Technical Appendix to:
Firm-Specific Capital, Nominal Rigidities and the
Business Cycle

David Altig Lawrence J. Christiano Martin Eichenbaum
Jesper Linde

July 6, 2005

Contents
1 Firms . . . o e 3
1.1 General Setup . . . . . . . . L 3
1.2 Capital Utilization Decision (First-failed-Try) . . . ... ... ... ... .. 6
1.2.1 A much simpler setup. . . . . . .. .. ... 7
1.3 Capital First Order Condition . . . . . .. . ... ... ... ... ...... 9
1.4 Investment First Order Condition . . . . . . . .. .. ... ... ... .... 11
1.5 Capital Utilization First Order Condition (Second Try) . . . . ... ... .. 11
1.6 Scaling and Linearizing the Firm’s First Order Conditions . . . ... .. .. 12
1.6.1 Some Useful Aggregation Results . . . . . ... ... ... ...... 12
1.6.2 The Utilization Rate of Capital . . . . .. ... ... ... ... ... 13
1.6.3 The Investment First Order Condition . . . ... .. ... ... ... 13
1.6.4 The Capital First Order Condition . . . . . ... .. ... ... ... 15
1.6.5 The Shadow Rental Rate of Capital . . . . . .. ... ... ... ... 16
1.6.6 The Capital Evolution Equation . . . . . . . ... ... ... ..... 17
1.7 Marginal Cost . . . . . . . . .. e 18
2 Households . . . . . . . . . 20
2.1 Money Demand . . . . . . . . ... 20
2.2 First Order Condition for Cy . . . . . . . . . . . . . . .. ... . ... ..., 24
2.3 M,y First Order Condition . . . . . . . ... ... ... ... .. ...... 25
2.4 The Wage Equation . . . . . . .. ... . L 25
3 Market Clearing and Monetary Policy . . . . . . .. ... ... .. ... .. .... 37
4 Collecting the Equations . . . . . .. . .. .. . L o 40
4.1 The Firm Sector . . . . . . . . . . 40
4.2 Household Sector . . . . . . . . . .. 41
4.3 Aggregate Conditions . . . . . . . .. ..o 42
5 Solving the Model . . . . . . . .. . 43

5.1 Canonical Form . . . . . . . . . . 43



5.2 Solution to Canonical Form . . . . . . . . . . . . ... 44

5.3 Steady State . . . . . . . L 48

6 Estimation . . . . . . . .. L 53
7 Deriving the Reduced Form Inflation Equation . . . . . . . ... ... ... .... 55
7.1 Some Results for Prices. . . . . . . .. . . . ... ... .. 55
7.2 The Capital Euler Equation . . . . . ... ... ... ... ... ....... 58
7.3 The Price First Order Condition . . . . . . . .. .. ... ... ... ..... 67
7.4 Pulling Everything Together to Get the Reduced Form . . . ... ... ... 78
7.5 Who’se Doing the Production after a Monetary Shock? . . . ... ... ... 80
7.5.1 Period2 . . . ... . 80

7.5.2 Period3 . . . ... 81

7.5.3 Period4 . . . ... 84

754 Period N . . . . .. 88

7.5.5 Price Dispersion . . . . . . . . ... L 90

8 Kalman Filter . . . . . . . . . . . e 90
8.1 The Reduced Form . . . . . . . . . . . .. ... . ... . . 92
8.2 Estimation . . . . . . . . 97

9 Reduced Form Vector Autoregression . . . . . . .. ... ... ... ... ..... 99
9.1 Full Rank System . . . . . . . . . ... L 99
9.2 Singular System . . . . . ... 103
9.2.1 Independent Noise . . . . .. .. .. ... ... ... .. 103

9.2.2 Dependent Noise . . . . . . . . . .. e 104

9.2.3 SpectrumoftheData. . . . . .. ... ... ... ... .. ... .. 105

9.3 Imvertibility . . . . . . . .. 105

10 Forecasting Using the Kalman Filter and Non-Identified VAR Disturbances . . . . 107
11 Variance Decompositions . . . . . . . . . . .. . L L e 110
11.1 Technicalities . . . . . . . . . . . . e 110
11.2 Results . . . . . o o oo 113
11.3 Conclusion . . . . . . . . . o e 124

12 Mapping from z;, s; to VAR Variables. . . . . .. . .. ... ... ... ... .. 124
12.1 Jesper Transformation . . . . . . . . . . . .. ... 125
12.2 Riccardo’s Approximation . . . . . . . . . . ... ... 128

13 Estimation and Identification of VAR Impulse Response Functions . . . . . . . . . 128
13.0.1 Monetary Policy Shocks . . . . .. ... .. ... ... .. ... 128

13.0.2 Technology Shocks . . . . . ... .. ... ... ... ... 129

13.1 Estimation of Impulse Responses . . . . . . .. .. ... ... .. ... ... 129



These are the technical notes the paper whose title appears above.

1. Firms
1.1. General Setup

The intermediate good producer’s technology is:

i) = akili)f (5 ) o

where ¢; has mean unity and

2t
= :uzta
Zt—1
and
o
* —
2 =1, "z,
Let
Tt Z:
= Mgy Mpey =
Ty 24

The time series representations of y,, and py, are provided below. Note that

ooy = (/irt)m Mozt
so that

«

fizey = Eﬂrt + [y

A hat over a variable, say 7,, means 4, = dv,/v, where v is the value of the variable in
nonstochastic steady state.

Also, K; denotes the services of capital:
K, = wK,.
The law of motion for capital has the following form:
Ko (i) = (1= 0)Ky(i) + F(1,(3), i1 ().

In addition, investment adjustment costs are given by:

FUL), ha(i)) = (1= S ([fji?i))ﬂm‘).

The function, S, is restricted to satisfy the following properties: S(pypi,«) = S (pypt,-) =0,

and s = S"(pyp,«) > 0. For checking purposes, the following S function was used:

() o)

S(r) = (Mz*,UJT)Q [S"] (Q(Mi:“ﬂff B ,u:j,uT * %>
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The present discounted value of profits of the intermediate good firm are:

E; ZBjAt+j{Pt+j(i)yt+j(i)—Pt+th+J’(V)'LU,H,]‘(i)ht(i)_Pt+jT1;}th+j<i)—Pt+j [@(UtH)T;j] Ky},
j=0
where v denotes the fraction of the wage bill that must be financed in advance, and Ay ;

is the Lagrange multiplier on currency in the Lagrangian representation of the household

problem. If R; is the gross nominal rate of interest, then
Ri(v)=vRi+1—v.

Linearizing this,

Here, A; is the shadow value of a dollar to the household, the owner of the intermediate good
firm and 7 denotes a subsidy to the intermediate good firm.

Final goods are produced according to the following production function:

I Aft
Ytz[/ Y}t*f»tdj] , 1< Ap< o0
0

1 1
Pt = |:/ Pt(l) =2t dl]
0

The the intermediate good firm must satisfy the demand curve:

1N , Af
Y pu— pu—

To see where the aggregate condition involving prices comes from, take each side of the above

and
].7Af’t

to the power 1/); and integrate:

1 1 —= 1
b P, \>—1t N
Yy _ di :/ 1) di.
! 0 (Pt(l)) 0 w(@)

Now, raise each side to the power Ay :

1 e M 1 A

P T N -
Y, d = Ard =Y.
L g™ o) = [ worva] =

Then,
r 1 T A
]gt%f(l)ﬁdi B
o \F(i) ’

- 1 1Af

L/ 1 \%T g
- di - pV
/0 (sz‘)) ' f




In working with the firm’s problem, it is useful to substitute out for hours worked in

terms of the amount of output produced, the capital stock and the technology shocks:

ye(i) + 020 f(ztht(i))

e K (1) Ky (i)

h(i) = 5§¥1<%%%££)

We will be differentiating f~! so it will be useful to have an expression for this. Thus, let
y = f(x), so that dy/dx = f'(z). Now, x = f~(y), so that dz/dy = (f*(y)) =1/ (f'(z)).

Writing the intermediate good firm’s objective in Lagrangian form, and letting A\ ; =
Ay Bryg

b Zﬁ PNt AP (D (0) = Ry 0w ho(6) = Ty Lo (0) = [a(uny) Y] Koy
ey [(1 — ) Kyyy(i) + (1 =8 (%))Iﬁj(i) - Kt+j+1(i)]}

Substitute out for hours worked:

E> B Mo ()i (1) — Reys(V)wey

= R+
= i () = [alun (0)05Y] Ky (0)

)
Tt [(1 0)Kpj(1) + (1 =5 (Lz+j—1(i)

Next, substitute out for output using the demand function and for the physical stock of

Mf—1 <yt+j(i) + ¢Z§k+j)

€r15 K1y (i)

Dtesi) = Kieyoa@] 3

capital:
0o N . N’ *
. i e () Ky (1), [ Peg(D)™Yegy + 027,
B> 8 g () i = Resv)uny 0 L
t — t+7 Wity t+7 t+7 t+j 2ot Copitlis (Z)Kt+j<l)

=T L (0) = [a(usy () Y] Koy (2)

iy l(l —0) Ky (i) + (1 -8 (#ﬁ?@)

The functional form for a used when performing checks is:

))1es) = Kavsa0)]

a(u) = au®+bu+c
a = 0.5po,
b = p(l—o0a)
¢ = p((oa/2) = 1)



We adopt the following scaling of variables:

*
Ot = Gz
It = itTtZ:
*
Y;t = Yz
[ 1. *
Kioi = ki 2y T,
— * 7
Wy = 24 Wy,
o = @
=
2 Py

1.2. Capital Utilization Decision (First-failed-Try)

Consider the first order condition with respect to u. (i) :

Ky (i)f—l (ptﬂ‘(i)_eyﬁj - ¢Z;+j>

t+ €t (1) Ky (2)
Run (0o, e O (1) ! Prag (D) Wors + 021
t+j t+j (i\—0 ) * N 7 .
24 —1 pr4j (1) OV +d2], Epaithpri (1)K :(1)2
i (f ( etﬂutﬂ(nfm(i)])) et () K ()

_a/(ut+j @)T;Lljktﬂ (i)}
= 0

Let’s specialize a little to see if it simplifies....

f=a"% so f'=(1—a)z™ and f1(y) =y,

Then,
1
g (1) 0 K (3) (Do ()Y F oz 0
—R, (v)we (7 K )
{ t+]( ) t+j() Zti €t+jKt+j(Z>
Upy;(7) T Petj (1) Yors + ¢
+ R i (V)wey; A '
t+J( ) t+) (1 — Oz)Zt+j ( €t+jKt+j(Z)
—a (g (1)) Ty Ko (1)}
=0
or,

(pt@')e;_?:(g cbZZ‘) = O [(1%_(@2 &

= u (1) d (e (§)) Y K (4).



or,

= ¢zz)ﬁ oy [l )

e K (1 2 1—a)
= o (w(8)) (=) LR i),

Note that the object to the left of the equahty is —oo for u;(i) = 0 and converges to

as u(i) — oo. Tough to get anything closed form out of this!

1.2.1. A much simpler setup.

Start with perfect competition....

0
p(uk)* W~ —a(u)k — wh, a(u) = roélulwl
d(u) = dou’, a”’(u) = §p61u’ > 0.
fonc:
au® pk®htT = Sultk,
S0,
Oépk?a_lhl_a — 60u51+1—o¢
<apka1h1a> Wrﬁ
u = (— .
do

Then, the ‘reduced form’ problem, after substituting out for optimized capital utilization, is:

apke—thl= SFa do apko—thl=e U
p (7) KR! — < > k —wh

5 146, 9o
or,
p (5_p> o (k) lrmts] o[t
1457
01+1—a
s ((gp) eI ()R —
1 0

or,

P (_p> BEa (/C)a—l—slflw A e e

)
1+51
i ti-a 144 Lt
(5 Oép 1 (k)1+(a—1)5111ia (h)(l a)‘slrll” — wh
61 50
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But,

1+ 0,
1+(a_1)(51+1—04

it l—a+(a—1)(146)
N 0Nh+1—a«
 —a+ta(l+6)
N 0h+1—«
B ady
o+ 11—«

S0,

p (5_p> m (k)aélfifa h(l_a) 611Ifia

145,
1 5o (05[p> 51 t1—o <k>1+(a—1)611i15ia (h)(l a)(sl:fla _ wh
+9 0
_ <% FrESE ﬁ_fhh(l_a)%
1444
61+1—a
1i5 (?> U (e ()0 R —wh
1 0

+6q

B [ ap Mﬁ_ do ap mtita
B o 1+01 \ do

] (k) 7= pOmarE _

a 1467
— p(sl(::l'»ia (52) S1fl-e _ 1 —ioé (%) 81+1a] (k)aﬁl‘ilfa hj(lfa) (Sllilsfa —_ wh
0 1 0

- o 1448
_ « St o B do a 1 +l-a palﬁta (]{)O‘alfz{fa h(l_a)(sll:fl
0o 1467 \ o

What are the degree of returns to scale?

1+6; 1+
- - 1— - -
a51+1—a+( a>51+1—a
144
(51+1—Oé.

Looks like increasing returns! Note too, that there is less curvature on hours worked. For

example, if §; = 0, then the production function is linear in hours worked.



1.3. Capital First Order Condition

= N1 Wi (D) EKori(3) o peei ()70 + 02,
E, Zﬁj)\tﬂ'{Ptﬂ‘(Z)l Vips — Rt+j(1/)wt+j—t+]< L )f ! ( ra0) Vi ~
=0

Zt4j €4 Ut4j (i)Ktﬂ'(i)

X T 0) = [ () T Ree )
@) | (1= DKy 0) + (0= 8 (7T N i) = Kusgua )

It+j—1(@

It is useful to write out the firm’s objective in detail:

Zt PN ) = K]

U1 (D) K (i), (pt+1(i)9Y¥+1_+ ¢Zf+1>
€1t (i) Ky ()

) =00 = (o) Kol

o, (7) {(1 —O)K,(i)+(1—S (

81 {1 (1) Y1 — Ry (V)wig
=Y L (1) = [ausa (0) Tk | Ko (4)

g1 (4) {(1 — K1)+ (1= S <LZEZ()Z)
+....

Zt4+1

Vi1 (1) — Kipo(i) | }
) |

Differentiating this with respect to K, (i) :

: ' )Y + oz
— ety (7) +6)\t+1{_Rt+1(V)wt+1u;+—l(l)fl (pt+1( ) Vit ¢ t+1>

t+1 €t+1Ut+1(i)Kz&+1(i)
+Ri1 (v)w 1ut+1(i)Kt+1(i) Ry (Pt+1(i)9Yt+1 + ¢Z£k+1) P (1) Y1 + 0274
t L N7 ; DK ;
i i 41 €1ty (1) K1 (2) €r11 (1) Ky (2)?
—au1 () Ty + pa (1) (1= 6)}
Write
) 1y (e (1) + 027
= —R - 1 _ +
pt+1 (Z) t+1 (V>wt+1 Zei1 f ( €t+1Ut+1<i)Kt+1<i)
Ry (V) 1[_(t+1(i)f—1/ <Pt+1(i)0Yt+1 + ¢Zf+1> P (D) Yo + 024
t 1T N T ; DK ;
" i €r11 (1) Ky (2) €r1t1 (1) K (2)?

We can think of p(i) as the ‘shadow rental rate of capital services’. This can be seen by
noting that if p,(i) were a rental rate treated exogenously by the firm, then the firm would
choose to rent K;(i) = u.(i)K;(i). To see this, let

dyq(7) _ dyq (i) _ MPg
th Ut(l)th Ut(l) ’

MPK7t -
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so that M Pk is the marginal product of a unit of capital services, and M P is the marginal
product of a unit of physical capital. Also, M P;, is the marginal product of labor. Cost

minimization by a firm which hires factors in competitive markets implies:
Ri)w(i) _ p) _ w(i)py(d)

MPy,  MPg, MPg,;

In our setup,

MP, = &f (%) K ha(i)

P = anli)f (5500 ) R0 (i) ot
Then,

1
. 1 (pea (D) Y1 + bz \ T
- _R _
Pri1(7) t+1(V)wt+1Zt+1 ( errtio () Kpea(0)
Ryt (V) wpes 1 1 (pt-i-l(i)o}/t‘—i—l"f‘ ¢Z;+1> - pt+1(i)79Y2‘+17+ CZSZ:H
Zepr L —a \ €ty (1) Ky (4) €1 U1 (1) Kyp1 (2)

M Py ,

MPIL(:Z Ry(v)w,(4)

i) (siigios) = con @RS (i) i |
— () Rt(u)wt(z)

e’ (m) 2t

_ut(@)f (utz(i})Lt_(tZ)(z)> he (2
= / ) — [(t((% Rt(l/)wt(l)

L / (ut(i)f(t(z)) & '

-ut(i>f (WZtih;‘((?z‘) wi(7)  zehe(t
- Zthté)) - ;( )u (ti)}g)(i) Ruw)un()

| f (utmfa(z')) % b
— i t(Z) Y (pt(i)_an_—i_ ¢Zt*) pt(i)_enj_ ¢z£k o ut@) f_l <pt(i)_0}/;_+ ¢Z£k>} Rt(y)wt(i)

_Zt etut(i)Kt(i) etut(i)Kt(i) Zt etut(i)Kt(i)
= w(1)py (i),

where p,(7) is as defined as above.
So, we can write the first order condition for K; (i) as follows:
(1) pra (1) = alue (D)) Tl + g (0)(1 = 0)
11(2)
with the understanding that p, (i) is as defined above. Note that this is the same as
the first order condition for capital obtained in CEE, where it is the household that is

accumulating the capital, and identifying p,, (i) with the market rental rate of capital.

