · · · πt+1Pt

z∗t+j = µz∗,t+jµz∗,t+j−1 · · · µz∗,t+1z
∗
t .

Then, the demand curve in terms of stationary variables is:

ht+j =

Ã
πt+j−1 · · · πt+1πt

¡
µj
z∗
¢1−ϑ ¡

µz∗,t+j · · · µz∗,t+1

¢ϑ
W̃t

w̃t+jµz∗,t+jµz∗,t+j−1 · · · µz∗,t+1z
∗
t πt+jπt+j−1 · · · πt+1Pt

! λw
1−λw

Ht+j

=

Ã
W̃t

w̃t+jz∗tPt
Xt,j

! λw
1−λw

Ht+j (2.2)

=

µ
w+t w̃t

w̃t+j
Xt,j

¶ λw
1−λw

Ht+j

where W̃t denotes the nominal wage set by households that reoptimize in period t, Wt

denotes the nominal wage rate associated with aggregate, homogeneous labor, Ht, and w+t =

W̃t/Wt. Be careful not to confuse W̃t, the wage chosen by optimizing households, and w̃t,

the aggregate wage, scaled by z∗tPt. Also,

Xt,j =
πt+j−1 · · · πt+1πt

¡
µj
z∗
¢1−ϑ ¡

µz∗,t+j · · · µz∗,t+1

¢ϑ

πt+jπt+j−1 · · · πt+1µz∗,t+jµz∗,t+j−1 · · · µz∗,t+1
, j > 0

= 1, j = 0.

Note that

X̂t,j = − (∆π̂t+j +∆π̂t+j−1 + · · ·+∆π̂t+1) (2.3)

− (1− ϑ)
¡
µ̂z∗,t+j + µ̂z∗,t+j−1 + · · ·+ µ̂z∗,t+1

¢

26



The homogeneous labor is related to household labor by:

H =

∙Z 1

0

(hj)
1
λw dj

¸λw
, 1 ≤ λw <∞.

The jth household that reoptimizes its wage, W̃t, does so to optimize (neglecting irrelevant

terms in the household objective):

Et

∞X

l=0

(βξw)
l−t {−z(hj,t+l) + Λt+lWj,t+lhj,t+l},

where we have taken into account that we only need worry about future histories in which

the household cannot reoptimize. In the previous expression,

z(h) =
h1+σL

1 + σL
ψL.

It is useful to have the curvature of this function:

z00h

z0
= σL.

The presence of ξw by the discount factor in the discounted sum reflects that in choosing its

wage, the household can disregard future histories in which it reoptimizes its wage.

We now derive the first order condition for W̃t. For this, we need to rewrite the household’s

objective in terms of this variable. Substituting out for hj,t+1 using (2.2), and making use of

the definition, λz∗t ≡ Λt (z
∗
tPt),

Et

∞X

l=0

(βξw)
l−t {−z(

Ã
W̃t

w̃t+lz∗tPt
Xt,l

! λw
1−λw

Ht+l) + λz∗t+l
W̃t+l

z∗t+lPt+l

Ã
W̃t

w̃t+lz∗tPt
Xt,l

! λw
1−λw

Ht+l}.

Here, W̃t+l is the wage rate in period t+l, of a household that optimized in period t and could

not reoptimize again up to, and including, in period t+ l. Using the fact, W̃t+l/
¡
z∗t+lPt+l

¢
=h

W̃t/ (z
∗
tPt)

i
Xt,l and rearranging,

Et

∞X

l=0

(βξw)
l {−z(

Ã
W̃t

w̃t+lz∗tPt
Xt,l

! λw
1−λw

Ht+l) + λz∗t+l

Ã
W̃t

z∗tPt

!1+ λw
1−λw

Xt,l

µ
Xt,l

w̃t+l

¶ λw
1−λw

Ht+l}.

We now have the objective in the form that we need. Differentiate with respect to W̃t :

Et

∞X

l=0

(βξw)
l {−z0(

Ã
W̃t

w̃t+lz∗tPt
Xt,j

! λw
1−λw

Ht+l)
λw

1− λw

Ã
W̃t

w̃t+lz∗tPt
Xt,j

! λw
1−λw−1

Ht+l
1

w̃t+lz∗tPt
Xt,j

+λz∗t+l

µ
1

1− λw

¶Ã
W̃t

z∗tPt

! λw
1−λw 1

z∗tPt
Xt,l

µ
Xt,l

w̃t+l

¶ λw
1−λw

Ht+l}

= 0
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The next step is to write this first order condition in terms of stationary variables only.

Multiply by W̃
− λw
1−λw+1

t (1− λw)/λw :

Et

∞X

l=0

(βξw)
l {−z0(

Ã
W̃t

w̃t+jz∗tPt
Xt,j

! λw
1−λw

Ht+l)

µ
1

w̃t+jz∗tPt
Xt,j

¶ λw
1−λw−1

Ht+l
1

w̃t+jz∗tPt
Xt,j

+
1

λw
W̃tλz∗t+l

µ
1

z∗tPt

¶ λw
1−λw+1

Xt,l

µ
Xt,l

w̃t+l

¶ λw
1−λw

Ht+l}

= 0

Multiply by P
λw

1−λw
t :

Et

∞X

l=0

(βξw)
l {−z0(

Ã
W̃t

w̃t+jz∗tPt
Xt,j

! λw
1−λw

Ht+l)

µ
1

w̃t+jz∗t
Xt,j

¶ λw
1−λw

Ht+l

+
1

λw

W̃t

Pt
λz∗t+l

µ
1

z∗t

¶ 1
1−λw

Xt,l

µ
Xt,l

w̃t+l

¶ λw
1−λw

Ht+l} = 0.

Now get this in terms of stationary variables using

w+t ≡
W̃t

Wt
,

Et

∞X

l=0

(βξw)
l {−z0(

µ
w+t Wt

w̃t+jz∗tPt
Xt,j

¶ λw
1−λw

Ht+l)

µ
1

w̃t+jz∗t
Xt,j

¶ λw
1−λw

Ht+l

+
1

λw

w+t Wt

Pt
λz∗t+l

µ
1

z∗t

¶ 1
1−λw

Xt,l

µ
Xt,l

w̃t+l

¶ λw
1−λw

Ht+l} = 0.

and, taking into account,

w̃t ≡
Wt

z∗tPt
,

Et

∞X

l=0

(βξw)
l {−z0(

µ
w+t w̃t

w̃t+j
Xt,j

¶ λw
1−λw

Ht+l)

µ
1

w̃t+jz∗t
Xt,j

¶ λw
1−λw

Ht+l

+
1

λw
w+t w̃tλz∗t+l

µ
1

z∗t

¶ λw
1−λw

Xt,l

µ
Xt,l

w̃t+l

¶ λw
1−λw

Ht+l} = 0.

Multiply by z
∗ λw
1−λw

t on both sides, and take into account that the technology shocks are

known at the time the price decision is taken:

Et

∞X

l=0

(βξw)
l {−z0(

µ
w+t w̃t

w̃t+j
Xt,l

¶ λw
1−λw

Ht+l)

µ
Xt,l

w̃t+l

¶ λw
1−λw

Ht+l+
1

λw
w+t w̃tλz∗t+lXt,l

µ
Xt,l

w̃t+l

¶ λw
1−λw

Ht+l} = 0.
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Factor:

Et

∞X

l=0

(βξw)
l Ht+l

µ
Xt,l

w̃t+l

¶ λw
1−λw

{
1

λw
w+t w̃tXt,lλz∗t+l − z0(

µ
w+t w̃t

w̃t+j
Xt,l

¶ λw
1−λw

Ht+l)} = 0.

writing this out carefully:

Ht

µ
1

w̃t

¶ λw
1−λw

{
1

λw
w+t w̃tλz∗t − z0t} (2.4)

+(βξw)Ht+1

µ
Xt,1

w̃t+1

¶ λw
1−λw

{
1

λw
w+t w̃tXt,1λz∗t+1 − z0t+1}

+...

+(βξw)
l Ht+l

µ
Xt,l

w̃t+l

¶ λw
1−λw

{
1

λw
w+t w̃tXt,lλz∗t+l − z0t+l}

+...

where

z0t+l ≡ z0(

µ
w+t w̃t

w̃t+l
Xt,l

¶ λw
1−λw

Ht+l)

This is the household’s scaled first order condition for the wage rate. We now log-linearize

this expression. Note,

dz0t+l = z00(

µ
w+t w̃t

w̃t+l
Xt,l

¶ λw
1−λw

Ht+l)

×d

"µ
w+t w̃t

w̃t+l
Xt,l

¶ λw
1−λw

Ht+l

#

= z00H

∙
λw

1− λw

³
ŵ+t + b̃wt − b̃wt+l + X̂t,l

´
+ Ĥt+l

¸
.

Here, we have made use of the fact, dxt = xx̂t. For now, we do not substitute out for X̂t,l.

Consider the first term in braces in (2.4):

d{
1

λw
w+t w̃tXt,0λz∗t − z0t}

=
1

λw
w̃λz∗

h
ŵ+t + b̃wt + λ̂z∗t + X̂t,0

i
− z00H

∙
λw

1− λw

³
ŵ+t + b̃wt − b̃wt + X̂t,0

´
+ Ĥt

¸

=
1

λw
w̃λz∗

(h
ŵ+t + b̃wt + λ̂z∗t + X̂t,0

i
− z00H

1
λw

w̃λz∗

∙
λw

1− λw

³
ŵ+t + b̃wt − b̃wt + X̂t,0

´
+ Ĥt

¸)
.

Here, don’t worry about the fact that Xt,0 ≡ 1, so that X̂t,0 = 0. Note that in steady state,
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1
λw

w̃λz∗ = z0, so that this can be written,

d{
1

λw
w+t w̃tλz∗t − z0t}

=
1

λw
w̃λz∗

½h
ŵ+t + b̃wt + λ̂z∗t + X̂t,0

i
− σL

∙
λw

1− λw

³
ŵ+t + b̃wt − b̃wt + X̂t,0

´
+ Ĥt

¸¾

=
1

λw
w̃λz∗

½µ
1− σL

λw

1− λw

¶³
ŵ+t + b̃wt + X̂t,0

´
+ λ̂z∗t + σL

λw

1− λw

b̃wt − σLĤt

¾

Now, consider the second term in braces in (2.4),

d{
1

λw
w+t w̃tXt,1λz∗t+1 − z0t+1}

=
1

λw
w̃λz∗

h
ŵ+t + b̃wt + X̂t,1 + λ̂z∗t+1

i
− z00H

∙
λw

1− λw

³
ŵ+t + b̃wt − b̃wt+1 + X̂t,1

´
+ Ĥt+1

¸

=
1

λw
w̃λz∗

½h
ŵ+t + b̃wt + X̂t,1 + λ̂z∗t+1

i
− σL

∙
λw

1− λw

³
ŵ+t + b̃wt − b̃wt+1 + X̂t,1

´
+ Ĥt+1

¸¾

=
1

λw
w̃λz∗

½µ
1− σL

λw

1− λw

¶h
ŵ+t + b̃wt + X̂t,1

i
+ λ̂z∗t+1 + σL

λw

1− λw

b̃wt+1 − σLĤt+1

¾

Finally, consider the lth term in braces in (2.4):

d

½
1

λw
w+t w̃tXt,lλz∗t+l − z0t+l

¾

=
1

λw
w̃λz∗

½µ
1− σL

λw

1− λw

¶h
ŵ+t + b̃wt + X̂t,l

i
+ λ̂z∗t+l + σL

λw

1− λw

b̃wt+l − σLĤt+l

¾
.

Use these results to develop the log-linear expansion of the scaled first order condition. In

doing so, we take into account that we need only expand the terms in braces, and not the

terms outside of the braces. The coefficients on these expansions are zero because the terms
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in braces are zero in steady state. Thus,

Ht

µ
1

w̃t

¶ λw
1−λw

{
1

λw
w+t w̃tλz∗t − z0t}

+(βξw)Ht+1

µ
Xt,1

w̃t+1

¶ λw
1−λw

{
1

λw
w+t w̃tXt,1λz∗t+1 − z0t+1}

+...

+(βξw)
l Ht+l

µ
Xt,l

w̃t+l

¶ λw
1−λw

{
1

λw
w+t w̃tXt,lλz∗t+l − z0t+l}

+... = 0 ⇒

H

µ
1

w̃

¶ λw
1−λw 1

λw
w̃λz∗

½µ
1− σL

λw

1− λw

¶³
ŵ+t + b̃wt + X̂t,0

´
+ λ̂z∗t + σL

λw

1− λw

b̃wt − σLĤt

¾

+(βξw)H

µ
1

w̃

¶ λw
1−λw 1

λw
w̃λz∗{

µ
1− σL

λw

1− λw

¶h
ŵ+t + b̃wt + X̂t,1

i

+λ̂z∗t+1 + σL
λw

1− λw

b̃wt+1 − σLĤt+1}

+...

+(βξw)
l H

µ
1

w̃

¶ λw
1−λw 1

λw
w̃λz∗{

µ
1− σL

λw

1− λw

¶h
ŵ+t + b̃wt + X̂t,l

i

+λ̂z∗t+l + σL
λw

1− λw

b̃wt+l − σLĤt+l}

= 0

We can divide through by H
¡
1
w̃

¢ λw
1−λw 1

λw
w̃, to obtain

½µ
1− σL

λw

1− λw

¶³
ŵ+t + b̃wt + X̂t,0

´
+ λ̂z∗t + σL

λw

1− λw

b̃wt − σLĤt

¾

+(βξw)

½µ
1− σL

λw

1− λw

¶h
ŵ+t + b̃wt + X̂t,1

i
+ λ̂z∗t+1 + σL

λw

1− λw

b̃wt+1 − σLĤt+1

¾

+...

+(βξw)
l

½µ
1− σL

λw

1− λw

¶h
ŵ+t + b̃wt + X̂t,l

i
+ λ̂z∗t+l + σL

λw

1− λw

b̃wt+l − σLĤt+l

¾

= 0

or

µ
1− σL

λw

1− λw

¶
1

1− βξw

³
ŵ+t + b̃wt

´
+

µ
1− σL

λw

1− λw

¶ ∞X

l=1

(βξw)
l X̂t,l

+
∞X

l=0

(βξw)
l λ̂z∗t+l + σL

λw

1− λw

∞X

l=0

(βξw)
l b̃wt+l − σL

∞X

l=0

(βξw)
l Ĥt+l

= 0.
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We need to work out the sum involving X̂t,l. Using (2.3),

X̂t,j = − (∆π̂t+j +∆π̂t+j−1 + · · ·+∆π̂t+1) (2.5)

− (1− ϑ)
¡
µ̂z∗,t+j + µ̂z∗,t+j−1 + · · ·+ µ̂z∗,t+1

¢

X̂t,0 + (βξw) X̂t,1 + ...+ (βξw)
l X̂t,l + ...

+(βξw)
£
−∆π̂t+1 − (1− ϑ) µ̂z∗,t+1

¤

+(βξw)
2 £−∆π̂t+1 −∆π̂t+2 − (1− ϑ) µ̂z∗,t+1 − (1− ϑ) µ̂z∗,t+2

¤

+...

+(βξw)
l [−∆π̂t+1 −∆π̂t+2 − ...−∆π̂t+l

− (1− ϑ) µ̂z∗,t+1 − (1− ϑ) µ̂z∗,t+2 − ...− (1− ϑ) µ̂z∗,t+l]

+...

= − βξw
1− βξw

∆π̂t+1 −
(βξw)

2

1− βξw
∆π̂t+2 − ...− (βξw)

l

1− βξw
∆π̂t+l − ...

− βξw
1− βξw

(1− ϑ) µ̂z∗,t+1 −
(βξw)

2

1− βξw
(1− ϑ) µ̂z∗,t+2 − ...− (βξw)

l

1− βξw
(1− ϑ) µ̂z∗,t+l − ...

= − 1

1− βξw

∞X

l=1

(βξw)
l∆π̂t+l − (1− ϑ)

1

1− βξw

∞X

l=1

(βξw)
l µ̂z∗,t+l.

Substituting this into the linearized first order condition:

µ
1− σL

λw

1− λw

¶
1

1− βξw

³
ŵ+t + b̃wt

´

−
µ
1− σL

λw

1− λw

¶
1

1− βξw

" ∞X

l=1

(βξw)
l∆π̂t+l + (1− ϑ)

∞X

l=1

(βξw)
l µ̂z∗,t+l

#

+
∞X

l=0

(βξw)
l λ̂z∗t+l + σL

λw

1− λw

∞X

l=0

(βξw)
l b̃wt+l − σL

∞X

l=0

(βξw)
l Ĥt+l

= 0.

It is convenient to write this out in lag-operator form:

µ
1− σL

λw

1− λw

¶
1

1− βξw

³
ŵ+t + b̃wt

´
(2.6)

−
µ
1− σL

λw

1− λw

¶
1

1− βξw

βξw
1− βξwL

−1
£
∆π̂t+1 + (1− ϑ) µ̂z∗,t+1

¤

+
1

1− βξwL
−1 λ̂z∗t + σL

λw

1− λw

1

1− βξwL
−1
b̃wt − σL

1

1− βξwL
−1 Ĥt

= 0.
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We are now done with the linearized first order condition for the wage rate. We now turn

to linearizing the relationship between the aggregate wage and the individual households’

wage.

The aggregate wage equation is:

Wt =

∙
(1− ξw)

³
W̃t

´ 1
1−λw

+ ξw

³
πt−1 (µz∗)

1−ϑ ¡µz∗,t

¢ϑ
Wt−1

´ 1
1−λw

¸1−λw

Dividing this by z∗tPt, we obtain:

w̃t =

⎡
⎣(1− ξw)

¡
w+t w̃t

¢ 1
1−λw + ξw

Ã
πt−1 (µz∗)

1−ϑ ¡µz∗,t

¢ϑ
Wt−1

z∗tPt

! 1
1−λw

⎤
⎦
1−λw

or,

w̃t =

⎡
⎣(1− ξw)

¡
w+t w̃t

¢ 1
1−λw + ξw

Ã
πt−1 (µz∗)

1−ϑ ¡µz∗,t

¢ϑ
Wt−1£

z∗tPt/
¡
z∗t−1Pt−1

¢¤
z∗t−1Pt−1

! 1
1−λw

⎤
⎦
1−λw

or

w̃t =

⎡
⎣(1− ξw)

¡
w+t w̃t

¢ 1
1−λw + ξw

Ã
πt−1 (µz∗)

1−ϑ ¡µz∗,t

¢ϑ
w̃t−1

µz∗,tπt

! 1
1−λw

⎤
⎦
1−λw

.

This expression is consistent with our previous finding that the steady state value of w+t
must be unity. We now linearize this expression. Transform it:

(w̃t)
1

1−λw = (1− ξw)
¡
w+t w̃t

¢ 1
1−λw + ξw

Ã
πt−1 (µz∗)

1−ϑ ¡µz∗,t

¢ϑ
w̃t−1

µz∗,tπt

! 1
1−λw

Now, totally differentiate:

1

1− λw
(w̃)

1
1−λw b̃wt = (1− ξw)

1

1− λw
(w̃)

1
1−λw

³
ŵ+t + b̃wt

´

+ξw
1

1− λw
(w̃)

1
1−λw

³
π̂t−1 + b̃wt−1 − (1− ϑ) µ̂z∗,t − π̂t

´

or,
b̃wt = (1− ξw)

³
ŵ+t + b̃wt

´
+ ξw

³
π̂t−1 + b̃wt−1 − (1− ϑ) µ̂z∗,t − π̂t

´
,

or ³
ŵ+t + b̃wt

´
=

1

1− ξw
b̃wt −

ξw
1− ξw

³
π̂t−1 + b̃wt−1 − (1− ϑ) µ̂z∗,t − π̂t

´
.

Substitute this into (2.6):
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µ
1− σL

λw

1− λw

¶
1

1− βξw

µ
1

1− ξw
b̃wt −

ξw
1− ξw

³
π̂t−1 + b̃wt−1 − (1− ϑ) µ̂z∗,t − π̂t

´¶

−
µ
1− σL

λw

1− λw

¶
1

1− βξw

βξw
1− βξwL

−1
£
∆π̂t+1 + (1− ϑ) µ̂z∗,t+1

¤

+
1

1− βξwL
−1 λ̂z∗t + σL

λw

1− λw

1

1− βξwL
−1
b̃wt − σL

1

1− βξwL
−1 Ĥt

= 0.

Now, multiply by 1− βξwL
−1,

µ
1− σL

λw

1− λw

¶
1

γ
[
1

ξw

³
b̃wt − βξw b̃wt+1

´

−
³
(π̂t−1 − βξwπ̂t) + b̃wt−1 − βξw b̃wt − (1− ϑ)

¡
µ̂z∗,t − βξwµ̂z∗,t+1

¢
− (π̂t − βξwπ̂t+1)

´
]

−
µ
1− σL

λw

1− λw

¶
1

1− βξw
βξw

£
π̂t+1 − π̂t + (1− ϑ) µ̂z∗,t+1

¤

+λ̂z∗t + σL
λw

1− λw

b̃wt − σLĤt

= 0,

where

γ =
(1− ξw) (1− βξw)

ξw
.

Writing it out explicitly,

η̃0 b̃wt−1 + η̃1 b̃wt + η̃2 b̃wt+1 + η̃−3 π̂t−1 + η̃3π̂t + η̃4π̂t+1 + η̃5Ĥt + η̃6λ̂z∗t + η̃7µ̂z∗,t + η̃8µ̂z∗,t+1 = 0,
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where

η̃0 = −
µ
1− σL

λw

1− λw

¶
1

γ

η̃1 =

µ
1− σL

λw

1− λw

¶
1

γ

µ
1

ξw
+ βξw

¶
+ σL

λw

1− λw

η̃2 = −
µ
1− σL

λw

1− λw

¶
1

γ
β

η̃−3 = −
µ
1− σL

λw

1− λw

¶
1

γ

η̃3 =

µ
1− σL

λw

1− λw

¶
1

γ
(βξw + 1) +

1

1− βξw

µ
1− σL

λw

1− λw

¶
βξw

η̃4 = −
µ
1− σL

λw

1− λw

¶
1

γ
βξw −

1

1− βξw

µ
1− σL

λw

1− λw

¶
βξw

η̃5 = −σL

η̃6 = 1

η̃7 =

µ
1− σL

λw

1− λw

¶
1

γ
(1− ϑ)

η̃8 =

∙
−
µ
1− σL

λw

1− λw

¶
1

γ
βξw −

µ
1− σL

λw

1− λw

¶
1

1− βξw
βξw

¸
(1− ϑ)

It is convenient to multiply the η̃’s by (1− λw), and use:

bw ≡
σLλw − (1− λw)

(1− βξw) (1− ξw)

Note:

(1− λw)

µ
1− σL

λw

1− λw

¶

= ((1− λw)− σLλw)
(1− ξw) (1− βξw)

(1− ξw) (1− βξw)

= −bw (1− ξw) (1− βξw) ,

and,

(1− λw)

µ
1− σL

λw

1− λw

¶
1

γ

= −bw (1− ξw) (1− βξw)
ξw

(1− ξw) (1− βξw)

= −bwξw.
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Then,

η̃0(1− λw) = (σLλw − (1− λw))
1

γ
= bwξw

η̃1(1− λw) = (1− λw − σLλw)
1

γ

µ
1

ξw
+ βξw

¶
+ σLλw

= − (σLλw − (1− λw))
1

γ

µ
1

ξw
+ βξw

¶
+ σLλw

= − (σLλw − (1− λw))
1

γξw

¡
1 + βξ2w

¢
+ σLλw

= −bw
¡
1 + βξ2w

¢
+ σLλw

η̃2(1− λw) = − ((1− λw)− σLλw)
1

γ
β

= bwξwβ

η̃−3 (1− λw) = − ((1− λw)− σLλw)
1

γ
= bwξw

η̃3(1− λw) = ((1− λw)− σLλw)
1

γ
(βξw + 1) +

1

1− βξw
((1− λw)− σLλw) βξw

= −bwξw (βξw + 1) +
((1− λw)− σLλw)

(1− ξw) (1− βξw)

1

1− βξw
(1− ξw) (1− βξw)βξw

= −bwξw (βξw + 1)− bw (1− ξw) (1− βξw)
1

1− βξw
βξw

= −bwξw (βξw + 1)− bw (1− ξw)βξw

= −bwξw [(βξw + 1) + (1− ξw)β]

= −bwξw

η̃4 (1− λw) = − ((1− λw)− σLλw)
1

γ
βξw −

1

1− βξw
((1− λw)− σLλw)βξw

= bwβξ
2
w −

1

1− βξw

((1− λw)− σLλw)

(1− βξw) (1− ξw)
(1− βξw) (1− ξw)βξw

= bwβξ
2
w + bw (1− ξw)βξw

= bwβξw

η̃5(1− λw) = −σL(1− λw)
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Also,

η̃6(1− λw) = (1− λw)

η̃7(1− λw) = (1− λw)

µ
1− σL

λw

1− λw

¶
1

γ
(1− ϑ)

= −bwξw (1− ϑ)

η̃8(1− λw) = (1− λw)

∙
−
µ
1− σL

λw

1− λw

¶
1

γ
βξw −

µ
1− σL

λw

1− λw

¶
1

1− βξw
βξw

¸
(1− ϑ)

=
£
bwξ

2
wβ + bw (1− ξw)βξw

¤
(1− ϑ)

= bwβξw (1− ϑ)

Write

ηi = η̃i(1− λw), i = 0, ..., 8.

Then, the wage equation is:

η0 b̃wt−1 + η1 b̃wt + η2 b̃wt+1 + η−3 π̂t−1 + η3π̂t + η4π̂t+1 + η5Ĥt + η6λ̂z∗t + η7µ̂z∗,t + η8µ̂z∗,t+1 = 0,

where

η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bwξw
−bw[1 + βξ2w] + σLλw

βξwbw
bwξw (1− ϕw)

−ξwbw [1 + (1− ϕw)β]
bwβξw

−σL (1− λw)
1− λw

−bwξw (1− ϑ)
bwβξw (1− ϑ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η0
η1
η2
η3̄
η3
η4
η5
η6
η7
η8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally, taking into account

µ̂z∗,t =
α

1− α
µ̂Υ,t + µ̂z,t

so that

η0 b̃wt−1 + η1 b̃wt + η2 b̃wt+1 + η−3 π̂t−1 + η3π̂t + η4π̂t+1 + η5Ĥt + η6λ̂z∗t

+η7
α

1− α
µ̂Υ,t + η7µ̂z,t + η8

α

1− α
µ̂Υ,t+1 + η8µ̂z,t+1 = 0.