)\t = 5/\t+1

Y

Also, 1,(7) corresponds to the ‘price of capital’.
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1.4. Investment First Order Condition

i~ () M o (PO REE L) g — a0 )
1)

PN i) = K]}

1 (1) Ko (1) 4 (pt+1<i)_0Yt+1+ ¢Zt*+1>
€41 U1 (1) Ko (1)

a1, (4) [(1 — )R, (i)+ (18 (

+BAer1{pei1 (i)koYtH — Ry (V)W
Zt+1

YT () — ol ()] Ko (i)

i) |1 = Fena() + (1= 8 () a) = Feaal0)]
+...

Differentiating the firm’s objective with respect to I;() :
- : 1(1) L(1) '\ _L(5)
M1+ 2{1—s<t—,)—5’< : :
t{ t Mt( ) Itfl(l) Itfl(l) Itfl(l) }

8141 (1) S (IZ;Z()Z )> (Itltzz()w)?

1.5. Capital Utilization First Order Condition (Second Try)
Differentiating with respect to u;(i) :

e L o (O )

2 Etut(i)—f(t(i>
v i)y (D)Yi 4 927 pi) Y+ 0
+ Ry (v)wy . _f ( erty (i) K (1) ) erur (1) K ()
—a' (u (i) Y7 K (i)
=0
Divide by K (i) :
—R;(v)w l -1 pt(@—@y;_{—qﬁz:
O
v L g (PO 62\ pi) Y 02
+Ri(v) tth < evuy (1) Ky () > e (1) K (i)

—a'(uy (1)) Y7
= 0,

pe(i) = a (u,(4)) T,

11



Interestingly, if there were a competitive rental market for capital with the rental rate of

capital services being p,(i), then this would be the firms’ efficiency condition for choosing

1.6. Scaling and Linearizing the Firm’s First Order Conditions
1.6.1. Some Useful Aggregation Results

Define the aggregate stock of physical capital:
— 1 p—
o / F(i)di.
0
so that

1
0

or,

~

= 1 — -
KR, = / (Ve (1)
0
But, in steady state production across firms, and hence their useage of capital, is equal. As
a result, K = k(i) for all 7, and

~ LN
R, = / i) di.
0
Also,

0
0 b e 1 b e . .
v = g [ uewa] T [ o ] ai
0 0

v, { /0 1 yt<z'>%1@t<z'>} di.

But, in steady state y;(i) = Y for all 4, so that

)

=

1
dy, = Y70 U Yeelgjt(i)l di
0

so that,

G = /0 (i (1.1)

12



1.6.2. The Utilization Rate of Capital

The first order condition for capital is:

so that
ppi(i) = a" (i),
or,
= . a "o N
i) = Suli) = Sinli) = o)
say, where
a//
Oq — -
Also, note that, in steady state:
=a .
p=d (1.2)

1.6.3. The Investment First Order Condition

Now consider the first order condition for investment:

writ =@ 15 (75) = (7))

+BA+ 141 (1) S (1}:22()2)) <IZEZ()Z))2

First, we scale this. Multiplying by z; and making use of I,(i) = i,(:) Yz},
it(i>TtZ£k ) _ S/ ( Zt<Z)TtZ;( ) Zt(l)TtZ? :|
it,l(z’)Tt,lz;‘_l Z.t,1<l.)Tt,12’z<_1 it,l(i)Tt,lz;‘_l

ie+1(2) Ver12 14 > (it+1 (1) Y1284 ) ?
it (Z)thzk Zt('L)TtZ;(

*

zf ., T .
+5*_tzt+1)\t+1»r ' Tt+1:ut+1<l)5/(
2+l t+1

or, using the notation introduced above:

o ir(4) o[ _i(3) it (i)
* == * 1 —_— * - * Y /N *
)\z ,t )\Z ,t:ut(l) [ S (it1<i)uT,tuz ,t) S <’Lt1(l) /’LT,t/’Lz ,t) Z‘tfl(i) /’LT,tuz it

1 1 . ; ir11(2) ig41(4) ?
T A S =+ * — .
5MZ*’H1 z 7t+1ﬂr,t+1'ut+1(l> ( i:(i) Hop gy 1o 41 (1) Hop 1Mo 41

Evaluating this in steady state and taking into account that S = S’ = 0 in steady state, we
find

ii=1.
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Log-linearizing this expression:

)\Z*j\z*7t = Az* {5\2*,,5 —’—ﬁt(Z) + [1 - S (

—

Tt (2
+BAz+ [S"] pppted (%s))ﬂr,tﬂﬂzatﬂ)

but,

Then,

3 3 = it(2) it(2)
* * — * * 1 - * - S/ *
)\z )\z t )\z {)\z R + /’Lt(z) + [ S (it1<i)MT,tuz ,t) <’Lt1(l) /’LT,t/’Lz t

ir+1(7) )
q (e .
( ’Lt('l) /’LT,t+1M Jg44+1
i1 (1)

oy [ Wﬂr,tﬂﬂz*,tﬂ)

= Hyfy« (%H(l — (i +Mrt+1+ﬂz* t+1)

—

+BA [S”] (Nrﬂz*)2 [it+1(i) —4(@) + fly g T ﬂz*,t+1}

Now, taking into account that S = S’ = 0 when evaluated in steady state,

Then,

and,

ll -5 ( i (<))ur,tuz*,t) - S’/(Zt gi)i)ux,tuz*,t) %ur,tuz*,t

d [1 s (Zt“(f&) op o/ t) Y Qfﬁ% ur,tuz*,t> A g o1 t]
1

—S" <¢jt§i()@-) ux,tuz*,t)/it\iti)i) o ohie 4l ( Z.jti)i) ur,tuz*,t)
8" oo (2 e

— [S") (ppee)? [26(8) = 21 (2) + fip + fion ]

Aov = Mv o T1g(0) =[] (ppae) [00(0) = B () + fop g + fron ]
+BS") (pppe)” [isr () = 2(0) + i gy + flae ]

(ko) (@) = [S"] (ppeas)? [00(0) = Bma(3) + o+ e ]
—B[5"] (MTMz*)Q [it+1(i) —0(1) + fy g + :&z*,t-&-l}
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) MT,tﬂznt} }
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1.6.4. The Capital First Order Condition

Multiply the capital first order condition by z; :

A Ut+1(’i)Tt+1Pt+1(i) — a(ug1 (i) + Tt+1ﬂt+1(’i)(1 —6)
2z A = B2 1 e Yi . :
Zt+1 Y, Ttut(z)
Denote
i1 Tii1

fip1 () = Toga iy 1 (9), poepq = o e = o, Ao = 2i Aty Piya (1) = Tog1ppi (4).

t

Then,

o, 1 U1 (8) Py (1) — a1 (i) + 144 (9)(1 — 6)

Apet = Bz 11 — :
Hoox 41 :UJT,t+1:ut(Z)
or, in steady state,
Bl _pr1-s.

Then,

S L T el Ry Iy TA ()

i (Ve 0) — @l () + fir 1 () (1= )]
Now,

—— e (P11 (1) = e (0)) + foa (D) (1 = 6)

Up1 (1) P41 (1) — a1 (4)) + fi, 1 (0)(1 — 6) = d D+1—106

Y

where we have taken into account that in steady state, u;(i) = 1, and a(u(¢)) = 0. Then,

1 ()71 (1) = At (1)) + iy (0)(1 = 6)
P |1 () + Bra ()| = da(una () + (1 = )iy (1)
p+1—0

But,
da(ug1(i)) = a'liy1 (i) = plies (9),
where a’ denotes the derivative of a, evaluated in steady state. Then,
U1 (1) Pryr (1) — alusa (4) + fieyr () (1 = 0)
P |tus1 (1) + Prya ()| = Plga (6) + (1 = 6)ftg 4 (0)

p+1—90
_ PDr1(3) + (1 — )41 (4)
p+1-6
Then,
. . =~ . bﬁwl(i) + (1 — 5)ﬁt+1 (Z)

(k%) Ape = Age g1 — flow g1 — flppn — M4 (8) + D+1—10
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1.6.5. The Shadow Rental Rate of Capital

Now let’s go after p :
yi (i) +¢z;

| ) o () + 0
o =) ()7 (M) (s (%K)())f ()

-1

Let’s simplify things:

yeli) + oz ! (Ztht(i)> _ (M)l_a7

Gth(Z) Kt(l) Kt('L)
so that
Zt ht (Z)
Fest)
£ (Zt+1ht+1(i)> zer1hi41(3) 1—«
Kiy1(3) Kiy1(3)
and 1
ahili) _ (ytu') + ¢z:> B (ytu) ¥ m:)m
K, (3) € 1<, (7) € K (i) '
Substituting:
1
e we\ (i) + P2\
pt(l) a 1 — OéRt(V) (Zt) ( Cth<7:)
Recall
Z;( = TFZt, Kt—i—l = l;?t+1Z£th, zt*ﬁ)t = Wt
so that
1
, a 250y e (y() + Pz \ T
= R Ry R -
) l -« ) 2 ' (Etut(i)Kt(i)
1
« o y(7) + 2] . e
= R, (v)w, Y}~ —— T
o ltW)@T, (etut(z)kt(z)zz‘ (zr1/2) (Yoo /T0)
1
a e A O R e
= R T o, | ———1..
1—a t(”)wt t t (Etut(z)kt(z)zf z ,tuT,t
Then,
1
- . o N o L g(i)+ ¢ I-a
pi(i) = Tip(i) = 11— aRt<V)thtTt T, (mﬂz*ﬂtﬂr,t)
o« - G(i) + ¢ o
- g ()
where



Log-linearizing:

Pui) = Rev) + Bt (500 + 0) — & — (3) — Rali) iy + )
Now, R
LT N G, (i)
(yt(z) +¢> - ?]-Fqb’
S0,

= /. -l = 1 U = /. ~ ~ . T . ~ ~
B0 = )+ 0+ (Lytm b — i) — Rula) +uz*,t+ur7t)

1—a \y+

Rlw) B+ o () = = i) e 4 i) — )
= V) +w ——1,(1) — & — k(i . — Uy (i

t tT 1 o 7+ Yt t t Hox g 7 Hoeg o

Rulw) + 1 7o ( Bli) = e = Rl + e+ i) — 7o)
= 1% _ _ —_ —_ « J— _

t We T, g+¢ytl €t = Re(l) T Hoxp T My g 1_Omaptl>

after substituting from the utilization condition. Then,
L R B (00 — = Ri) + e+ o)
(* * *) pt(l) = 1 1 (15)
1—1—@0—“

1.6.6. The Capital Evolution Equation

Turn now to the capital accumulation rule:

Riaali) = (1= i) + (1= 5
Write this in terms of scaled variables:

Fes()2T = (1= 8)u(i)z Tey + (1= S (%un) Jieli) Yoz

T4—1 (Z
Divide by 2T

(1-9)
Moy g b= ¢

o) = 2R 0)+ (1= 8 (g e ) i)

ir1(i

In steady state:

Log-linearizing;:

(o) Fali) = LD R — i — jun] + 2ik0)




or,

= . -5 = ,. N N
Bt (6) = 252 (ki) = fiy = oo

W) = 5 (1.6)
oy Hz
itk (i) = (1= 0) [RG) = fory = e |
Bl preptzs — (1= 9)

1.7. Marginal Cost

The marginal product of labor is:

K (7)
But, )
Ki(@) (i) + o2\ T
ne) =552 (Yera)
so that,

he(i)\
MPL,t - (1 - Oé)EtZt <Zt t(il))

Marginal cost is:

Ry .
— Rt(V)lDtZ? yt(z) + Qﬁzz‘ T-a
T (—a)axn \ ki)

B gt(_l/g:i (EtUt( ;ki&);tqbln 1Z*>ﬁ o

_ R@)@IT Lor, ) ( mor: Eb >m

(1—a)ez etut(z)l;: )
 Rwwe [ i)+ e
R (etuxi)kt(z‘)“*vt““)

Linearizing this:

~ . A = “ « [~ — “ ~ . = . N .
$:(1) = R(v)+wy— &+ o U:(1) + & — & — (i) — ky(2) + floep + N’I‘,t}
Ru) 4o -+ =2 [T 5y (i) — Eo(i) + fie, +
= V) 4wy — € e — & — - .
t t t —al|j+ Yy t t s ¢ T oy ¢
Ru) 48—t =2 |5 ) =ty — L5.00) = Rl + o, +
= V) 4+ Wy — e — & — — .
t t — € 1—a |7+ Y t Uapt Hopx ¢ T oy ¢




It is of useful to express marginal cost in deviation from the economy-wide average:

R «Q Yy o+, 1oar . =f
1) = 1o [0 0~ A )= R )
But,
s g F (7500(0) — & = ka6) + e + i,
so,
~+, ., =t
/:+<Z,) oYt (1) = Ky (i)
P l—a++ 7

Substituting this into the expression for marginal cost:
Jr
Q Yy o+

N =
; Tiabe (1) — k
l—a |j+07"

r(i=a) T
_a  o,(1-q) [17 f*(i)—ij(i)]

l—ao,(1—a)+1 g]—i—gbyt

§00) =

(i) -

(Z) =+
1 ¢ (i

When the fixed cost is positive, then we replace it by ¢ = (A\; — 1), or,

Si(i) =

ao, 1~ . =t
o, (1—-a)+1

)\_fyt (i) — Ky (4)

This equation conveys some of the economics in the model. When o, = 0o, then the ration
in front of the bracket is unity. This is the case when there is no variability in the utilization
of capital. As o, comes down and there is variability, then the ratio falls below unity. This
ratio controls the slope of the i firm’s marginal cost with respect to its own production.
So, with more variable capital utilization, that slope flattens out. Indeed, when utilization
becomes infinitely elastic, the slope goes to zero. That is, when o, = 0 the ratio in front of
the bracket is zero. In this case, capital specificity should have no impact on the coefficient
on marginal cost. That is, ( should be unity when o, = 0. Of course, driving o, to zero will
affect the responsiveness of s; to a shock. It would be interesting to study an object like:
ds,
dshock;

v

Here we can see that changes in model specification will have different effects on these two

pieces. Driving o, to zero will drive v up and the other term down.
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2. Households

Maximize utility:
> Bu(Cr = bCr1, b)) + MRy (M — Q + (e — 1)MY) + Ay + Wishy,
=0

+Q¢ + Dy — (1 +n (Vi) PCy — Myal},
where

U(Ct —bCy_1, ht(f)) = log (Ct - th—l) - <t2<hj¢>
h].+O'L

z(h) = 1+0L%

2.1. Money Demand

The first order condition for @), is:

P P 2
n=ver () (5)

since R, P;, C}, (QQ; are known after the monetary policy shock. Also,

n V), n" (V) >0,
where V' denotes steady state velocity. Note that in steady state,
R=1+7'V?
where absence of an argument means the function is evaluated in steady state. Linearizing:

R,—1-0(V)(V})> = 0,
RR, — 0" (V) V)2 ViV — 20 (Vi) Vi) ViV, = 0

~ ave .
RE, — {2+’7 : 117’1/214 -0
n
Using the steady state formula for R,
. R—1.-
Rt_[2+07l] R ‘/;:O,
where ;
gy = 4
n n/
Since V, = ¢, — i (see below),
R 1 4




or,
R 1 -
G = C — 5—

R—-12+o0,

Another way to write a variable with a hat is, ¢ = log(¢:/q), so that the money demand

it

equation is:

R 1 R
ostafa) =gt~y 5w ()
n

S0,
dlog q R 1
dlogR, R—-12+o0,
What is called the ‘log-log representation’ of money demand is expressed in terms of the log
of the net interest rate. Using the fact, dlog(R;) = dR;/R; = dry/R;, where Ry = 1+ 4.

Then,

dry dlog(ry) dlog(ry)
dlog(Rt):E:rt R, :(Rt—l) R,
Then,
dlogqg: R dlogg
dlogR, R —1dlogr’
or,
dlogg ~ R—1dlogg
dlogr, R dlog R;
 R-1 R 1
~ R R-12+o,
B 1
T 240,

The ‘semi-elasticity representation’ of money demand based on:

dlogq; 1 1

dRy ~ R—-12+o0,

The interest semi-elasticity of money demand is measured as:

100 x dlog(q)

400 x dR;
so that in the model,
1 1 1
C R—12+40,4

The mean interest rate over the period 1974 to 2003 (measured by the one-year treasury bill
rate) is 6.99 percent. This translates into R = 1+ 6.99/400 = 1.017. In this case, the upper
bound on € (achieved with o, = 0) is 7.15. This is reasonably high, and is almost the value

of 8 estimated by Lucas.
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It is interesting to adopt a functional form for the transactions technology. Stefanie and

Martin adopt:

B
n = A%+V—2VAB

t

0"V 2BV2 2B

W A-BV2 AVZ-D

077 =

This functional form has the property, ' = A — BV =2 = 0 implies

B\ /2
V= <Z> |

In this case, n = 0. Thus, when the nominal rate of interest is zero, velocity is set to the point
where there are no transactions costs in consumption. That is, the cost of consumption is
just PC.

The rate of interest corresponding to a given velocity is:

R = 147 (V)xV?
= 1+ [A-BV?|V?’=1-B+AV?

or,
V2= % + %R.
I ran a regression of V2 (where V' is NIPA personal consumption expenditures (services plus
nondurables, PCESV+PCND) in dollars, divided by the St. Louis Fed’s MZM measure of
money) on R (R was measured as the gross quarterly return on one-year T-bills). I recovered
A and B from the constant and slope terms in this regression (A = 0.0174 and B = 0.0187).
Using velocity, I computed the interest rate implied by this equation and, after converting
it to net, annual percentage terms, compared it to the actual interest rate. The results are

presented in the following graph. Velocity is displayed in the top panel. The predicted and
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actual interest rates are reported in the bottom panel.

Personal Consumption Expenditures (NIPA)/MZM

11F | 1 1 1 1 1 2
1975 1980 1985 1990 1995 2000

Predicted Net Nominal Interest Rate (APR), Actual One-Year Thill

T
— Predicted R [
* Actual R H

1 1 1 1 1 1
1975 1980 1985 1990 1995 2000

The mean rate of interest in the sample is 7 percent per year. The mean level of velocity is
1.43. This is very nearly the value of V' implied by the money demand equation at the mean
interest rate, which is 1.44. The value of o, at this last level of velocity and values of A and
B is 2.14. The interest rate semi-elasticity is 3.45.

In the computations, we used a different functional form:

B
n(V):AV—i—VvLC,

where

A = of x(1+0,/2),
Vne,/2
C = n—AV —-B/V.

sy
I

where 17 = 1/(V'), and V is the steady state value of V;, and

n//V
Op = 77, .
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2.2. First Order Condition for C,

The first order condition for C} is:

1 1
By —m - P — Al +n (Vi +/VV}:0,
t{Ct—thl B, M En () (V) Vi

where

)\t - AtPt

Multiplying by z; and letting,
Aot = 27 N = 27 W B,

we obtain:
E L B ) (VS =0
"o _piala Ealm o 7 MR IV e =
z CARE S zy 2 zy
or,
1 pb / _
L - =Xt [T+ (Vo) + 0" (Vi) V] p = 0.
¢ —bur e oy Crpr = bey

Linearizing the first term in braces:

2
p 1 1 [ . bc N be . }
— = — cCp — —Cyq [l

cr — b,uzt*lct,l c (1 — buz*l) ! I ! [yt

The second terms is:

2

b 1
() e (g, ) - ea]
My €1 — bey My Cip1 — bey t+1

t+1 t+1

The last term is:

Ao [(T4+1 (VD) + 0" (Vi) Vi)

= A (M +n(V)+0 (V) V] A

Vv V] o V)V,

+ A [2 +
n (V)

Finally,

so that

(2.1)



2.3. M, First Order Condition

The first order condition for M, is:
By [=A + BA 1 Rea] = 0.

Multiply by 2/ F; :

z P,
Ey |:_)\z*t + ﬁ*t—tAz*H-lRH-l:| =0,
zi1 B
or,
1
E, |i_>\z*t + 3 )\z*t+1Rt+1} = 0.
1 = 141

Linearly expand this:
. A1 R
E, {_ Nohoe + MM} 0

Tt41 441
or,
—_—
)\z* R )\z*tJrl RtJrl

Tz T 1o 41

Et _)\z*j\z*t + 6 =0

or, dividing by .- and taking into account SR/(mp..) = 1
E [_S\z*t + Aorpir + Reyt — foogr — ﬂz*,t+1|Qt] =0.

2.4. The Wage Equation

The wage rate set by the household that gets to reoptimize today is W,. The household takes

into account that if it does not get to reoptimize next period, it’s wage rate then is

_ 9~
Wigr = ()" (Mz*,t+1) W4,

where .. is the steady state growth rate of z;. Note the partial indexation to the realized
growth rate of z;. The only economically interesting specification is ¢ = 0. We allow ¥ =1
in order to be in a position to compare the reduced form expression - for checking purposes

- with the reduced form derived earlier when ¢ = 0.
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In period ¢ + [ the wage is:

9 9 5
Wi = Wt(uz*)l (,Uz*,t+1) Wi
19 ~

2 \1-9
Wiva = mam (Mz*) (:uz*,t—&—%uz*,t—&-l) Wi
1 1-9 [V~
Wiq = M1 Team (Nz*) (Mz*,m T Mz*,t+1) Wi

The demand curve that the individual household faces is:

>\’LU 1 19 19 )‘_’LU

~ v ; - = T—w

o — Wiy o H.. — Tigj—1 " T4 T (Ni) (luz*,t+j o :“z*,tﬂ) Wi q
r A 77 t+5 = D P t+j-

t+j Wit 2454 1+j

Py = myjbiija
= e = T Tpj—1 """ T B

* *
Ritj Fos Pz pj—1 7" " Hax 412 -

Then, the demand curve in terms of stationary variables is:

Ay
i \1-7 L Y
J w
W, — Tij—1 " Te41T (Mz*) (p“z*,t—&—j e Nz*,t+1) Wi H
t+j D R T Tt P t+g
tjlax g t45—1 Mo 4112 Tt Ted5—1 t+147¢
Aw
T 1—X
Wy “
= ﬁXw Hiyj (2.2)
Wiz 7
Aq
+,7, T—X
wt wt w
= | =X, Hyyj
Wi+ j

where W, denotes the nominal wage set by households that reoptimize in period ¢, W,
denotes the nominal wage rate associated with aggregate, homogeneous labor, H;, and w;” =
W, /W;. Be careful not to confuse W,, the wage chosen by optimizing households, and @,

the aggregate wage, scaled by z;P;. Also,

Tttj—1 " Te41 T (V“j*)lﬂ9 (,u * g Mg t+1)19
Xt7j = Z R aw) z*, 7 ] > 0
Tt Mg =1 " " T s gy o 17" v pgl
— 1, =0
Note that
Xij = —(Afyy+ Afpyoa+ - + Afyp) (2.3)

- (1 - 19) (ﬂz*,t—kj + ﬂz*,t—&-j—l Tt :&z*,t—}—l)
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The homogeneous labor is related to household labor by:

1 1 Aw
H:U (hj)mdj] L 1< Ay < 00,
0

The j* household that reoptimizes its wage, W;, does so to optimize (neglecting irrelevant
terms in the household objective):

o0

EY (B€,) ™ {=2(hjust) + MeyiWiaihja},

1=0
where we have taken into account that we only need worry about future histories in which

the household cannot reoptimize. In the previous expression,
h1+0 L

h) =
2(h) = 5 o
It is useful to have the curvature of this function:
Z"h

Z,

Vi

gr,.

The presence of £, by the discount factor in the discounted sum reflects that in choosing its
wage, the household can disregard future histories in which it reoptimizes its wage.

We now derive the first order condition for ;. For this, we need to rewrite the household’s
objective in terms of this variable. Substituting out for h;,;.; using (2.2), and making use of
the definition, \,«; = Ay (2] B),

=0 W27 Py Z;ngPtH Wey2f Py

S W, e W, W, o
E Z (5€w>l {—2( <—tXt,l> Hyg) + Aovg atl < : Xu) Hi .

Here, W,., is the wage rate in period ¢+, of a household that optimized in period ¢t and could
not reoptimize again up to, and including, in period ¢ + [. Using the fact, V~Vt+l / (z;‘ +1Pt+l> =
[I/T/t / (z;fPt)} X, and rearranging,

- - 1+4>‘L A
- W, e A Xy \ T
l t t tl
E, E (BE,) {—=( <—U~Jt+12,§‘PtXt’l> Hypt) + Xevig <Z*B> Xy ( ) Hy i}

=0

We now have the objective in the form that we need. Differentiate with respect to W :

=0
A

- w Aw
1 w, V1 X\ FAw
+)\z* + 4< ~ : ~H =+
e (1 —)\w) (z;‘Pt> 2 Py o (wt l ik

=0

27

~ ~ 1
00 ”,t T—\w )\w ”,t - w 1
E l _ ] _ X, H, X H X
P2 (e Z<<wt+lz;fpt “) “Tx, <u~;t+lzt*Pt Y e

t,j
P



The next step is to write this first order condition in terms of stationary variables only.

" 2w
Multiply by VVt 1—/\w+1(1 B )\w)/)\w
C W %i: 1 %ﬁfl 1
FE wl _ —tX H <~—X ) w Hoe v
t;(ﬁg a (<wtﬂztpt ) ) Wyyj2; Py " t+lwt+JZZ<Pt "
Aw A
1 - 1 \ Tt X, \ T
+_W )\Z* B — X _ ’ H
Ny (sz) t (wm) i}

=0

Dw
Multiply by P, :
N e[ W A 1 24
EtZ(B£W> {==( mx Hy) ( . *Xt,j) Hyyy
1=0 J

~ 1 Ay
1 W, 1)\ 1w X\ T
— A X ’ H, = 0.
+)\ 2 t+1 (Zt> t,l <?Dt+z 41}

Now get this in terms of stationary variables using

- w Wt 1= 1 Ty
BE,, (~t* X,‘) Hz(~ " ) H
1 Aw
1w W, 1\ T X, \ T
— Az — X — Hyy ) =
. P t+1 (Z;) t1l (th £}
and, taking into account,
N
Wy =
t Z:Pt?

Aw A
o w T-w 1 fEw
E Y (8¢, {—Z'((wt—th,j> Hy) (w Xm) Hiy
1=0 ¢

t+7 +]

Aw Aw
1 . 1\ T w X T=2w
+_)\ Wy WA i 4y (7) X1 ( = t’l) Hyy}
w 2 Wyl

on both sides, and take into account that the technology shocks are

Aw
*To Aw

Multiply by z,

known at the time the price decision is taken:

Aw 1 Ay
> ww 1=Aw X, Aw 1 - X, —w
E Yy (86,) {- <( : tX“) Hm)( ”) iyt i *tHXu(w”) Hyy} = 0.

—o wt+] Wity w t+1
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Factor:

)\w Aw
- X ool w; W =
E, Z (55 ) Hi i { wy thtl)\ 4l T Zl( - tXt,l Ht+l)} =0.
— (T Aw (o
writing this out carefully:
Ay
1 1—w 1 s ,
Ht th {)\—wt wt)\z*t — Zt} (24)
A
X 12w ]
+(BE,) Hipa (111:1) {_wt W Xy 1 Aeot41 — 241}
+...
Aw
X o] .
+ (BE,, ) H ( :l> {)\_w;rtht,l)\z*tJrl - Zz/e+l}
+...

where

o~ Aw

w, W 1=Aw

r t Yt

Zt 1 = z ( th Ht+l)

+
(o

This is the household’s scaled first order condition for the wage rate. We now log-linearize
this expression. Note,

o~ Aw
w; W 1=2w
' ¢ Wy
dzt+l = =z (( th) Hiy)
Wit

Ay
+,7 T—Xw
xd [(wt tht,l> Ht+l]
Wi
" )\w ~+ = = ! o
= 2'H ﬁ (UJt + Wy — Weyg + Xt,l) + HtJrl .

Here, we have made use of the fact, dr; = xZ;. For now, we do not substitute out for X,
Consider the first term in braces in (2.4):

1 -
d{)\—w:—tht,())\z*t — Z;}

1 Aw ~ ~ N N
= )\_w)\z* [’wt +wt+)\*t+Xt0i| _Z”H{ )\, (ﬁ}j"’"wt_wt—i_Xt,U)_'—Ht}

1 ~ A = N 5 Z”H )\w - ~ ~ ~ ~
= )\—UJ)\Z* [wt + w; + )\z*t + Xt,0i| — LQI})\ 1 (wt + wy — Wy + Xno) + Ht .

Here, don’t worry about the fact that X;, = 1, so that Xt,o = 0. Note that in steady state,
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%u?)\z* = 72/, so that this can be written,

1
d{)\_ijt)\z*t — Z;}

w

1 ~ N = N > )\w N = = ! o

= )\—w)\z* { {wf + W + Ay + Xt70] —0or L — (w;r + Wy — Wy + Xt,O) + Ht} }
Lo L (1 al <A++°+X )+X bt G i

= — WA — W w . Wy —
Ao LTy, ) T e A PO, O

Now, consider the second term in braces in (2.4),

1, ,

d{)\_wt W X1 A gvt41 — Zt+1}

L A= % 3 " Aw g, = -~ 5 -
= )\—UJ)\Z* [wt + w; + Xt,l + )\Z*t+1i| —z'H Y (U}t + wy — W1 + Xt,1> + HtJrl

1 ~ A = > N )\u) N = = s A
= —UJ)\Z* |:U)t+ + Wi + Xt,l + )\z*t+1] — 0y, (w;r + Wy — W1 + Xt71> + Ht+1
Aw 1—-y

1 Aw . ~ 5 . Aw = -
= )\—w’LUAz* { (1 — 0y, 1_ /\w) |:w;/’— + wy + Xt’1:| + )\Z*t—f—l + O'Lﬁwt_;'_l — O'LHt+1}

w

Finally, consider the [ term in braces in (2.4):

1 -
d {)\_wz_tht,l)\z*t—l—l - Zé+l}

1 . Aw . ~ - o Aw = -
= Ew/\z* {(1 —OoLTT )\w) [w;r + Wi + Xpg| + Asepp "‘Umet—H — ULHt+l}-

Use these results to develop the log-linear expansion of the scaled first order condition. In
doing so, we take into account that we need only expand the terms in braces, and not the

terms outside of the braces. The coefficients on these expansions are zero because the terms
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in braces are zero in steady state. Thus,

1\ T4 1
Ht <7> {)\—w;“u?t)\z*t - Z;}

Wy w

X, \ T8 1

+(BE) Higa ( ] > {—wf 0 X1 Xom1 — 241 }
W1 )\w

+...
X\ T 1

+ (5§w)l Hiy ( ~ t’l) {—w/ 0 Xy Moyt — 200}
W41 )\w

=0 =

1\ 1 M P . Ay~ R
H E Ewkz* l_JLl—)\w (U)t +wt+Xt70>+)\z*t+aL1_)\wwt—0LHt

+(8¢,) H 1 %ﬁim {{1-0 al [uﬁﬂ% + X ]
w 0 Ao z* Ll—)\w t t t,1

+Azep1 H 0L Wiy1 —opHp }

+...