3. Market Clearing and Monetary Policy

Goods market clearing, in terms of scaled variables (careful, this aggregate relationship

actually only exists in a steady state....the linearized version also exists in a neighborhood

of steady state):
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Pt+jΥ
−1
t+jIt+j(i)− Pt+j

£
a(ut+j)Υ

−1
t+j

¤
K̄t+j

z∗t = Υ
α

1−α
t zt,

µ
1 + η

µ
ct
qt

¶¶
ctz

∗
t +Υ

−1
t itΥtz

∗
t = �t

¡
utk̄tΥt−1z

∗
t−1
¢α
(ztht)

1−α − a(ut)Υ
−1
t K̄t − φz∗t

µ
1 + η

µ
ct
qt

¶¶
ct +Υ

−1
t itΥt =

�t
¡
utk̄tΥt−1z∗t−1

¢α
(ztht)

1−α

z∗t
− a(ut)Υ

−1
t

K̄t

z∗t
− φ

µ
1 + η

µ
ct
qt

¶¶
ct +Υ

−1
t itΥt = �t

µ
utk̄tΥt−1z∗t−1

z∗t

¶αµ
ztht

z∗t

¶1−α

− a(ut)Υ
−1
t

K̄t

z∗t
− φ

µ
1 + η

µ
ct
qt

¶¶
ct +Υ

−1
t itΥt = �t

Ã
utk̄tΥt−1z∗t−1
z∗t−1

¡
z∗t /z

∗
t−1
¢
!αÃ

ztht

Υ
α

1−α
t zt

!1−α

− a(ut)
K̄t

Υtz∗t
− φ

µ
1 + η

µ
ct
qt

¶¶
ct+Υ

−1
t itΥt = �t

Ã
utk̄tΥt−1z∗t−1
z∗t−1

¡
z∗t /z

∗
t−1
¢
!αÃ

ztht

Υ
α

1−α
t zt

!1−α

−a(ut)
K̄t

Υt−1z∗t−1 (Υt/Υt−1)
¡
z∗t /z

∗
t−1
¢−φ

µ
1 + η

µ
ct
qt

¶¶
ct + it = �t

µ
utk̄t

µz∗tµΥt

¶α

h1−α
t − a(ut)

k̄t

µz∗tµΥt

− φ.

This is the scaled resource constraint. Log-linearize this:

η0
µ
ct
qt

¶
ct

µ
dct
qt
− ct

q2t
dqt

¶
+

µ
1 + η

µ
ct
qt

¶¶
dct + dit

= �t

µ
utk̄t

µz∗tµΥt

¶α

h1−α
t

h
�̂t + α

³
ût +

b̄kt − µ̂z∗t − µ̂Υt

´
+ (1− α)ĥt

i

−a0(ut)
k̄t

µz∗tµΥt

dut,

or,

η0
c2

q
(ĉt − q̂t) + (1 + η) cĉt + îıt

=

µ
k̄

µz∗µΥ

¶α

h1−α
h
�̂t + α

³
ût +

b̄kt − µ̂z∗t − µ̂Υt

´
+ (1− α)ĥt

i

−a0
k̄

µz∗µΥ
ût,

or,

η0
c2

q
(ĉt − q̂t) + (1 + η) cĉt + îıt

= (ỹ + φ)
h
�̂t + α

³
ût +

b̄kt − µ̂z∗t − µ̂Υt

´
+ (1− α)ĥt

i

−ρ̃
k̄

µz∗µΥ
ût = ỹb̃yt.
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Money market clearing requires:

νPtwtht =Mt −Qt + (xt − 1)Ma
t

Setting Ma
t =Mt :

νPtwtht = xtMt −Qt.

Dividing by z∗tPt :

νw̃tht = xtmt − qt,

where the real, scaled monetary base is:

mt =
Mt

Ptz∗t
.

Log-linearizing the money market clearing condition:

b̃wt + ĥt −
xm (x̂t + m̂t)− qq̂t

xm− q
= 0,

We adopt the following specification of monetary policy:

x̂t = x̂zt + x̂Υt + x̂Mt,

where xt represents the gross growth rate of high powered money, Mt:

Mt = xt−1Mt−1,

or, after dividing by Ptz
∗
t :

mt = xt−1
Pt−1z∗t−1
Ptz∗t

mt−1 = xt−1
1

πtµz∗,t
mt−1

or, after linearizing:

m̂t = x̂t−1 − π̂t − µ̂z∗,t + m̂t−1.

We model x̂zt and x̂Υt as follows:

x̂M,t = ρM x̂M,t−1 + εM,t + θMεM,t−1

x̂z,t = ρxzx̂z,t−1 + czεz,t + cpzεz,t−1

µ̂z,t = ρµz
µ̂z,t−1 + εµz,t + θµzεµz ,t−1

also

x̂Υ,t = ρxΥx̂Υ,t−1 + cΥεΥ,t + cpΥεΥ,t−1

µ̂Υ,t = ρµΥ
µ̂Υ,t−1 + εµΥ,t + θµΥεµΥ,t−1
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4. Collecting the Equations

Following are the non-linear equations and the corresponding linearized versions.

4.1. The Firm Sector

The index pertaining to individual firms in the case of the nonlinear equations is suppressed.

Non-linear capital Euler equation:

λz∗,t = β
1

µz∗,t+1
λz∗,t+1

ut+1ρ̃t+1 − a(ut+1) + µ̃t+1(1− δ)

µΥ,t+1µ̃t

,

linearized (using µ̂z∗t =
α
1−α

µ̂Υt + µ̂zt)

zt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĉt1(p)
b̃wt2(p)

λ̂z∗t3
m̂t4(p)
π̂t5(p)
x̂t6
ŝt7

ı̂t8(p)

ĥt9
b̄kt+110(p)

q̂t11
b̃yt12

R̂t13
b̃µt14(p)
b̃ρt15

ût16 (p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)E

"
λ̂z∗,t+1 −

1

1− α
µ̂Υt+1 − µ̂zt+1 − b̃µt +

ρ̃b̃ρt+1 + (1− δ)b̃µt+1

ρ̃+ 1− δ
− λ̂z∗,t|Ω

p
t

#
= 0

Non-linear investment Euler equation:

λz∗,t = λz∗,tµ̃t

∙
1− S

µ
it

it−1
µΥ,tµz∗,t

¶
− S0

µ
it

it−1
µΥ,tµz∗,t

¶
it

it−1
µΥ,tµz∗,t

¸

+β
1

µz∗,t+1
λz∗,t+1

1

µΥ,t+1

µ̃t+1(i)S
0

µ
it+1
it

µΥ,t+1µz∗,t+1

¶µ
it+1
it

µΥ,t+1µz∗,t+1

¶2
.

Linearized:

(2) E{[S00] (µΥµz∗)
2

∙
ı̂t − ı̂t−1 + µ̂Υ,t +

α

1− α
µ̂Υt + µ̂zt

¸

−β [S00] (µΥµz∗)
2

∙
ı̂t+1 − ı̂t + µ̂Υ,t+1 +

α

1− α
µ̂Υt+1 + µ̂zt+1

¸
− b̃µt|Ω

p
t} = 0
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Nonlinear expression for shadow rental rate on capital:

ρ̃t =
α

1− α
Rt(ν)w̃t

µ
ỹt + φ

�tutk̄t

µz∗,tµΥ,t

¶ 1
1−α

Linearized (this is an exact relation):

(3)
νR

νR+ 1− ν
R̂t+b̃wt+

1

1− α

µ
ỹ

ỹ + φ
b̃yt − �̂t − b̄kt +

α

1− α
µ̂Υt + µ̂zt + µ̂Υ,t

¶
−b̃ρt−

1

1− α
ût = 0.

The capital evolution equation:

k̄t+1 =
(1− δ)

µΥ,tµz∗,t
k̄t + (1− S

µ
it

it−1
µΥ,tµz∗,t

¶
)it.

Linearized (this is an exact relation):

(4) [µΥµz∗ − (1− δ)] ı̂t −
½
µΥµz∗

b̄kt+1 − (1− δ)

∙
b̄kt −

1

1− α
µ̂Υt − µ̂zt

¸¾
= 0

The inflation equation is:

(5) E [β (π̂t+1 − π̂t) + γŝt − (π̂t − π̂t−1) |Ω
p
t ] .

The marginal cost equation is (this is an exact relation):

(6)
νR

νR+ 1− ν
R̂t + b̃wt − �̂t +

α

1− α

∙
ỹ

ỹ + φ
b̃yt − �̂t − ût − b̄kt +

1

1− α
µ̂Υt + µ̂zt

¸
− ŝt = 0

4.2. Household Sector

Money demand (this is exact)

(7) ĉt −
R

R− 1
1

2 + ση
R̂t − q̂t = 0

The consumption Euler equation:

(8) E{−
Ã

1

c
¡
1− bµ−1z∗

¢
!2 ∙

cĉt −
bc

µz∗
ĉt−1 +

bc

µz∗

µ
α

1− α
µ̂Υt + µ̂zt

¶¸

+βb

Ã
1

µz∗t+1
ct+1 − bct

!2 ∙
µz∗c

µ∙
α

1− α
µ̂Υt+1 + µ̂zt+1

¸
+ ĉt+1

¶
− bcĉt

¸

−λz∗ [(1 + η (V )) + η0 (V )V ] λ̂z∗t − λz∗

∙
2 +

η00 (V )V

η0 (V )

¸
η0 (V )V × (ĉt − q̂t) |Ω

p
t}

= 0.
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The monetary base first order condition:

(9) E

∙
−λ̂z∗t + λ̂z∗t+1 + R̂t+1 − π̂t+1 −

α

1− α
µ̂Υ,t+1 − µ̂z,t+1|Ωt

¸
= 0.

The wage first order condition:

(10) η0 b̃wt−1 + η1 b̃wt + η2 b̃wt+1 + η−3 π̂t−1 + η3π̂t + η4π̂t+1

+η5Ĥt + η6λ̂z∗t + η7
α

1− α
µ̂Υ,t + η7µ̂z,t + η8

α

1− α
µ̂Υ,t+1 + η8µ̂z,t+1

= 0.

where

η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bwξw
−bw[1 + βξ2w] + σLλw

βξwbw
bwξw
−ξwbw
bwβξw

−σL (1− λw)
1− λw

−bwξw (1− ϑ)
bwβξw (1− ϑ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η0
η1
η2
η3̄
η3
η4
η5
η6
η7
η8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

and

bw = [λwσL − (1− λw)] / [(1− ξw) (1− βξw)]

It is useful to write out the entries in the canonical form for the model directly.

α0(10, 2) = η2, α0(10, 5) = η4

α1(10, 2) = η1, α1(10, 5) = η3, α1(10, 9) = η5,

α1(10, 3) = η6,

α2(10, 2) = η0, α2(10, 5) = η−3

β0(10, 6) = η8
α

1− α
, β0(10, 3) = η8

β1(10, 6) = η7
α

1− α
, β1(10, 3) = η7

4.3. Aggregate Conditions

The resource constraint is (this is an exact relation):

(11) (1 + η) cĉt + η0
c2

q
(ĉt − q̂t) + îıt

− (ỹ + φ)

∙
�̂t + α

µ
ût +

b̄kt −
1

1− α
µ̂Υt − µ̂zt

¶
+ (1− α)ĥt

¸
+ ρ̃

k̄

µz∗µΥ
ût

= 0

42



The money market clearing condition is (this is an exact relation):

(12) b̃wt + ĥt −
xm (x̂t + m̂t)− qq̂t

xm− q
= 0,

The equation governing monetary policy is:

(13) x̂zt + x̂Υt + x̂Mt − x̂t = 0,

The equation linking base growth to the base is (this is an exact relation):

(14) x̂t−1 − π̂t −
α

1− α
µ̂Υt − µ̂zt + m̂t−1 − m̂t = 0.

The production function:

(15) ỹb̃yt = (ỹ + φ)

∙
�̂t + α

µ
ût +

b̄kt −
1

1− α
µ̂Υt − µ̂zt

¶
+ (1− α)ĥt

¸
− ρ̃

k̄

µz∗µΥ
ût

The equation governing capital utilization:

(16) E

∙
ût −

1

σa

b̃ρt|Ω
p
t

¸
= 0

5. Solving the Model

5.1. Canonical Form

The canonical representation for the above 16 equations is:

Et [α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st] = 0, (5.1)

where Et indicates that the different equations have different information sets. Equations 1,

2, 5, 8, 10, 16 are ‘partial information set’ equations, because the expectation is conditional

on all date t variables, except the date t monetary policy shock. Equations 4 and 14 can

also be treated as partial information equations, because the variables in these equations all

have the property that they are predetermined relative to the monetary policy shock. So,

the partial information equations are 1, 2, 4, 5, 8, 10, 14, 16. There are 8 variables which are

predetermined relative to the monetary policy shock: ĉt, b̃wt, m̂t, π̂t, ı̂t,
b̄kt+1, b̃µt, ût. The other

equations and variables are functions of all date t variables and shocks. These restrictions

will be imposed in the calculations described below.

Let the vector of shocks be denoted st. This is assumed to have the following represen-

tation:

st = Pst−1 + εt,
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where st is not to be confused with real marginal cost! Here, st, P and εt are defined as

follows:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂M,t

εM,t

µ̂z,t

εµz ,t
x̂z,t

µ̂Υ,t

εµΥ,t

x̂Υ,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρM θM
0 0

ρµz
θµz 0

0 0 0
0 cpz ρxz

ρµΥ
θµΥ 0

0 0 0
0 cpΥ ρxΥ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂M,t−1
εM,t−1
µ̂z,t−1
εµz ,t−1
x̂z,t−1
µ̂Υ,t−1
εµΥ,t−1
x̂Υ,t−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εM,t

εM,t

εµz ,t
εµz ,t
czεµz,t
εµΥ,t

εµΥ,t

cΥεµΥ,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Also, the vector of endogenous variables determined at time t are:

zt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĉt1(p)
b̃wt2(p)

λ̂z∗t3
m̂t4(p)
π̂t5(p)
x̂t6
ŝt7

ı̂t8(p)

ĥt9
b̄kt+110(p)

q̂t11
b̃yt12

R̂t13
b̃µt14(p)
b̃ρt15

ût16 (p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, the number after the variable indicates its order in zt. A variable with a (p) is one that

is predetermined relative to the monetary policy shock.

5.2. Solution to Canonical Form

We seek a solution of the following form:

zt = Azt−1 +Bθt, (5.2)

where A and B are to be determined. Substituting into (5.1) we find:

α0A
2 + α1A+ α2 = 0,

EtFθt = F̃ θt,
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where

F = (β̃0 + α0B)ρ+ (β̃1 + α1B + α0AB),

and θt is constructed from st. Also, the ith row of F̃ has zeros if the corresponding entries

in θt are not included in the information set for the ith equation in (5.1). Other relations

between F̃ and F are discussed below. Also, β̃i are constructed from βi, as explained below.

We use the algorithm in Anderson and Moore to find A and we use the strategy in Christiano

(2003) to find B.

In the ‘full information’ case, the conditional information in each equation of (5.1) is

based on all date t information. The ‘partial information’ case corresponds to the case of

interest, and is defined in the previous section. In the full information case, θt = st. In the

partial information case,

θt =

⎛
⎝

st
x̂M,t−1
εM,t−1

⎞
⎠ .

Then,

θt = ρθt−1 + et, (5.3)

where

ρ10×10 =

∙
P 08×1 08×1
τ 02×1 02×1

¸
, et =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εM,t

εM,t

εµz ,t
εµz ,t
czεµz,t
εµΥ,t

εµΥ,t

cΥεµΥ,t

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.4)

where

τ =

∙
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

¸
.

Also,

β̃i =

∙
βi

...0
˜

...0
˜

¸
, i = 0, 1,

where 0
˜
is a column vector of zeros.

For finding B, the vectorization operator useful. Recall that the vectorization operator,

vec(·), takes the columns of a matrix and stacks them into a row vector:

vec(X) =

⎡
⎢⎢⎢⎣

x1
x2
...
xn

⎤
⎥⎥⎥⎦ , where X = [x1, x2, ..., xn] .

45



In MATLAB, this operation is achieved by reshape(X,n × m, 1), where m is the number

of rows of X. Two properties of the vectorization operator include additivity, vec(a + b) =

vec(a) + vec(b), and

vec(A1A2A3) = (A
0
3 ⊗A1) vec(A2).

Write

F =

⎡
⎢⎢⎢⎣

F1
F2
...

F16

⎤
⎥⎥⎥⎦ ,

so that

vec(F 0) =

⎡
⎢⎢⎢⎣

F 0
1

F 0
2
...

F 0
16

⎤
⎥⎥⎥⎦ = vec

h
ρ0β̃

0

0 + ρ0B0α00 + β̃
0

1 +B0α01 +B0A0α00

i

= vec
³
ρ0β̃

0

0 + β̃
0

1

´
+ vec (ρ0B0α00 +B0α01 +B0A0α00)

= vec
³
ρ0β̃

0

0 + β̃
0

1

´
+ vec (ρ0B0α00) + vec (B0α01) + vec (B0A0α00)

= vec
³
ρ0β̃

0

0 + β̃
0

1

´
+ {(α0 ⊗ ρ0) + (α1 ⊗ I10) + (α0A⊗ I10)} vec(B

0)

= d+ qδ,

say, where ⊗ denotes the Kronecker product and

d = vec
³
ρ0β̃

0

0 + β̃
0

1

´

q = (α0 ⊗ ρ0) + (α1 ⊗ I10) + (α0A⊗ I10)

δ = vec(B0).

In the full information case, finding B is straightforward. Simply compute δ = −q−1d and

construct B from δ.

In the partial information case, this procedure must be adapted. In this case, the entries in

B corresponding to the first two elements of θt are set to zero in the rows of B corresponding

to the partial information equations. Since B is 16× 10, there are 160 elements in B. The

number to be determined is only 160− 6× 2 = 148, because there are 6 partial information
equations. Let vec(·) be the vectorization operator in which the 12 entries that are required

to be exactly zero are suppressed. Let R be the matrix which satisfies:

vec(F̃ 0) = Rvec(F 0)

=

⎡
⎢⎢⎢⎣

R1F
0
1

R2F
0
2

...
R16F

0
16

⎤
⎥⎥⎥⎦ ,
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where

R =

⎡
⎢⎢⎢⎣

R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · R16

⎤
⎥⎥⎥⎦

If the ith equation is a ‘full information’ equation, then Ri = I10. Now suppose i corresponds

to a limited information row. Then,

⎡
⎢⎢⎢⎢⎢⎣

Fi,3

Fi,4
...

Fi,9 + ρMFi,1

Fi,10 + θMFi,2

⎤
⎥⎥⎥⎥⎥⎦
= Ri

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fi,1

Fi,2

Fi,3

Fi,4
...

Fi,9

Fi,10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus, Ri is I10 with the first two rows removed and with ρM in the 9,1 place and θM in the

10,2 place of the resulting matrix. In this case, Ri is an 8× 10 matrix, and R is 148× 160.

So

vec(F̃ 0) = Rvec(F 0) = Rd+Rqδ.

Let

δ̃ = vec(B0).

that is, δ̃ is δ with the entries which are restricted to be zero suppressed. Let q̃ be Rq in

which the columns corresponding to entries of δ that are zero suppressed. Let d̃ = Rd. Then,

d̃+ q̃δ̃ = 0.

We solve this by computing

δ̃ = −q̃−1d̃.

Then, B can be constructed using the elements of δ̃. To see how this is done, note first:

vec(B0) = vec

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

b01
b02
...

b016

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ ,

where

B =

⎡
⎢⎢⎢⎣

b1
b2
...

b16

⎤
⎥⎥⎥⎦ .
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Given a 160 dimensional vector, vec(B0), one computes B0 as reshape(vec(B0), 10, 16). One

can obtain vec(B0) by suitably padding δ̃ with zeros.

A problem with this model is that it is inconsistent with the CEE identification assump-

tion for monetary policy shocks. For one parameterization, for example, we found that

B(12, 1) = −0.0263. What this means is that output falls with a positive monetary policy
shock. The reason is that, given the predeterminate nature of consumption and the price

level, the monetary policy shock drives velocity down. Because all other components of de-

mand are fixed, the level of output falls. Similarly, B(9, 1) = −0.0342, so that hours worked
falls. It is useful to understand what these magnitudes mean, precisely. Recall that money

growth is:
Mt+1

Mt
= xt,

so that

x̂t = log
³xt

x

´
= log

µ
Mt+1/Mt

x

¶

= [log(Mt+1)− log(Mt)]− log x.

Similarly,

ŷt = log

µ
yt
y

¶
,

so that

B(12, 1) =
d log(yt)

d log(Mt+1)
,

i.e., it is the percent change in output associated with a one percent change in the money

stock. So, a one percent rise in the money stock induced by a policy shock produces a 0.0263

percent contemporaneous drop in output. Similarly, a one percent rise in the money stock

induced by a policy shock induces a 0.03 percent contemporaneous drop in employment.

When all variables and equations are ‘full information’, then output rises 0.57 percent with

a one percent rise in money due to policy. The rise in hours is 0.50 percent.

5.3. Steady State

The steady state rental rate on capital can be computed from:

ρ̃ =
µΥµz∗

β
− (1− δ) ,

where

µz∗ = (µΥ)
α

1−α µz.

Inflation is given by the usual formula

π =
x

µz∗
.
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The Fisherian relation determines the nominal rate of interest:

πµz∗

β
= R

Suppose velocity, V, is preset, say to 1.4. Then, the following equation can be solved for η0.

R = 1 + η0V 2.

Solve for ση using:

� =
1

R− 1
1

2 + ση

1

4
,

that is

ση =
1

R− 1
1

�

1

4
− 2

The variable, s, is the reciprocal of the markup:

s =
1

λf
=

θ − 1
θ

.

Consider the following two conditions:

ρ̃ =
α

1− α
R(ν)w̃

µ
ỹ + φ

k̄
µz∗µΥ

¶ 1
1−α

s =
R(ν)w̃

(1− α)

µ
ỹ + φ

k̄
µz∗µΥ

¶ α
1−α

So, after taking the ratio:
ρ̃

s
= α

ỹ + φ

k̄
µz∗µΥ.

In steady state,

ỹ + φ =

µ
k̄

µz∗µΥ

¶α

h1−α ≡ F

or,
ỹ + φ

k̄
µz∗µΥ =

µ
h

k̄
µz∗µΥ

¶1−α

.

Substitute this into the expression for ρ̃/s,

ρ̃

s
= α

µ
h

k̄
µz∗µΥ

¶1−α

,

(which just says that ρ̃ is the marginal product of capital, divided by the markup) so,

h

k̄
= (µz∗µΥ)

−1
µ

ρ̃

αs

¶ 1
1−a

.
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We can solve for the wage rate, w̃, from

s =
R(ν)w̃

(1− α)

µ
ỹ + φ

k̄
µz∗µΥ

¶ α
1−α

=
R(ν)w̃

(1− α)

µ
ρ̃

αs

¶ α
1−α

.

In what follows, we take two different positions on φ, the constant term. In the first case

we assume it is positive and that firms make zero profits in steady state. In the second, we

assume it is zero. In this case, firms make positive profits in steady state. In terms of the

algebra necessary for computing the steady state, the differences between these two cases

are slight.

The zero profit condition corresponds, in steady state, to:

yt − wtRt(ν)ht − ρtutK̄t = 0.

In terms of scaled variables, this is:

ỹtz
∗
t − z∗t w̃tRt(ν)ht −Υ−1t ρ̃tutk̄tz

∗
t

¡
z∗t−1/z

∗
t

¢
Υt (Υt−1/Υt) = 0,

or, after dividing by z∗t an rewriting a little:

ỹt − w̃tRt(ν)ht − ρ̃tut
k̄t

µz∗,tµΥ,t

= 0,

so that, in steady state,

ỹ = w̃R(ν)h+
ρ̃k̄

µz∗µΥ
.

At the same time, price markup behavior leads to the result that total factor costs are less

than total variable costs by the amount of the markup:

ρ̃k̄

µz∗µΥ
+ w̃R(ν)h = sF =

1

λf
F,

where F is gross production, including the fixed cost,

F =

µ
k̄

1

µz∗µΥ

¶α

(h)1−α .

That is, F = ỹ+φ, so that F is the Cobb-Douglas part of the production function. Putting

this into the zero profit condition,

F − φ− 1

λf
F = 0,
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or, µ
1− 1

λf

¶
F = φ.

It is also usefult to have φ in terms of y :
µ
1− 1

λf

¶
y + φ

µ
1− 1

λf

¶
= φ

µ
1− 1

λf

¶
y =

1

λf
φ

(λf − 1) y = φ

Combining this with the resource constraint, to obtain:

(1 + η) c+

∙
1− (1− δ)

µΥµz∗

¸
k̄ =

µ
k̄

1

µz∗µΥ

¶α

(h)1−α −
µ
1− 1

λf

¶µ
k̄

1

µz∗µΥ

¶α

(h)1−α

=
1

λf

µ
k̄

1

µz∗µΥ

¶α

(h)1−α ,

where steady state investment has been substituted out for the capital stock. When φ = 0

and positive profits are permitted, λf in the preceding formula is simply replaced by unity.

Rewriting this:

c = k̄

³
1
λf

³
1

µz∗µΥ

´α ¡
h
k̄

¢1−α −
h
1− (1−δ)

µΥµz∗

i´

1 + η
,

where everything to the right of k̄ is known. Again, the case φ = 0 requires replacing λf

with unity in the above expression.

From (2.4) the steady state equation for hours worked is:

1

λw
w̃λz∗ = hσLψL.