1— X\,
D
+(B¢,) H (%) o imz*{ (1 —oL7 iwAw) [w: W+ Xt,l:|
+5\z*t+l +or
= 0

U~Jt+l - ULHtJrl}

A
1—XAy

Ay
We can divide through by H (%) —w Lap, to obtain

)\w
1—0' (U] —I—wt—l—Xt0>+/\ xt+ 0 )\ At—O'Lﬁt
/\ ! - 1— Ay

{El—@
er{(-a

) |:wt+ + {f)t + Xt,l] + 5\z"t—|—1 + (o8 /z'/?]t_l'_l — ULHt+1}

1— Ay

) [IAU;F + Wy + Xt,l:| + 5\z*t+l + ULl _w)\ Wiy — ULﬁtJrl}

or




We need to work out the sum involving X,,;. Using (2.3),

Xt,j = - (Aﬁ_tJrj + A’/Al't+j71 +---+ Aﬁ_tJrl)
) (/:Lz*7t+j Tl g T ﬂz*,t+1)

Xio+ (BE,) Xex + .+ (BEL) Xy + ...
+ (BEy) [~ ATt — (1= V) fie 4 14)
+ (55@)2 [_Aﬁ't+1 — ATty — (1 = 0) Por p41 — (1-19) /:Lz*,t+2]

+...
+ (ﬁfw)l [_Aﬁ't+1 - Aﬁ't+2 — e — Aﬁ'tﬂ
- (1 - 19) ﬂz*,t+1 - (1 - 19) ﬂz*7t+2 — .. (1 — 19) [LZ*,tJrl]
+...
B (&) 1 - (BEL) .
— —1 _/85 Aﬂ-t-‘,—l - 1 —ﬁfwAWHQ — .. — 1 _ﬁgwATrt'H — .
P ; (5€.)" , (B,
T 55 (1= ) from i1 = 7 e (U= ) o gp = oo = 7= b
_ 1 = I
- —— 5 = ZZ Bew) Ayt = (1=9) 75 ; (B8w)" e 1

Substituting this into the linearized first order condition:
)\w 1 . ~

w 1 o0
—(1_0L1—/\w>1—6§ L (BE,) A+ (1—0) > (B¢

=1

+Z(5£w) 244 +UL )\ Z wt+l — ULZ(B’Sw)lﬁtH
1=0 w 1=0

1=
= 0.

It is convenient to write this out in lag-operator form:

(1 RS iwAw> 1 —lﬁgw <“A)t+ i E“)

(1

z* R

Aw 1 BE., . .
—<]_—O'L1_ ) 65 1_/85L1|:A7Tt+1+(1_19)l'62*,t+1}

1 Aw 1 -~ 1
+W>\z*t + oy,
0.
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We are now done with the linearized first order condition for the wage rate. We now turn
to linearizing the relationship between the aggregate wage and the individual households’
wage.

The aggregate wage equation is:

Wi = (0= 600 (1) 7 6 (s ) (1) Wia) e

Dividing this by z; P,, we obtain:

1 1-Aw
~ 1 -1 (1 *)1_19 (u ‘. )19 W\
Wy = (1 - Sw) (w:_wt) e 4 gw ( = Z;Pt =
or,
- 1 91X
~ -\ T Mi—1 (/’Lz*)liﬁ (Mz* t)ﬁ Wtfl e
— 1 — &, + 1—Aw + w ’
Wy ( 5 ) (wt U)t) 5 ([Z;Pt/ (Zz(,lpt_l)} Zz(,lpt_l
or
- 1 1=
. R o () () B\ T
Wy = | (1—=¢&,) (i) ™ +¢
b v Mz*,tﬂ—t

This expression is consistent with our previous finding that the steady state value of w;"

must be unity. We now linearize this expression. Transform it:

1
_ 9 - Toag
Tt—1 (Mz*)l v (:U’z*,t) wtl) o

Hozx Tt

Now, totally differentiate:

1 ol 1 IR B -~
T @G = (&) gy @7 (af + )
_1 N -~ . R
gy ()7 (Fioa 4 s — (1= 0) ey = 1)
or,
wy = (1-¢,) (w;r + U~Jt> + &y <7ATt71 F Wiy — (L =) fiy — ﬁt> ,
or

1 = w R = . R
1_€wwt — 1§€w (’ﬂ't,l + Wi — (1 —19) :uz*,t _7Tt> .

Substitute this into (2.6):
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)\w 1 1 = fw ~ = N N
<1—0L1_)\w) 1_6511) (1—£wwt_1—§w (7Tt1+wt1—(1—79)uz*7t—ﬂ't))

Aw 1 ﬁfw R R
— (1 oL )\w) T T [Adtpr 4 (1= 0) fie g
1 ~ A 1 ~ 1 A
— . v . —
LT T L e w2 L T e R
= 0.

(1 —0oyr A ) %[i (gjt — ﬁfw@tﬂ)
- ((ﬁt—l — BEyTe) + Wiy — BELB, — (1= ) (flpey = BE ol 411) — (Fy = 6§wﬁt+1))]

Aw 1 . . .
- (1 — 0L ) B [Wt+1 — i+ (1=7) Nz*,t+1]

1_)‘111 1_5§w

TS WP S

2%t ULl_/\wwt Opliy
p— 0’
where

Writing it out explicitly,

ToWi—1 + M Ws + NyWrs1 + 75 Tt + N3t + Naftess + T Hy + Nghars + Tgflye y + Mgy 431 = 0,
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where

~ )\w 1
Mo = — 1_UL1—)\w v
i M V11 A
n = (]._O'Ll_)\w)7(£w+55w)+0L1—)\w
~ )\'LU 1
Ny = —(1_0L1_)\w> ;5
o= —[1— )\w 1
N3 = ULl—)\w v
A ) 1 1
(0 : 1
i = (-2 S 6e 0+ g (1o
Ao ) 1 1 v
~ — _ _ - 1_
M4 (1 ULl—M;)W/ng 1—5§w( ULl_)‘w)ﬁgw
s = —orL
ng = 1
Aw

~ 1 )\w 1

It is convenient to multiply the 77’s by (1 — A, ), and use:

. O'L/\w_<1_)‘w>
YT =BG (-6
Note:
(1= ) (1 T iwAw)
(1—¢,) (1—pB8,)
= (=) = o) T 5 5
= —b,(1-&,)(1—5¢,),
and,

A )1
(1= 2w) <1_0L1—>\w) v

= —b,(1-¢,)(1-BE,)
= _bwgw‘

gw
(1-¢,) (1 - B¢E,)
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Then,

?}0(1 - /\w)

M1 =)

7~74 (1 - /\w)

(01 — (1 — Aw))%

bwé.w
1=\ )\)1(
g Y

1

—(0Ldw = (1= M) =

1
Euw

+ BEy

)+JL)\w
(?*ﬁ)

+0'L)\w
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(o — (1= A)) ; (1452) + o0k
—by (14 BEL) + o1 M
(1= ) — o2 \) %/a
bt
(1= M) - mu»%
but,
(1= 00) = 0200) = (36 + 1) T (1= hu) = 920) B,
B (1-M)—od) 1
b (360 + 1)+ (g ey T g (L ) (L= 86,) B8,
by (56, 1) — b (L €,) (1= BE,) £ 155 s,
_bwf (65 + 1) - b ( gw) ﬁf'w
_bwf'w
1 1

- ((1 - /\w) - UL)\w) ;ﬁfw - 1 — ng ((1 - )‘w) - UL)\w) 6511}

2 . 1 (1= Aw) —0rA) . .
wﬁff £ (1—€,) BE,
—O'L(l — )\w)



Also,

N6(1—Aw) = (1= Ay)
(1= Ay) = (L—&J(l—ngigw)%(l—ﬁ)

ﬁS(l — )\w) = (1 — )\w) |i— (1 — o‘Ll iw)\w> %ng — (1 — ng iw)\w) - _165 ﬁfw‘| (1 — 79)

Write

Then, the wage equation is:

MoWi—1 + MWt + NyWrs1 + 05 Tt + Nafte + Nafesr + N5 Hy + Nghars + Naflye + Ngflpe 431 = 0,

where
bwgw Mo
—bu[1+ BEL] + oL m
BE 1w M2
bwgw (1 - pr> UE
= | “Ewbu L+1=w)8 | _ | n
bwﬁgw M4
—or (1= Xy) M5
1— Xy, Mg
_bwgw (1 - 19) N7
buwBE,, (1 =) Mg

Finally, taking into account

N o N
Mz*,t = 1— aMT,t + /“Lz,t

so that
7707/1:)th + 771{‘:}1% + nz@tﬂ + 15 M1 + N3 + a1 + 775}}1: + 7765‘z*t
+7I7%ﬂr¢ + i, + Us%ﬂﬁtﬂ + Nghtzp = 0.
3. Market Clearing and Monetary Policy

Goods market clearing, in terms of scaled variables (careful, this aggregate relationship
actually only exists in a steady state....the linearized version also exists in a neighborhood

of steady state):
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Py Yy 1w (i) — Py [alup ) Tl ] Ko

(e}
* 11—«
2z =T, "2,

C . * 7. * « —o —1 70 *
(]. +n <_t>) CtZ;k + T;lltTtZt = € (Utktthlztil) (Ztht>1 — a(ut)Tt th — ¢Zt

qt
ko1zr )" (zehy) ™ K,
(1 o (2» o1t = b G 2 e
qt 24 2t
k12t \" [ zh \T° K,
(1+7} (2)> ct—i—Tt_litTt = € <Ut : t* 1Zt_1) (Zt*t> —a(ut)Tt_l—*t — ¢
qt 2t 2t 2

_ a 11—« _
kX q12F h K

<1+”(2))Ct”tﬂt:et ) () —alw)ss -
at A1 (Zt /zt—l) T,z T2

_ « 11—« _

Ct 1. UtktTt—lzfq zehy K

Vi () ) artotict = SEEEE ) (0] o) o
( Qi ot ' “—1 (Zt/th) Tz Y1z (Te/Tia) (Zt/ztfl)

Ct . uky \° 1-a ki
14— )a+ii=¢ hy ™ — a(uy) — o.
4t Hoost byt HooxtHrt
This is the scaled resource constraint. Log-linearize this:
;[ Ct dCt Cy Ct .
nl\—)a|l——=dg )+ (1+n|—) ) de+diy
4t 4t 4 4t

uky \ " . - X .
= ¢ < Gl ) hi=® [et +a (ut + ky — iy — uTt) +(1— a)ht]
Haxtbre

or,

or,

38



Money market clearing requires:
I/ththt = Mt — Qt + (Q?t — ].)Mta
Setting M = M, :
vPwhy = 2, My — Q.
Dividing by z; P, :
viihy = xemy — qy,
where the real, scaled monetary base is:

M,

= e

my

Log-linearizing the money market clearing condition:

xm (T¢ + M) — qGs
xm —q

{I\}t + iLt — =0,
We adopt the following specification of monetary policy:

Ty = Tyt + Trs + Thgy

where z; represents the gross growth rate of high powered money, M;:

My = x_1 M;_,
or, after dividing by P,z :
Ptflzf—l 1
my = xt—lﬁmt—l = xt—lﬂ_ mi—1
t%t th= ¢
or, after linearizing;:
mt — jjt—l - 7%,5 - /jbz*,t —|— ﬁ%t_l.
We model Z,; and Z~; as follows:
Tve = PuTai—1 + e + Onenri—1
i'z,t = pxzilz,t—l + CEzt + C];Ez,t—l

Mz,t = puz/“Lz,t—l =+ Euz,t + e,uzg,uz,tfl
also

Tyy = pPypyr@ri—1+crery + Aeri—t

Hxe = Pupbri-—1 tEpupt T eurgur,tfl
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4. Collecting the Equations

Following are the non-linear equations and the corresponding linearized versions.

4.1. The Firm Sector

The index pertaining to individual firms in the case of the nonlinear equations is suppressed.

Non-linear capital Euler equation:

LI U1 D1 — a(tg1) + feg (1 = 6)
2% t+1 —
Hoox 141 Koy g1 My

)\z*,t = B

Y

linearized (using ji ., = 2 fiy, + fi.;)

/é\tl(p)
7])}2(]?)
Azt3
md(p)
5(p)
7,6
57
u8(p)
S Y
ke+110(p)
gi11
12
B3
f1,14(p)
P15
@16 (p)

3 1 ~ fbbtﬂ + (1 — 5)ﬁt+l . 5\ -

Aze b4l — foresr = Fappr — By T PR =0

0

(1)E

11—«

Non-linear investment Euler equation:

. it it Ut
A = Auelly [1 -5 (_MT,tﬂz*,t) -5 <_MT,t:uz*,t) EMT,tuz*,t:|

14—1 11

) . 2

1 1 7 )

- N [ bl t+1

+ A 141 Hit1 (i)S AR (PR | ey 1M g1 ) -
Hoox 141 Hy 41 2 2

Linearized:

) B o) i = s + s+ e+

1 — aﬂTtH + ﬂzt+1:| — [} =0

- [SH] (Mrﬂz*)2 litﬂ — i+ ﬂT,tH +
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Nonlinear expression for shadow rental rate on capital:

5 o 5 :&t + ¢ l1—a
= Ri(v)w | =——=p
pt 1 —« t( ) t (Etutl{;t ILLZ ,tlLLT,t)
Linearized (this is an exact relation):
vR A~ 1 Uy -~ ~ o ~ 1
gy vt s L P S . . 2 N
( )VR+1_V t+wt+1_a<g+¢yt €t t+1_a/’LTt+/’L2t+/’LT7t) Pt 1—a
The capital evolution equation:
- (1-90) - ( iy ) :
kv, =—k+(1-S5(— ot ] )it
t+1 oy g o 4 s Zt—lpmf’t’u ! Ji

Linearized (this is an exact relation):

N -~ -~ 1 R
() Dresee = (= i = Lt = (1= 0) = i = | =0
The inflation equation is:
(5) E[B (fer1 — o) + 8 — (e — ) (2]

The marginal cost equation is (this is an exact relation):

VR ~ -~ (8% g -~ = 1
6) ——R — € —— 7, — €& — Uy — ky + ———[1 | — 8 =0
Sl e e R e A
4.2. Household Sector
Money demand (this is exact)
R J
7) ¢ — ——— R —q¢=0
(7) ¢ R—12+o0, t — i

The consumption Euler equation:

2
1 be be o
8 E{— | —M— o~ o o _—
(8) { <C(1_5M;})> { t i t—1 . (1—04““ Mt)]
2
+b 1 a L y -
e “\|1=a c — bec
Hop  Ct+1 — e He 1— aMTH—l Haty1 t+1 4

%] n V)V x (& —q) |Qf}

A [+ (V) + 0 (V) V] Aprp — Aan [2 +
= 0.
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The monetary base first order condition:

R R . A «
(9) E | =Aprt + Aprp1 + Ry — Tppn —

1_ a/jbl‘,t+1 - ﬂz,t+1|Qt =0.

The wage first order condition:

(10) Uo@t—l + 771177:& + 7721/Z\)t+1 + N3 i1 + M3+ Ny T

. “ a . a .
+nsHy + ngAzet + Uspmpy T Ny + 87— Hrtt T Mgz 141
= 0.
where
bwgw Mo
—bu[1+ BEL] + oL m
ngbw 2
bwgw 13
n= _gwbw — UE]
bwﬁgw T4
—0L (1 - )\w) UE
1 - )\w 776
_bwgw (]‘ - 19) 777
bwﬁgw (1 - 19) UE;
and

by = [Awor — (1= )] /[(1=&,) (1= 5E,)]

It is useful to write out the entries in the canonical form for the model directly.

ap(10,2) = ny, ao(10,5) =mn,

a1(10,2) = ny, ai(10,5) =ng, a1(10,9) =n;,
a1(10,3) = g,

a3(10,2) = 1y, a2(10,5) =13

B0(10,6) = 87 iéaa B0(10,3) = g

£1(10,6) = 77 iéaa £1(10,3) = n;

4.3. Aggregate Conditions
The resource constraint is (this is an exact relation):
L
(11) (1+n) CCHL??E(Ct—Qt)‘H@t
_ . .7 L . - - .
_(y—|—¢) [€t+&(ut+kt—mﬂTt—ﬂzt)+(1—Oé)h/t:|+,0 Ut
= 0
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The money market clearing condition is (this is an exact relation):

xm (& + 1) — qG;
Tm —q

(12) @y + hy — =0,

The equation governing monetary policy is:
(13) &oe + Tyt + Tape — ¢ = 0,

The equation linking base growth to the base is (this is an exact relation):
N N o N N A
(14) L1 — Ty — E’u‘rt — Ut + My — My = 0.

The production function:

o ~ o N T 1 . N 2 .k
(15) 99, = (4 + &) lEt +a (Ut + ke — Py — Mzt) +(1- O[)ht} —p (&
-« Moo= e
The equation governing capital utilization:
. I~
(16) E lut — —pAQf} =0
Oq
5. Solving the Model
5.1. Canonical Form
The canonical representation for the above 16 equations is:
Et [awzin + arze + aaze 1 + Bosir1 + B8 =0, (5.1)

where & indicates that the different equations have different information sets. Equations 1,
2, 5, 8, 10, 16 are ‘partial information set’ equations, because the expectation is conditional
on all date t variables, except the date ¢ monetary policy shock. Equations 4 and 14 can
also be treated as partial information equations, because the variables in these equations all
have the property that they are predetermined relative to the monetary policy shock. So,
the partial information equations are 1, 2, 4, 5, 8, 10, 14, 16. There are 8 variables which are
predetermined relative to the monetary policy shock: ¢, I/T\Jt, My, T, U, Etﬂ, ﬁt, U;. The other
equations and variables are functions of all date ¢ variables and shocks. These restrictions
will be imposed in the calculations described below.