From (2.1) the first order condition for consumption, in steady state, is:

µz∗

µz∗c− bc
=

βb

µz∗c− bc
+ λz∗ [1 + η + η0V ]

λz∗ =
1

c

µz∗ − βb

µz∗ − b

1

1 + η + η0V

Substitute out for λz∗ :

1

λw
w̃
1

c

µz∗ − βb

µz∗ − b

1

1 + η + η0V
= hσLψL,

or,

c =
1

hσLψL

1

λw
w̃
µz∗ − βb

µz∗ − b

1

1 + η + η0V

= k̄−σL
w̃¡

h
k̄

¢σL ψL

µz∗ − βb

λw (µz∗ − b)

1

1 + η + η0V
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Use this to substitute out for c in the expression for c in the resource constraint:

(1 + η) k̄−σL
w̃¡

h
k̄

¢σL ψL

µz∗ − βb

λw (µz∗ − b)

1

1 + η + η0V
+

∙
1− (1− δ)

µΥµz∗

¸
k̄

=

µ
k̄

1

µz∗µΥ

¶α

(h)1−α −
µ
1− 1

λf

¶µ
k̄

1

µz∗µΥ

¶α

(h)1−α

=
1

λf

µ
k̄

1

µz∗µΥ

¶α

(h)1−α ,

(1 + η) k̄−σL
w̃¡

h
k̄

¢σL ψL

µz∗ − βb

λw (µz∗ − b)

1

1 + η + η0V

=
1

λf

µ
k̄

1

µz∗µΥ

¶α

(h)1−α −
∙
1− (1− δ)

µΥµz∗

¸
k̄

= k̄

(
1

λf

µ
1

µz∗µΥ

¶αµ
h

k̄

¶1−α

−
∙
1− (1− δ)

µΥµz∗

¸)

so,

k̄−σL
w̃¡

h
k̄

¢σL ψL

µz∗ − βb

λw (µz∗ − b)

1

1 + η + η0V

= k̄

n
1
λf

³
1

µz∗µΥ

´α ¡
h
k̄

¢1−α −
h
1− (1−δ)

µΥµz∗

io

(1 + η)
or,

k̄ =

⎡
⎢⎢⎣

w̃

ψL(hk̄ )
σL

(µz∗−βb)
λw(µz∗−b)

1
1+η+η0V

1
λf

1
µz∗µΥ

α

(hk̄ )
1−α− 1− (1−δ)

µΥµz∗
1+η

⎤
⎥⎥⎦

1
1+σL

=

⎡
⎣

w̃

ψL(hk̄ )
σL

(µz∗−βb)
λw(µz∗−b)

1+η
1+η+η0V

1
λf

³
1

µz∗µΥ

´α ¡
h
k̄

¢1−α −
³
1− (1−δ)

µΥµz∗

´

⎤
⎦

1
1+σL

Then, hours worked may be obtained from h = k̄× (h/k̄). The case φ = 0 requires replacing

λf with unity in the above expression.

Finally, we obtain q from

q =
c

V
,

and m is obtained by solving:

νw̃h = xm− q.

The variable, λz∗, can be obtained from the scaled first order condition for consumption:

λz∗, =
1

c

µz∗ − βb

µz∗ − b

1

1 + η + η0V
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6. Estimation

The parameters of the ‘non-stochastic part’ of the model are:

�, ξw, γ, S
00, σa, b, λw, λf , σL

and

ψL, η, β, µΥ, µz, δ, α, ν, ψL, x, V.

The first 9 seem natural candidates for estimation based on impulse response functions. The

second group should be fixed based on the estimates in sample averages or the like. The

parameters of the stochastic part of the model are the following 15:

ρM , θM , ρxz, cz, c
p
z, ρµz

, θµz , ρxΥ, cΥ, c
p
Υ, ρµΥ

, θµΥ , σµΥ , σµz , σM .

Wemay want to set the moving average parameters, θM , cpz, θµz , c
p
Υ, θµΥ to zero and use these

only for experiments. This leaves 7 for estimation. Thus, the total number of parameters to

be estimated based on impulse responses are 24.

We do the estimation by matching up impulse responses in the model and the data. To

do this for the model, set initial conditions to zero, i.e., θ0 = z0 = 0. Then assign a value to

e1 and simulate a sequence of θt’s:

θt = ρt−1θ1, θ1 = e1, t = 2, ..., T.

Similarly,

zt = Azt−1 +Bθt, t = 1, 2, ..., T.

The elements of zt can be used to uncover the responses. For example, in the case of

a monetary policy shock, the response of log, output is computed as the sequence, z12,t,

t = 1, 2, ..., T. This is interpreted as the log, deviation of output from its unshocked path.

Now consider the response of output to one of the technology shocks. In this case, we

have to be careful to take into account that the scaling factor, z∗t , is also affected. What we

want in an impulse response function is the response, relative to what would have happened

in the absence of a shock. Now output, yt, in the presence of a shock is written ỹtz
∗
t . Output

in the absence of a shock is ỹz∗+t , where ỹ is the steady state value of ỹt and z∗+t is what z∗

would have been, had there been no shock. What we want is the logarithm of the following

ratio:

yt
y+t
=

ỹt
ỹ

z∗t
z∗+t

.
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Now,

z∗1 = µz∗,1z
∗
0

z∗2 = µz∗,2µz∗,1z
∗
0

...

z∗t = µz∗,t · · · µz∗,1z
∗
0 .

What we can recover from simulations of θt is:

µ̂z∗,t =
α

1− α
µ̂Υ,t + µ̂z,t.

Then,

µz∗,1 = µz∗
¡
µ̂z∗,1 + 1

¢

...

µz∗,T = µz∗
¡
µ̂z∗,T + 1

¢
,

giving us the µz∗,t’s. Now,

z∗+t = µz∗ · · · µz∗z
∗
0 ,

so that
z∗t
z∗+t

=
µz∗,t · · · µz∗,1

µz∗ · · · µz∗
.

Then,

log

µ
yt
y+t

¶
= log

µ
ỹt
ỹ

¶
+ log

µ
z∗t
z∗+t

¶

= b̃yt + log

µ
µz∗,t · · · µz∗,1

µz∗ · · · µz∗

¶

= b̃yt + µ̂z∗,t + µ̂z∗,t−1 + ...+ µ̂z∗,1,

for t = 1, ..., T. The response of consumption, real balances, Qt/Pt, and the real wage are

treated in exactly the same way.

Now consider money growth. We have

x̂t = log
³xt

x

´
= log (Mt+1/Mt)− log x,

which is money growth relative to what it would have been along an unshocked path. We

can multiply this by 4 to put it in annual terms. The deviation of the interest rate from its

unshocked value is:

R̂t =
Rt −R

R

RR̂t = Rt −R,

which could be multiplied by 4 to express in self terms.
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7. Deriving the Reduced Form Inflation Equation

The strategy for deriving the reduced form inflation process is the usual one. First, derive

a relationship between the average price set by optimizing firms and the aggregate inflation

rate. Then, derive the first order condition for the price set by optimizing firms. This

first order condition resembles the one in the standard Calvo literature in that it involves

equating price to marginal cost on average. It is more complicated than usual, however,

because marginal cost is idiosyncratic to the individual firm.

7.1. Some Results for Prices

We suppose that non-optimizing firms are partially indexed:

Pt+1(i) = π1−(π(
tPt(i), 0 ≤ ( ≤ 1.

This is the price set by a firm in period t + 1, whose price in period t is Pt(i). With ( = 1

they are fully indexed, and with ( = 0 they just follow the steady state inflation rate, π.

Dividing both sides by Pt+1 :

Pt+1(i)

Pt+1
= π1−(π(

t

Pt

Pt+1

Pt(i)

Pt

or,

pt+1(i) =
π1−(π(

t

πt+1
pt(i). (7.1)

As a consequence,

p̂t+1(i) = p̂t(i)− π̂t+1 + (π̂t

= p̂t(i)−∆(π̂t+1,

say, where

∆(π̂t+1 = π̂t+1 − (π̂t.

Similarly, for a firm that happens not to have the opportunity to reoptimize in periods t+1,

t+ 2, ...., t+ j :

p̂t+j(i) = p̂t(i)−∆(πt+1 −∆(πt+2 − ...−∆(πt+j.

The aggregate price index must satisfy the following condition:

Pt =

∙Z
Pt(j)

1−θdj

¸ 1
1−θ

=

∙Z

I

P ∗
t (i)

1−θdi+

Z

J

Pt(j)
1−θdj

¸ 1
1−θ

,
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where i ∈ I corresponds to those intermediate good firms that reoptimize and j ∈ J corre-

sponds to those firms which do not reoptimize. To see why this is so,

Z

i

µ
Pt

Pt(i)

¶θ

Ytdi = yt(i), θ =
λf

λf − 1Z

I

ŷ∗t (i)di+

Z

J

ŷt(j)dj = Ŷt

(1− ξp)p̂
∗
t = ξp∆(π̂t,

(1− ξp)ξpThe firms who Simplifying and dividing by Pt :

1 =

"Z

I

p∗t (i)
1−θdi+

µ
π1−(π(

t−1
Pt

¶1−θ Z

J

P 1−θ
t−1 dj

# 1
1−θ

=

"Z

I

p∗t (i)
1−θdi+

µ
π1−(π(

t−1
Pt

¶1−θ

ξpP
1−θ
t−1

# 1
1−θ

=

⎡
⎣
Z

I

p∗t (i)
1−θdi+ ξp

Ã
π1−(π(

t−1
Pt

Pt−1

!1−θ
⎤
⎦

1
1−θ

=

"Z

I

p∗t (i)
1−θdi+ ξp

µ
π1−(π(

t−1
πt

¶1−θ
# 1
1−θ

Then,

1 =

Z

I

p∗t (i)
1−θdi+ ξp

µ
π1−(π(

t−1
πt

¶1−θ

Differentiating:

0 = (1− θ)

Z

I

p∗t (i)
1−θp̂∗t (i)di+ ξp(1− θ)

µ
π1−(π(

t−1
πt

¶−θ
"
(π1−( (πt−1)

(−1 dπt−1
πt

− π1−( (πt−1)
(

π2t
dπt

#

= (1− θ)

Z

I

p∗t (i)
1−θp̂∗t (i)di+ ξp(1− θ)

µ
π1−(π(

t−1
πt

¶−θ ∙
(π1−( (πt−1)

( π̂t−1
πt

− π1−( (πt−1)
(

πt
π̂t

¸

= (1− θ)

Z

I

p∗t (i)
1−θp̂∗t (i)di+ ξp(1− θ)

µ
π1−(π(

t−1
πt

¶1−θ

[(π̂t−1 − π̂t]

= (1− θ)

Z

I

p̂∗t (i)di+ ξp(1− θ) [(π̂t−1 − π̂t]

After dividing and rearranging, and taking into account that p∗t (i) = 1 in a symmetric steady

state equilibrium,

0 =

Z

I

p̂∗t (i)di− ξp∆(π̂t.
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We suppose that

p̂∗t (i) = p̂∗t + g(i),

where Z

I

g(i)di = 0.

Then, Z

I

p̂∗t (i)di = (1− ξp)p̂
∗
t .

Substituting,

(1− ξp)p̂
∗
t = ξp∆(π̂t,

or, µ
Pt

Pt(i)

¶θ

Yt = yt(i), θ =
λf

λf − 1
the ratio of output to a firm that changes its price to the output of a firm that does not:

µ
Pt(i)

Pt(i0)

¶θ

=
yt(i

0)

yt(i)µ
pt(i)

pt(i0)

¶θ

=
ỹt(i

0)

ỹt(i)
,

so that let the period of the shock be called 1. in this period, all prices are the same, so that

all outputs are the same. In the next period, a subset of
¡
1− ξp

¢
firms gets to reoptimize

their prices and on average these prices are set to p̂∗2 =
ξp
1−ξp

(π̂2 − (π̂1) .

The output of a firm that optimally sets its price to p̂t(i) is:

µ
1

p∗t (i)

¶θ

Yt = yt(i),

so,

−θp̂∗t (i) + Ŷt = ŷ∗t (i).

Integrate over all the
¡
1− ξp

¢
firms which reoptimize:

−θp̂∗t + Ŷt = ŷ∗t .

b̃yt(i
0)− b̃yt(i) = θ (p̂t(i)− p̂t(i

0))
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remember that the integral of output is:

Ŷt =

Z 1

0

ŷt(i)di (7.2)

=

Z

I

ŷt(i)di+

Z

J

ŷt(j)dj (7.3)

=
¡
1− ξp

¢ ³
−θp̂∗t + Ŷt

´
(7.4)

+ξp (7.5)

p̂∗t =
ξp

1− ξp
∆(π̂t. (7.6)

¡
1− ξp

¢
p̂∗t + ξpx = π̂t − π̂t−1 (7.7)

(7.8)

7.2. The Capital Euler Equation

The intertemporal Euler equation is (1.4):

λ̂z∗,t = λ̂z∗,t+1 − µ̂z∗,t+1 − µ̂Υ,t+1 − b̃µt(i) +
ρ̃b̃ρt+1(i) + (1− δ)b̃µt+1(i)

ρ̃+ 1− δ

(∗ ∗ ∗∗) b̃µt(i) = [S
00] (µΥµz∗)

2 £ı̂t(i)− ı̂t−1(i) + µ̂Υ,t + µ̂z∗,t

¤
(7.9)

−β [S00] (µΥµz∗)
2 £ı̂t+1(i)− ı̂t(i) + µ̂Υ,t+1 + µ̂z∗,t+1

¤

λ̂z∗,t = λ̂z∗,t+1 − µ̂z∗,t+1 − µ̂Υ,t+1 − [S00] (µΥµz∗)
2 £ı̂t(i)− ı̂t−1(i) + µ̂Υ,t + µ̂z∗,t

¤

+β [S00] (µΥµz∗)
2 £ı̂t+1(i)− ı̂t(i) + µ̂Υ,t+1 + µ̂z∗,t+1

¤

+
(1− δ)

ρ̃+ 1− δ
([S00] (µΥµz∗)

2 £ı̂t(i)− ı̂t−1(i) + µ̂Υ,t + µ̂z∗,t

¤

−β [S00] (µΥµz∗)
2 £ı̂t+1(i)− ı̂t(i) + µ̂Υ,t+1 + µ̂z∗,t+1

¤
)

+
ρ̃

ρ̃+ 1− δ

⎡
⎣
R̂t+1(ν) + b̃wt+1 +

1
1−α

³
ỹ

ỹ+φ
b̃yt+1(i)− �̂t+1 − b̄kt+1(i) + µ̂z∗,t+1 + µ̂Υ,t+1

´

1 + 1
1−α

1
σa

⎤
⎦

Substitute out for b̃ρt+1(i) (rom (1.5)) and b̃µt+1(i) (from (1.3)):

λ̂z∗,t = λ̂z∗,t+1 − µ̂z∗,t+1 − µ̂Υ,t+1

− [S00] (µΥµz∗)
2 £ı̂t(i)− ı̂t−1(i) + µ̂Υ,t + µ̂z∗,t

¤
+ β [S00] (µΥµz∗)

2 £ı̂t+1(i)− ı̂t(i) + µ̂Υ,t+1 + µ̂z∗,t+1

¤

+
(1− δ)

ρ̃+ 1− δ
{[S00] (µΥµz∗)

2 £ı̂t+1(i)− ı̂t(i) + µ̂Υ,t+1 + µ̂z∗,t+1

¤

−β [S00] (µΥµz∗)
2 £ı̂t+2(i)− ı̂t+1(i) + µ̂Υ,t+2 + µ̂z∗,t+2

¤
}

+
ρ̃

ρ̃+ 1− δ

R̂t+1(ν) + b̃wt+1 +
1
1−α

³
ỹ

ỹ+φ
b̃yt+1(i)− �̂t+1 − b̄kt+1(i) + µ̂z∗,t+1 + µ̂Υ,t+1

´

1 + 1
1−α

1
σa

,
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or,

λ̂z∗,t = λ̂z∗,t+1 − µ̂z∗,t+1 − µ̂Υ,t+1

− [S00] (µΥµz∗)
2 {
£
ı̂t(i)− ı̂t−1(i) + µ̂Υ,t + µ̂z∗,t

¤

−
µ
β +

(1− δ)

ρ̃+ 1− δ

¶£
ı̂t+1(i)− ı̂t(i) + µ̂Υ,t+1 + µ̂z∗,t+1

¤

+
(1− δ)

ρ̃+ 1− δ
β
£
ı̂t+2(i)− ı̂t+1(i) + µ̂Υ,t+2 + µ̂z∗,t+2

¤
}

+
ρ̃

ρ̃+ 1− δ

R̂t+1(ν) + b̃wt+1 +
1
1−α

³
ỹ

ỹ+φ
b̃yt+1(i)− �̂t+1 − b̄kt+1(i) + µ̂z∗,t+1 + µ̂Υ,t+1

´

1 + 1
1−α

1
σa

,

From this equation, subtract the equation that results after aggregating over all i (simply

delete the (i) argument wherever it appears):

0 = − [S00] (µΥµz∗)
2 {
£
ı̂+t (i)− ı̂+t−1(i)

¤
−
µ
β +

(1− δ)

ρ̃+ 1− δ

¶£
ı̂+t+1(i)− ı̂+t (i)

¤

+
(1− δ)

ρ̃+ 1− δ
β
£
ı̂+t+2(i)− ı̂+t+1(i)

¤
}

+
ρ̃

ρ̃+ 1− δ

ỹ
ỹ+φ
b̃y+t+1(i)− b̄k

+

t+1(i)

1− α+ 1
σa

,

where a ‘+’ means the ith firm’s value of the variable, minus the aggregate.

From the firm’s demand curve:

b̃y+t (i) = −θp̂t(i)

Substitute this into the preceding expression:

0 = − [S00] (µΥµz∗)
2 {
£
ı̂+t (i)− ı̂+t−1(i)

¤
−
µ
β +

(1− δ)

ρ̃+ 1− δ

¶£
ı̂+t+1(i)− ı̂+t (i)

¤

+
(1− δ)

ρ̃+ 1− δ
β
£
ı̂+t+2(i)− ı̂+t+1(i)

¤
}

− ρ̃

ρ̃+ 1− δ

ỹ
ỹ+φ

θp̂t+1(i) +
b̄k
+

t+1(i)

1− α+ 1
σa

,

From the capital evolution equation, (1.6),

ı̂+t (i) =
µΥµz∗

b̄k
+

t+1(i)− (1− δ)b̄k
+

t (i)

µΥµz∗ − (1− δ)

= ai(L)
b̄k
+

t+1(i),
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where

ai(L) =
µΥµz∗

µΥµz∗ − (1− δ)
− (1− δ)L

µΥµz∗ − (1− δ)

=
µΥµz∗

µΥµz∗ − (1− δ)

µ
1− 1− δ

µΥµz∗
L

¶
.

Substitute this into the capital euler equation:

0 = − [S00] (µΥµz∗)
2 {ai(L)(1− L)b̄k

+

t+1(i)−
µ
β +

(1− δ)

ρ̃+ 1− δ

¶
ai(L)(1− L)b̄k

+

t+2(i)

+
(1− δ)

ρ̃+ 1− δ
βai(L)(1− L)b̄k

+

t+3(i)}

− ρ̃

ρ̃+ 1− δ

ỹ
ỹ+φ

θp̂t+1(i) +
b̄k
+

t+1(i)

1− α+ 1
σa

,

or, after dividing by − [S00] (µΥµz∗)
2 :

0 = {ai(L)(1− L)L2 −
µ
β +

(1− δ)

ρ̃+ 1− δ

¶
ai(L)(1− L)L

+
(1− δ)

ρ̃+ 1− δ
βai(L)(1− L)}b̄k

+

t+3(i)

+
ρ̃

ρ̃+ 1− δ

1

[S00] (µΥµz∗)
2

ỹ
ỹ+φ

θp̂t+1(i) + L2b̄k
+

t+3(i)

1− α+ 1
σa

,

or,

0 = {ai(L)(1− L)L2 −
µ
β +

(1− δ)

ρ̃+ 1− δ

¶
ai(L)(1− L)L

+
(1− δ)

ρ̃+ 1− δ
βai(L)(1− L) +

1

[S00] (µΥµz∗)
2

ρ̃

ρ̃+ 1− δ

L2

1− α+ 1
σa

}b̄k
+

t+3(i)

+
1

[S00] (µΥµz∗)
2

ρ̃

ρ̃+ 1− δ

ỹ
ỹ+φ

θ

1− α+ 1
σa

p̂t+1(i),

or,

Q(L)E

∙
b̄k
+

t+3(i)|Ω
p
t

¸
= ΦE [p̂t+1(i)|Ω

p
t ] (7.10)

where

Q(L)

= ai(L)(1− L)

∙
L2 −

µ
β +

(1− δ)

ρ̃+ 1− δ

¶
L+

(1− δ)

ρ̃+ 1− δ
β

¸

+
1

[S00] (µΥµz∗)
2

ρ̃

ρ̃+ 1− δ

1

1− α+ 1
σa

L2

Φ = − 1

[S00] (µΥµz∗)
2

ρ̃

ρ̃+ 1− δ

ỹ
ỹ+φ

θ

1− α+ 1
σa

.
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It is useful to write out the coefficients on powers of L in Q(L) explicitly

ai(L)(1− L)

∙
L2 −

µ
β +

(1− δ)

ρ̃+ 1− δ

¶
L+

(1− δ)

ρ̃+ 1− δ
β

¸

+
1

[S00] (µΥµz∗)
2

ρ̃

ρ̃+ 1− δ

1

1− α+ 1
σa

L2

=
µΥµz∗

µΥµz∗ − (1− δ)

µ
1− 1− δ

µΥµz∗
L

¶
(1− L)

∙
L2 −

µ
β +

(1− δ)

ρ̃+ 1− δ

¶
L+

(1− δ)

ρ̃+ 1− δ
β

¸

+
1

[S00] (µΥµz∗)
2

ρ̃

ρ̃+ 1− δ

1

1− α+ 1
σa

L2

=
µΥµz∗

µΥµz∗ − (1− δ)

µ
1−

∙
1 +

1− δ

µΥµz∗

¸
L+

1− δ

µΥµz∗
L2
¶ ∙

L2 −
µ
β +

(1− δ)

ρ̃+ 1− δ

¶
L+

(1− δ)

ρ̃+ 1− δ
β

¸

+
1

[S00] (µΥµz∗)
2

ρ̃

ρ̃+ 1− δ

1

1− α+ 1
σa

L2

=
µΥµz∗

µΥµz∗ − (1− δ)
{L2 −

µ
β +

(1− δ)

ρ̃+ 1− δ

¶
L+

(1− δ)

ρ̃+ 1− δ
β

−
µ
1 +

1− δ

µΥµz∗

¶
L3 +

µ
1 +

1− δ

µΥµz∗

¶µ
β +

(1− δ)

ρ̃+ 1− δ

¶
L2 −

µ
1 +

1− δ

µΥµz∗

¶
(1− δ)

ρ̃+ 1− δ
βL

+
1− δ

µΥµz∗
L4 − 1− δ

µΥµz∗

µ
β +

(1− δ)

ρ̃+ 1− δ

¶
L3 +

1− δ

µΥµz∗

(1− δ)

ρ̃+ 1− δ
βL2}

+
1

[S00] (µΥµz∗)
2

ρ̃

ρ̃+ 1− δ

1

1− α+ 1
σa

L2

=

∙
µΥµz∗

µΥµz∗ − (1− δ)

(1− δ)

ρ̃+ 1− δ
β

¸
− µΥµz∗

µΥµz∗ − (1− δ)

∙
β +

(1− δ)

ρ̃+ 1− δ
+

µ
1 +

1− δ

µΥµz∗

¶
(1− δ)

ρ̃+ 1− δ
β

¸
L

+{
µΥµz∗

µΥµz∗ − (1− δ)

∙
1 +

µ
1 +

1− δ

µΥµz∗

¶µ
β +

(1− δ)

ρ̃+ 1− δ

¶
+
1− δ

µΥµz∗

(1− δ)

ρ̃+ 1− δ
β

¸

+
1

[S00] (µΥµz∗)
2

ρ̃

ρ̃+ 1− δ

1

1− α+ 1
σa

}L2

− µΥµz∗

µΥµz∗ − (1− δ)

∙
1 +

1− δ

µΥµz∗
+
1− δ

µΥµz∗

µ
β +

(1− δ)

ρ̃+ 1− δ

¶¸
L3 +

µΥµz∗

µΥµz∗ − (1− δ)

1− δ

µΥµz∗
L4

= γ0 + γ1L+ γ2L
2 + γ3L

3 + γ4L
4,

say.

We posit (and later verify) that in equilibrium the following relations are satisfied:

b̄k
+

t+1(i) = κ1
b̄k
+

t (i) + κ2
b̄k
+

t−1(i) + κ3p̂t(i) (7.11)

p̂∗t (i) = p̂∗t − ψ0
b̄k
+

t (i)− ψ1
b̄k
+

t−1(i),
b̄k
+

t (i) ≡ b̄kt(i)− b̄kt, (7.12)

where κ1, κ2, κ3, ψ0, ψ1 are coefficients to be determined.

From the standpoint of period t, in period t + 1 the ith firm has probability ξp of not

being able to reoptimize its price, and probability 1 − ξp of being able to reoptimize. The
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price it sets (relative to the aggregate price) if it is able to reoptimize in t + 1 is denoted

p̂∗t+1(i). Then,

Etp̂t+1(i) = ξp [p̂t(i)−∆(Etπt+1] + (1− ξp)Etp̂
∗
t+1(i)

= ξp [p̂t(i)−∆(πt+1] + (1− ξp)

∙
p̂∗t+1 − ψ0

b̄k
+

t+1(i)− ψ1
b̄k
+

t (i)

¸

= ξp [p̂t(i)−∆(πt+1] + (1− ξp)

∙
ξp

1− ξp
∆(πt+1 − ψ0

b̄k
+

t+1(i)− ψ1
b̄k
+

t (i)

¸

= ξpp̂t(i) + (1− ξp)

∙
−ψ0

µ
κ1
b̄k
+

t (i) + κ2
b̄k
+

t−1(i) + κ3p̂t(i)

¶
− ψ1

b̄k
+

t (i)

¸

= ξpp̂t(i)− (1− ξp)ψ0κ1
b̄k
+

t (i)− (1− ξp)ψ0κ2
b̄k
+

t−1(i)− (1− ξp)ψ0κ3p̂t(i)− (1− ξp)ψ1
b̄k
+

t (i)

=
£
ξp − (1− ξp)ψ0κ3

¤
p̂t(i)− (1− ξp) [ψ0κ1 + ψ1]

b̄k
+

t (i)− (1− ξp)ψ0κ2
b̄k
+

t−1(i)

Substitute this into (7.10):

Q(L)E

∙
b̄k
+

t+3(i)|Ω
p
t

¸
= Φ

£
ξp − (1− ξp)ψ0κ3

¤
p̂t(i)−Φ(1−ξp) [ψ0κ1 + ψ1]L

3b̄k
+

t+3(i)−Φ(1−ξp)ψ0κ2L
4b̄k
+

t+3(i),

or,

Q̃(L)E

∙
b̄k
+

t+3(i)|Ω
p
t

¸
= Φ

£
ξp − (1− ξp)ψ0κ3

¤
p̂t(i),

where

Q̃(L) = Q(L) + Φ(1− ξp) [ψ0κ1 + ψ1]L
3 + Φ(1− ξp)ψ0κ2L

4

= γ̃0 + γ̃1L+ γ̃2L
2 + γ̃3L

3 + γ̃4L
4,

say. Then,

γ̃0Et
b̄k
+

t+3(i) + γ̃1Et
b̄k
+

t+2(i) + γ̃2
b̄k
+

t+1(i) + γ̃3
b̄k
+

t (i) + γ̃4
b̄k
+

t−1(i) = Φ
£
ξp − (1− ξp)ψ0κ3

¤
p̂t(i)

(7.13)

To evaluate this, we require Et
b̄k
+

t+3(i) and Et
b̄k
+

t+2(i). Consider the first of these:

Et
b̄k
+

t+3(i) = κ1Et
b̄k
+

t+2(i) + κ2
b̄k
+

t+1(i) + κ3Etp̂t+2(i)
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Etp̂t+2(i) = ξ2p [p̂t(i)−∆(πt+2 −∆(πt+1] (don’t change in t+ 1 and t+ 2)

+(1− ξp)ξp
£
p̂∗t+1(i)−∆(πt+2

¤
(change in t+ 1 don’t change in t+ 2)

+ξp(1− ξp)p̂
∗
t+2(i) (don’t change in t+ 1 do change in t+ 2)

+(1− ξp)
2p̂∗t+2(i) (change in t+ 1 and t+ 2)

= ξ2p [p̂t(i)−∆(πt+2 −∆(πt+1]

+(1− ξp)ξp

∙
p̂∗t+1 − ψ0

b̄k
+

t+1(i)− ψ1
b̄k
+

t (i)−∆(πt+2

¸

+ξp(1− ξp)

∙
p̂∗t+2 − ψ0

b̄k
+

t+2(i)− ψ1
b̄k
+

t+1(i)

¸

+
¡
1− ξp

¢2
∙
p̂∗t+2 − ψ0

b̄k
+

t+2(i)− ψ1
b̄k
+

t+1(i)

¸
.

To avoid cluttering notation, the last expression does not distinguish between b̄k
+

t+2(i) chosen

in a period t+1 history when price reoptimization was permitted and a period t+1 history

when it was not.

Etp̂t+2(i) = ξ2p [p̂t(i)−∆(πt+2 −∆(πt+1]

+(1− ξp)ξp

∙
p̂∗t+1 − ψ0

b̄k
+

t+1(i)− ψ1
b̄k
+

t (i)−∆(πt+2

¸

+ξp(1− ξp)

∙
p̂∗t+2 − ψ0

µ
κ1
b̄k
+

t+1(i) + κ2
b̄k
+

t (i) + κ3 [p̂t(i)−∆(πt+1]

¶
− ψ1

b̄k
+

t+1(i)

¸

+
¡
1− ξp

¢2
[p̂∗t+2 − ψ0

µ
κ1
b̄k
+

t+1(i) + κ2
b̄k
+

t (i) + κ3

∙
p̂∗t+1 − ψ0

b̄k
+

t+1(i)− ψ1
b̄k
+

t (i)

¸¶

−ψ1
b̄k
+

t+1(i)]

or,

Etp̂t+2(i) = ξ2p [p̂t(i)−∆(πt+2 −∆(πt+1]

+(1− ξp)ξp

∙
ξp

1− ξp
∆(πt+1 − ψ0

b̄k
+

t+1(i)− ψ1
b̄k
+

t (i)−∆(πt+2

¸

+ξp(1− ξp)(
ξp

1− ξp
∆(πt+2 − (ψ0κ1 + ψ1)

b̄k
+

t+1(i)

−ψ0κ2
b̄k
+

t (i)− ψ0κ3 [p̂t(i)−∆(πt+1])

+
¡
1− ξp

¢2
[

ξp
1− ξp

∆(πt+2 −
¡
ψ0κ1 + ψ1 − ψ20κ3

¢ b̄k
+

t+1(i)

− (ψ0κ2 − ψ0ψ1κ3)
b̄k
+

t (i)− ψ0κ3
ξp

1− ξp
∆(πt+1]
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or,

Etp̂t+2(i) = ξ2p [p̂t(i)−∆(πt+2 −∆(πt+1]

+ξ2p∆(πt+1 − (1− ξp)ξp∆(πt+2 − (1− ξp)ξp

∙
ψ0
b̄k
+

t+1(i) + ψ1
b̄k
+

t (i)

¸

+ξ2p∆(πt+2 + ξp(1− ξp)ψ0κ3∆(πt+1

−ξp(1− ξp)

∙
(ψ0κ1 + ψ1)

b̄k
+

t+1(i) + ψ0κ2
b̄k
+

t (i) + ψ0κ3p̂t(i)

¸

+ξp
¡
1− ξp

¢
[∆(πt+2 − ψ0κ3∆(πt+1]−

¡
1− ξp

¢2
[
¡
ψ0κ1 + ψ1 − ψ20κ3

¢ b̄k
+

t+1(i)

+ (ψ0κ2 − ψ0ψ1κ3)
b̄k
+

t (i)]

or,

Etp̂t+2(i) = ξ2pp̂t(i)

−(1− ξp)ξp

∙
ψ0
b̄k
+

t+1(i) + ψ1
b̄k
+

t (i)

¸

−ξp(1− ξp)

∙
(ψ0κ1 + ψ1)

b̄k
+

t+1(i) + ψ0κ2
b̄k
+

t (i) + ψ0κ3p̂t(i)

¸

−
¡
1− ξp

¢2
∙¡

ψ0κ1 + ψ1 − ψ20κ3
¢ b̄k

+

t+1(i) + (ψ0κ2 − ψ0ψ1κ3)
b̄k
+

t (i)

¸

or,

Etp̂t+2(i) =
£
ξ2p − ξp(1− ξp)ψ0κ3

¤
p̂t(i)− [(1− ξp)ξp (ψ0 + ψ0κ1 + ψ1)

+
¡
1− ξp

¢2 ¡
ψ0κ1 + ψ1 − ψ20κ3

¢
]b̄k
+

t+1(i)

−
h
(1− ξp)ξp (ψ1 + ψ0κ2) +

¡
1− ξp

¢2
(ψ0κ2 − ψ0ψ1κ3)

i b̄k
+

t (i)

or, substituting out for b̄k
+

t+1(i),

Etp̂t+2(i) =
£
ξ2p − ξp(1− ξp)ψ0κ3

¤
p̂t(i)

−
h
(1− ξp)ξp (ψ0 + ψ0κ1 + ψ1) +

¡
1− ξp

¢2 ¡
ψ0κ1 + ψ1 − ψ20κ3

¢i

×

µ
κ1
b̄k
+

t (i) + κ2
b̄k
+

t−1(i) + κ3p̂t(i)

¶

−
h
(1− ξp)ξp (ψ1 + ψ0κ2) +

¡
1− ξp

¢2
(ψ0κ2 − ψ0ψ1κ3)

i b̄k
+

t (i)
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or,

Etp̂t+2(i) = {ξ2p − ξp(1− ξp)ψ0κ3

−
h
(1− ξp)ξp (ψ0 + ψ0κ1 + ψ1) +

¡
1− ξp

¢2 ¡
ψ0κ1 + ψ1 − ψ20κ3

¢i
κ3}p̂t(i)

−
h
(1− ξp)ξp (ψ0 + ψ0κ1 + ψ1) +

¡
1− ξp

¢2 ¡
ψ0κ1 + ψ1 − ψ20κ3

¢i
κ2
b̄k
+

t−1(i)

−{(1− ξp)ξp (ψ1 + ψ0κ2) +
¡
1− ξp

¢2
(ψ0κ2 − ψ0ψ1κ3)

+
h
(1− ξp)ξp (ψ0 + ψ0κ1 + ψ1) +

¡
1− ξp

¢2 ¡
ψ0κ1 + ψ1 − ψ20κ3

¢i
κ1}
b̄k
+

t (i)

= ap
0p̂t(i) + ap

1
b̄k
+

t−1(i) + ap
2
b̄k
+

t (i),

where

ap
1 = −(1− ξp)

£
ξp (ψ0 + ψ0κ1 + ψ1) +

¡
1− ξp

¢ ¡
ψ0κ1 + ψ1 − ψ20κ3

¢¤
κ2

ap
0 = ξ2p − ξp(1− ξp)ψ0κ3 + ap

1κ3/κ2

ap
2 = −(1− ξp)

£
ξp (ψ1 + ψ0κ2) +

¡
1− ξp

¢
(ψ0κ2 − ψ0ψ1κ3)

¤
+ ap

1κ1/κ2

Next,

Et
b̄k
+

t+2(i) = ξpEt
b̄k
+

t+2(i) (don’t change price in t+ 1)

+(1− ξp)Et
b̄k
+

t+2(i) (do change price in t+ 1)

= ξp

∙
κ1
b̄k
+

t+1(i) + κ2
b̄k
+

t (i) + κ3 (p̂t(i)−∆(πt+1)

¸

+(1− ξp)

∙
κ1
b̄k
+

t+1(i) + κ2
b̄k
+

t (i) + κ3

µ
ξp

1− ξp
∆(πt+1 − ψ0

b̄k
+

t+1(i)− ψ1
b̄k
+

t (i)

¶¸

or,

Et
b̄k
+

t+2(i) = ξp

∙
κ1
b̄k
+

t+1(i) + κ2
b̄k
+

t (i) + κ3p̂t(i)

¸

+(1− ξp)

∙
κ1
b̄k
+

t+1(i) + κ2
b̄k
+

t (i)− κ3ψ0
b̄k
+

t+1(i)− κ3ψ1
b̄k
+

t (i)

¸

=
£
ξpκ1 + (1− ξp)κ1 − (1− ξp)κ3ψ0

¤ b̄k
+

t+1(i)

+
£
ξpκ2 + (1− ξp)κ2 − (1− ξp)κ3ψ1

¤ b̄k
+

t (i)

+ξpκ3p̂t(i)

=
£
κ1 − (1− ξp)κ3ψ0

¤µ
κ1
b̄k
+

t (i) + κ2
b̄k
+

t−1(i) + κ3p̂t(i)

¶

+
£
κ2 − (1− ξp)κ3ψ1

¤ b̄k
+

t (i) + ξpκ3p̂t(i)
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or,

Et
b̄k
+

t+2(i) =
©£

κ1 − (1− ξp)κ3ψ0
¤
κ1 +

£
κ2 − (1− ξp)κ3ψ1

¤ª b̄k
+

t (i)

+
£
κ1 − (1− ξp)κ3ψ0

¤
κ2
b̄k
+

t−1(i)

+
©£

κ1 − (1− ξp)κ3ψ0
¤
κ3 + ξpκ3

ª
p̂t(i)

= ak
0p̂t(i) + ak

1
b̄k
+

t−1(i) + ak
2
b̄k
+

t (i),

where

ak
1 =

£
κ1 − (1− ξp)κ3ψ0

¤
κ2

ak
2 = κ2 − (1− ξp)κ3ψ1 + ak

1κ1/κ2

ak
0 = ξpκ3 + ak

1κ3/κ2

Let’s now substitute all this into (7.13):

γ̃0

∙
κ1Et

b̄k
+

t+2(i) + κ2
b̄k
+

t+1(i) + κ3Etp̂t+2(i)

¸
+ γ̃1Et

b̄k
+

t+2(i) + γ̃2Et
b̄k
+

t+1(i)

+γ̃3
b̄k
+

t (i) + γ̃4
b̄k
+

t−1(i) = Φ
£
ξp − (1− ξp)ψ0κ3

¤
p̂t(i)

or,

(γ̃0κ1 + γ̃1)Et
b̄k
+

t+2(i) + γ̃0κ3Etp̂t+2(i) + [γ̃0κ2 + γ̃2]Et
b̄k
+

t+1(i)

+γ̃3
b̄k
+

t (i) + γ̃4
b̄k
+

t−1(i) = Φ
£
ξp − (1− ξp)ψ0κ3

¤
p̂t(i)

or,

(γ̃0κ1 + γ̃1)

µ
ak
0p̂t(i) + ak

1
b̄k
+

t−1(i) + ak
2
b̄k
+

t (i)

¶

+γ̃0κ3

µ
ap
0p̂t(i) + ap

1
b̄k
+

t−1(i) + ap
2
b̄k
+

t (i)

¶

+ [γ̃0κ2 + γ̃2]

µ
κ1
b̄k
+

t (i) + κ2
b̄k
+

t−1(i) + κ3p̂t(i)

¶

+γ̃3
b̄k
+

t (i) + γ̃4
b̄k
+

t−1(i) = Φ
£
ξp − (1− ξp)ψ0κ3

¤
p̂t(i)

or,

£
(γ̃0κ1 + γ̃1) a

k
2 + γ̃0κ3a

p
2 + (γ̃0κ2 + γ̃2)κ1 + γ̃3

¤ b̄k
+

t (i)

+
£
(γ̃0κ1 + γ̃1) a

k
1 + γ̃0κ3a

p
1 + (γ̃0κ2 + γ̃2)κ2 + γ̃4

¤ b̄k
+

t−1(i)

+{(γ̃0κ1 + γ̃1) a
k
0 + γ̃0κ3a

p
0 + (γ̃0κ2 + γ̃2)κ3

−Φ
£
ξp − (1− ξp)ψ0κ3

¤
}p̂t(i)

= 0.
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This requires that the following three equations be satisfied:

(γ̃0κ1 + γ̃1) a
k
2 + γ̃0κ3a

p
2 + (γ̃0κ2 + γ̃2)κ1 + γ̃3 = 0 (7.14)

(γ̃0κ1 + γ̃1) a
k
1 + γ̃0κ3a

p
1 + (γ̃0κ2 + γ̃2)κ2 + γ̃4 = 0 (7.15)

(γ̃0κ1 + γ̃1) a
k
0 + γ̃0κ3a

p
0 + (γ̃0κ2 + γ̃2)κ3 = Φ

£
ξp − (1− ξp)ψ0κ3

¤
(7.16)

7.3. The Price First Order Condition

The intermediate good firm that reoptimizes its price optimizes:

Et

∞X

j=0

βjλt+j{

∙
Pt+j(i)

Pt+j

¸1−θ

Yt+j −Rt+j(ν)wt+j
ut+j(i)K̄t+j(i)

zt+j

⎛
⎜⎝

h
Pt+j(i)

Pt+j

i−θ

Yt+j + φz∗t+j

�t+jut+j(i)K̄t+j(i)

⎞
⎟⎠

1
1−α

−Υ−1t+jIt+j(i)−
£
a(ut+j(i))Υ

−1
t+j

¤
K̄t+j(i)},

with respect to Pt(i), subject to

Pt+1(i)

Pt+1
=

π1−(π(
t

πt+1

Pt(i)

Pt

for future histories in which it cannot reoptimize. Also,

Pt+2(i)

Pt+2
=

π1−(π(
t+1

πt+2

Pt+1(i)

Pt+1

=
π1−(π(

t+1

πt+2

π1−(π(
t

πt+1

Pt(i)

Pt

and so on...

Pt+j(i)

Pt+j
=

π1−(π(
t+j−1

πt+j
× · · · ×

π1−(π(
t

πt+1

Pt(i)

Pt

= Xt,j
Pt(i)

Pt
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Writing out the components of the firm’s objective which involve price and neglecting future

histories in which it reoptimizes its price:

Et

∞X

j=0

βjλt+j

⎧
⎪⎪⎨
⎪⎪⎩

∙
Pt+j(i)

Pt+j

¸1−θ

Yt+j −Rt+j(ν)wt+j
ut+j(i)K̄t+j(i)

zt+j

⎛
⎜⎝

h
Pt+j(i)

Pt+j

i−θ

Yt+j + φz∗t+j

�t+jut+j(i)K̄t+j(i)

⎞
⎟⎠

1
1−α

⎫
⎪⎪⎬
⎪⎪⎭

= λtEt

⎧
⎪⎪⎨
⎪⎪⎩

∙
Pt(i)

Pt

¸1−θ

Yt −Rt(ν)wt
ut(i)K̄t(i)

zt

⎛
⎜⎝

h
Pt(i)
Pt

i−θ

Yt + φz∗t

�tut(i)K̄t(i)

⎞
⎟⎠

1
1−α

⎫
⎪⎪⎬
⎪⎪⎭

+βλt+1ξpEt

⎧
⎪⎪⎨
⎪⎪⎩

∙
Xt,1

Pt(i)

Pt

¸1−θ

Yt+1 −Rt+1(ν)wt+1
ut+1(i)K̄t+1(i)

zt+1

⎛
⎜⎝

h
Xt,1

Pt(i)
Pt

i−θ

Yt+1 + φz∗t+1

�t+1ut+1(i)K̄t+1(i)

⎞
⎟⎠

1
1−α

⎫
⎪⎪⎬
⎪⎪⎭

+β2λt+2ξ
2
pEt

⎧
⎪⎪⎨
⎪⎪⎩

∙
Xt,2

Pt(i)

Pt

¸1−θ

Yt+2 −Rt+2(ν)wt+2
ut+2(i)K̄t+2(i)

zt+2

⎛
⎜⎝

h
Xt,2

Pt(i)
Pt

i−θ

Yt+2 + φz∗t+2

�t+2ut+2(i)K̄t+2(i)

⎞
⎟⎠

1
1−α

⎫
⎪⎪⎬
⎪⎪⎭

+...

+
¡
βξp
¢j

λt+jEt{

∙
Xt,j

Pt(i)

Pt

¸1−θ

Yt+j

−Rt+j(ν)wt+jut+j(i)K̄t+j(i)

zt+j

⎛
⎜⎝

h
Xt,j

Pt(i)
Pt

i−θ

Yt+j + φz∗t+j

�t+jut+j(i)K̄t+j(i)

⎞
⎟⎠

1
1−α

}

+...

Differentiate the jth term with respect to Pt(i) :

¡
βξp
¢j

λt+jEt{(1− θ) [Xt,j]
1−θ

∙
Pt(i)

Pt

¸−θ

Yt+j

+Rt+j(ν)wt+j
ut+j(i)K̄t+j(i)

zt+j

1

1− α

⎛
⎜⎝

h
Xt,j

Pt(i)
Pt

i−θ

Yt+j + φz∗t+j

�t+jut+j(i)K̄t+j(i)

⎞
⎟⎠

α
1−α

θX−θ
t,j

h
Pt(i)
Pt

i−θ−1
Yt+j

�t+jut+j(i)K̄t+j(i)
}
1

Pt
,
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or,

¡
βξp
¢j

λt+jEt{Xt,j
Pt(i)

Pt
Yt+j

+
θ

(1− θ)

�t+jut+j(i)K̄t+j(i)

1

Rt+j(ν)wt+j

�t+j (1− α) zt+j

×

⎛
⎜⎝

h
Xt,j

Pt(i)
Pt

i−θ

Yt+j + φz∗t+j

�t+jut+j(i)K̄t+j(i)

⎞
⎟⎠

α
1−α

Yt+j

�t+jut+j(i)K̄t+j(i)
}
X−θ

t,j

Pt

∙
Pt(i)

Pt

¸−θ−1
.

Recall that marginal cost is:

st(i) =
Rt(ν)wt

(1− α)�tzt

µ
yt(i) + φz∗t
�tKt(i)

¶ α
1−α

Substituting,

¡
βξp
¢j

λt+jEt

½
Pt(i)

Pt
Xt,j +

θ

(1− θ)
st+j(i)

¾
Yt+j

X−θ
t,j

Pt

∙
Pt(i)

Pt

¸−θ−1
.

The derivative of the firm’s objective with respect to Pt(i) is:

∞X

j=0

¡
βξp
¢j

λz∗,t+jỸt+jX
−θ
t,j

∙
Pt(i)

Pt

¸−θ−1
Et

½
Pt(i)

Pt
Xt,j −

θ

θ − 1st+j(i)

¾
= 0.

Expand this about steady state, taking into account that the object in braces is zero in

steady state (so that differentiating the objects outside the braces is unnecessary), and take

into account that λz∗,t+j Ỹt+j are constant in steady state and (Pt(i)/Pt) = Xt,j = 1 in steady

state: ∞X

j=0

¡
βξp
¢j

Et

n
p̂t(i) + X̂t,j − ŝt+j(i)

o
= 0,

since

s =
θ − 1

θ
.

Now,

Xt,1 =
π1−(π(

t

πt+1

so that,

X̂t,1 = (π̂t − π̂t+1 = −∆(π̂t+1.

Also,

Xt,2 =
π1−(π(

t+1

πt+2

π1−(π(
t

πt+1
,

69



so that,

X̂t,2 = −∆(π̂t+1 −∆(π̂t+2,

and so on. Then,

Et {p̂t(i)− ŝt(i)}

+
¡
βξp
¢1

Et {p̂t(i)−∆(π̂t+1 − ŝt+1(i)}

+
¡
βξp
¢2

Et {p̂t(i)−∆(π̂t+1 −∆(π̂t+2 − ŝt+2(i)}

+
¡
βξp
¢3

Et {p̂t(i)−∆(π̂t+1 −∆(π̂t+2 −∆(π̂t+3 − ŝt+3(i)}

+....

or,

1

1− βξp
p̂t(i)−

βξp
1− βξp

∆(π̂t+1 −
¡
βξp
¢2

1− βξp
∆(π̂t+2 −

¡
βξp
¢3

1− βξp
∆(π̂t+3 − ...

−
∞X

j=0

¡
βξp
¢j

ŝt+j(i)

= 0,

or,

p̂∗t (i) =
∞X

j=1

¡
βξp
¢j
∆(π̂t+j +

¡
1− βξp

¢ ∞X

j=0

¡
βξp
¢j

ŝt+j(i)

But,

ŝt(i) = ŝt +
α

1− α

σa (1− α)

σa (1− α) + 1

∙ −θỹ

ỹ + φ
p̂t(i)− b̄k

+

t (i)

¸
,

ŝt+1(i) = ŝt+1 +
α

1− α

σa (1− α)

σa (1− α) + 1

∙ −θỹ

ỹ + φ
(p̂t(i)−∆(πt+1)− b̄k

+

t+1(i)

¸

ŝt+2(i) = ŝt+2 +
α

1− α

σa (1− α)

σa (1− α) + 1

∙ −θỹ

ỹ + φ
(p̂t(i)−∆(πt+1 −∆(πt+2)− b̄k

+

t+2(i)

¸

ŝt+3(i) = ŝt+3 +
α

1− α

σa (1− α)

σa (1− α) + 1

∙ −θỹ

ỹ + φ
(p̂t(i)−∆(πt+1 −∆(πt+2 −∆(πt+3)− b̄k

+

t+3(i)

¸

...
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Then,

∞X

j=0

¡
βξp
¢j

ŝt+j(i)

= ŝt(i)

+
¡
βξp
¢
ŝt+1(i)

+
¡
βξp
¢2

ŝt+2(i)

+
¡
βξp
¢3

ŝt+3(i)

+...

= ŝt +
α

1− α

σa (1− α)

σa (1− α) + 1

∙ −θỹ

ỹ + φ
p̂t(i)− b̄k

+

t (i)

¸

+
¡
βξp
¢½

ŝt+1 +
α

1− α

σa (1− α)

σa (1− α) + 1

∙ −θỹ

ỹ + φ
(p̂t(i)−∆(πt+1)− b̄k

+

t+1(i)

¸¾

+
¡
βξp
¢2
½
ŝt+2 +

α

1− α

σa (1− α)

σa (1− α) + 1

∙ −θỹ

ỹ + φ
(p̂t(i)−∆(πt+1 −∆(πt+2)− b̄k

+

t+2(i)

¸¾

+
¡
βξp
¢3
½
ŝt+3 +

α

1− α

σa (1− α)

σa (1− α) + 1

∙ −θỹ

ỹ + φ
(p̂t(i)−∆(πt+1 −∆(πt+2 −∆(πt+3)− b̄k

+

t+3(i)

¸¾

+...

=
∞X

j=0

¡
βξp
¢j

ŝt+j −
α

1− α

σa (1− α)

σa (1− α) + 1

θỹ

ỹ + φ

×

"
1

1− βξp
p̂t(i)−

1

1− βξp

∞X

j=1

¡
βξp
¢j
∆(πt+j +

ỹ + φ

θỹ

∞X

j=0

¡
βξp
¢j b̄k

+

t+j(i)

#
.

We now substitute this into the price equation. Recall,

p̂∗t (i) =
∞X

j=1

¡
βξp
¢j
∆(π̂t+j +

¡
1− βξp

¢ ∞X

j=0

¡
βξp
¢j

ŝt+j(i)

so that,

p̂∗t (i) =
∞X

j=1

¡
βξp
¢j
∆(π̂t+j +

¡
1− βξp

¢ ∞X

j=0

¡
βξp
¢j

ŝt+j

− α

1− α

σa (1− α)

σa (1− α) + 1

θỹ

ỹ + φ

"
p̂∗t (i)−

∞X

j=1

¡
βξp
¢j
∆(πt+j +

¡
1− βξp

¢ ỹ + φ

θỹ

∞X

j=0

¡
βξp
¢j b̄k

+

t+j(i)

#

We must now evaluate the expression involving the present value of b̄k
+

t+j(i). Recall:

p̂t+j(i) = p̂t(i)−∆(πt+1 −∆(πt+2 − ...−∆(πt+j,
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and:

b̄k
+

t+1(i) = κ1k̃t(i) + κ2
b̄k
+

t−1(i) + κ3p̂t(i)

p̂∗t (i) = p̂∗t − ψ0k̃t(i)− ψ1
b̄k
+

t−1(i), k̃t(i) ≡ k̂t(i)− K̂t,

Stack the capital decision rule as a first order system:

zt =

Ã b̄k
+

t+1(i)
b̄k
+

t (i)

!

Then,

zt = Azt−1 +

µ
κ3p̂

∗
t (i)
0

¶

A =

∙
κ1 κ2
1 0

¸
.