Let the vector of shocks be denoted s;. This is assumed to have the following represen-
tation:

s = Ps;_1 + &y,
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where s; is not to be confused with real marginal cost! Here, s;, P and &; are defined as

follows:

T
EM,t
IELZ,t
€zt
i'z,t
fiy s
Epp it
Ty

[ Py Om
0 0

Pp, 0y:
0 0
0

p},lrr QMT
0 0
0

0

Pzy |

Tari—1
EM,t—1
[I’z,tfl
Epzt—1
i'z,tfl
fir p—1
5,u—r,t—1
Ty -1

Also, the vector of endogenous variables determined at time ¢ are:

Zt —

/é\tl(p)
?IitQ(p)
At 3
1m4(p)
ﬁt5(p)
6
8,7
’ZtAS(p)
R h:9
k4+110(p)
gi11
7,12
B3
f1,14(p)
P15
16 (p)

EMt
EMt
Eps t
Epr it
C2Ep% 1
Eppst

Eﬂ"rvt
CT&MT7t

Here, the number after the variable indicates its order in z;. A variable with a (p) is one that

is predetermined relative to the monetary policy shock.

5.2. Solution to Canonical Form

We seek a solution of the following form:

2 = Az + By,

where A and B are to be determined. Substituting into (5.1) we find:

Oéoz42 —|— CklA —|— (0%)
5tF9t -
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where
F = (BO +aoB)p + (B1 + a1 B + apAB),

and 0, is constructed from s,. Also, the " row of F has zeros if the corresponding entries
in 0; are not included in the information set for the i equation in (5.1). Other relations
between F and F are discussed below. Also, BZ are constructed from f,, as explained below.
We use the algorithm in Anderson and Moore to find A and we use the strategy in Christiano
(2003) to find B.

In the ‘full information’ case, the conditional information in each equation of (5.1) is
based on all date ¢ information. The ‘partial information’ case corresponds to the case of
interest, and is defined in the previous section. In the full information case, #; = s;. In the

partial information case,

St
Or = | Tmia
EM,t—1
Then,
Qt = p@t_l + €, (53)
where
EMt
EMt
glu,z,t
Euz it
o P 0gx1 0Osx1 o CzEpzt
P1ox10 = l 7 Ogp1 Oguy y €t = €t (5-4)
€NT7t
CTEI"’I‘rt
0
0
where
S 1 000O0O0OO0OO0OO0OTP O
101 00O0O0OO0OO0OO0OT O]
Also,

B = l@@@} , 1=0,1,

where 0 is a column vector of zeros.
For finding B, the vectorization operator useful. Recall that the vectorization operator,

vec(-), takes the columns of a matrix and stacks them into a row vector:
L1
T2
vee(X) = | . |, where X =[x, 29, ..., 2, .

Tn
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In MATLAB, this operation is achieved by reshape(X,n x m, 1), where m is the number
of rows of X. Two properties of the vectorization operator include additivity, vec(a + b) =
vec(a) + vec(b), and

vec(A1AxAs) = (A @ Ay) vec(Ay).

Write
F
F= ]-?2 ’
F16
so that
1
AN FQI o ¥:4 FoIN, 4 11 TN
vec(F') = o | =vec|p'By+ p'Bag+ B+ B'aj + B'Alay
Flg

= wvec <p'5’:) + B;) +vec (p'B'ay + B'a} + B'A'ay)

= wvec <p'58 + B;) + vec (p'B'ag) + vec (B'a)) + vec (B'A'ag)

= wvec <p'58 + B;) + {(ao ® p') + (a1 ® I1g) + (A ® I19) } vec(B')
= d+qd,

say, where ® denotes the Kronecker product and

d = wvec (p’Bg + le)
¢ = (®p)+ (@ o)+ (wA® o)
§d = wvec(B').

In the full information case, finding B is straightforward. Simply compute § = —¢~'d and
construct B from §.

In the partial information case, this procedure must be adapted. In this case, the entries in
B corresponding to the first two elements of 6; are set to zero in the rows of B corresponding
to the partial information equations. Since B is 16 x 10, there are 160 elements in B. The
number to be determined is only 160 — 6 x 2 = 148, because there are 6 partial information
equations. Let Tec(-) be the vectorization operator in which the 12 entries that are required

to be exactly zero are suppressed. Let R be the matrix which satisfies:

vec(F') = Rovec(F')
Ry F]
Ry F}
Ri6Flg
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where

R, 0 -+ 0
0 Ry 0
R: . N . .
0 0 --- R

If the i equation is a ‘full information’ equation, then R; = I1y. Now suppose i corresponds

to a limited information row. Then,

) i Fiq
Fis Fio
Fi4 Fi3
: =R, | Fia
Fig+ pyFin :
Fii0+ 00 F; o Fig
) " | B

Thus, R; is ;9 with the first two rows removed and with p,, in the 9,1 place and 6, in the
10,2 place of the resulting matrix. In this case, R; is an 8 x 10 matrix, and R is 148 x 160.
So

vec(F') = Rvec(F') = Rd + Rqd.

Let
o = vec(B').

that is, ¢ is 6 with the entries which are restricted to be zero suppressed. Let ¢ be Rq in

which the columns corresponding to entries of § that are zero suppressed. Let d = Rd. Then,
d+ g6 =0.

We solve this by computing
5 - —gd

Then, B can be constructed using the elements of §. To see how this is done, note first:

by
by
vec(B') = vec , :
bis
where

a1
p-|"”
bis
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Given a 160 dimensional vector, vec(B’), one computes B’ as reshape(vec(B'), 10, 16). One
can obtain vec(B') by suitably padding & with zeros.

A problem with this model is that it is inconsistent with the CEE identification assump-
tion for monetary policy shocks. For one parameterization, for example, we found that
B(12,1) = —0.0263. What this means is that output falls with a positive monetary policy
shock. The reason is that, given the predeterminate nature of consumption and the price
level, the monetary policy shock drives velocity down. Because all other components of de-
mand are fixed, the level of output falls. Similarly, B(9,1) = —0.0342, so that hours worked
falls. It is useful to understand what these magnitudes mean, precisely. Recall that money

growth is:
M,
]\2——:1 == $t7
so that
M, /M,
i = log <ﬁ> = log (L/t)
T T
= [log(M;y1) — log(My)] — log .
Similarly,
N Yt
Yy = log (_) 9
Y
so that dlog(y1)
Og\Yt
B(12,1) = ————,
( ) dlog(My1)

i.e., it is the percent change in output associated with a one percent change in the money
stock. So, a one percent rise in the money stock induced by a policy shock produces a 0.0263
percent contemporaneous drop in output. Similarly, a one percent rise in the money stock
induced by a policy shock induces a 0.03 percent contemporaneous drop in employment.
When all variables and equations are ‘full information’, then output rises 0.57 percent with

a one percent rise in money due to policy. The rise in hours is 0.50 percent.

5.3. Steady State

The steady state rental rate on capital can be computed from:

~ H'I‘:UJZ*
=—= —(1-9),
p 3 (1-9)
where

Mo = (MT)ﬁ 2

Inflation is given by the usual formula




The Fisherian relation determines the nominal rate of interest:

Tl
P R
p
Suppose velocity, V, is preset, say to 1.4. Then, the following equation can be solved for 7.
R=1+7nV2
Solve for o, using:
1 1 1
R—12+40,4
that is
111
M R-1c4
The variable, s, is the reciprocal of the markup:
1 0—1
S=—-— = —
Af 0

Fr= 175 k
. _ R0w (540 =
(1 _ Oé) ];: Moo= e
So, after taking the ratio: . .
pP_ §+¢
= = Qe [y Py
S k
In steady state, -
k‘ (0%
g+o= < ) R =F
o= ey
or,
j+o [k e
2 Hoox by = /%:uz*,UJT :

Substitute this into the expression for p/s,

. ﬁ -«
- l;”z*/”LT )

w [

(which just says that p is the marginal product of capital, divided by the markup) so,

~ e (£)
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We can solve for the wage rate, w, from

e

C o M (i4e, )

- s ()

In what follows, we take two different positions on ¢, the constant term. In the first case

we assume it is positive and that firms make zero profits in steady state. In the second, we

assume it is zero. In this case, firms make positive profits in steady state. In terms of the

algebra necessary for computing the steady state, the differences between these two cases

are slight.
The zero profit condition corresponds, in steady state, to:

Yt — tht(V)ht - thth =0.

In terms of scaled variables, this is:

th: — Z;k'lz}th(V)ht - T;lﬁtut/_ctzz‘ (2:71/2:) Tt (thl/Tt) = 0,

or, after dividing by z; an rewriting a little:

L 5 k
e — W Ry (V) hy — pru———— =0,
o= sy ¢
so that, in steady state, ~
pk
= wR(w)h + L.
Moo= e

At the same time, price markup behavior leads to the result that total factor costs are less

than total variable costs by the amount of the markup:

ok 1
P GR(w)h = sF = —F,
,Uz*/ir )\f

where F' is gross production, including the fixed cost,

F:(/% ! ) (h)' ™.
s oy

That is, F' = y+ ¢, so that F' is the Cobb-Douglas part of the production function. Putting

this into the zero profit condition,

1
F—gb—)\—fF:O,
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or,

1
@‘E)F:¢

It is also usefult to have ¢ in terms of vy :

1 1
(1-5,)rro(i-5;) = ¢

Combining this with the resource constraint, to obtain:

(L+n)c+ {1 - %} ko= (ku:ur)a (h)'™ — <1 _ /\%) <kuz*1ur)a ()=

1 7. 1 “ -
— — (& ),

where steady state investment has been substituted out for the capital stock. When ¢ = 0

and positive profits are permitted, A; in the preceding formula is simply replaced by unity.

1 1 Yopylma [ (1-9)
7 (Af (MZ*MT> (];?) [1 MTMz*])
c=k
1+n
where everything to the right of k is known. Again, the case ¢ = 0 requires replacing Af

Rewriting this:

)

with unity in the above expression.

From (2.4) the steady state equation for hours worked is:
1

/\_ﬁ))\z* =h""Yp.
From (2.1) the first order condition for consumption, in steady state, is:
:uz* ﬁb

— = ——— + A1 0%
fyC — be uz*c—bcjL L+n+nV]
E/Jzz*_ﬁb 1

)\* —
‘ C e —b 14+n+nV

Substitute out for A« :

1 1p.—Bb 1 )
x“’zﬂﬂz* —ﬁb sy Y
or,
1 1 _p.—pb 1
WLty A fipe —b 1Lty + 0V
oL w [y — [3b 1
(2)7" o A (por = D) L+ 0+ 0V

o1



Use this to substitute out for ¢ in the expression for ¢ in the resource constraint:

w o — b 1 _i_{l_(l—é)]l%
(B)7 4, A (e = D) L+ 0V fir -

o) o () ) o
- Aif<l_€lﬁz*1/~br) ®),

(14n) k™"

(14n) k™"

w [y — [3b 1
()7 oy A (e = D) LA+ 07V

= 5 () 00— ]

- {56 6 -5

S0,
7_0_ w /’LZ* - ﬁb 1
k 5 -
{i( > il )
_ Af \ Hox iy P %
(1 +1)
or,
_ 1
G (ue—Bb) 1 e
k %(%)GL Aw(pox—b) 1+n+0'V
- « 11—« —
(%(uz:ur) (%) _[l_u(qlfui)* ])
L 1+n
r 0 (px—pb) _ 14n TTop
_ Y (2)75 Awlpee =) Ln+n'V
ol (L Y\ (4 (=9
LAy (uz*ur) (15) (1 uruz*)

Then, hours worked may be obtained from h = k x (h/k). The case ¢ = 0 requires replacing
Ay with unity in the above expression.

Finally, we obtain ¢ from

and m is obtained by solving:

vwh = xm — q.
The variable, A,- can be obtained from the scaled first order condition for consumption:

1p,. —Bb 1
C e —b 1+n+nV

Aue, =
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6. Estimation
The parameters of the ‘non-stochastic part’ of the model are:
€, §w7 75 SU? Oa, ba )"Lva )‘fa or

and

¢L7nvﬁvu'rv/~bz757a7 VJwL7x7V

The first 9 seem natural candidates for estimation based on impulse response functions. The
second group should be fixed based on the estimates in sample averages or the like. The

parameters of the stochastic part of the model are the following 15:

IOM7eMvpxmCZ7Cgap,uzae,uz7px'rvCTJC§7pNT70,uT70-,uT70-,uz7UM'

We may want to set the moving average parameters, 0,7, ¢, 0,,-, ¢, 0,,,. to zero and use these
only for experiments. This leaves 7 for estimation. Thus, the total number of parameters to
be estimated based on impulse responses are 24.

We do the estimation by matching up impulse responses in the model and the data. To
do this for the model, set initial conditions to zero, i.e., 8y = zo = 0. Then assign a value to

e1; and simulate a sequence of 6,’s:
Ht = pt*191, 91 = €1, t= 2, ,T

Similarly,
Zt = AZt,1 -+ B@t, t= 1, 2, vy T.

The elements of z; can be used to uncover the responses. For example, in the case of
a monetary policy shock, the response of log, output is computed as the sequence, 212,
t =1,2,...,T. This is interpreted as the log, deviation of output from its unshocked path.
Now consider the response of output to one of the technology shocks. In this case, we
have to be careful to take into account that the scaling factor, 2/, is also affected. What we
want in an impulse response function is the response, relative to what would have happened
in the absence of a shock. Now output, v, in the presence of a shock is written ¢;2;. Output
in the absence of a shock is 2z; T, where § is the steady state value of ; and 2" is what 2*

would have been, had there been no shock. What we want is the logarithm of the following

ratio:
YA
+ T 5 et
Yy Yz
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Now,

*
2

_ *
- /’Lz*,IZO

_ *
= Hyxoftx 1%

_ *
- Mz*,t e Mz*,lZO'

What we can recover from simulations of 6, is:

«

/lz*,t - m/ll’,t + ﬂz,t-
Then,
:uz*,l /JJz* (ﬂz*,l + 1)
:uz*7T /“Lz* (ﬂzﬁT + 1) )
giving us the f,. ;’s. Now,
Z:+ = Hopx /“Lz*287
so that .
_ luz*,t e Mz*,l
T e e
Then,

log (y—f> + log (%)
Y <t

g/:t + 10g (Mz*,t e Mz*,l)
P e

gt + [’Lz*,t + /lz*,t—l + ...+ ﬂz*,lv

for ¢ = 1,...,T. The response of consumption, real balances, @Q;/F;, and the real wage are

treated in exactly the same way.

Now consider money growth. We have

;= log (%) = log (M1 /M;) — log x,

which is money growth relative to what it would have been along an unshocked path. We

can multiply this by 4 to put it in annual terms. The deviation of the interest rate from its

unshocked value is:

R, — R
R

Rt:

RR, = R,—R,

which could be multiplied by 4 to express in self terms.
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7. Deriving the Reduced Form Inflation Equation

The strategy for deriving the reduced form inflation process is the usual one. First, derive
a relationship between the average price set by optimizing firms and the aggregate inflation
rate. Then, derive the first order condition for the price set by optimizing firms. This
first order condition resembles the one in the standard Calvo literature in that it involves
equating price to marginal cost on average. It is more complicated than usual, however,

because marginal cost is idiosyncratic to the individual firm.

7.1. Some Results for Prices

We suppose that non-optimizing firms are partially indexed:
Pii(i) =t en?P(i), 0< o< 1.

This is the price set by a firm in period ¢ + 1, whose price in period ¢ is P;(i). With o = 1
they are fully indexed, and with o = 0 they just follow the steady state inflation rate, 7.
Dividing both sides by P,y :

P1(2) _ o0 Py Py(i)

— = T
P "Py B
or,
, ml-eg?
pt+1(Z) = tpt(z)- (7-1)
T4+1

As a consequence,

A

Pe+1(1) = Pe(t) — Frepr + oFts
= Peli) — Dpfrisa,
say, where
Agﬁ-t—&—l = Myq1 — OT¢.
Similarly, for a firm that happens not to have the opportunity to reoptimize in periods ¢+ 1,
t+2,...,t+7:
Pres (i) = (i) = DgTresn — DTy — oo — Ay,
The aggregate price index must satisfy the following condition:

1

P - { / Ptu)”dj]
={£3@HM+AB@MQ%1
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where ¢ € I corresponds to those intermediate good firms that reoptimize and j € J corre-

sponds to those firms which do not reoptimize. To see why this is so,
P\’ A
e }/d- == ) 9 =
/z’(Pt(i)> h = ) Ap—1
Jitdi+ [ atydi = %
I J

(1= &,)p; = AT,
(1 —¢,)¢,The firms who Simplifying and dividing by F, :

1

1-6

1-6 mireny e 1-6
1 = /p;‘(z')‘dz'+(—P) /Pt_‘ldj
I t J

[ ml=ex? | 1=
= /ij(i)ledi+<T_) &P

1—o. 0 1-60] 1-0
%/ N1—0 7- ™ T
= /pt (Ul adz+fp <7Pt : 1)
1 Py

1
-6

1—o.0 1-0
- [frse (2]
I t

l—p 0 1-6
| = / P ()i + €, (—” ”H)
I Ty

Then,

Differentiating:

0 = (=0 50 Hd+0-0) (

Uy Ur

1—p,..0 —0 1- o—1
T gﬂ—tl) om0 (m_1)? dmy

= (-0 [ro a0 -o0)

Tt Tt

= (1-0) /Ipf(i)leﬁi‘(i)di +&,(1-0) (ﬂ) . loft—1 — 7]

ur’

— (1-0) / Pi)di + €,(1— 0) o1 — 7]

1-o0 N 1- [
m gﬂ—t—l) {QW ¢ (m—1) Ty

After dividing and rearranging, and taking into account that p; (i) = 1 in a symmetric steady

state equilibrium,

0= / P (6)di — €, 7.
I
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We suppose that

where
/Q@m:o
I
Then,
[t = (1= &,)pt
Substituting,
(1= &,)p; = AT,
or,

P\’ . s
Y = =

the ratio of output to a firm that changes its price to the output of a firm that does not:

EE

so that let the period of the shock be called 1. in this period, all prices are the same, so that

all outputs are the same. In the next period, a subset of (1 — fp) firms gets to reoptimize

their prices and on average these prices are set to p5 = 15”511 (g — o71) .

The output of a firm that optimally sets its price to p;(7) is:

() =m0

—0p7 (i) + Yy = §; (0).

Integrate over all the (1 — §p) firms which reoptimize:

S0,

—0p; +Y: = 4.
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remember that the integral of output is:

ﬁ::/t" (7.2)
= /It dz+/ (J)dj (7.3)
_ (1 gp)( +Yt) (7.4
(7.5

» &p X
;= 1_€pAQ7Tt (7.6)
(1—&)pi+&0 = 71— (7.7)
(7.8)

7.2. The Capital Euler Equation

The intertemporal Euler equation is (1.4):

) ) ) ) PP (8) + (1= 0) iy (0)
Avit = Apr b1 = flpn g1 — oy ppr — Mt( ) + = p+1-9¢ -

(o k) ﬁt(z) = [S"] (Mrﬂz*)2 [it(z) — i—1(7) + oy ¢ + ﬂz*,t] (7.9)
—B[S"] (ppto)” (41 (0) = 8(8) + flop g1 + flae 411

~

5\z*,t = Aowgs1 = floe g1 — fppen — ("] (pptt )? [26(2) — 2—1.(2) + fip s + fio- ]
+B[S"] (pptie)? [i1(8) = 80(8) + fry gy + flav 11
(1-9)

o S Gt [ld) = s () o+ ]

—BS"] (pppze)” [ies1(8) = 20(0) + frg gy + fion g41])

D Rt+1< )+ wt+1 + 1 <y+¢yt+1 — €41 — l_ft+1(i) + ﬂz*,t+1 + ﬂT,t+1>

10 [

Substitute out for p,, (i) (rom (1.5)) and fz,,, (i) (from (1.3)):

)\z*,t = 5\2*,t+1 - ﬂz*,tJrl - ﬂT,H»l
— [S"] (pp e ) [36(8) = o1 (8) + fip g + frae o] + BIS"] (ppptes)? [ie1(1) — 8(8) + fiyp gy + flom g4
(1-9) 2t o A R
+m{[5”] (pp i) [lt+1(l) — 24 (@) + fiy 11 + /~Lzat+1}

—B18") (prp.-) [i42(i) — it+1(') + flp o gy }

b Riy(v) + s + 1= <ﬁ§t+1(i) — €t+1 — ki1 (i) + frpe pyq + ﬂr,t+1>
+ )

p+1-0 1+ L=

1 aoa
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)\z*,t = )\z*,tJrl - ﬂz*,tJrl - laT,t+1
— [9"] (e ) { [0(0) = i1 (3) + fiyp + fron ]

1—-6 o A
(ﬁ + <+ : )5> [Zt—&—l(i) —2(1) + foy g1 + Mz*,t+1]

(1—=0) ot o s A
b + 1 . 5/6 |:Zt+2</l/) - Zt-f—l(Z) + MTJ—}—Q + ,LLZ*7t+2:|}
p Ria(v) + T 1. <ﬁgt+1(i) — &1 — ki1 () A Loy + ﬂr,t+1>
+~ )
p+1l-0 I

From this equation, subtract the equation that results after aggregating over all ¢ (simply

delete the (i) argument wherever it appears):

0 = =18 e A1) = 32400)] = (54 2572 ) (i) =i )

p+1—

1—-9
o i) - )
5 >t . =t ;
LD g (1) — ki (0)

Y

pH1-6 l1—a++
where a ‘+’ means the i*" firm’s value of the variable, minus the aggregate.
From the firm’s demand curve:

~t

Ui (1) = =0p:(i)

Substitute this into the preceding expression:

0 = =18 e A3t ) = 32400] = (54 2572 ) (i) =i
(1-9)

g LA CEIORRION

- . =+ .
B p ﬁeptﬂ(l) + Kypq (4)
p+1—6 l—a+ ;-

Y

From the capital evolution equation, (1.6),

) HetteFe () = (1= Ok, ()
' fiyftz- — (1= 6)

A~

= (D) (i),
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where

oy P« (1_6)1’
(L) = -
) = = (=0 e = (1=0)

* 1 - (5
px iz — (1= 9) Hop oz

Substitute this into the capital euler equation:

0 = 18" e LD = DE () = (54 =575 ) 1 = D)
(1-9)

+p+1— Ba;(L)(1 L)];?H:s(i)}

. /_\+ .
D 501 (1) + oy (0)
p+1—6 l—a+ - ’

or, after dividing by — [S”] (ppp.)” :

{mam1—Lﬂ?—<ﬁ+fgié%>@um1—Lﬂ

p+1—
(1-9) =+
+p 11— 60/7/( )(1 - L)}kt+3(2)

+ p 1 #Qﬁtﬂ(i) + L2E:r+3(i>
p+1=0[5" (yp..)’ 1—a+L !
= a0 - 02 - (5+ 27wl - 1L
(1-9) 1 p 12 ~t
S Bai(L)(1 L)+[SH](MTM E e S Vepia(d)
1 P 0
+WWWwwfﬁ+1—51—a+i%“@%
QDE [Atig( i } = ®F [pr1(1)|] (7.10)
where
Q(L)
- (1-9) (1-94)
o e LR it
1 P 1 )

n _ L
(") (uepe)*PH1 =01 —at o

o 1 p i
("] (e’ P 1= 01—t o
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It is useful to write out the coefficients on powers of L in Q(L) explicitly
(1-=94) (1-9)
J(L)(1 =L L+ ——
ai(L)( )l <5+ gy S R g
. 1 p 1 2
(5" (pype) PH1 =01 —at o

B flp s 1-46 (1-9) (1-9)
B Mww-%1—®(l_uﬂwL)u_lJPﬂ_(6+b+1—5>L+ﬁ+1—54

1 p 1
1 P 2
[S"] (epeze)” P 1= 01—t o

fx fho 1—5} 1—52)[2 ( ﬂ—é)) (1-9) 1
= 1— |1+ L+ ) |- (f+— ) L+ —-L3
uﬂw—%1—®< { fir s fhop s pt+1-4¢ p+1—96
1 ) 1 )
+ _ L
[S") (pppe ) PHT = 01—t o

_ flp s (1-9) (1-9)
B Mww-wl—ﬁ{ (ﬁ+ +1—5)L+b+1—55

1-4 1-6 (1-10) 1-6\ (1-9)
—(1+ ﬁ+@+ )<+f———)ﬁ—0+ )~ L
( uww) [y [z ’ p+1-9 [y [z p+1—5ﬁ
1—46 1—46 (1-9) 1-0 (1-9)
+ ﬁ————(+7——0Lﬂ- L?
foy [ = [y [ ’ p+1-9 Porpzs pH1—0 5 J

+ ! P L p
("] (wepe )P+ 1 =01 — a2

_ [y [ (1-9) ]_ [y [ l (1-9) (1 1—5)(1—@ ]L
Lruz*—u—é)ﬁﬂ—éﬁ TR T e S g s

- 1-9¢ (1—5)> 1-6 (1-9) }
+mef—ﬂ—5)b+<l+uwu><ﬁ+ﬁ+1—5 +Mﬂ%ﬁ+1—5ﬁ

1 p 12
+
[S"] (pppe, ),0+1—(51—a+1}
. 1-6 1-9¢ 1-46 . 1-46
Y {H_ N @+} )HLM_ fixfh 74
fixptze — (1 —0) R p+1-20 prxpze — (1= 0) piyp»
= Y t+tmnLl+ 72L2 + 73L3 + 74L4»

say.

We posit (and later verify) that in equilibrium the following relations are satisfied:

=+ o+ =+
ka(i) = Kiky (9) + Kok, (1) + Kape (i) (7.11)
. o -t ~+ N =~ =~
pi(i) = pr —boky (1) — ik 1 (2), Ky (i) = keld) — ke, (7.12)

where K1, ka2, K3, 1y, 1, are coefficients to be determined.
From the standpoint of period ¢, in period t + 1 the " firm has probability ¢, of not
being able to reoptimize its price, and probability 1 — £, of being able to reoptimize. The
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price it sets (relative to the aggregate price) if it is able to reoptimize in ¢ 4+ 1 is denoted
ﬁ>tk+l(z) Then7

Fibrli) = & [5:0) — D] + (1 - £) By (1)
= )~ Ayl + (1-6) 5 = o) — ik 1)
- @@M»—Aﬂﬂﬂ+u—fa{f%gAﬂﬂl—wﬁixw—wﬁlw]
= )+ (1= 6) | v (s )+ kaby 1)+ i) = 0 ()
= &) — (1= &) boriky (6) — (1= &, Wgmak, 1 (1) — (1 = &, )oraie(i) — (1 — &), R, (i)
— (&= (1= &)ons] (i) — (1 — &,) [omn + 1] By (1) — (1 = &, )boraki (1)

Substitute this into (7.10):

@@ﬂ?fHAMQ] B [€, — (1= &,)ons] pii)—@(1—E,) [orn + ) Ly (1) —®(1—, Yoot L E,y 1 i),

or,
QULIE [R019] = 2 [5, ~ (1= &) ()
where
QL) = QL)+ (1 &) [k + vy L* + (L — &, )pora L’
= ’~Yo + ’~Y1L + ’NYQLZ + ’~Y3L3 + ’~V4L47
say. Then,
5 o+ . ~ o+ . _ =t . =t _ =+t . .
YoEikyy5() + 31 Bk (i) + Aok () + Fsk, (1) + Fak, 1 (1) = @ [€, — (1 = €, )00ks] Pe(0)

(7.13)
o+ o+
To evaluate this, we require F;k,,4(i) and Ejk,, (7). Consider the first of these:

=+ =+ o+
Bk, 5(i) = k1 Bk o(1) + kakyy (i) + k3 Eyprio(i)
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Eipri2(i) = & pe(i) — Agmpga — Apmera] (don’t change in ¢ + 1 and ¢ + 2)

+(1 = &,)€, [Pri1(i) — Apmer2] (change in ¢ 4 1 don’t change in ¢ + 2)
+€,(1 = &,)pi2(i) (don’t change in ¢ 4- 1 do change in ¢ + 2)
+(1 = &,)%p;,5(i) (change in ¢ + 1 and ¢ + 2)

= & [pe(i) — Agmis — Agmigd]

1= )6 [ = vobiaali) = 01, () = Agmu)
+&,(1=¢,) {]5:+2 - @502;2(@') - ¢1E:+1(i)1

=+

2 | . ~+ .
+ (1 - gp) {ptﬁ - woktw(@) - ¢1kt+1<2)1 .

=+
To avoid cluttering notation, the last expression does not distinguish between k,,,(¢) chosen

in a period ¢+ 1 history when price reoptimization was permitted and a period ¢+ 1 history

when it was not.

Epra(i) = & [pi(i) = Agmira — Agmisa]

or,

=+ =+

1-g)e, [ﬁz;l gl (i) — by (6) — Agw}

=+

16,16, [ﬁrﬁ . (k() T ok (8) 4 ra [pu(i) — Agw) - ML(@')]
(L= &) tn — 0 ( ot (0) 4+ ok (3) + i {p o (i) — b <z’>} )

=+

— 1k (4)]

Epria(i) = & [pe(i) — Agmripa — Agmyia]

fp ~+ o+
+(1 - §p)fp {quWHl — hoky1 (1) — Vi, (1) — Ag”tﬁ}
p
§

—1/10/462;:(1') — ok [ﬁt(” - Agﬂ—t+1])

+ (1 - fp)2 [1§—p€pAg7Tt+2 - (1/)0/{1 + 1y — %53) j+1( )

— (Yoka2 — Yoty K3) l;t (1) — Yok

Agﬂ'prz <wol‘fl + 1# ) t+1( )

AgTiia]

&
1-¢,
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or,

Epraa(i) = & [pe(i) — Agmirs — Agmyy]
T — (1- §)6A0m4n — (1 - )6, [%E; (i) + iy <z’>}
+E A2 + € (1 — €)Wk

e (1 6) [ oms t 0) s (6) + ol (0) +¢0n3ﬁt<z‘>]

+

+§p (1 - fp) [Agﬂt+2 - 77Z)0'%3AQ7TH-1] - (1 - fp)Z [Wo’fl + 1y — ¢0’€3) t+1( )
- (Wora — othyra) Ky ()

or,
Eipria(i) = Epili)
(=6 bl + R ()
—6,(1-¢,) {wom 4y T (1) + omak, () + %w@(z’)}
~ (=6 o+ 01 = ) ELn )+ (e = v B ()]
or,

Eiprya(i) = [gi_fp(l _fp)@bo"fi%} pe(d) = [(2 =&, )f (Vg + Yor1 + 1)
(1= €)% (s + 1 — V) [ ()
= [ €06, (s + o) + (1 =€) (ks — i) & ()

or, substituting out for /_ct 11(9),

Eipria(i) = [’5 - &, (1— )¢0“3] Pe(9)
[0 =€), (o + s +151) + (1= &) (v + 951 — i)

< (R )+ rab () + i)
2 =t
— (1= )6, (01 + Yora) + (1= €,)° (oha = Gitoara)| By (1)
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or,

Etﬁt+2(i) = {€]2)_ - §p<1 - §p)¢0’13 .
— (1= &), (o + g + 1) + (1= &,)° (vors + 1 — Ufra) | ma}pu(i)

ot

— (1= €06, (o + ks + 1) + (1= &,)° (o + by — Uis) | maki 1 ()
{1 - €p>€p (V) + Yokz) + (1 - fp)2 (Yoka — othyk3)
[0 68, W+ domi +401) + (1= &) (o + 0y — wds) | m b (0)

o+ o+
= agp(i) + ark,_y (i) + azk, (7),

where

= —(1=&) [& (Wo+vorr + 1) + (1—&,) (o + ¥y — V)] 1
ah = €—&,(1—&,) o5 + alns /o
ay = —(1=&) [& (W1 + ko) + (1 =&,) (Yora = Yotiss)] + atka/ma

=+
Bk, 5(i) = &, Bk, (i) (don’t change price in ¢ + 1)

=+
+(1 = ¢&,)Eik;,5(i) (do change price in ¢ + 1)
=+

s [k() ol (1) + s (1) Agmo}

A~

H1 = 6 [l @)+ )+ v (2 B = i) = 00 0

or,

=+

o+ =+
Ednnli) = €, [ko T b () + ngzatu)}

fa-¢) W?H(z')m?() kathohsa (i) — Rt F ()}

= |:€p’%1 + (1 =E,)r1 — H3¢o] z
+ [Epra+ (1 — §p)"v2 —(1- }
+€p/€3ﬁt(i>

[k — (1= &, )ratie] (E (3) + kb 1() + mgm)
[ — (1= &, )] o (3) + €, piapi(i)
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Etik\?j+2(i) = {[/‘?1 —(1— fp)/%?/Jo} K1+ [Iig - (1- gp)’i3¢l} } /];;\j(z)
T i1 — (1= &, )atbg] Kok (1)
+{[m1 = (1= &) mathy] w3+ Epriaf pr(i)