Then,

Êi
tzt = Azt−1 +

µ
κ3p̂

∗
t (i)
0

¶

Êi
tzt+1 = Azt +

µ
κ3 (p̂

∗
t (i)−∆(Etπt+1)

0

¶

= A2zt−1 +A

µ
κ3p̂

∗
t (i)
0

¶
+

µ
κ3 (p̂

∗
t (i)−∆(Etπt+1)

0

¶

= A2zt−1 + (A+ I)

µ
κ3p̂

∗
t (i)
0

¶
−
µ

κ3∆(Etπt+1

0

¶
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Also,

Êi
tzt+2 = A3zt−1 +A2

µ
κ3p̂

∗
t (i)
0

¶
+A

µ
κ3 (p̂

∗
t (i)−∆(Etπt+1)

0

¶

+

µ
κ3 (p̂

∗
t (i)−∆(Etπt+1 −∆(Etπt+2)

0

¶

= A3zt−1 +
¡
A2 +A+ I

¢µ κ3p̂
∗
t (i)
0

¶
− (A+ I)

µ
κ3∆(Etπt+1

0

¶
−
µ

κ3∆(Etπt+2

0

¶

Êi
tzt+3 = A4zt−1 +A3

µ
κ3p̂

∗
t (i)
0

¶
+A2

µ
κ3 (p̂

∗
t (i)−∆(Etπt+1)

0

¶

+A

µ
κ3 (p̂

∗
t (i)−∆(Etπt+1 −∆(Etπt+2)

0

¶

+

µ
κ3 (p̂

∗
t (i)−∆(Etπt+1 −∆(Etπt+2 −∆(Etπt+3)

0

¶

= A4zt−1 +
£
A3 +A2 +A+ I

¤µ κ3p̂
∗
t (i)
0

¶
−
£
A2 +A+ I

¤µ κ3∆(Etπt+1

0

¶

− [A+ I]

µ
κ3∆(Etπt+2

0

¶
− I

µ
κ3∆(Etπt+3

0

¶

Êi
tzt+4 = A5zt−1 +

£
A4 +A3 +A2 +A

¤µ κ3p̂
∗
t (i)
0

¶
−
£
A3 +A2 +A

¤µ κ3∆(Etπt+1

0

¶

−
£
A2 +A

¤µ κ3∆(Etπt+2

0

¶
−A

µ
κ3∆(Etπt+3

0

¶

+

µ
κ3 (p̂

∗
t (i)−∆(Etπt+1 −∆(Etπt+2 −∆(Etπt+3 −∆(Etπt+4)

0

¶

or,

Êi
tzt+4 = A5zt−1 +

£
A4 +A3 +A2 +A+ I

¤µ κ3p̂
∗
t (i)
0

¶
−
£
A3 +A2 +A+ I

¤µ κ3∆(Etπt+1

0

¶

−
£
A2 +A+ I

¤µ κ3∆(Etπt+2

0

¶
− [A+ I]

µ
κ3∆(Etπt+3

0

¶
−
µ

κ3∆(Etπt+4

0

¶

The geometic sum formula:

S = I +A+A2 + ...+Ak

AS = A+A2 + ...+Ak+1

[I −A]S = I −Ak+1

S = [I −A]−1
£
I −Ak+1

¤
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Then,

Êi
tzt+k = Ak+1zt−1 + [I −A]−1

£
I −Ak+1

¤µ κ3p̂
∗
t (i)
0

¶
− [I −A]−1

£
I −Ak

¤µ κ3∆(Etπt+1

0

¶

− [I −A]−1
£
I −Ak−1¤

µ
κ3∆(Etπt+2

0

¶
− [I −A]−1

£
I −Ak−2¤

µ
κ3∆(Etπt+3

0

¶

−...− [I −A]−1
£
I −Ak−(j−1)¤

µ
κ3∆(Etπt+j

0

¶
− ...− [I −A]−1 [I −A]

µ
κ3∆(Etπt+k

0

¶

Now, we want (let τ = [1 0]):

∞X

j=0

¡
ξpβ
¢j

Êi
t k̃t+j(i)

= k̃t(i) + τξpβzt + τ
¡
ξpβ
¢2

Êi
tzt+1

+τ
¡
ξpβ
¢3

Êi
tzt+2 + τ

¡
ξpβ
¢4

Êi
tzt+3 + τ

¡
ξpβ
¢5

Êi
tzt+4 + ...

= k̃t(i) + τξpβ

∙
Azt−1 +

µ
κ3p̂

∗
t (i)
0

¶¸

+τ
¡
ξpβ
¢2
∙
A2zt−1 + (A+ I)

µ
κ3p̂

∗
t (i)
0

¶
−
µ

κ3∆(Etπt+1

0

¶¸

+τ
¡
ξpβ
¢3
∙
A3zt−1 +

¡
A2 +A+ I

¢µ κ3p̂
∗
t (i)
0

¶
− (A+ I)

µ
κ3∆(Etπt+1

0

¶
−
µ

κ3∆(Etπt+2

0

¶¸

+τ
¡
ξpβ
¢4
[A4zt−1 +

¡
A3 +A2 +A+ I

¢µ κ3p̂
∗
t (i)
0

¶
−
¡
A2 +A+ I

¢µ κ3∆(Etπt+1

0

¶

− [A+ I]

µ
κ3∆(Etπt+2

0

¶
− I

µ
κ3∆(Etπt+3

0

¶
]

+τ
¡
ξpβ
¢5
[A5zt−1 +

£
A4 +A3 +A2 +A+ I

¤µ κ3p̂
∗
t (i)
0

¶
−
£
A3 +A2 +A+ I

¤µ κ3∆(Etπt+1

0

¶

−
£
A2 +A+ I

¤µ κ3∆(Etπt+2

0

¶
− [A+ I]

µ
κ3∆(Etπt+3

0

¶
−
µ

κ3∆(Etπt+4

0

¶
]

+...+

τ
¡
ξpβ
¢k+1

[Ak+1zt−1 + (I −A)−1
¡
I −Ak+1

¢µ κ3p̂
∗
t (i)
0

¶
− (I −A)−1

¡
I −Ak

¢µ κ3∆(Etπt+1

0

¶

− (I −A)−1
¡
I −Ak−1¢

µ
κ3∆(Etπt+2

0

¶
− (I −A)−1

¡
I −Ak−2¢

µ
κ3∆(Etπt+3

0

¶

...− (I −A)−1
¡
I −Ak−(j−1)¢

µ
κ3∆(Etπt+j

0

¶
− ...− (I −A)−1 (I −A)

µ
κ3∆(Etπt+k

0

¶
]

+...
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Collecting terms:

∞X

j=0

¡
ξpβ
¢j

Êi
t k̃t+j

= k̃t(i) + τξpβA
¡
I − ξpβA

¢−1
zt−1

+τ
h
ξpβI +

¡
ξpβ
¢2
(A+ I) +

¡
ξpβ
¢3 ¡

A2 +A+ I
¢
+ ...+

¡
ξpβ
¢k+1

(I −A)−1
¡
I −Ak+1

¢
+ ...

i

×

µ
κ3p̂

∗
t (i)
0

¶

−τ
h¡

ξpβ
¢2

I +
¡
ξpβ
¢3
(A+ I) +

¡
ξpβ
¢4 ¡

A2 +A+ I
¢
+ ...+

¡
ξpβ
¢k+1

(I −A)−1
¡
I −Ak

¢
+ ...

i

×

µ
κ3∆(Etπt+1

0

¶

−τ
h¡

ξpβ
¢3

I +
¡
ξpβ
¢4
(A+ I) +

¡
ξpβ
¢5 ¡

A2 +A+ I
¢
+ ...+ (I −A)−1

¡
I −Ak−1¢i

×

µ
κ3∆(Etπt+2

0

¶

−...

Simplifying the coefficient on κ3p̂
∗
t (i) :

ξpβ (I −A)−1 (I −A) +
¡
ξpβ
¢2
(I −A)−1

¡
I −A2

¢
+
¡
ξpβ
¢3
(I −A)−1

¡
I −A3

¢

+...+
¡
ξpβ
¢k+1

(I −A)−1
¡
I −Ak+1

¢
+ ...

= (I −A)−1
h
ξpβ (I −A) +

¡
ξpβ
¢2 ¡

I −A2
¢
+
¡
ξpβ
¢3 ¡

I −A3
¢
+ ...+

¡
ξpβ
¢k+1 ¡

I −Ak+1
¢
+ ...

i

= (I −A)−1
∙

ξpβ

1− ξpβ
I − ξpβA

¡
I − ξpβA

¢−1
¸

The coefficient on κ3∆(Etπt+1 :

¡
ξpβ
¢2
(I −A)−1 (I −A) +

¡
ξpβ
¢3
(I −A)−1

¡
I −A2

¢
+
¡
ξpβ
¢4
(I −A)−1

¡
I −A3

¢

+...+
¡
ξpβ
¢k+1

(I −A)−1
¡
I −Ak

¢
+ ...

= (I −A)−1 ξpβ
h
ξpβ (I −A) +

¡
ξpβ
¢2 ¡

I −A2
¢
+
¡
ξpβ
¢3 ¡

I −A3
¢
+ ...+

¡
ξpβ
¢k ¡

I −Ak
¢
+ ...

i

= (I −A)−1 ξpβ

∙
ξpβ

1− ξpβ
I − ξpβA

¡
I − ξpβA

¢−1
¸

The coefficient on κ3∆(Etπt+2 :

(I −A)−1
¡
ξpβ
¢2
∙

ξpβ

1− ξpβ
I − ξpβA

¡
I − ξpβA

¢−1
¸
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and so on. Then,

∞X

j=0

¡
ξpβ
¢j

Êi
t k̃t+j

= k̃t(i) + τξpβA
¡
I − ξpβA

¢−1
zt−1 + τ (I −A)−1

∙
ξpβ

1− ξpβ
I − ξpβA

¡
I − ξpβA

¢−1
¸µ

κ3p̂
∗
t (i)
0

¶

−τ (I −A)−1 ξpβ

∙
ξpβ

1− ξpβ
I − ξpβA

¡
I − ξpβA

¢−1
¸µ

κ3∆(Etπt+1

0

¶

−τ (I −A)−1
¡
ξpβ
¢2
∙

ξpβ

1− ξpβ
I − ξpβA

¡
I − ξpβA

¢−1
¸µ

κ3∆(Etπt+2

0

¶

−...

So,

∞X

j=0

¡
ξpβ
¢j

Êi
t k̃t+j = k̃t(i) + τξpβA

¡
I − ξpβA

¢−1
zt−1

+

½
τ (I −A)−1

∙
ξpβ

1− ξpβ
I − ξpβA

¡
I − ξpβA

¢−1
¸
τ 0
¾

κ3p̂
∗
t (i)

−
½
τ (I −A)−1

∙
ξpβ

1− ξpβ
I − ξpβA

¡
I − ξpβA

¢−1
¸
τ 0
¾

κ3

∞X

j=1

¡
ξpβ
¢j
∆(Etπt+j

Substitute this into the first order condition for p̂∗t (i):

p̂∗t (i) =
∞X

j=1

¡
βξp
¢j
∆(π̂t+j +

¡
1− βξp

¢ ∞X

j=0

¡
βξp
¢j

ŝt+j

− α

1− α

σa (1− α)

σa (1− α) + 1

θỹ

ỹ + φ

"
p̂∗t (i)−

∞X

j=1

¡
βξp
¢j
∆(πt+j +

¡
1− βξp

¢ ỹ + φ

θỹ

∞X

j=0

¡
βξp
¢j b̄k

+

t+j(i)

#

to obtain:

p̂∗t (i) =
∞X

j=1

¡
βξp
¢j
∆(π̂t+j +

¡
1− βξp

¢ ∞X

j=0

¡
βξp
¢j

ŝt+j (7.17)

− α

1− α

σa (1− α)

σa (1− α) + 1

θỹ

ỹ + φ

"
p̂∗t (i)−

∞X

j=1

¡
βξp
¢j
∆(πt+j

#

− α

1− α

σa (1− α)

σa (1− α) + 1

¡
1− βξp

¢
{k̃t(i) + τξpβA

¡
I − ξpβA

¢−1
zt−1

+

µ
τ (I −A)−1

∙
ξpβ

1− ξpβ
I − ξpβA

¡
I − ξpβA

¢−1
¸
τ 0
¶

κ3p̂
∗
t (i)

−
µ
τ (I −A)−1

∙
ξpβ

1− ξpβ
I − ξpβA

¡
I − ξpβA

¢−1
¸
τ 0
¶

κ3

∞X

j=1

¡
ξpβ
¢j
∆(Etπt+j}
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We now collect terms in this expression. Move terms in p̂∗t (i) to the left of the equality in

(7.17). The coefficient on p̂∗t (i) then is:

1 +
α

1− α

σa (1− α)

σa (1− α) + 1

θỹ

ỹ + φ

+
α

1− α

σa (1− α)

σa (1− α) + 1

¡
1− βξp

¢µ
τ (I −A)−1

∙
ξpβ

1− ξpβ
I − ξpβA

¡
I − ξpβA

¢−1
¸
τ 0
¶

κ3

= 1 +
α

1− α

σa (1− α)

σa (1− α) + 1

½
θỹ

ỹ + φ
+
¡
1− βξp

¢µ
τ (I −A)−1

∙
ξpβ

1− ξpβ
I − ξpβA

¡
I − ξpβA

¢−1
¸
τ 0
¶

κ3

¾

= ζ−1,

say. Collect terms in
P∞

j=1

¡
βξp
¢j
∆(π̂t+j to the right of the equality in (7.17). The coefficient

on these terms is ζ−1 too. Thus, collecting terms in (7.17) and multiplying the result by ζ,

we obtain:

ζ−1p̂∗t (i) = ζ−1
∞X

j=1

¡
βξp
¢j
∆(π̂t+j +

¡
1− βξp

¢ ∞X

j=0

¡
βξp
¢j

ŝt+j

− α

1− α

σa (1− α)

σa (1− α) + 1

¡
1− βξp

¢n
k̃t(i) + τξpβA

¡
I − ξpβA

¢−1
zt−1

o

or, after multiplication by ζ :

p̂∗t (i) =
∞X

j=1

¡
βξp
¢j
∆(π̂t+j +

¡
1− βξp

¢
ζ

∞X

j=0

¡
βξp
¢j

ŝt+j

− α

1− α

σa (1− α)

σa (1− α) + 1

¡
1− βξp

¢
ζk̃t(i)

− α

1− α

σa (1− α)

σa (1− α) + 1

¡
1− βξp

¢
ζ
h
τξpβA

¡
I − ξpβA

¢−1
τ 0
i
k̃t(i)

− α

1− α

σa (1− α)

σa (1− α) + 1

¡
1− βξp

¢
ζ

∙
τξpβA

¡
I − ξpβA

¢−1
µ
0
1

¶¸
k̃t−1(i)

(recall, τ ≡ [1 0]), or, collecting terms in k̃t(i) :

p̂∗t (i) =
∞X

j=1

¡
βξp
¢j
∆(π̂t+j +

¡
1− βξp

¢
ζ

∞X

j=0

¡
βξp
¢j

ŝt+j

− α

1− α

σa (1− α)

σa (1− α) + 1

¡
1− βξp

¢
ζ
n
1 + τξpβA

¡
I − ξpβA

¢−1
τ 0
o
k̃t(i)

− α

1− α

σa (1− α)

σa (1− α) + 1

¡
1− βξp

¢
ζ

∙
τξpβA

¡
I − ξpβA

¢−1
µ
0
1

¶¸
k̃t−1(i)

Write this as:

p̂∗t (i) = p̂∗t − ψ0k̃t(i)− ψ1
b̄k
+

t−1(i),
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where.

p̂∗t =
∞X

j=1

¡
βξp
¢j
∆(π̂t+j + ζ

¡
1− βξp

¢ ∞X

j=0

¡
βξp
¢j

ŝt+j (7.18)

Also,

ψ0 =
α

1− α

σa (1− α)

σa (1− α) + 1

¡
1− βξp

¢
ζ
n
1 + τξpβA

¡
I − ξpβA

¢−1
τ 0
o

(7.19)

ψ1 =
α

1− α

σa (1− α)

σa (1− α) + 1

¡
1− βξp

¢
ζ

∙
τξpβA

¡
I − ξpβA

¢−1
µ
0
1

¶¸
. (7.20)

7.4. Pulling Everything Together to Get the Reduced Form

Solve for p̂∗t in (7.18) using (7.6), to obtain:

ξp
1− ξp

∆(π̂t =
∞X

j=1

¡
βξp
¢j
∆(π̂t+j + ζ

¡
1− βξp

¢ ∞X

j=0

¡
βξp
¢j

ŝt+j

=
βξpL

−1

1− βξpL
−1∆(π̂t + ζ

¡
1− βξp

¢

1− βξpL
−1 ŝt.

Multiply by 1− βξpL
−1 and rearrange:

∆(π̂t = β∆(π̂t+1 +

¡
1− ξp

¢ ¡
1− βξp

¢

ξp
ζŝt

The key parameter to be solved for is ζ. To do so, first find κ1, κ2, κ3, ψ0, ψ1 to solve (7.14),

(7.15), (7.16), (7.19), (7.20). Then, evaluate (??).

To get a feel for how these formulas work, consider the following example. Here, λw =

1.05, λf = 1.2, µΥ = 1+ .03/4, α = 0.36, x = 1.017, β = 1.03−.25, δ = 0.025, η = 0.036, µz =

1.0001, b = 0.73, σL = 1, ψL = 1, V = 1.43, ε = 1.00830983517582, S00 = 1.11651914318597.

Steady state consumption to output ratio is c/ỹ = 0.68, steady state hours worked are 0.95,

and q = 1.09, φ = 0.42, m = 2.50, k̄ = 19, w̃ = 1.52 (these numbers have been rounded).

The following figure displays γ, where

γ =

¡
1− ξp

¢ ¡
1− βξp

¢

ξp
ζ

for σa = 0.1 and σa = 10, 000. The former corresponds to variable capital utilization,

and the latter, to no variable capital utilization.In addition, the line indicated by circles

displays γ in the economy-wide factor market case, when ζ = 1. (The values of γ for the

case σa = 0.01 were also computed, but they virtually coincide with the line indicated by

circles.) The horizontal axis displays the mean times between reoptimizations, 1/(1 − ξp).

The micro empirical literature suggests that the mean time between reoptimizations may
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be 1.72 quarters. With this mean time, when there is no variable capital utilization, γ is a

bit above 0.2. With economy-wide factor markets, γ is 0.80. Thus, without variable capital

utilization, the value of γ is cut by a factor of 4 with the assumption of economy-wide capital

markets.

Now, suppose instead that econometric methods produce an estimate γ = 0.56. What

is the implied time between price reoptimizations under economy-wide capital markets and

under firm-specific capital? This value of γ is indicated under the horizontal axis. Under

economy-wide factor markets, the implied duration between price optimization is 1.93 quar-

ters. Under firm-specific capital the implied duration between price optimization is 1.35

quarters. If the estimate of γ were instead in the range of 0.2, then under firm-specific

capital, the estimate of duration would be around 1.7 quarters, while it would be well over

2 quarters for economy-wide capital markets.
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7.5. Who’se Doing the Production after a Monetary Shock?

We suppose that the economy is in a steady state up to period 1, when a monetary injection

occurs. Because prices are set before the monetary shock, in period 1 all prices are identical,

and all production is equal. We now discuss each period in turn. The first part of the

discussion is in a sense a failure. It’s a laborious discussion of what happens in period 2,

3 and 4. The next subsection covers period N, and is more general and simpler too. Final

section discusses what can be done.

7.5.1. Period 2

In Period 2, a fraction of firms, (1− ξp) is able to reoptimize its price, and a fraction, ξp, is

not. From before, we know that aggregate output, Ŷ2, is

Ŷ2 =

Z

I

y2(i)di+

Z

J

y2(j)dj,

where I denotes the set of firms that can reoptimize and J denotes the others. As discussed

above, the ones that can reoptimize their price in period 2 do so according to:

b̄k
+

t+1(i) = κ1
b̄k
+

t (i) + κ2
b̄k
+

t−1(i) + κ3p̂t(i)

p̂∗t (i) = p̂∗t − ψ0
b̄k
+

t (i)− ψ1
b̄k
+

t−1(i),
b̄k
+

t (i) ≡ b̄kt(i)− b̄kt,

where ψ0, ψ1, κ1, κ2, κ3 are computed as discussed in the previous subsection. The amount

that the period 2 optimizers actually produce is determined by their demand curve:

−θp̂2(i) + Ŷ2 = ŷ2(i).

Substitute the price of the optimizers into this expression:

−θ

∙
p̂∗2 − ψ0

b̄k
+

2 (i)− ψ1
b̄k
+

1 (i)

¸
+ Ŷ2 = ŷ2(i).

In period 1, all firms have the same capital, so that b̄k
+

1 (i) = 0. In addition, all firms make the

same investment decision in period 1, because their situations are symmetric. So, b̄k
+

2 (i) = 0.

Finally, we also have,

p̂∗t =
ξp

(1− ξp)
∆(π̂t,

in each period. We conclude that the output of the ith price-optimizing firms is given by:

−θ
ξp

(1− ξp)
∆(π̂2 + Ŷ2 = ŷ∗2(i).
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Now consider the jth firm, which cannot optimize in period 2. It sets is price according to:

p̂2(j) = p̂1(j)−∆(π̂2,

since p̂1(i) = 0, due to the fact that all prices are equal in period 1. To determine how much

the jth firm produces, substitute its price into the demand curve

−θ [p̂1(j)−∆(π̂2] + Ŷ2 = ŷ2(j),

or, since p̂1(j) = 0,

ŷ2(j) = θ∆(π̂2 + Ŷ2.

Total output of firms that reoptimize their price is:
Z

I

ŷ2(i)di = (1− ξp)

∙
−θ

ξp
(1− ξp)

∆(π̂2 + Ŷ2

¸

−θξp∆(π̂2 + (1− ξp)Ŷ2

Total output of firms that cannot reoptimize their price is:
Z

J

ŷ2(j)dj = ξp

h
θ∆(π̂2 + Ŷ2

i

= ξpθ∆(π̂2 + ξpŶ2

The sum of these is obviously Ŷ2, aggregate output. The firms that reoptimize their price

reduce output and the firms that cannot, must increase their output. A worrisome feature of

this result, is that the result seems to have nothing to do with the firm-specificity of capital.

7.5.2. Period 3

Now consider period 3. In this period there are four types of firms:

� (1) the (1− ξp)
2 those who optimized in period 2 and in period 3

� (2) the ξp(1− ξp) who did not optimize in period 2 and did in period 3

� (3) the ξ2p who did not optimize in period 2 and period 3

� (4) the (1− ξp)ξp who optimized in period 2 and did not in period 3.

We now consider the price of the typical firm in each of these four categories. Consider

category (1) first. The ith firm in categories (1) and (2) set their price according to:

p̂∗3(i) =
ξp

(1− ξp)
∆(π̂3 − ψ0

b̄k
+

3 (i)− ψ1
b̄k
+

2 (i)

b̄k
+

3 (i) = κ1
b̄k
+

2 (i) + κ2
b̄k
+

1 (i) + κ3p̂2(i).
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Actually, for the reasons given above, b̄k
+

1 (i) =
b̄k
+

2 (i) = 0, so that, after substituting,

p̂∗3(i) =
ξp

(1− ξp)
∆(π̂3 − ψ0κ3p̂2(i).

The ith firm in category (1) optimized p̂2(i), and the price chosen is the same for all i, so

that

p̂∗2(i) =
ξp

(1− ξp)
∆(π̂2.

Then,

p̂∗3(i) =
ξp

(1− ξp)
∆(π̂3 − ψ0κ3

ξp
(1− ξp)

∆(π̂2.

=
ξp

(1− ξp)
[∆(π̂3 − ψ0κ3∆(π̂2]

Given the demand curve:

−θp̂2(i) + Ŷ2 = ŷ2(i).

the firm in category (1) produces

ŷ3(i) = −θ

∙
ξp

(1− ξp)
(∆(π̂3 − ψ0κ3∆(π̂2)

¸
+ Ŷ3.

Total production in this category is (1− ξp)
2 times this much:

(1) = −θ
£
(1− ξp)ξp (∆(π̂3 − ψ0κ3∆(π̂2)

¤
+ (1− ξp)

2Ŷ3.

Now consider the firms in category (2). They set their price according to

p̂∗3(i) =
ξp

(1− ξp)
∆(π̂3 − ψ0κ3p̂2(i),

where

p̂2(i) = p̂1(i)−∆(π̂2

= −∆(π̂2.

Then,

p̂∗3(i) =
ξp

(1− ξp)
∆(π̂3 + ψ0κ3∆(π̂2.

The demand for their product is

ŷ3(i) = −θp̂3(i) + Ŷ3,
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so that total demand for this type of firm’s product is:

(2) − θξp(1− ξp)

∙
ξp

(1− ξp)
∆(π̂3 + ψ0κ3∆(π̂2

¸
+ ξp(1− ξp)Ŷ3,

Now consider the firms in category (3). They set their price according to:

p̂3(i) = p̂1(i)−∆(π̂2 −∆(π̂3

The demand curve for their product is:

ŷ3(i) = −θp̂3(i) + Ŷ3,

so that

ŷ3(i) = θ [∆(π̂2 +∆(π̂3] + Ŷ3.

Total production by these firms is:

(3) ξ2pθ [∆(π̂2 +∆(π̂3] + ξ2pŶ3.

Now consider category (4). They set their price according to:

p̂3(i) = p̂∗2(i)−∆(π̂3,

where

p̂∗2(i) =
ξp

(1− ξp)
∆(π̂2 − ψ0

b̄k
+

2 (i)− ψ1
b̄k
+

1 (i)

=
ξp

(1− ξp)
∆(π̂2

where we have used,
b̄k
+

2 (i) =
b̄k
+

1 (i) = 0

Thus,

p̂3(i) =
ξp

(1− ξp)
∆(π̂2 −∆(π̂3.

The demand for their product is:

ŷ3(i) = −θp̂3(i) + Ŷ3,

so

ŷ3(i) = −θ

∙
ξp

(1− ξp)
∆(π̂2 −∆(π̂3

¸
+ Ŷ3.
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Total output of category (4) firms is:

(4) − θ(1− ξp)ξp

∙
ξp

(1− ξp)
∆(π̂2 −∆(π̂3

¸
+ (1− ξp)ξpŶ3.

Total output is just the sum of all four outputs:

−θ
£
(1− ξp)ξp (∆(π̂3 − ψ0κ3∆(π̂2)

¤
+ (1− ξp)

2Ŷ3

−θξp(1− ξp)

∙
ξp

(1− ξp)
∆(π̂3 + ψ0κ3∆(π̂2

¸
+ ξp(1− ξp)Ŷ3

+ξ2pθ [∆(π̂2 +∆(π̂3] + ξ2pŶ3

−θ(1− ξp)ξp

∙
ξp

(1− ξp)
∆(π̂2 −∆(π̂3

¸
+ (1− ξp)ξpŶ3

= −θ
£
(1− ξp)ξp (∆(π̂3 − ψ0κ3∆(π̂2)

¤
(change, change)

−θξp(1− ξp)

∙
ξp

(1− ξp)
∆(π̂3 + ψ0κ3∆(π̂2

¸
(don’t change, do change)

+ξ2pθ [∆(π̂2 +∆(π̂3] (no change, no change)

−θ(1− ξp)ξp

∙
ξp

(1− ξp)
∆(π̂2 −∆(π̂3

¸
(do change, don’t change)

+Ŷ3

=
£
θ(1− ξp)ξpψ0κ3 − θξp(1− ξp)ψ0κ3 + ξ2pθ − θξ2p

¤
∆(π̂2

+

∙
−θ(1− ξp)ξp − θξp(1− ξp)

ξp
(1− ξp)

+ ξ2pθ + θ(1− ξp)ξp

¸
∆(π̂3

+Ŷt

= Ŷt

The case of economy-wide capital rental markets corresponds to these formulas with ψ0 =

κ3 = 0.