= o+

kA Kol (i KT
appe(i) + ayk, (i) + agk, (i),

where
af = [k — (1 —&,)rstp] ka
ag = rp—(1- fp)fi?)@bl + alf’il/"éz
ab = Eptia + a¥ ks /Ky

Let’s now substitute all this into (7.13):

~+ . ~+ . R . 5 ~+ . 5 ~+ .
Yo |1 Bk, o(1) + Kokyy1(3) + ks EPeya(t) | + A1 Eikyyo(i) + Yo Eiky 1 (7)

o+ o+
sk (i) + A4k 1 (1) = @[5, — (1= &)vhors] pu(i)

or,
B 5 ~+ . B . . _ 5 ~+ .
(ok1 + 1) Etkt+2(l> + Yoz EiDry2(i) 4 [Yora + 7o) EtktJrl(Z)

A~

gk (1) + k(i) = @ [€— (1= &)ors] )

or,
5 5 ko k/_\—i- . k/_\+ .
(Fok1 + 1) (aopt(z) +avk, (1) + agk, (Z))
5 P p/:+ . p:\-&- .
ks (aopt<z> by (3) + <z>)
B B =t ~+ . .
+ Fora + 7] (mkt (1) + oy (3) + mgpxz))
o=t _ =t . .
+3k; (1) + Y4k 1 (1) = @ [fp —(1- fp)@bof‘f:%] Pi(7)
or,

[(Fokr + 1) a5 + Forsab + (Foka + o) k1 + T3] ZF(Z)
+ [(oss +72) af + Fomaak + (Foma +73) sz + 7] By (1)
+ Fok1 + 1) alg + Yoraap + (okz + 72) K3
- [fp - (1 - fp)@/fofi:a] }ﬁt(i)
= 0.
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This requires that the following three equations be satisfied:

(Fok1 + 1) a5 + Forsah + (Foka + Fo) K1+ 73 = 0 (7.14)
(Fok1 + 1) af + Forsal + (Fokz + Fo) k2 + 9, = 0 (7.15)
(For1 +71) alg + Yokzag + (Fokz + o) ks = @ |:§p —(1- fp)wof’%] (7.16)
7.3. The Price First Order Condition

The intermediate good firm that reoptimizes its price optimizes:

1

1—0 Ta
Nq1— ND Py (0) . *
s L Py ’ ’ Ty €ttt (1) K5 (0)
=Y T (6) — [a(u () Y] Ko (0)},
with respect to P;(7), subject to
Pon(i) _ m=oxt B()
Py Ty D
for future histories in which it cannot reoptimize. Also,
Pria(i) _ Tl Poa(d)
Pyyo Tt+2 Fiya
_ e 21 ()
Tt42 i1 B
and so on...
P (i) T . T B(0)
Pt+j Tt4j T B
bi(i)
- X,
t,7 Pt
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Writing out the components of the firm’s objective which involve price and neglecting future

histories in which it reoptimizes its price:

(

L 1—0 T
0o . —0 N . P’5+—J(l)i| . *
B [H0] v - R e el (2] Yoo +osi,
s ! Py ! ’ ! Ztyj €ttt (1) K5 (1)
1-0 =
N7 1-0 N Pt_(’)} *
= ML [Pt(Z) 1 Y%—Rt(ﬂtht(Z)Kt(Z) [Pt Y_;—Hb%
Pt ] Zt etut(i)Kt(i)
1
R () [ [$0 ] v o)
1 U112 t+12 Py + t+1
1€ By | Xy — Y1 — R _
+BA11€, B { t1 2) } t+1 t1 (V) Wi . i (K ()
1
B ) Raat) [ [ B] Veatomin)
2 2 t\? Up42(2) K y40(2 2 Py + t+2
A E X, Yiio — R _
+6"Aey2, By l £,2 2 ] 42 tr2(V)Wiy2 s rratroa () Krra(i)

+...
. Pt N11-60
+(88,)" s Be{ {Xt,j#] Yii;

11—

—0
=, Pt(i) *
_ Rt+j(1/)wt+jut+j (i)K,p,.j (Z) |:Xt7j = :| Y;-Fj + ¢Zt+j

Zt4j €1 Uity (1) Ky (7)

+...

Differentiate the j* term with respect to P;(i) :

(i)
P,

(8,) Aers B A = 0) [X " l 1 " Yii;

N1 T 1-6-1
_ P(Z) * _0 P(l)
Ur () Koy (7)1 [XW' P ] Yij+oay; | 0X [T} Yiej 1

+R (v )w . ~ R N\ T . R
e T T e | T e s 0K ) i) Er,@) B
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or,

; Pz
(96 Mo Xy
L0 ol (D) Ko (1) Reyj(V)wi
(1 — 0) 1 €t+j (1 — Oé) Zt+j
p(i)]? L\ 0 o1
[Xt,jTt] Yivj + 0274 Yt }thj [Pt(i)} —0—
X = ; NS ; .
€t5Ut () Ky () €rajliri (D)Ko (i) B | P

Recall that marginal cost is:

i) = A (ulD ey

Substituting,

. P, ( ) 0 X—9 Pt(Z) —0—-1
(86,)" My By { jD Xij+ mstﬂ( )} Yiri—5- Pt ) :
The derivative of the firm’s objective with respect to P;(i) is

[e.9]

Py(7 P2 0 )
Z 65 Aze t+]}/t+J t] |: P(t):| Et{ P(:)Xt’j - m&;w‘(@)} =0.

J=

Expand this about steady state, taking into account that the object in braces is zero in
steady state (so that differentiating the objects outside the braces is unnecessary), and take

into account that A« ;; Y/Hj are constant in steady state and (P (i)/P;) = X;; = 1 in steady

state: -
> (56) Ee{pnli) + Koy = 5es(0) | =0,
J=0
since 01
§=—
0
Now, o
oy
X1 =
Ti4+1
so that,
Xt,l = 0Ty — Tt41 = _Agﬁ-t-l-l-
Also,
Wl_QWfH ml-en?




so that,

Xt,2 = _Agﬂ'tJrl - AQWHQ;
and so on. Then,

Ey {pe(i) — 5:(4)}
+(B,)" B {pi(i) — Mgty — 8041 (1)}

(4)

(4)

( )2 B {pe(i) — Agftir — Agfripa — 8142(7) }
+(88,)” B {peli) — Ay — Dty — Agfrees — Si4a(i)}
+....
or,
L (i) — =22 A (B&) 5 7 &)
- 1— 2 — 3—
L—pe, " 1=pg, 0 1=, T 1-pg, 0
- Z 55 5t+J '
— (),
or,
=3 (88) Agruay + (1= 88,) D (BE,) 805
j=1 =0
But,
LN a 0. (1—a) Oy .. . =t
R e e [ TUR UL}
. . 1o} oo(1—a) [ -0y ,. . ~+
suali) = e T | i) = i) = i)
N . N (0% O 1 — r —9~ . ~+ ‘
St+2() = Szt I —ao (1(_ a) _|)_ 1137 +ib (Pe(7) — Dpmir — DgTrig2) — kt+2(l)]
R ) . « 0, (1 —« :—9;& . ~+
St43(1) = Sz + 1 —ao (1(_ a) _i 15+0 (De(d) — ApTrer — DgTiyn — ApTiys) — kt+3(l>]
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+ (ﬁfp) 8111(7)
+(88,)” $142(1)
+ (ﬁfp)g 5143(1)
+...
. « s (1—a) Oy . . =t
B S ey [g+¢pt<l)_ t(l)l

() = Aue) = B )] |

l—aoc,(1—a)+1 |7+
a(l— -0y .. >~
+ (5510)2 {§t+2 + 1 . Qo U<1(i Oé)oi)r 1 l~ +?iz$ (Pe(1) — Agmrigr — DpTiya) — kt++2(l)} }
a - —0~ n /. P .
+ (5§p)3 {§t+3 +7 fa . U(l(i &)al 1 l~ +ib (i) — AgTriy1 — DyTrga — DpTiis) — ’f;:s(l)] }

1 s AT .
X [1 —ﬁé},pt Z 65 Z 55 g7Tt+] Q—j&Z (561))] kHj(Z)] .

p j=1 j=0

We now substitute this into the price equation. Recall,

= SB6) Aty (1- 56) S (86,) d1as0)

Jj=1 j=0
so that,
) = 3 (86) Mg + (1= 86,) D" (88,) 5usy
Jj=1 j=0
a o.(1—a) 0y o > | yj o0
1—aaa(1—oz)+1y—|—¢ ; BTt + 07 ; Koy (0

=+
We must now evaluate the expression involving the present value of k, ; (7). Recall:

Dy (1) = De(d) — Dpmryr — AgTis — oo — ApTiy,

71



and:
. g . i\+ . A .
kt+1(z> = Kiky(2) + rok, 1 (1) + Kape(i)
~ ~+ ~ N N
(i) = Df —oki(i) — ik, (), k(7)) = ky(d) — K,

Stack the capital decision rule as a first order system:

Y ( Fya (0 )
k()

Then,
0 = Am+ ( i () )
a= el
Then,
Bz = Az + ( ﬁ3ﬁg(i) )
Bz = Az+ ( w3 (P (i) _OAgEtﬂ—t—l—l) )
= A%, +A< ’€3ﬁg(i) ) n ( K3 (pr (1) _OAgEtﬂ-t—i—l) )
= Az +(A+1]) ( ’i?’ﬁg(i) ) ~ ( “3A9§t7t+1 )
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Also,

Eizgrn = Az + A < riapi (i) ) + A ( r (97 (1) = Do Eimiga) )

0

0

n ( K3 (Df (1) — ApEymin — AyEymyyo) )

0

:1@%4+QF+A+U(

/‘éSﬁ?(l) > . (A—l—[) < RgAgEtﬂt+1 ) . ( KgAQEt’]TtJFQ )

0 0

Bizgys = Az + A° < rapi (i) ) + A? < rg (0} (1) = Do Eiymisa) )

0

0

+A ( R3 (]5:(2) - AgEﬂTtH - AQEtﬂ—t-‘rQ) )

0

+ ( K3 (ﬁ?(l> - AQEtﬂ-t—i—l - AgEtﬂ-yH—Q - AgEtWt+3) >

::A%1+pP+M+A+ﬂ<

/{3A9Et7rt+2

—M+ﬂ( 0

2 k3A Eimipo
-{A+M< ot

/{315* (Z> /1:3A E.r 1
o )—[AW+A+I]( o

) B I< ligAgEtﬂ't_;'_g >
0

Elizgpy = Az + [A4 A3 1 A2 +A] ( K3y (1) > _ [A3 L —l—A} < YAV Y A >

0 0

> _ A( /igAgEtﬂ't_HJ, )
0

- ( iy (07 (1) = Doy = BoBumtis = Do Eymies — BoFumia) >
0

or,

EA’tiZt_;'_zl = A5Zt—1 —+ [A4 —|—A3 +A2 +A+I:| ( R3Py (Z) ) o |:A3 +A2 +A+Ij| ( K3A9Etﬂ—t+l )

—{M+A+ﬂ(

The geometic sum formula:

AS =

[1—A]S

R3 AgEtﬂ-lH»Q
0

0 0

) i [A+I] ( KJSAQgJ’tWtJrg ) . < 53Aggt7rt+4 )

T+ A+ A+ L+ AF
A+ A%+ . 4 AM
I — Ak+1

[I— A7 [I— A
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Then,

Bl = Az +[1— A7 [T — A ( rapi (1) ) —[I— A" [I - AY] < FsloBimin )

0 0
—1 _ /ﬁ)gA Er 2 -1 _ HgA Er 3
_[I_A] [I_Ak 1] ( Qot t+ ) —[I—A] [I_Ak 2} ( ,QOt t+ )
I SRS B N Py g ) H3A9Et7Tt+j I S B O T 53A9Et7ft+k:
o= [T = A [T — ARG ( . ) [T — ATV = A ( .

Now, we want (let 7 = [1 0]):

(€,8) Eikes(i)
j=0
= k(i) +7EB2 + 7 (6,8)" Eizen
+T (gpﬁ)?) EAtiZt+2 +7 (5@5)4 EZZHg +T (€p5)5 EA’ZzHZL + ...

= Ju(i) + 7,8 {Azt_l + ( bk (®) )}
+7 (€,8)° |:A22’t_1 +(A+1) ( “3ﬁ§(i) ) - ( “3A9§t”t+1 )}
+7 (€,8)° [A3zt_1 + (A2 A+ ( “3155 (@) ) —(A+1) ( H?’A@gﬂt“ ) - ( “3A9(7)Et”t+2 )}

+7 (§p5)4[A4zt_1 + (AP A2 A+ ( K3py (i) > (A2 + A+ ( IERVANN /% U >

0 0
—[A+1] < /€3Aggtﬂ't+2 > —I( /igAggtﬂ'Hg >]
+7 (€,8)° A2y + [AT+ B+ A2+ A+ ] ( Kgpé (9) ) (AP A2+ A ( “3A@§tﬂt+l )
- [A2 + A+ [} ( K3 Lo ) —[A+1] ( VAN DY o ) - ( K3A, BTy g4 )]
+... .+
T (5 6)k+1 [Ak:-‘rlz + (] o A)*l (_[ . Ak+1) 5325;5‘((2) _ (] _ A)fl (] _ Ak) /igAgEtWt+1

p t—1 0 O
— (I — A)fl (I _ Ak—l) < (YA DY S > (- A)fl (] _Ak_g) ( (VAN D% S )
0 0

A (1 a0 (R )y gy (PR
+...
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Collecting terms:

8

‘ (fpﬁ)j Ellrs

<
o

I
T
—~

((6) + 7€, 8A (I — €,64) " 2,
- [gpﬁf (6,8 A+ D+ (6,8)° (A2 + A+ ) + .+ (6,8) 7 (T —A) 7 (I — A + }

X(@%@>

—7 (€8 T+ (68)" (A+ D+ (§,8)" (A2 + A+ 1) + .+ (§,8) (1 - A7 (1 - 4 + .|

v ( /nggOEtWtH )

-7 [(5p5)3f+ (E8) (A+1)+ (6,8)" (A2 +A+1) + ..+ (T - A (I - A’H)]

% ( H3Ag€tﬂt+2 )

\]

Simplifying the coefficient on r3p;(7) :
E68(I—A) (I —A) + (6,8)" (I — A (I —A%) + (6,6)° (I — A" (I - A)
ot (6,8) T (T = A) (T - A 4
= =47 |80 = A+ (§8)" (1 =A%) + (8)" (I = A7) + .+ (6,8) (1 - 4 + ]

L 68 -
— (I-A)" L_pgpﬁ[—gpm(l—gpm) '

The coefficient on k3A,E;m 41 :

(€,8)° (1 = A (1 — A) + (6,8)° (1 — A7 (I =A%) + (6,8)" (1 — A7 (I — 4%
ot (6,8) T (T = AT (I - AF) +

= (U= AL 6B = A+ (§,8)" (1 - 4%) + (6,8)" (I =A%) + ..+ (§,8)" (1 - 4) + .