7.5.3. Period 4

Now consider period 4. In this period there are four types of firms:

� (1) the (1− ξp)
3 who optimized in periods 2, 3 and 4

� (2) the ξp(1− ξp)
2 who did not optimize in period 2, but did in periods 3 and 4

� (3) the ξ2p(1− ξp) who did not optimize in periods 2 and 3, but did in period 4

� (4) the ξ3p who did not optimize in periods 2, 3 and 4

� (5) the (1− ξp)
2ξp who optimized in periods 2, 3, but did not in period 4
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� (6) the (1− ξp)ξp(1− ξp) who did not optimize in periods 2 and 4, but did in period 3

� (7) the (1− ξp)ξ
2
p who did optimize in period 2, but did not in periods 3 and 4

� (8) the (1− ξp)ξp(1− ξp) who optimized in periods 2 and 4, but did not in period 3

Firms setting prices in period 4, satisfy the following equations:

p̂∗4(i) =
ξp

(1− ξp)
∆(π̂4 − ψ0

b̄k
+

4 (i)− ψ1
b̄k
+

3 (i)

b̄k
+

4 (i) = κ1
b̄k
+

3 (i) + κ2
b̄k
+

2 (i) + κ3p̂3(i)

p̂∗3(i) =
ξp

(1− ξp)
∆(π̂3 − ψ0κ3p̂2(i).

p̂∗2(i) =
ξp

(1− ξp)
∆(π̂2.

p̂∗3(i) =
ξp

(1− ξp)
∆(π̂3 − ψ0

b̄k
+

3 (i)− ψ1
b̄k
+

2 (i)

b̄k
+

3 (i) = κ1
b̄k
+

2 (i) + κ2
b̄k
+

1 (i) + κ3p̂2(i).

As noted before, b̄k
+

1 (i) =
b̄k
+

2 (i) = 0. It is useful to have an expression relating the price set

by optimizers in period 4, to the prices they set in periods 2 and 3:

p̂∗4(i) =
ξp

(1− ξp)
∆(π̂4 − ψ0

b̄k
+

4 (i)− ψ1
b̄k
+

3 (i)

=
ξp

(1− ξp)
∆(π̂4 − ψ0

∙
κ1
b̄k
+

3 (i) + κ2
b̄k
+

2 (i) + κ3p̂3(i)

¸
− ψ1

b̄k
+

3 (i)

=
ξp

(1− ξp)
∆(π̂4 − [ψ0κ1 + ψ1]

b̄k
+

3 (i)− ψ0κ3p̂3(i)

=
ξp

(1− ξp)
∆(π̂4 − [ψ0κ1 + ψ1]κ3p̂2(i)− ψ0κ3p̂3(i).

So, to summarize. Optimizers in each of the three periods set price according to:

p̂∗4(i) =
ξp

(1− ξp)
∆(π̂4 − [ψ0κ1 + ψ1]κ3p̂2(i)− ψ0κ3p̂3(i) (7.21)

p̂∗3(i) =
ξp

(1− ξp)
∆(π̂3 − ψ0κ3p̂2(i) (7.22)

p̂∗2(i) =
ξp

(1− ξp)
∆(π̂2 (7.23)
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Firms that do not optimize in a given period set price according to:

p̂t(i) = p̂t−1(i)−∆(π̂t

Consider firms of type (1), who optimize in all three periods. To get their price, simply

substitute (7.22) and (7.23) into (7.21):

p̂∗4(i) =
ξp

(1− ξp)
∆(π̂4 − [ψ0κ1 + ψ1]κ3p̂2(i)− ψ0κ3

∙
ξp

(1− ξp)
∆(π̂3 − ψ0κ3p̂2(i)

¸

=
ξp

(1− ξp)
∆(π̂4 −

£
ψ0κ1 + ψ1 − ψ20κ3

¤
κ3p̂2(i)− ψ0κ3

ξp
(1− ξp)

∆(π̂3

=
ξp

(1− ξp)

©
∆(π̂4 −

£
ψ0κ1 + ψ1 − ψ20κ3

¤
κ3∆(π̂2 − ψ0κ3∆(π̂3

ª

The demand for their product is:

ŷ4(i) = −θp̂4(i) + Ŷ4. (7.24)

the total output of this type of firm is:

−(1−ξp)
3θ

∙
ξp

(1− ξp)
∆(π̂4 −

£
ψ0κ1 + ψ1 − ψ20κ3

¤
κ3

ξp
(1− ξp)

∆(π̂2 − ψ0κ3
ξp

(1− ξp)
∆(π̂3

¸
+(1−ξp)

3Ŷ4.

Now consider firms of type (2): no, yes, yes. Substitute (7.22) into (7.21)

p̂∗4(i) =
ξp

(1− ξp)
∆(π̂4 − [ψ0κ1 + ψ1]κ3p̂2(i)− ψ0κ3

∙
ξp

(1− ξp)
∆(π̂3 − ψ0κ3p̂2(i)

¸

=
ξp

(1− ξp)
∆(π̂4 +

£
ψ0κ1 + ψ1 − ψ20κ3

¤
κ3∆(π̂2 − ψ0κ3

ξp
(1− ξp)

∆(π̂3.

then, their total output is:

(2) −θξp(1−ξp)
2

∙
ξp

(1− ξp)
∆(π̂4 +

£
ψ0κ1 + ψ1 − ψ20κ3

¤
κ3∆(π̂2 − ψ0κ3

ξp
(1− ξp)

∆(π̂3

¸
+ξp(1−ξp)

2Ŷ4

Now consider the ξ2p(1− ξp) firms of type (3), no, no, yes. Their price in period 4 is:

p̂∗4(i) =
ξp

(1− ξp)
∆(π̂4 − [ψ0κ1 + ψ1]κ3p̂2(i)− ψ0κ3 [p̂2(i)−∆(π̂3]

=
ξp

(1− ξp)
∆(π̂4 − [ψ0κ1 + ψ1 + ψ0]κ3p̂2(i) + ψ0κ3∆(π̂3

=
ξp

(1− ξp)
∆(π̂4 + [ψ0κ1 + ψ1 + ψ0]κ3∆(π̂2 + ψ0κ3∆(π̂3.

so, their total output is:

(3) − θξ2p(1− ξp)

∙
ξp

(1− ξp)
∆(π̂4 + [ψ0κ1 + ψ1 + ψ0]κ3∆(π̂2 + ψ0κ3∆(π̂3

¸
+ ξ2p(1− ξp)Ŷ4
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Now consider the ξ3p firms of type (4), no, no, no. Their price in period 4 is:

p̂4(i) = −∆(π̂2 −∆(π̂3 −∆(π̂4,

so that their total output is:

ŷ4(i) = θξ3p [∆(π̂2 +∆(π̂3 +∆(π̂4] + ξ3pŶ4.

Now consider the (1− ξp)
2ξp firms of type (5), yes, yes, no. Their price in period 4 is:

p̂4(i) = p̂3(i)−∆(π̂4

=
ξp

(1− ξp)
∆(π̂3 − ψ0κ3p̂2(i)−∆(π̂4

=
ξp

(1− ξp)
∆(π̂3 − ψ0κ3

ξp
(1− ξp)

∆(π̂2 −∆(π̂4.

(5) − θ(1− ξp)
2ξp

∙
ξp

(1− ξp)
∆(π̂3 − ψ0κ3

ξp
(1− ξp)

∆(π̂2 −∆(π̂4

¸
+ (1− ξp)

2ξpŶ4.

Now consider the (1− ξp)ξp(1− ξp) firms, no, yes, no. Their period 4 price is:

p̂4(i) = p̂3(i)−∆(π̂4

=
ξp

(1− ξp)
∆(π̂3 − ψ0κ3p̂2(i)−∆(π̂4

=
ξp

(1− ξp)
∆(π̂3 + ψ0κ3∆(π̂2 −∆(π̂4.

Their total output in period 4 is:

(6) − θ(1− ξp)ξp(1− ξp)

∙
ξp

(1− ξp)
∆(π̂3 + ψ0κ3∆(π̂2 −∆(π̂4

¸
+ (1− ξp)ξp(1− ξp)Ŷ4.

Now consider the (1− ξp)ξ
2
p firms of type (7), yes, no, no:

p̂4(i) = p̂3(i)−∆(π̂4

= p̂2(i)−∆(π̂3 −∆(π̂4

=
ξp

(1− ξp)
∆(π̂2 −∆(π̂3 −∆(π̂4.

Their total output is:

(7) ŷ4(i) = −θ

∙
ξp

(1− ξp)
∆(π̂2 −∆(π̂3 −∆(π̂4

¸
+ Ŷ4
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Finally, consider the (1− ξp)ξp(1− ξp) type (8) firms, yes, no, yes:

p̂∗4(i) =
ξp

(1− ξp)
∆(π̂4 − [ψ0κ1 + ψ1]κ3p̂2(i)− ψ0κ3 [p̂2(i)−∆(π̂3]

=
ξp

(1− ξp)
∆(π̂4 − [ψ0κ1 + ψ1 + ψ0]κ3p̂2(i) + ψ0κ3∆(π̂3

=
ξp

(1− ξp)
∆(π̂4 − [ψ0κ1 + ψ1 + ψ0]κ3

ξp
(1− ξp)

∆(π̂2 + ψ0κ3∆(π̂3

their total output is:

(8) −θξp(1−ξp)ξp

∙
ξp

(1− ξp)
∆(π̂4 − [ψ0κ1 + ψ1 + ψ0]κ3

ξp
(1− ξp)

∆(π̂2 + ψ0κ3∆(π̂3

¸
+ξp(1−ξp)ξpŶ4

7.5.4. Period N

Let the state of nature for firm i in time t be sit ∈ (0, 1), where 0 means the firm cannot

optimize and 1 means it can. A history of firm i is si,N = (si2, ..., s
i
N). In period t, the firm

inherits b̄k
+

t (i) and
b̄k
+

t−1(i). We have that
b̄k
+

1 (i) =
b̄k
+

2 (i) = p̂1(i) = 0. Then,

p̂t(i) =

(
ξp

(1−ξp)
∆(π̂t − ψ0

b̄k
+

t (i)− ψ1
b̄k
+

t−1(i) if sit = 1

p̂t−1(i)−∆(π̂t if sit = 0.
,

for t = 2, 3, .... N. The demand for this firm’s product is:

ŷt(i) = −θp̂t(i) + Ŷt.

It’s capital decision can be computed too:

b̄k
+

t+1(i) = κ1
b̄k
+

t (i) + κ2
b̄k
+

t−1(i) + κ3p̂t(i).

Let

p̂
¡
si,N

¢
, ŷ
¡
si,N

¢
, b̄k

+

(si,N)

denote the relative price, output and beginning of period capital choice of a firm with history

si,N , in period N. Let prob
¡
si,N

¢
denote the probability of history si,N . To be concrete,

suppose N = 4. In this case, the eight possible si,4 are given by the rows of the following

matrix:
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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In this case, for a parameterization with ξp = 0.2, we obtain the following 8 possible period

3 outputs:

1.2504, 1.1584, 1.2087, 1.1584, 1.2549, 1.1584, 1.2087, 1.1584

This is the output of the typical firm in period 4 of each history, with the first corresponding

to the first row in the above matrix, the second to the second row, etc. Here the first output

is the output of a firm with history 0, 0, 0, (don’t optimize in period 2, don’t optimize in

period 3, don’t optimize in period 4) and the last output is the output of the firm in period

4 with history, 1,1,1. Notice that the output of the firm in the last state is the lowest. This

is not surprising, since this firm has the highest price. These are the various possible prices

in period 4:

−0.0134, 0.0020, − 0.0064, 0.0020, − 0.0141, 0.0020, − 0.0064, 0.0020

Note that several of these are identical. (The ones that are identical are identical up to all

14 digits after the decimal that MATLAB displays.) The associated probabilities are:

0.0080, 0.0320, 0.0320, 0.1280, 0.0320, 0.1280, 0.1280, 0.5120.

These add up to unity, as they should. The probability of any history corresponds to the

number of firms that experience that history.

The total number of firms is unity, and total production in period 4 is 1.17 (i.e., this is

the product of each history’s probability and the production of the individual firm in that

category.). This is the average production across each individual firm. Note that the average

production of the firms that reoptimize in period 4, 1.1584, is less than the economy-wide

average.

There are 0.8 (=0.0320 + 0.1280 + 0.1280 + 0.5120) firms that optimize in period 4, so if

each firm in this category produced the economy-wide average, the group as a whole would

produce 0.9362 units of output. The histories in which optimization occurs in period 4 are

2, 4, 6, 8. They produce

0.92672 = 0.0320× 1.1584 + 0.1280× 1.1584 + 0.1280× 1.1584 + 0.5120× 1.1584,

which is less than their share, as expected.

Now consider the firms that did not optimize in period 4, and also did not optimize in

period 3. These correspond to histories 1 and 5. In period 4, there are .0040 of these firms,

and they produce a total of:

0.05016 = 0.0080× 1.2504 + 0.0320× 1.2549.
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The average output of firms in these categories is 1.254 (=0.05016/(.0080+.0320)). This is

higher than the economy-wide average of 1.17.

Now consider the one type of firm that did not reoptimize price in period 2. There are

0.008 of these firms and each one produces 1.2504 units of output. The total output they

produce is

0.0100 = 0.008× 1.2504.

7.5.5. Price Dispersion

It is generally thought that different models have different implications for the reallocation

of resources in the wake of a demand shock, such as a monetary shock. Here, we discuss

various indicators of this. One statistic that would be of interest would be the fraction of

total output produced by firms that optimize price in the current period; firms that do not

optimize in the current period, but did optimize in the previous period; firms that did not

optimize in the current and previous period, but did optimize in the period before that, etc.

In addition, it would be useful to know not only the total output of these firms, but also the

average output of firms in each category.

This should be done for the model with firm-specific capital, and for the model without

firm-specific capital. In the case of the latter, the cross-sectional distribution of resources

and prices is obtained by simulations with ψ0 = ψ1 = κ1 = κ2 = κ3 = 0. The model

without firm-specific capital should be simulated both for the case of full indexation and no

indexation.

8. Kalman Filter

The idea is to estimate the model using data on:

Xt|{z}
10×1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆ ln(GDPt/Hourst)
∆ ln(GDP deflatort)

ln(GDPt/Hourst)− ln(Wt/Pt)
ln(Hourst)
ln(Ct/GDPt)
ln(It/GDPt)

Federal Funds Ratet
ln(GDP deflatort) + ln(GDPt)− ln(M2t)

∆ ln Investment Price
Capacity Utilizationt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first step is to express the time series model for Xt implied by our model. Recall, the

law of motion for zt is:

zt = Azt−1 +Bθt,
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where

θt = ρθt−1 + et, Eete
0
t = V. (8.1)

Here,

et =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εM,t

εM,t

εµz ,t
εµz ,t
czεµz ,t
εµΥ,t

εµΥ,t

cΥεµΥ,t

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

so that

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2M σ2M 0 0 0 0 0 0 0 0
σ2M σ2M 0 0 0 0 0 0 0 0
0 0 σ2µz σ2µz czσ

2
µz 0 0 0 0 0

0 0 σ2µz σ2µz czσ
2
µz 0 0 0 0 0

0 0 czσ
2
µz czσ

2
µz c2zσ

2
µz 0 0 0 0 0

0 0 0 0 0 σ2µΥ σ2µΥ cΥσ
2
µΥ

0 0

0 0 0 0 0 σ2µΥ σ2µΥ cΥσ
2
µΥ

0 0
0 0 0 0 0 cΥσ

2
µΥ

cΥσ
2
µΥ

c2Υσ
2
µΥ

0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.2)

Write

Xt = α+ τzt + τ̄ zt−1 + τ θθt, (8.3)

where α, τ , τ̄ , τ s are described in the first subsection below. Note that the law of motion

for zt can be written

zt = Azt−1 +Bρθt−1 +Bet.

Let,

ξt =

⎛
⎝

zt
zt−1
θt

⎞
⎠ ,

so that the whole system can be written,
⎛
⎝

zt+1
zt

θt+1

⎞
⎠ =

⎡
⎣

A 0 Bρ
I 0 0
0 0 ρ

⎤
⎦
⎛
⎝

zt
zt−1
θt

⎞
⎠+

⎛
⎝

B
0
I

⎞
⎠ et+1,

or,

ξt+1 = Fξt + vt+1,
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where

Q ≡ Evtv
0
t =

⎛
⎝

B
0
I

⎞
⎠Eete

0
t

¡
B 0 I

¢

=

⎡
⎣

BVB0 0 BV
0 0 0

V B0 0 V

⎤
⎦ .

The observed data are a linear combination of ξt, plus noise:

yt = Hξt + wt,

where R = Ewtw
0
t is a diagonal matrix (sorry for the potentially confusing notation for the

variance-covariance matrix of the measurement error).

H =
£
τ τ̄ τ θ

¤
.

The problem of estimating this system is described in the second subsection below.

Notice that the Kalman Filter system is completely characterized by (F,H,R,Q). These

in turn can be constructed from the model parameters (including the variances of the sto-

chastic shocks in V, as well as the measurement error variances.) Additional inputs required

are the initial state vector (ξ̂1|0 = E (ξ1)) and the initial state covariance (P1|0). Following

Hamilton p. 378, we set P1|0 = Σ, where Σ satisfies the following Riccati equation
1:

Σ = FΣF 0 +Q. (8.4)

In case this takes too much time to compute, we can also use Σr̄, where Σr̄ satisfies

Σr = FΣr−1F
0 +Q,

r = 1, 2, ..., r̄, and Σ0 = 0, for small r̄, say r̄ = 10.

8.1. The Reduced Form

Consider

ln
yt
ht
= ln

ỹtz
∗
t

ht
= ln ỹt − lnht + ln z

∗
t ,

so that

∆ ln
yt
ht
= (ln ỹt − lnht)− (ln ỹt−1 − lnht−1) + lnµz∗,t.

1In Matlab, the command dare is a more efficient way of computing Σ then a straightforward implemen-
tation of the solution, i.e. Σ = [I − (F ⊗ F )]−1Q.
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Now, the ‘normal’ interpretation of a hat over a variable is:

b̃yt =
ỹt − ỹ

ỹ
,

so that

ỹt = ỹ
³
b̃yt + 1

´
,

and

ln ỹt = ln ỹ + ln
³
b̃yt + 1

´

≈ ln ỹ + b̃yt,

for b̃yt small enough. The latter gives us an alternative interpretation of a variable with a

hat. We call this the log interpretation of a variable with a hat. Similarly,

lnht = lnh+ ĥt,

lnµz∗,t = lnµz∗ + µ̂z∗,t

Substituting,

∆ ln
yt
ht
=
³
b̃yt − ĥt

´
−
³
b̃yt−1 − ĥt−1

´
+ lnµz∗ + µ̂z∗,t.

Using µ̂z∗t =
α
1−α

µ̂Υt + µ̂zt, this reduces to:

∆ ln
yt
ht
=
³
b̃yt − ĥt

´
−
³
b̃yt−1 − ĥt−1

´
+ lnµz∗ +

α

1− α
µ̂Υt + µ̂zt.

but,

b̃yt = τ yzt,

ĥt = τhzt,

µ̂zt = τµzst,

µ̂Υt = τµΥst

where τ y, τ l are 16 dimensional row vectors with zeros everywhere except unity in one

location. For τ y the location is the 12
th location; for τ l the location is the 9

th. Also, τµz and

τµΥ are 10 dimensional row vectors with zeros everywhere, except unity in one location. For
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τµz the location is 3 and for τµΥ the location is 6. Here are the zt and θt vectors:

zt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĉt1(p)
b̃wt2(p)

λ̂z∗t3
m̂t4(p)
π̂t5(p)
x̂t6
ŝt7

ı̂t8(p)

ĥt9
b̄kt+110(p)

q̂t11
b̃yt12

R̂t13
b̃µt14(p)
b̃ρt15

ût16 (p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, θt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂M,t

εM,t

µ̂z,t

εµz,t
x̂z,t

µ̂Υ,t

εµΥ,t

x̂Υ,t

x̂M,t−1
εM,t−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then,

∆ ln
yt
ht
= (τ y − τh) zt − (τ y − τh) zt−1 + lnµz∗ +

µ
α

1− α
τµΥ + τ z

¶
θt.

Now consider inflation:

ln
Pt

Pt−1
= lnπt = lnπ + π̂t

= lnπ + τπzt,

where τπ is a 16 dimensional row vector with zeros everwhere except unity in the 5
th location.

Note that this is the net inflation rate. This is converted to annualized terms by multiplying

by 4. Another way to compute this is based on the normal approximation of a hat:

π̂t =
πt − π

π
.

Consider:

πt − π = ππ̂t.

This is the deviation of the inflation rate (or, the net inflation rate) from its population

mean. Suppose we want the net inflation rate, πt − 1, expressed in annual terms:

4 (πt − π) + 4 (π − 1) = 4ππ̂t + 4 (π − 1) .
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Now consider the excess of productivity over the real wage, all in logs:

ln
yt
ht
− lnwt = ln

ỹtz
∗
t

ht
− ln w̃tz

∗
t

= ln ỹt − lnht − ln w̃t

= ln ỹ + b̃yt − lnh− ĥt − ln w̃ − b̃wt

= (ln ỹ − lnh− ln w̃) + (τ y − τh − τw) zt,

where τw is a 16 dimensional row vector with zeros everywhere and unity in the 2
nd location.

Now consider the log of the consumption to output ratio:

ln
Ct

yt
= ln

ctz
∗
t

ỹtz∗t
= ln ct − ln ỹt
= ln c− ln ỹ + (τ c − τ y) zt,

where τ c is a 16 dimensional row vector with zeros everywhere and unity in the first location.

The log of the investment to output ratio is:

ln
Υ−1t It
yt

= ln it − ln ỹt
= ln i− ln ỹ + (τ i − τ y) zt,

where τ i is a 16 dimensional row vector with zeros everywhere and unity in the 8
th location.

Note here that investment must be valued in consumption units, just as output is, for this

ratio to be stationary.

Now consider the interest rate, Rt. Using the log approximation:

logRt = logR+ R̂t = logR+ τRzt,

where τR is a 16-dimensional row vector with unity in the 13th location. Since Rt is the

gross nominal rate of interest, logRt is approximately the net rate, Rt − 1. Then,

Rt − 1 ≈ logR+ τRzt,

and the annualized rate is:

4 (Rt − 1) ≈ 4 logR+ 4τRzt.

Now consider how one proceeds under the normal approximation. In this case, R̂t = (Rt −
R)/R, so that

Rt = R
³
R̂t + 1

´
,

and the annualized net rate is:

4 (Rt − 1) = 4 [R (τRzt + 1)− 1]
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Now consider the log of velocity:

ln yt − ln
Qt

Pt

= ln ỹt − ln qt,

where

qt =
Qt

z∗tPt
.

Then,

ln yt − ln
Qt

Pt
= ln ỹ − ln q + (τ y − τ q) zt,

where τ q is a 16 dimensional row vector with zeros everywhere and unity in the 11
th location.

Finally,

∆ lnP I
t = ln

Υt−1
Υt

= − lnµΥ,t

= − lnµΥ − µ̂Υ,t

= − lnµΥ − τµΥθt,

where τµΥ is a 10-dimensional row vector with all zeros except unity in the 6
th location.

We now consider capacity utilization, ut. We have

ût = log
³ut

u

´
= log ut = τuzt,

where τu is a 16-dimensional row vector with zeros everywhere except a unity in the last

location.

Pulling all this together, in the following representation:

Xt = α+ τzt + τ̄ zt−1 + τ θθt, (8.5)
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we have:

Xt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆ ln yt
ht

ln Pt
Pt−1

ln yt
ht
− lnwt

lnht

ln Ct
yt

ln It
yt

lnRt

ln yt − ln Qt

Pt

∆ lnP I
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

lnµz∗

lnπ
ln ỹ − lnh− ln w̃

lnh
ln c− ln ỹ
ln i− ln ỹ
lnR

ln ỹ − ln q
− lnµΥ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ y − τh

τπ

τ y − τh − τw

τh

τ c − τ y

τ i − τ y

τR

τ y − τ q

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

zt (8.6)

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− (τ y − τh)
0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

zt−1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
1−α

τµΥ + τ z

0
0
0
0
0
0
0

−τµΥ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

θt

so,

τ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ y − τh

τπ

τ y − τh − τw

τh

τ c − τ y

τ i − τ y

τR

τ y − τ q

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, τ̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− (τ y − τh)
0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

τ θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
1−α

τµΥ + τ z

0
0
0
0
0
0
0

−τµΥ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

8.2. Estimation

Our system is completely characterized by (F,H,R, V ).We could think of F and H as being

functions of the parameters governing the exogenous shocks, which we would like to estimate.
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Denote these by the vector, β. There is obviously a mapping from β (and the other model

parameters, which we here hold fixed) to F, H. So, we can also think of the system as being

characterized by (β,R, V ).

In Hamilton’s section 13.4, he displays the likelihood function for this system. Let

ft =

µ
1

2π

¶−n
2 ¯̄

HPt|t−1H
0 +R

¯̄−1/2

× exp

½
−1
2

¡
yt −Hξt|t−1

¢0 ¡
HPt|t−1H

0 +R
¢−1 ¡

yt −Hξt|t−1
¢¾

,

for t = 1, 2, ..., T. Here, n is the dimension of ξt, and

ξt|t−1 = E [ξt|yt−1, ..., y1] ,

t = 1, 2, ..., with ξ1|0 = E (ξt) , the unconditional expectation of ξt. Also,

Pt+1|t ≡ E
h¡

ξt+1 − ξt+1|t
¢ ¡

ξt+1 − ξt+1|t
¢0
|yt, ..., y1

i

= F
h
Pt|t−1 − Pt|t−1H

0
¡
HPt|t−1H

0 +R
¢−1

HPt|t−1
i
F 0 +Q,

for t = 1, 2, ..., T, with

P1|0 = E (ξt −Eξt) (ξt −Eξt)
0 .

Finally,

ξt+1|t = Fξt|t−1 + FPt|t−1H
0
¡
HPt|t−1H

0 +R
¢−1 ¡

y −Hξt|t−1
¢
.

Then, the log likelihood function is:
TX

t=1

ln ft.

Consider first the log of the exponential term here (suppose E (ξt) = 0) :

(y1)
0 ¡HP1|0H

0 +R
¢−1

(y1)

+
¡
y2 −Hξ2|1

¢0 ¡
HP2|1H

0 +R
¢−1 ¡

y2 −Hξ2|1
¢

+
¡
y3 −Hξ3|2

¢0 ¡
HP3|2H

0 +R
¢−1 ¡

y3 −Hξ3|2
¢

+...+

+
¡
yT −HξT |T−1

¢0 ¡
HPT |T−1H

0 +R
¢−1 ¡

yT −HξT |T−1
¢

Consider the derivative of this expression with respect to the matrix, R. Note that R enters

the first term only directly, in the expression being inverted. The matrix R enters in several

places in the second term, via ξ2|1 and via P2|1.

In Hamilton’s section 13.6, he shows how to use this system to compute things like

ξ̂t|T ≡ E [ξt|ΩT ] , t = 1, 2, ..., T,
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where the observations correspond to periods t = 1,2,...,T, and the information set is the

whole data set:

ΩT = {yT , ..., y1}.

Note that a subset of the elements in ξ̂t|T correspond to the estimates of the shocks. In

addition, the estimate of the ‘true’ value of the data is given by

X̂t|T = H 0ξ̂t|T .

We now derive the Kalman filter algorithm for solving the problem:

ξ̂t|t−1 ≡ E [ξt|Ωt−1] , t = 1, 2, ..., T.

We begin with ξ̂1|0

9. Reduced Form Vector Autoregression

We are interested in the VAR representation for (possibly a subset) of the variables in the 9

by 1 vector, Xt, in (8.6). Let J (L) be an n by 9 matrix, which selects the subset of variables

that interest us. If the matrix, J (L) , is the identity matrix, then the vector of variables

is just Xt itself. We seek the model’s implied VAR representation for J (L)Xt. We do this

by solving the Yule-Walker equations. We have to confront one problem, which is that the

fundamental shocks in our model may be smaller in number than the number of variables,

n. The first subsection below discusses how to proceed when the number of shocks is equal

to n (i.e., n = 3). We then discuss what to do in the other case.

9.1. Full Rank System

From the previous section, we have (the objects in the following representation are computed

in kalman_matrices.m, please verify that the elements of α, τ , τ̄ , τ θ in the code correspond

to what is in (8.6)):

Xt = α+ τzt + τ̄ zt−1 + τ θθt,

and

zt = Azt−1 +Bθt,

and

θt = ρθt−1 +Qηt,
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where θt is as in (8.1), so that

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
0 1 0
0 1 0
0 cz 0
0 0 1
0 0 1
0 0 cΥ
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ηt =

⎛
⎝

εM,t

εµz ,t
εµΥ,t

⎞
⎠ ,

and

Eηtη
0
t = Vη =

⎡
⎣

σ2M 0 0
0 σ2µz 0
0 0 σ2µΥ

⎤
⎦ .

The variables in Xt are as defined in (8.6). We now write out the moving average represen-

tation of Xt. First,

zt = (I −AL)−1Bθt

= (I −AL)−1B(I − ρL)−1Qηt.

Then,

Xt = α+ τzt + τ̄ zt−1 + τ θθt (9.1)

= α+ (τ + τ̄L) (I −AL)−1B(I − ρL)−1Qηt + τ θ(I − ρL)−1Qηt

= α+
£
(τ + τ̄L) (I −AL)−1B(I − ρL)−1 + τ θ(I − ρL)−1

¤
Qηt

= α+
£
(τ + τ̄L) (I −AL)−1B + τ θ

¤
(I − ρL)−1Qηt

= α+D(L)ηt,

say, where

D(L) =
£
(τ + τ̄L) (I −AL)−1B + τ θ

¤
(I − ρL)−1Q

Let Yt = J (L)Xt. Then, the spectral density of Yt is:

SY (ω) = D̃(e−iω)VηD̃(e
iω)0, (9.2)

where

D̃(e−iω) = J
¡
e−iω

¢
D(e−iω).

Let the covariance function of Yt be defined as:

C(τ) ≡ EYtY
0
t−τ , τ = 0,±1,±2, ... .
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The following (‘inverse Fourier transform’) relationship is easy to establish:

C(τ) =
1

2π

Z π

−π

SY (ω)e
iωτdω.

This can be approximated using a Riemann sum:

C(τ) = limN→∞
1

N

N
2X

k=−N
2
+1

SY (ωk)e
iωkτ ,

where ωk =
2πk
N
for k = −N/2, ..., N/2 (see Sargent (1987, ch. 11, equation (20))). This sum

can be further simplified by taking into account the following property:

Sỹ(ωk)e
iω1τ = conj

£
Sỹ(−ωk)e

−iω1τ
¤
,

where conj denotes complex conjugation. As a result, Sỹ(ωk)e
iω1τ + Sỹ(−ωk)e

−iω1τ =

2re [Sỹ(ωk)e
iω1τ ] , where re [x] denotes the real part of the complex variable, x. Then,

C(τ) = limN→∞
1

N

N
2X

k=−N
2
+1

SY (ωk)e
iωkτ ,

=
1

N
SY (ω0) +

1

N
[SY (ω1)e

iω1τ + SY (ω2)e
iω2τ + ...+ SY (ωN/2)e

iωN/2τ

+SY (ω−1)e
iω−1τ + SY (ω−2)e

iω−2τ + ...+ SY (ω−N/2+1)e
iω−N/2+1τ ]

=
1

N
SY (ω0) +

1

N
[SY (ω1)e

iω1τ + SY (ω2)e
iω2τ + ...+ SY (ωN/2)e

iωN/2τ

+SY (−ω1)e
−iω1τ + SY (−ω2)e

−iω2τ + ...+ SY (−ωN/2−1)e
−iωN/2−1τ ]

=
1

N
SY (ω0) +

2

N

N
2
−1X

k=1

re
¡
SY (ωk)e

iωkτ
¢
+
1

N
SY (ωN/2)e

iωN/2τ ,

where re(X) denotes the real part of X. In practice, a fairly small value of N will suffice for

this sum to converge.

Write the VAR representation of Yt (after removing the constant term) as follows:

Yt = A1Yt−1 + ...+ApYt−p + ut,

where A1, ..., Ap remain to be determined. Note:

EYtY
0
t−τ = A1EYt−1Y

0
t−τ + ...+ApEYt−pY

0
t−τ ,

for τ = 1, 2, .... . (These are the Yule-Walker equations.) Then, for τ = 1 :

C(1) = A1C(0) +A2C(−1) +A3C(−2) + ...+ApC(1− p).
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Then, using the fact, C(−τ) = C(τ)0, we obtain:

C(1) = A1C(0) +A2C(1)
0 +A3C(2)

0 + ...+ApC(p− 1)0,

since EYt−2Y 0
t−1 =

¡
EYt−1Y 0

t−2
¢0
= C(1)0. For τ = 2 :

C(2) = A1C(1) +A2C(0) +A3C(1)
0 + ...+ApC(p− 2)0.

Finally, for τ = p :

C(p) = A1C(p− 1) +A2C(p− 2) +A3C(p− 3) + ...+ApC(0).

It is convenient to write the Yule-Walker equations in matrix form. Let

d =
¡

C(1) · · · C(p)
¢
, X =

⎡
⎢⎣

C(0) C(p− 1)
. . .

C(p− 1)0 C(0)

⎤
⎥⎦ , β =

¡
A1 · · · Ap

¢

We solve the Yule-Walker equations as follows:

β = dX−1

The elements of β give us the VAR coefficient matrices for the time series representation of

Yt. The correct value of p is p = ∞. In practice, Ap is small for small p. I suspect that p

about 3 or 4 is right. However, this has to be ‘tested’ by examining the magnitude of Ap+1,

Ap+2, etc.

To complete the computation of the VAR, we require the variance covariance matrix of

the disturbances, ut, and the constant term. Call the variance-covariance matrix, V = Eutu
0
t.

Here is one way to compute V . Note:

C(0) = EYtY
0
t = A1C(1)

0 + ...+ApC(p)
0 +EutY

0
t .

but,

EutY
0
t

= Eut

£
A1Y

0
t−1 + ...+ApY

0
t−p + u0t

¤

= Eutu
0
t =W.

Here, we have taken into account that EutY
0
t−τ = 0 for τ = 1, 2, ...., if p is large enough

and the eigenvalues of [I −A1z − ...−Apz
p] lie inside the unit circle. So, we find W as the

solution to:

W = C(0)− [A1C(1)0 + ...+ApC(p)
0] .
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The constant term in the VAR representation for Yt is γ, where

γ = [I −A1 −A2 − ...−Ap]J (1)α.

There is a question as to what the right choice of p is. In principle, p = ∞ with this

setup, but presumably p in fact only has to be quite small in order to get a ‘good’ VAR

representation. Still, it’s not clear what a ‘good’ representation is. Here is one idea. The

VAR representation itself implies a spectral density:

S(ω; p) =
£
I −A1e

−iω − ...−Ape
−iωp

¤−1
W
£
I −A01e

iω − ...−A0pe
iωp
¤−1

.

Note that this spectrum can be integrated to compute the implied covariance function,

C(τ ; p), from

C(τ ; p) =
1

2π

Z π

−π

S(ω; p)eiωτdω.

If p is well-chosen, then C(τ ; p) is similar in size to C(τ) for various τ . Similarly, if p is

properly chosen, then S(ω; p) should be similar to SY (ω) for a range of ω ∈ (0, π). It would
be useful to see a graph of the diagonal elements of C(τ ; p) and C(τ) for τ = 0, 1, 2, ...., 10.

Similarly, it would be useful to see a graph of the diagonal elements (which are real) of

S(ωk; p) and SY (ωk) for ωk =
2πk
N
and k = 0, ..., N/2. Perhaps two sets of graphs could be

constructed, one with p = 4 and the other with p = 10.

9.2. Singular System

The calculations above will lead to invertibility problems when n > 3, because there are not

enough shocks in the model. However, in this case, the VAR analysis itself provides the rest

of the shocks. In particular, the VAR analysis implies:

Yt = Y Identified
t + Y Other

t ,

where the two components are orthogonal and Y Identified
t corresponds to J(L)Xt. The spectral

density of this component is provided in (9.2).We will take two approaches to Y Other
t . In the

first, Y Other
t will be an iid process, so that its spectral density is simply a constant. In the

second, we will consider a more general time series representation.

9.2.1. Independent Noise

We suppose that Y Other
t is iid over time and

EY Other
t Y Other0

t = F.

Here, F may be quite simple, including having zeros everywhere except a scalar on one of

its diagonal elements. Obviously, The spectral density of Y Other
t , S(ω), is just S(ω) = F.
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9.2.2. Dependent Noise

To obtain the time series representation of the other component, consider:

XOther
t = B(L)XOther

t−1 + Cεt,

where εt has a variance-covariance matrix equal to the identity matrix and XOther
t is com-

posed of the variables in the vector autoregression:

XOther
t| {z }
10×1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆ ln (relative price of investmentt)
∆ ln (GDPt/Hourst)
∆ ln (GDP deflatort)
Capacity Utilizationt

ln (Hourst)
ln (GDPt/Hourst)− ln (Wt/Pt)

ln (Ct/GDPt)
ln (It/GDPt)

Federal Funds Ratet
ln(GDP deflatort) + ln (GDPt)− ln (MZMt)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To recover B(L) and C, it is useful to recall the structural form of our VAR

A0X
Other
t = A(L)XOther

t−1 + ε̃t,

where ε̃t has diagonal variance-covariance matrix, D. Then, the reduced form is:

XOther
t = A−10 A(L)XOther

t−1 +A−10
√
Dεt,

where εt has variance-covariance matrix equal to the identity matrix, and
√
D is the diagonal

matrix formed by computing the square root of the diagonal elements of D.2 Then,

XOther
t = B(L)XOther

t−1 + C2ε2t,

where3

B(L) = A−10 A(L), C = A−10
√
D.

Now, the matrix, C, is 10 by 10. The object, C2, is C with its first, second and ninth columns

removed and ε2t is εt with the first, second and ninth elements removed. The moving average

representation of XOther
t is:

XOther
t = [I −B(L)]−1C2ε2t.

2The matrix D can be found by applying the MATLAB file getV.m to the fitted VAR disturbances,
erzout, produced by the call to mkimplrnew.m. To see exactly how this is done, see lines 32 and 34 in
spectdecomp.m.

3Our benchmark estimate sets B(L) = B0 + B1L + B2L
2 + B3L

3. The B’s may be obtained from the
output of mkimplrnew.m. In particular, azeroout= A−1

0
A(L), where azeroout is a 10 by 4*10 matrix. Here,

B0 is the first 10 by 10 block of this matrix, B1 is the second one, and so on. Also, a0betazout corresponds
to A0.
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Define J̃ to be the 9 by 10 matrix which makes the elements of XOther
t conformable with the

elements of Xt. In particular, if I is the 10 by 10 identity matrix and

ζ = [2, 3, 6, 5, 7, 8, 9, 10, 1], (9.3)

then

J̃ = I(ζ, :), (9.4)

using MATLAB notation. Thus, J̃ is a 9 by 10 matrix, which is constructed from the into

the elements of Xt that interest us. Then, the moving average representation of J(L)J̃X
Other
t

is:

Y Other
t = J(L)J̃ [I −B(L)]−1C2ε2t.

The spectral density of Y Other
t is:

S(ω) = J(e−iω)J̃
£
I −B(e−iω)e−iω

¤−1
C2C

0
2

£
I −B(eiω)0eiω

¤−1
J̃ 0J(eiω)0.

9.2.3. Spectrum of the Data

The spectrum of Yt = Y Identified
t + Y Other

t is:

SY (ω) = SX̃(ω) + S(ω),

where SX̃(ω) is given in (9.2). The VAR representation of Yt is formed by solving the

Yule-Walker equations based on the covariance function obtained by integrating (inverse

Fourier-transforming) SY (ω).

9.3. Invertibility

We now ask whether the fundamental shocks exist in the space of Yt−j, j = 1, 2, ... . If they

do not, then we cannot hope to recover them using a VAR, regardless of the lag length, p.

To determine invertibility, consider the nonsingular case first. From (9.1):

Xt = α+D(L)ηt,

so that (ignoring the constant term):

Yt = D̃(L)ηt,

where D̃(L) = J(L)D(L). Solving this, we obtain that the shocks, ηt, can be represented as

linear combination of current and past Yt as follows:

ηt =
h
D̃(L)

i−1
Yt

= D̄0Yt + D̄1Yt−1 + D̄2Yt−2 + D̄3Yt−3 + ...,
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where

D̄(L) = D̄0 + D̄1L+ ... =
h
D̃(L)

i−1
.

We can obtain D̄j, j = 0, 1, 2, ... by:

D̄j =
1

2π

Z π

−π

h
D̃(e−iω)

i−1
eiωjdω.

This sum can be evaluated using the Riemann approximation discussed above, although we

do not have any symmetry we can appeal to here. The question of invertibility corresponds

to whether D̄j → 0 as j →∞. We can determine this numerically.

If, in the calculation of the VAR representation of Yt discussed above, p is large enough,

then the VAR representation here and the one above should be virtually identical. The VAR

representation computed here is:

Yt =
£
−D̄−1

0 D̄1

¤
Yt−1 +

£
−D̄−1

0 D̄2

¤
Yt−2 +

£
−D̄−1

0 D̄3

¤
Yt−3 + ...+ ut,

where

ut = D̄−1
0 ηt

Eutu
0
t = D̄−1

0 Vη

£
D̄−1
0

¤0
.

We now consider the singular case. The moving average representation of Yt now is:

Yt =

∙
D̃(L)−1

...J(L) [I −B(L)]−1C2

¸µ
ηt

ε2t

¶
.

What follows can be done easily only if J(L) is square, so that the matrix in square brackets

is square. Inverting this:

µ
ηt

ε2t

¶
=

∙
D̃(L)−1

...J(L) [I −B(L)]−1C2

¸−1
Yt.

Let

D̄j =
1

2π

Z π

−π

∙
D̃(e−iω)−1

...J(e−iω)
£
I −B(e−iω)

¤−1
C2

¸−1
eiωjdω.

Let D̄1
j denote the upper 3 × 3 block of D̄j. The proposition that ηt lies in the space of

current and past Yt corresponds to

D̄1
j → 0, j →∞.
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10. Forecasting Using the Kalman Filter and Non-Identified VAR
Disturbances

Let the 10× 1 vector of non-identified VAR disturbances be denoted wt, where

wt = B1wt−1 + ...+Bqwt−q + C2

µ
ε1t
ε2,t

¶
. E

µ
ε1t
ε2,t

¶µ
ε1t
ε2,t

¶0
= I,

using notation taken from the ACEL manuscript. (The matrices, B1, ..., B4, in the ACEL

project can be recovered from a0betazout, which is produced by mkimplrnew.m, in the

program, main.m. The first column of a0betazout is the constant term in the VAR, and the

next 10 by 10 block is B1, the following 10 by 10 block is B2, etc.) Here, C2 is a 10 × 7

matrix. It is the columns of the C matrix discussed in ACEL, which correspond to the

non-identified shocks. (To find C2, first compute C = inv(azeroout) ∗ sqrt(getV (erzout)),

then, C2 is columns 3-8 and 10 of C.)We add wt to the state equation in the Kalman filter.

The other part of our stochastic process comes from the solution to the model, (5.2), and

the law of motion for the exogenous shocks, (5.3):

zt = Azt−1 +Bθt

θt = ρθt−1 + et,

or,

zt = Azt−1 +Bρθt−1 +Bet.

Let,

ξt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

zt
zt−1
θt
wt
...

wt−q+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
16×16

0
16×16

B
16×10

× ρ
10×10

0 · · · 0 0

I
16×16

0 0 0 · · · 0 0

0 0 ρ 0 · · · 0 0
0 0 0 B1 · · · Bq−1 Bq

0 0 0 I · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where ρ is defined in (5.4), so that the state equation can be written,

ξt = Fξt−1 + vt, vt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bet
0
et

C2

µ
ε1t
ε2,t

¶

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q ≡ Evtv
0
t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bet
0
et

C2

µ
ε1t
ε2,t

¶

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

µ
e0tB

0 0 e0t

µ
ε1t
ε2,t

¶0
C 0
2 0 · · · 0

¶

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BVB0 0 BV 0 0 · · · 0
0 0 0 0 0 · · · 0

V B0 0 V 0 0 · · · 0
0 0 0 C2C

0
2 0 · · · 0

0 0 0 0 0 · · · 0
...

...
...

...
...
. . .

...
0 0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where V is defined in (8.2). The observer equation is written:

yt = Hξt

where

H
9×1

=
£
Jτ Jτ̄ Jτ θ JJ̃ 0 · · · 0

¤
,

where J̃ is defined in (9.4). Also, J is a matrix that selects which variables we want to work

with. If J is the 9-dimensional identity matrix, then we work with all variables in Xt (see

(8.6)). These are also the variables in the ACEL var (see (11.1) below), except that capacity

utilitzation is excluded. In case we want to work with a system that does not include the ith

variable in Xt, then make J the 9 dimensional identity matrix, with the ith row deleted. If

we don’t want the ith or jth elements of Xt, then make J the 9 dimensional identity matrix

with the ith and jth rows deleted, etc.
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We now have all the necessary inputs for the Kalman filter, with two exceptions. We

need the matrix called P by forecastkalman.m. It corresponds to Σ in (8.4). There are two

ways we can get P . We can find P by iterating in the manner described right after (8.4),

starting with P = Q. Alternatively, we can execute the following MATLAB command...[P]

= dare(F’,zeros(size(F)),Q). It would be good to verify that dare is doing what it should, by

verifying that the output of dare satisfies the equation to be solved, namely (8.4).

Finally, the Kalman filter also requires the data. For this, load aceldat.mat, and the data

are in the 171 by 10 matrix, vardata. To proceed type in MATLAB,

data=vardata(:,ζ)’;

where ζ is the vector in (9.3). In addition, if there is an element of ζ that is not desired in

the analysis (i.e., it is excluded by J above), then it should be deleted from ζ.

We will also be interested in forecasts using the VAR alone. The easiest way to do this is

to simply replace C2C
0
2 in the construction of Q, with CC 0. In addition, H should be replaced

with

H =
£
0 0 0 JJ̃ 0 · · · 0

¤
.

That is, where Jτ , Jτ̄ , Jτ θ were, there should be zeros instead. This is very inefficient

computationally, but the computations go so quickly, that we shouldn’t worry about this.

For checking purposes there are two issues. One is whether the data have been imported

correctly. The other is whether the various model/VAR parameters have been imported

correctly and whether the state space/observer system has been put together properly. We

can check the latter by computing impulse response functions and comparing them to ACEL.

Our system is:

ξt = Fξt−1 + vt

yt = Hξt,

where

vt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bet
0
et

C2

µ
ε1t
ε2,t

¶

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, et =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εM,t

εM,t

εµz ,t
εµz ,t
czεµz ,t
εµΥ,t

εµΥ,t

cΥεµΥ,t

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

109



We can write et as

et = D

⎛
⎝

εM,t

εµz,t
εµΥ,t

⎞
⎠ ,

where D is 10 by 3:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
0 1 0
0 1 0
0 cz 0
0 0 1
0 0 1
0 0 cΥ
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We should look at the dynamic response of each element in yt to a one standard deviation

shock in each of (εM,t, εµz ,t, εµΥ,t). In particular, let the shock occur in period t = 1, so that

v1 6= 0. Set vt = 0 for all t > 0. Then, compute ξ1 = v1 and ξt = Fξt−1 for t > 1. Finally,

yt = Hξt for t ≥ 1. To get impulse responses that are comparable to ACEL, the elements
in yt will have to be ‘unwound’ appropriately. For example, ACEL reports the response of

output, while output is not directly one of the elements of yt.

11. Variance Decompositions

In this section we analyze the residuals from the VAR and we in particular study the percent

of the variance in output due to embodied, neutral and policy shocks. The first subsection

discusses technicalities. The second, the results.

11.1. Technicalities

The data in the VAR are, in logs:

Yt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1− L)pIt
(1− L)(yt − ht)
(1− L)pt

ut

ht

yt − ht − wt

ct − yt
pIt + It − yt

Rt

yt + pt −mt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.1)
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Consider

Ỹt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yt
4(1− L)mt

4(1− L)pt
Rt

ut

ht

wt

ct
It
pIt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

so that Yt = F (L)Ỹt, where F (L) is defined as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1− L)pIt
(1− L)(yt − ht)
(1− L)pt

ut

ht

yt − ht − wt

ct − yt
pIt + It − yt

Rt

yt + pt −mt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 1− L
1− L 0 0 0 0 −(1− L) 0 0 0 0
0 0 1/4 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 −1 −1 0 0 0
−1 0 0 0 0 0 0 1 0 0
−1 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 0
1 − 1

4(1−L)
1

4(1−L)
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yt
4(1− L)mt

4(1− L)pt
Rt

ut

ht

wt

ct
It
pIt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Also, note Ỹt = F (L)−1Yt.

Now, we have that

Yt = A(L)Yt−1 + Cεt,

Yt = [I −A(L)]−1Cεt,

Ỹt = F (L)−1 [I −A(L)]−1Cεt

where εt is a 10 × 1 vector of shocks with variance-covariance matrix equal to the identity

matrix. Now, we actually are interested in properties of velocity, yt+ pt−mt, in addition to
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the other variables in Ỹt. Thus, let Ȳt be:

Ȳt ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yt
4(1− L)mt

4(1− L)pt
Rt

ut

ht

wt

ct
It

yt + pt −mt

pIt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
1 0 1

4(1−L)
− 1
4(1−L)

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yt
4(1− L)mt

4(1− L)pt
Rt

ut

ht

wt

ct
It
pIt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= G(L)Ỹt,

say. The spectral density, SȲ (e
−iω), of Ȳt is:

SȲ (e
−iω) = G(e−iω)F (e−iω)−1

£
I −A(e−iω)

¤−1
CC 0

£
I −A(eiω)0

¤−1 £
F (eiω)−1

¤0
G(eiω)0.

The identified shocks are the first, second and ninth. Let the 10 by 10 matrix of zeros with

only a unity in the jth diagonal element be denoted Ij. The spectral density of Ȳt assuming

only the jth shock is activated is denoted:

Sj
Ȳ
(e−iω) = G(e−iω)F (e−iω)−1

£
I −A(e−iω)

¤−1
CIjC

0
£
I −A(eiω)0

¤−1 £
F (eiω)−1

¤0
G(eiω)0.

It is easy to verify that
10X

j=1

Sj

Ȳ
(e−iω) = SȲ (e

−iω).

This corresponds to the additive decomposition of variance of Ỹt. Let diag(X) be the diagonal

elements of the matrix, X. We can define the fraction of the variance due to shock j at

frequency ω by:

var(j) =
diag

¡
Sj

Ȳ
(e−iω)

¢

diag (SȲ (e−iω))
,

where the division means element by element division of the two vectors. Thus, the first

element of the 10 by 1 vector var(j) is the fraction of variance in the growth rate of pIt
accounted for by the jth shock.

We can obtain the fraction of variance over a range of frequencies, by using the following

formula for a variance:

1

2π

Z π

−π

f(e−iω)dω = limN→∞
1

N

N
2X

k=−N
2
+1

f(e−iωk),
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where f is the spectral density of a scalar random variable, and ωk =
2πk
N
for k = −N/2, ..., N/2

(see Sargent (1987, ch. 11, equation (20))).

Suppose the range of frequencies that interests us goes from period of fluctuation a

to period of fluctuation b. The frequency corresponding to a given period of fluctuation is

2π/period. So, this range of periods (say, a is 8 periods and b is 32 periods, as in the business

cycle with quarterly data) corresponds to ka = N/a and kb = N/b (these can be rounded to

the nearest integer). Note, too, that a spectrum is symmetric about zero. Then, the fraction

of variance in the range, a to b, is

Pka
k=kb

diag(Sj
Ȳ
(e−iωk))

Pka
k=kb

diag(SȲ (e−iωk))
.

Here again, the ratio of two column vectors means element by element division. Note that

the correct formula should scale the numerator and denominator by 2/N, which cancel in

the ratio.

11.2. Results

The following figure displays results for the estimated policy shocks, after multiplication by

100. The top panel displays the estimated policy shocks themselves. The lower left panel

shows the standard deviation of the shocks, computed using a centered set of 7 observations.

The bottom right panel displays the centered moving average of the shocks. Note that the

standard deviation rises very sharply during the period bracketted by the two stars. These

correspond to 1979Q1 and 1985Q4, respectively. The standard deviation of the shocks rises

to over 150 basis points in the high variance period. The mean is actually 102 basis points

in this period. The standard deviation of the shocks in the early period is on average 52

basis points, and over the later period it is on average 44 basis points. The bottom right

panel shows that this high variance is concentrated in the high frequencies. Although it is

quite evident from the quarterly shocks observed in the first panel, it is less evidence in the
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smoothed shocks.
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We computed the variance decompositions of the shocks, in two different ways. One was

the spectral approach described in the previous subsection. This produced the following

results. For the HP filtered data, the fraction of variance due to the disembodied, neutral

and all three shocks is:

0.16, 0.13, 0.14, 0.43

Thus, the three shocks account for 43 percent of the HP filtered output data. Of this, 16

percent is due to the disembodied shock, 13 percent to the neutral shock and 14 percent to

the monetary policy shock. The results for the bandpass filtered data, allowing components

with period 8 quarters to 32 quarters to pass, we obtained the following results:

0.15, 0.13, 0.15, 0.42.

The results are very similar to what was found for the HP filter. The similarity of findings

based on the HP and band-pass filters has been noticed before.
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We also computed these variance decompositions using a time domain procedure. In one,

we generated 1,000 replications of 1,000 artificial data sets each, by bootstrapping the fitted

disturbances. For HP filtered data, we obtained the following results:

0.16 (0.029), 0.13 (0.025), 0.14 (0.030), 0.43 (0.069).

Numbers in parentheses are standard deviations across replications. The Monte Carlo stan-

dard error corresponds to these numbers, divided by
√
1000 = 32. Putting the Monte Carlos

standard errors in parentheses instead,

0.16 (0.00092), 0.13 (0.00079), 0.14 (0.00095), 0.43 (0.0022).

Clearly, these numbers coincide with the ones obtained using the spectral method. The

variance decompositions for band pass filtered data are:

0.17 (0.0012), 0.14 (0.0011), 0.14 (0.0012), 0.44 (0.0028).

There are differences here with what was reported based on the spectral procedure, and these

are greater than what can be accounted for with Monte Carlo standard error. When the

number of observations was increased to 4,000 (only one replication), the following results

were obtained for the band pass filter:

0.18, 0.14, 0.15, 0.51

These calculations were then repeated, except that the disturbances were drawn from the

Normal distribution:

0.17, 0.15, 0.13, 0.41.

These results resemble more closely the ones obtained using the bootstrap with 1,000 ob-

servations. There is some (slightly) troubling sensitivity evident in the band pass filter

calculations.

Turning to the variance decompositions obtained by simulating the model’s response to

the fitted residuals, we have, for the HP filter:

0.210(25.9), 0.105(69.0), 0.312(3.4), 0.644(13),

where numbers in parentheses are the percent of times that the simulated statistic (167

observations, 1,000 replications) exceeds the corresponding empirical value. (The simulations

were done by bootstrap for this.) Note that all the statistics have reasonable p−values, except
the one for policy, where the p−value is 3.4 percent.
Turning to the band pass filter, we have

0.265(20.2), 0.099(70.5), 0.420(2.6), 0.747(11.9).
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Now the p−value for the policy shock is even lower. When the simulations underlying the
p-value were done with random numbers generated by the Normal distribution, the p−values
for the HP filter, policy shock, was 4.6 percent and for the band pass filter it was 3.4 percent.

Not much different. The p-values rose somewhat, to 5.4 and 3.8 percent, respectively, when

shocks for the early, middle and late period, in terms of variance, were drawn separately.

One way to visualize the empirical results is to see what the data would have been like

with only the three identified shocks, compared with what it was with all the actual shocks.

We can see this in the following figure:
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Figure 9: Historical decomposition − monetary policy and technology shocks
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Note how highly correlated the two components are. Now let’s have a look at the results for
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the individual shocks. The results for the embodied technology shock are:
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Figure 8: Historical decomposition − embodied technology shocks only
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Now consider the neutral technology shocks:
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Figure 7: Historical decomposition − neutral technology shocks only
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Finally, here are the monetary policy shocks:
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Figure 6: Historical decomposition − monetary policy shocks only
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One way to think about the small p−values just described is as follows. The ‘empirical’
variance decompositions were computed by simulating the model’s response to the actual

fitted disturbances, in the sequence in which they were estimated to occur. This is what gives

rise to the high estimated of the fraction of variance due to all shocks and to the policy shock

in particular. The lower numbers were obtained by randomly reshuffling these disturbances.

The difference in results can be seen in the following two figures. The next figure displays

118



results for the HP filter:
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Each figure has two horizontal lines, though in the upper right figure the two lines are hard

to distinguish. The lower line is the population value of the variance decomposition, com-

puted using the spectral method. The upper line is the value of the variance decomposition

computed for the data. Note how that line is very high for the policy shock.
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The results for the band pass filter can be seen in the following figure:
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Again, note how uncharacteristically high the contribution of the policy shock is to the

variance in output.

Evidently, one gets one variance decomposition results for the actual sequence of shocks

estimated with the fitted VAR and a different one when the shocks are shuffled. This suggests

that there may be serial correlation in the shocks. This motivated going to a 6 lag VAR. We

now report results based on this. The results are quite different. In particular, the estimate

of the variance decomposition based on the fitted residuals is, for the HP filter:

0.175(45.5), 0.075(45.1), 0.272(33.2), 0.432(52.9),

where (as before) numbers in parentheses are the frequency that bootstrapped variance

decompositions are bigger than the empirical one. Note how high the empirical p value now

is. For the Band Pass filter, the results are:

0.221(36.8), 0.094(36.4), 0.341(26.5), 0.447(53.7).

Again, p−values are quite high. It is interesting to see these results in pictures. For the HP
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filter, we have:

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8
embodied shock

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5
neutral shock

0 200 400 600 800 1000
0

0.5

1

1.5
policy shock

hp filter

0 200 400 600 800 1000
0

0.5

1

1.5

2
all three shocks

Now, the asymptotic variance decompositions are essentially indistinguishable, and both are

in the mean of the simulated variance decompositions. For the Band Pass filter, we have:
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Here, the empirical variance decomposition for the policy shock is slightly higher than the

corresponding asymptotic estimate, but the difference really isn’t very noticeable.

So, the variance of output due to our shocks is now much lower. It is interesting to ask

what this does for the picture of the historical decomposition of shocks. Here is the picture

for the three shocks together:
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Figure 9: Historical decomposition − monetary policy and technology shocks

Q4−60 Q4−70 Q4−80 Q4−90 Q4−00
−5

0

5

Price of Inv.

122



Here are the results for the embodied technology shock:
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Figure 8: Historical decomposition − embodied technology shocks only
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For the neutral shock:
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Figure 7: Historical decomposition − neutral technology shocks only
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Finally, for the monetary policy shock:
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Figure 6: Historical decomposition − monetary policy shocks only
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11.3. Conclusion

Our empirical estimates suggest that the three shocks account for a large fraction of the

business cycle variation in output. The policy shock is particularly important. However,

when we simulate the VAR in small or large samples, we find that the variance of output

due to the policy shock is relatively small, and our three shocks account for less than half

the variance of output. Why this sharp difference between the empirical estimate and the

properties of the VAR? Perhaps the residuals represent an ‘unusual’ realization, or maybe

the model has not been characterized properly. For example, one hypothesis is that there is

heteroscedasticity in the results. This is motivated by the above figure. However, when this

was modeled, it was found that this hypothesis does not explain the difference between the

properties of the estimated VAR and of the fitted residuals.

12. Mapping from zt, st to VAR Variables

The data that go into the VAR are a transformation on the variables in zt and st. There

are two transformations possible, and which is used seems to make a difference. Here, we

describe in detail what these two transformations are.
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12.1. Jesper Transformation

This is the transformation used in Jesper’s code. The first step is to take zt, st into unscale.m

and produce a transformed series (see GenSimData.m), and in the second step the result is

transformed into the data actually used in the VAR. We first discuss unscale.

The first thing that unscale.m does is to recover µ̂Υ,t and µ̂z,t from the 6th and 3rd

elements of st, respectively. Then, µ̂z∗,t is constructed using the relation discussed previously,

µ̂z∗,t = µ̂z,t +
α

1− α
µ̂Υ,t.

The next thing is to recover the level of these variables. For this it is useful to note that

there are two interpretations of a variable with a hat. The ‘normal’ interpretation is that it

is a deviation from the steady state, expressed as a fraction of the steady state:

µ̂z,t =
µz,t − µz

µz

.

Note that this also be written as

µ̂z,t + 1 =
µz,t

µz

.

At the same time, recall that log(1 + x) ≈ x for x small, so that since µ̂z,t is small, it is

approximately true that

µ̂z,t = log

µ
µz,t

µz

¶
= log µz,t − log µz.

We refer to this as the ‘log interpretation of µ̂z,t’.From this last approximation, note that

(since µz,t = zt/zt−1), the cumulative sum of the µ̂z,t’s is:

µ̂z,1 + µ̂z,2 + ...+ µ̂z,t

= log

µ
µz,1

µz

¶
+ log

µ
µz,2

µz

¶
+ ...+ log

µ
µz,t

µz

¶

= log

µ
µz,1µz,2 · · · µz,t

µt
z

¶

= log

Ã
z1
z0

z2
z1
· · · zt

zt−1

µt
z

!

= log

µ zt
z0

µt
z

¶

= log zt − log z0 − t log(µz).

This suggests computing log zt using

log zt = log z0 + t log(µz) + µ̂z,1 + µ̂z,2 + ...+ µ̂z,t.
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There is another way to approximate log(zt) based on the ‘normal’ interpretation of µ̂z,t :

µz,t =
zt

zt−1
= µz

¡
µ̂z,t + 1

¢
.

Here, one computes

µz,1µz,2 · · · µz,t =
zt
z0

,

so that

log zt = log
¡
µz,1

¢
+ ...+ log

¡
µz,t

¢
+ log z0

= t log(µz) + log
¡
µ̂z,1 + 1

¢
+ log

¡
µ̂z,2 + 1

¢
+ ...+ log

¡
µ̂z,t + 1

¢
.

Note that we could apply a second order Taylor series expansion, to obtain:

log zt = t log(µz) + µ̂z,1 −
1

2

¡
µ̂z,1

¢2

+µ̂z,2 −
1

2

¡
µ̂z,2

¢2
+ ...+ µ̂z,t −

1

2

¡
µ̂z,1t

¢2

These different ways of computing log(zt) will give the same answer if µ̂z,t is close zero.

The time series representation of µ̂zt is given by:

µ̂zt = ρµzµ̂zt−1 + εµz ,t,

where σµz = 0.06, and σµz is the standard deviation of εµz,t. Let’s adopt the log interpertation

of the hat, so that:

logµzt = (1− ρ) log(µz) + ρµz log µzt−1 + εµz,t,

or,

log zt − log zt−1 = (1− ρ) log(µz) + ρµz (log zt−1 − log zt−2) + εµz ,t.

Thus, εµz,t is a shock to log(zt). Suppose we get a one-standard deviation positive shock to

εµz ,t. This induces a move in log zt by σµz , i.e., ∆ log zt = σµz , where ∆ means the difference

between what log(zt) is with the shock and what it would have been in the absence of a shock.

To get this into percent terms, multiply σµz by 100. With σµz = 0.06, this means that a

one-standard deviation (i.e., a shock of ‘typical’ magnitude) disturbance in εµz ,t moves zt by

6 percent. This is too big to make any sense. For example, the first draft of ACEL reports

that the standard deviation of εµz,t estimated by Prescott is 1 percent. It also reports our

estimate of 0.12 percent. A sensible interpretation of what we have here is that the standard

deviation of the shock to neutral technology is 0.06 percent.
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In unscale.m, the level of technology is computed using the log approximation (see the

cumulative sum in the code). After computing the level of technology, the program computes

money growth. (Implicitly, it sets q̂0 = 0.) It does so by evaluating:

q̂t − q̂t−1 + π̂t + µ̂z∗,t,

for t = 1, ..., T. Writing this out more carefully (using the log approximation),

log
qt
q
− log qt−1

q
+ log

πt

π
+ log

µz∗,t

µz∗

= logQt − logPt − log z∗t −
£
logQt−1 − logPt−1 − log z∗t−1

¤

+ log πt − log π + log µz∗,t − logµz∗

= logQt − logQt−1 − log π − log µz∗.

(Because the object on the left of the equality is zero in steady state, this says that

the growth rate of transactions balances is equal to inflation plus the growth rate of the

economy, i.e., the growth rate of z∗t .) The program multiplies the above by 4 and calls the

result mgrowth. This is clearly an annualized, decimal, growth rate.

Next unscale.m computes ‘output’, which is b̃yt =
byt
z∗t
. The program then adds to this, the

quantity µ̂z∗,t :
b̃yt + µ̂z∗,t.

Using the log approximation, this is (recall, ỹt = yt/z
∗
t ),

log

µ
yt
z∗t ỹ

¶
+ log z∗t − log z∗0 − t log(µz∗)

log (yt)− log ỹ − log z∗0 − t log(µz∗).

Consumption and hours are handled in the same way. Capital utilization (‘capa’) is ût, which

we interpret as log ut, which is ‘like’ ut − 1.
In the case of Rt (‘fedf’), unscale.m computes 4RR̂t, which is 4 (Rt −R) under the normal

interpretation of R̂t. Inflation is handled in the same way. The factor, 4, converts to annual.

Unfortunately, neither of these transformations is correct. Both the interest rate and the

inflation rate are expressed in annual, decimal terms.

Velocity is

log (yt)− log ỹ − log z∗0 − t log(µz∗)− q̂t − [log z∗t − log z∗0 − t log(µz∗)]

= log (yt)− log ỹ − log z∗0 − t log(µz∗)− log
µ

Qt

z∗tPtq

¶
− [log z∗t − log z∗0 − t log(µz∗)]

= log (yt)− log
µ
Qt

Pt

¶
− log ỹ + log q.

127



Consider pinv. The cumulative sum of µ̂Υ,t is

logΥt − logΥ0 − t log(µΥ).

These data are loaded into a matrix, SimData.

In summary, unscale produces as output,

[output, mgrowth, infl, fedf, capa, hours, rwage, cons, invest, vel, pinv]

The variables here computed using the log approximation are output, mgrowth, capa, hours,

rwage, cons, invest, vel, pinv. Variables computed using the normal approximation are infl,

fedf. In the calculations, the shocks have been multiplied by 100.

12.2. Riccardo’s Approximation

This approximation uses the linearized mapping from zt, θt to Xt in (8.3). This mapping is

described in detail in section 8.1.

13. Estimation and Identification of VAR Impulse Response Func-
tions

Following is the structural form representation of our VAR system:

A0Yt = A(L)Yt−1 + et. (13.1)

The parameters of the reduced form are related to those of the structural form by:

C = A−10 , B(L) = A−10 A(L). (13.2)

We obtain impulse responses by first estimating the parameters of the structural form, map-

ping these into the reduced form, and then simulating (??).

13.0.1. Monetary Policy Shocks

We assume that policy makers manipulate the monetary instruments under their control in

order to ensure that the following interest rate targeting rule is satisfied:

Rt = f(Ωt) + εRt, (13.3)

where εRt is the monetary policy shock. We interpret (13.3) as a reduced form Taylor rule.

To ensure identification of the monetary policy shock, we assume f is linear, Ωt contains

Yt−1, ..., Yt−q and the only date t variables in Ωt are {∆at,∆pIt, Y1t}. Finally, we assume that
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εRt is orthogonal with Ωt. It is easy to verify that these identifying assumptions correspond

to the following restrictions on A0:

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,10
1×1

A1,20
1×1

A1,30
6×6

0
1×1

0
1×1

A2,10
1×1

A2,20
1×1

A2,30
1×6

0
1×1

0
1×1

A3,10
6×1

A3,20
6×1

A3,20
6×6

0
6×1

0
6×1

A4,10
1×1

A4,20
1×1

A4,30
1×6

A4,4
0

1×1

0
1×1

A5,10
1×1

A5,20
1×1

A5,30
1×6

A5,4
0

1×1

A5,5
0

1×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13.4)

The second to last row of A0 corresponds to the monetary policy rule, (13.3). The zero

in this row reflects our assumption that Ωt does not include the last variable in Yt. The

right two columns of zeros in the first 8 rows of A0 reflect our identifying assumption that a

monetary policy shock has no contemporaneous impact on ∆at, ∆pIt or Y1t. Suppose there

were a non-zero term somewhere in the first 8 rows of column 9. Since the interest rate is

affected by the monetary policy shock, this would imply that a variable in the first 8 rows

of column 9 is affected by a policy shock, contradicting our identification assumption. Now

suppose that there were a non-zero term in at least one of the eight rows of column 10 in A0.

Since the money supply is affected by the monetary policy shock, this would imply that a

variable in the first 8 rows of column 10 is affected by a monetary policy shoc, contradicting

our identification assumption.

13.0.2. Technology Shocks

As stated above, we assume that the only shocks which have a non-zero impact on the long-

run level of productivity are innovations to neutral and capital-embodied technology. The

only shock that has an effect on the price of investment in the long run is a shock to capital-

embodied technology. Like the monetary policy shocks, the identification assumptions on

the technology shocks imply a set of zero restrictions on an expression that combines the

autoregressive parameters in the VAR and A−10 . We do not exhibit these restrictions here,

because it turns out to be more convenient to pursue a variant of the approach advocated

by Shapiro and Watson.

13.1. Estimation of Impulse Responses

To discuss our estimation strategy, it is useful to write out the equations of the structural

system explicitly, taking into account the restrictions implied by our assumptions about

long-run effects of shocks and our assumptions about the effects of a monetary policy shock.
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Apart from a constant, the first equation in (13.1) can be written as follows:

∆pIt = a11(L)∆pIt−1+a12(L)∆
2at+a13(L)∆Y1t+a14(L)∆Rt−1+a15(L)∆Y2,t−1+

eΥ,t

A1,10
, (13.5)

where ∆ ≡ (1 − L). The presence of ∆ in front of each of ∆at, Y1t, Rt−1, Y2,t−1 reflects

our identification assumption that shocks other than eΥ,t have no impact on pIt in the long

run. The polynomial lag operators, correspond to the relevant entries of the first row of

A0 − A(L)L, scaled by A1,10 . The restriction that only capital embodied technology shocks

have a non-zero impact on the relative price of investment at infinity is equivalent to imposing

a unit root in each of the lag polynomials associated with ∆at, Y1t, Rt−1 and Y2,t−1. Also

note that we exclude the contemporaneous values of Rt and Y2t from the right side of (13.5).

This reflects our assumption that monetary policy shocks do not have a contemporaneous

impact on the price of investment (see the discussion about A0 above).

We cannot use ordinary least squares to obtain a consistent estimate of the coefficients

in (13.5) because ∆2at and ∆Y1t are in general correlated with eΥ,t. We apply two stage

least squares to estimate the parameters using as instruments a constant, ∆at−i, ∆pIt−i,

Y1t−i, Rt−i, and Y2t−i, i = 1, 2, 3, 4. The coefficients in the first row of the structural form

can then be obtained by scaling the instrumental variables estimates up by A1,10 , where A1,10
is estimated as the (positive) square root of the variance of the fitted disturbance in the

instrumental variables relation.

The second equation in (13.1) can be written as:

∆at = a22(L)∆at−1+a21(L)∆pIt+a23(L)∆Y1t+a24(L)∆Rt−1+a25(L)∆Y2,t−1+
ezt

A2,20
, (13.6)

where the polynomial lag operators correspond to the relevant entries of the second row of

A0 − A(L)L, scaled by A2,20 . The presence of a unit root in the polynomial lag operators

multiplying Y1t, Rt−1 and Y2,t−1 reflects our assumption that non-technology shocks have no

impact on at at infinity
4. Our assumptions do not imply a similar unit root restriction on

the polynomial lag operator multiplying ∆pIt. This is because, by assumption, the moving

average relating non capital-embodied technology shocks to ∆pIt already has a unit root.

The fact that the contemporaneous values of Rt and Y2t are excluded from (13.6) reflects our

assumption that monetary policy shocks do not have a contemporaneous impact on labor

productivity (see the discussion about A0 above).

We cannot use ordinary least squares to obtain a consistent estimate of the coefficients in

(13.6), because ezt is, in general, correlated with ∆pIt and ∆Y1t. Instead, we apply two-stage

least squares using as instruments a constant, êΥ,t, ∆at−i, ∆pIt−i, Y1t−i, Rt−i, and Y2,t−i, for

4For further discussion, see Shapiro and Watson (1988), and the more recent papers by Christiano,
Eichenbaum and Vigfusson (2003, 2003a, 2003b) and Fisher (2003).
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i = 1, 2, 3, 4. Here, êΥ,t is the fitted disturbance from (13.5). By including this disturbance as

an instrument, we are imposing our assumption that neutral and capital-embodied technol-

ogy shocks are orthogonal. The coefficients in the second row of the structural form can be

obtained by scaling the instrumental variables estimates up by A2,20 . Here, A
2,2
0 is estimated

as the (positive) square root of the variance of the fitted disturbances in the instrumental

variables relation.

The next set of 6 equations in (13.1) can be written as follows:

A3,10 ∆at +A32
0 ∆pIt +A3,30 Y1t = b(L)Yt−1 + e1t (13.7)

The ninth equation in (13.1) is just the policy rule:

Rt +
A4,10
A4,40

∆pIt +
A4,20
A4,40

∆at +
A4,3
0

A4,4
0

Y1t = c(L)Yt−1 +
eMt

A4,40
. (13.8)

Consistent estimates of the parameters in (13.8) can be obtained by ordinary least squares

with Rt as the dependent variable. This is because, by assumption, eMt is not correlated

with ∆at, ∆pIt and Y1t. The fitted eMt’s are orthogonal to ezt’s and eΥt’s. This is eMt’s are

orthogonal to the variables that span the space in which the innovations to technology lie.

The parameters of the 9th row of the structural form are obtained by scaling the estimates

up by A3,30 , where A3,3
0 is estimated as the positive square root of the variance of the fitted

residuals. Finally, according to the last equation:

Y2t +
A5,1
0

A5,5
0

∆at +
A5,20
A5,50

∆pIt +
A5,30
A5,50

Y1t +
A5,40
A5,50

Rt = d(L)Yt−1 +
e2t

A5,50
.

The coefficients in this relation can be estimated by ordinary least squares. This is because

e2t is not correlated with the other contemporaneous variables in this relation. This reflects

that Y2t does not enter any of the other equations. The parameter, A
5,5
0 , can be estimated as

the square root of the estimated variance of the disturbances in this relation. The parameters

in the last row of the structural form are then suitably scaled up by A5,50 .

The previous argument establishes that rows 1, 2, 9 and 10 of A0 are identified. The

block of 6 rows in the middle is not identified. To see this, let w denote an arbitrary

6 × 6 orthonormal matrix, ww0 = I6. Suppose Ā0 and Ā(L) is some set of structural form

parameters that satisfies all our restrictions. Let the orthonormal matrix, W , be defined as

follows:

W =

⎡
⎢⎢⎣

I
2×2

0
2×6

0
2×2

0
6×2

w
6×6

0
6×2

0
2×2

0
2×6

I
2×2

⎤
⎥⎥⎦ . (13.9)
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It is easy to verify that the reduced form corresponding to the parameters, WĀ0, WĀ(L)

also satisfies our restrictions, and leads to the same reduced form:

Yt =
¡
WĀ0

¢−1
WĀ(L)Yt−1 +

¡
WĀ0

¢−1
Wet.

To see this, note:

¡
WĀ0

¢−1
WĀ(L) = Ā−10 W 0WĀ(L) = Ā−1

0 Ā(L)

E
¡
WĀ0

¢−1
Wutu

0
tW

0
h¡

WĀ0
¢−1i0

= EĀ−1
0 W 0Wete

0
tW

0
£
Ā−10 W 0

¤0

= Ā−10
¡
Ā−10

¢0
.

Recall that impulse response functions can be computed using the matrices in B(L) and the

columns of A−10 . It is easy to see that the impulse responses to eMt, ezt and eΥt are invariant

to w. This is because: ¡
WĀ0

¢−1
= Ā−10 W 0.

It can be verified that columns 1, 2, 9 and 10 of Ā−10 W 0 coincide with those of Ā−10 .

We conclude that there is a family of observational equivalent parameterizations of the

structural form, which is consistent with our identifying assumptions on the monetary policy

shock and the technology shocks. We arbitrarily select an element in this family as follows.

Let Q and R be orthonormal and lower triangular (with positive diagonal terms) matrices,

respectively, in the QR decomposition of A330 . That is, A330 = QR. This decomposition is

unique and guaranteed to exist given that A330 is non-singular, a property implied by our

assumption that A0 is invertible. Now, suppose we have a particular parameterization in

hand in which A33
0 is not lower triangular. Then, the QR decomposition guarantees that

we can find an orthonormal matrix, w, such that wA330 is lower triangular. Suppose that

A330 is already lower triangular. How many orthonormal matrices have the property that

premultiplication of A33
0 preserves lower triangularity of the result? There is only one. The

fact that wA330 and A330 are both lower triangular implies that w is too. But orthonormality

of w under these circumstances implies that it is the Choleski decomposition of the identity

matrix, which known to be unique and equal to the identity matrix itself. We conclude that

we may, without loss of generality, restrict A33
0 to be lower triangular. This restriction does

not restrict the reduced form in any way, nor does it restrict the set of possible impulse

response functions associated with eMt, ezt, eΥ,t or e2t.

Thus, in (13.7) A330 is lower triangular. We seek consistent estimates of the parameters of

(13.7), with this restriction imposed. Ordinary least squares will not work as an estimation

procedure here because of simultaneity. To see this, consider the first equation in (13.7).

Suppose the left hand variable is the first element in Y1t. The only current period explanatory

variables are ∆at and ∆pIt. But, note from the first and second equations in the structural
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form that ∆at and ∆pIt respond to Y1t and, hence, to the innovations in Y1t. That is, ∆at

and ∆pIt is correlated with the first element in e1t. We can instrument for ∆at using ezt,

the (scaled) residual from the first structural equation, and for ∆pIt using eΥ,t, the (scaled)

residual from the second structural equation.

Now consider the second equation in (13.7). Think of the left hand variable as being

the second variable in Y1t. The current period explanatory variables in that equation are

∆at, ∆pIt and the first variable in Y1t. All of these variables are correlated with the second

element in e1t. To see this, note that a disturbance in the second element of e1t ends up in

∆at and ∆pIt via the first and second equations in the structural form, because Y1t appears

in those equations. This explains why ∆at and ∆pIt are correlated with the second element

of e1t. But, the first element in Y1t is also correlated with this variable because ∆at and ∆pIt

are ‘explanatory’ variables in the equation determining the first element in Y1t, i.e., the first

equation in (13.7). So, we need an instrument for ∆at, ∆pIt and the first element of Y1t.

For this, use ezt, eΥ,t and the residual from the first equation in (13.7). Thus, moving down

the equations in (13.7), we use as instruments ezt, eΥ,t and the disturbances in the previous

equations in (13.7).

With A0 and A(L) in hand, we are now in a position to compute the reduced form,

using (13.2). The dynamic responses of Yt to technology and monetary policy shocks may

be computed by simulating (??) with i = 1, 2, 9, respectively.
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