_ &8 .
= (I-A) 1€p5 [1_51)5[—5])6/1(]—51)514) 1]

The coeflicient on ksA,E;m 49 :

£
1=¢,0

1

(1= A7 (60 | 7251~ 694 (1 ~6,04)”

5



and so on. Then,

f; (6,5) Eifu,
= k(i) +7E,BA (1 = €,84) 2+ 7 (1 - A)! { f?ﬁ] € BA(I—€,54) 1](:4:3135(1))
(1) 68 | TR = 8A (=) | (e )
(=4 () [T - A - o) (AT )
So,
2(5 BY Eily; = Ea(i) +7¢,BA (T —¢,84) " 2,
+ {7’ (I—A4)"" [1 fpfpﬁf —&,BA(I - gpﬁA)l] T’} K3p; (4)
{ru-at [P gaa - g ]}i Y AL Eimes

Substitute this into the first order condition for p;(i):

) = D (86) A+ (1= 88,) D (5,) suss

J=1 j=0
« 04 (1 —a) b > J+ ¢ —
l—aaa(l—a)+1y+¢ ; Agmesj + (1 56,) —g;
to obtain:
D) = S (66) Agers + (1-56,) > (56,) duag (7.17)
Jj=1 Jj=0
o Oq (1 _ Oé) Hy A* .
1—aaa(1—a)+1y+¢ jz_; Aoty
1 iéomaa(al(i;)oi)tl (1= 5,) (ki) + 76,BA (I = £,54) " 5
+ <T (I— A" [lffﬁl £,6A (1 —¢€,84)" 1} T') K3 (i)
_ (T (I—A)" L f?ﬁl ¢,BA (I — ¢, BA) 1] 7) ke S (6,8) Ay}

J=1
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We now collect terms in this expression. Move terms in p; (i) to the left of the equality in
(7.17). The coefficient on p; (i) then is:

a o,(l—a) 07

S B e S
(6} O'a<1—a) -1 fﬁ -1
+1—aaa(1—a)+1(1_6£p)<7-<[ 4) l 55 55 (I fﬁA) ]T)@
B o 04 (1 —a) 0y B £,0 = l
N 1+1—a0a(1—a)+1{ﬂ+¢> (1= 5¢,) ( [ I SOA(I=&P4) }T>K3J
= ¢

say. Collect terms in ) % (ﬁfp)j A 74 j to the right of the equality in (7.17). The coefficient
on these terms is ("' too. Thus, collecting terms in (7.17) and multiplying the result by ¢,
we obtain:

CUi) = MY (86) Aty + (1= 88,) D (58,) Suay
j=0

0. (1—a)
o,(1—a)+1

|91M8

1 (1-5¢,) {7%(2') +rEBA(T—¢,8A)7 zt_l}

or, after multiplication by ( :

pr) = > (B) Mg+ (1= B8,) ¢S (BE,) Sus

J=1 =0

a o,(l—a) -
_1—040(1(1—@)—1—1(1_55)6‘:]{(1)
a 04 (1 —a) 15,
Toar a1 %) ) C[7E,84 (1 - &,84) " '] k(i)
a o,(l—a)

-1( 0 = )
]-_OéO'a(].—Ck—l—]_ _55 |:T§BAI 5514 (1)]kt1(1>

(recall, 7 = [1 0]), or, collecting terms in k(i) :

pr) = > (B) Mg+ (1= B8,) ¢S (BE,) Sus
Jj=1 =0
a 0. (1—a) R
1_aaa<1_a)+1 <{1+r§/3A (1-&,64)" 7} (i)
a o,(l—a) {

-1(0 ~ .
e (1 A6 C[r6PA (1 - 6,84) (1)1@1(@)

Write this as:

A~

ﬁ:(l) = ﬁ: - wofft(i) - %75;1(2'),
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where.

P = fj (56,) Agfas +¢ (1= 5¢,) f: C (7.18)

Also, B "~
o = T o—aa(al(i ;fﬁ - (1-p,) {1+ e pA(l -840 ) (T19)
T Uf{‘lq ;)&l - (1-56,) ¢ [wspﬁA (1-¢,54)" ( X )]  (20)

7.4. Pulling Everything Together to Get the Reduced Form

Solve for p; in (7.18) using (7.6), to obtain:

S = Y (36 Buts € (1-56) 3 (56) 0
P =1 =0
Lt 1—
- fW““%

Multiply by 1 — prL_l and rearrange:

(1 — éE?p) (1 — 651))
&

The key parameter to be solved for is (. To do so, first find k1, k2, K3, 1y, 1 to solve (7.14),
(7.15), (7.16), (7.19), (7.20). Then, evaluate (?7?).

To get a feel for how these formulas work, consider the following example. Here, A\, =
1.05, A\ = 1.2, py = 14.03/4, @ = 0.36, 2 = 1.017, § = 1.037%%, 6 = 0.025, n = 0.036, p, =
1.0001, b =0.73, 0, = 1,9, =1,V = 1.43, ¢ = 1.00830983517582, S” = 1.11651914318597.
Steady state consumption to output ratio is ¢/§ = 0.68, steady state hours worked are 0.95,
and ¢ = 1.09, ¢ = 0.42, m = 2.50, k = 19, @ = 1.52 (these numbers have been rounded).

The following figure displays v, where

(1 — éE?p) (1 — 6519)

Y= 3 ¢

for 0, = 0.1 and o, = 10,000. The former corresponds to variable capital utilization,

Agﬁ-t = BAgﬁ-H-l + Cét

and the latter, to no variable capital utilization.In addition, the line indicated by circles
displays 7 in the economy-wide factor market case, when ¢ = 1. (The values of « for the
case 0, = 0.01 were also computed, but they virtually coincide with the line indicated by
circles.) The horizontal axis displays the mean times between reoptimizations, 1/(1 —¢,).

The micro empirical literature suggests that the mean time between reoptimizations may
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be 1.72 quarters. With this mean time, when there is no variable capital utilization, v is a
bit above 0.2. With economy-wide factor markets, v is 0.80. Thus, without variable capital
utilization, the value of v is cut by a factor of 4 with the assumption of economy-wide capital
markets.

Now, suppose instead that econometric methods produce an estimate v = 0.56. What
is the implied time between price reoptimizations under economy-wide capital markets and
under firm-specific capital? This value of ~ is indicated under the horizontal axis. Under
economy-wide factor markets, the implied duration between price optimization is 1.93 quar-
ters. Under firm-specific capital the implied duration between price optimization is 1.35
quarters. If the estimate of 7 were instead in the range of 0.2, then under firm-specific
capital, the estimate of duration would be around 1.7 quarters, while it would be well over
2 quarters for economy-wide capital markets.

35 T T T T | | |
— o _=.1
a
* © a=1 0000
O Economy-wide factor markets

1.5

0.5

1(1-¢ )
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7.5. Who’se Doing the Production after a Monetary Shock?

We suppose that the economy is in a steady state up to period 1, when a monetary injection
occurs. Because prices are set before the monetary shock, in period 1 all prices are identical,
and all production is equal. We now discuss each period in turn. The first part of the
discussion is in a sense a failure. It’s a laborious discussion of what happens in period 2,
3 and 4. The next subsection covers period /N, and is more general and simpler too. Final

section discusses what can be done.

7.5.1. Period 2

In Period 2, a fraction of firms, (1 — &) is able to reoptimize its price, and a fraction, ¢, is

not. From before, we know that aggregate output, Vs, is
Vo= [ i+ [ w0
I J

where I denotes the set of firms that can reoptimize and J denotes the others. As discussed

above, the ones that can reoptimize their price in period 2 do so according to:

=+ . =t =+ . .

L) (1) = kaky (i) + mok, (i) + K3pe(d)
s o -+ o+ . =t s =
pi(i) = D — ok, (i) — ik, 1(2), Ky (i) = ke(i) — Ky,

where 1, 1, K1, k2, k3 are computed as discussed in the previous subsection. The amount

that the period 2 optimizers actually produce is determined by their demand curve:
—0py (i) + Yz = (i)

Substitute the price of the optimizers into this expression:

A~

=+ =+
—0 ﬁ; — ok (Z) — kg (2) + Yy = g2(2)

=+
In period 1, all firms have the same capital, so that &, (i) = 0. In addition, all firms make the

=+
same investment decision in period 1, because their situations are symmetric. So, k, (i) = 0.

Finally, we also have,
TR
! (1 - é.p)

in each period. We conclude that the output of the i’ price-optimizing firms is given by:

3
(1 - gp)

Agﬂ't,

—0 A ity + Vs = §5(i).
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Now consider the j™* firm, which cannot optimize in period 2. It sets is price according to:

P2(j) :Pl(j) — AT,

since py (i) = 0, due to the fact that all prices are equal in period 1. To determine how much

the j* firm produces, substitute its price into the demand curve
—0[p1(j) — Agita] + Y2 = §2(j),

or, since p1(j) =0,
J2(j) = OA vy + Vs

Total output of firms that reoptimize their price is:

/1 ()i = (1—¢) l—eﬁagﬁﬁ%]

—08, 0,72 + (1 = €,)Y5
Total output of firms that cannot reoptimize their price is:
[t = ¢ [pasm+
J
00,7y + €,V

The sum of these is obviously Vs, aggregate output. The firms that reoptimize their price
reduce output and the firms that cannot, must increase their output. A worrisome feature of

this result, is that the result seems to have nothing to do with the firm-specificity of capital.
7.5.2. Period 3
Now consider period 3. In this period there are four types of firms:

e (1) the (1 —¢,)? those who optimized in period 2 and in period 3

e (2) the {,(1 —¢,) who did not optimize in period 2 and did in period 3

e (3) the 5 who did not optimize in period 2 and period 3

e (4) the (1 —¢,)¢, who optimized in period 2 and did not in period 3.

We now consider the price of the typical firm in each of these four categories. Consider

category (1) first. The i firm in categories (1) and (2) set their price according to:

1)) = ") — e ()
p3 [/ - (1 — §p> g7T3 % @/)1 2 ?
=+

=+ =+
k3 (Z) = :‘ile (Z) + :‘igkl (Z) + H3]§2(i).
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o+ =+
Actually, for the reasons given above, k; (i) = k, (i) = 0, so that, after substituting,

&
(1 - Sp)

The " firm in category (1) optimized po(i), and the price chosen is the same for all i, so
that

p3(i) =

Aty — 1hgrispa ().

Py(1) =

3 R

A, Tg.

(]' - gp) ez
Then,

§ . §
_ 5P A A __Sp
g™~ Wom g

= (1 fpg ) [Agﬁ-ii - wOH3AQ7AT2]

Ag’ﬂ'g.

Given the demand curve:
—Hpg(i) + Yé == ﬁg(l)

the firm in category (1) produces

3
(1-¢,)

Total production in this category is (1 — &,)* times this much:

gs(i) = —0 (A 7rg — PoksAyita) | + Y.

(1) = -0 [(1 - gp)gp (Agﬁ-:’) - ¢0K3A9ﬁ-2)] + (1 - £p>25}:’3‘
Now consider the firms in category (2). They set their price according to

p3(1) = a fpg )Agﬁ—B — Yorspa(i),

where
pa(i) = pi(2) — Agra
— A
Then,
ﬁwrjfﬁg%@+%@%@

The demand for their product is
G3(i) = —0ps(i) + Y3,
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so that total demand for this type of firm’s product is:

&
(1 - gp)

Now consider the firms in category (3). They set their price according to:

(2) —0¢,(1-¢,) Ayt + Poraloita | +E,(1 = €,)Ys,

P3(i) = p1(i) — Aty — AyTrs
The demand curve for their product is:
(i) = —0pa(i) + Y,

so that

A

g3(2) =0 {Ag/ﬁ-Q + Agﬁ';g] + Y:g
Total production by these firms is:
(3) €20 [Apita + Agia] + £2Y5.

Now consider category (4). They set their price according to:

P3(1) = p5(1) — Aps,

where
o fp R -~ =
5(1) = 1-¢ )AQM — Yok (1) — th1ky (4)
p
g R
= (1 — gp) AQ’]TQ
where we have used,
=+ =+

Thus,

SO
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Total output of category (4) firms is:

S
(1-¢,)

Total output is just the sum of all four outputs:

(4) — 00—, Aﬁa—Aﬁ4+wl—@xga

—0[(1— €)5, (Agfs — YorsBoia)] + (1 - €,)°F3

06,1 =) [Ty At + v + 6,01~
+f,2;‘9 [Apfty 4+ ApTra] + 512,373
0= )6 | T2y Ant — M| + (1= )6, Ta

L p

= —0 [(1 - fp)gp (Apfts — wO’fSAQfQ)} (change, change)

—0¢,(1-¢,) S A, + 'l/fofigAQﬁ'Q:| (don’t change, do change)

L (1 - gp)
+E20 [A 2 + Ay7t3] (no change, no change)
—0(1 —¢,)¢, %Agﬁg - Agfrg] (do change, don’t change)
+Ys
= [0(1 = &,)€,thoks — 06,(1 — &, )thoks + £20 — 03] Ay
+ _9<1 - gp)fp - 9519(1 - gp) fp + 51?)9 + 9(1 - gp)fp Agﬁ—?’
(1-¢,)
+Y;
.

The case of economy-wide capital rental markets corresponds to these formulas with v, =

ks = 0.

7.5.3. Period 4

Now consider period 4. In this period there are four types of firms:
e (1) the (1 —¢,)* who optimized in periods 2, 3 and 4
e (2) the §,(1 - fp)Q who did not optimize in period 2, but did in periods 3 and 4
e (3) the 512)(1 —¢,) who did not optimize in periods 2 and 3, but did in period 4
e (4) the 5'2 who did not optimize in periods 2, 3 and 4
e (5) the (1 — £p)2§p who optimized in periods 2, 3, but did not in period 4
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e (6) the (1 —¢,)¢,(1—¢&,) who did not optimize in periods 2 and 4, but did in period 3
e (7) the (1 — fp)fz who did optimize in period 2, but did not in periods 3 and 4
e (8) the (1 —¢,)¢,(1 —¢,) who optimized in periods 2 and 4, but did not in period 3

Firms setting prices in period 4, satisfy the following equations:

10) = LA — gk (1) — wrky (1)
DPalt) = (1-¢,) A ¢04 Y1k (4
=+ =+ o+
]C4 ('L) = H1k3 (i)+/€2ki2 (i)—{—/‘igﬁg(i)

]5;,(@) = uf—lép)ﬁgﬁ?) - @/)off3]52(i)‘

Py(i) = ufipgp)ﬁgﬁz.

Bl = ey =iy () = vk, )
~

- =+ o+
kg (Z) = Kiky (@) + Kok (@) + “3152(i)-

o+ o+
As noted before, k; (i) = ky (i) = 0. It is useful to have an expression relating the price set

by optimizers in period 4, to the prices they set in periods 2 and 3:

el £ =+
p4(l> = (1_€p) Q7r4 ¢O () ¢1k3(2>
= it [y )+ ks () maa ()] v )
— A= s+ ] () = o)
§

= (1_7”5)%7}4 — [thok1 + 1y Kap2(i) — oraps(i).

So, to summarize. Optimizers in each of the three periods set price according to:

pa(i) = {a fpg )Agfu — [Yor1 + ] Kapa(i) — Poraps(i) (7.21)
p

B = s = okl (7.22)
p

Pa(i) = a fpg )Agfrz (7.23)
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Firms that do not optimize in a given period set price according to:
ﬁt(’b) = ﬁtfl(i) - Agﬁ-t

Consider firms of type (1), who optimize in all three periods. To get their price, simply
substitute (7.22) and (7.23) into (7.21):

py(i) = a fpgp)AQfM — [Yok1 + 1] Kapa(i) — Yok uf—pép)ﬁgﬁ?, — Yokiapa(i)
= 3 Aty — [thorr + by — iks] kpa(i) — Hsfipﬁ 3
(1_51)) o 0 1 0 0 (1_§p) o
— (1 fpg ) {Agﬁ'4 — [77[}0/11 —+ 77[}1 — 77[}(2)/13] H3Ag'ﬁ-2 — wOK3AQﬁ3}

The demand for their product is:

A

9(i) = —0ps(i) + Ya. (7.24)

the total output of this type of firm is:

—(1-¢,)% a fp fp)Agfu — [thok1 + ¥y — Virs) f-@g(lfipgp)Am — zpong(lfipgp)Agﬁg} +(1-¢,)%Ya.
Now consider firms of type (2): no, yes, yes. Substitute (7.22) into (7.21)
il = Tt s+ ) ki) — vy | 2y s — vl
a fp gp)Agﬁ4 + [thor1 + ¥y — Viks| K3y — %Hg(lfipgp)%ﬁg.
then, their total output is:
(2) —6¢,(1-¢,)? (15—1’5]))%7%4 + [tk + ¥y — Viks] K3pfta — ;bomg(lf—pgp)Agﬁg} +£p(1—§p)2ff4
Now consider the 5?,(1 —¢,) firms of type (3), no, no, yes. Their price in period 4 is:
O = o fpgp)Agfu — Wokr + ] mspali) — Yoss [Bali) — Aot
- 5 fpép) At — [bors + ¥y + o] mabali) + Borald s
- 5 fpgp) Agits + [Porin + ¥y + o] Fslia + doksl s,
so, their total output is:
(3) —06(1-¢,) a fpgp)Aqu + [thok + ¥y + ] ks gfra + YoksApfts | + EX(1 — fp)fil
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Now consider the 5;; firms of type (4), no, no, no. Their price in period 4 is:
DPa(i) = —A,a — Ayitg — Aphiy,
so that their total output is:
Ja(1) = 063 [Ay7rs + Ayt + Agira] + EVa.
Now consider the (1 —&,)*¢, firms of type (5), yes, yes, no. Their price in period 4 is:

Pai) = ps(i) — Ayt

= %Agﬁ:& — Yokapa(i) — ATt
= %Agﬁ'g — @boﬁg(]_fipg)Agﬁ'Q - Agﬁ'4.
2 5P ~ fp ~ ~ 2 Y
(5) - 9(1 - gp) fp (1 _f )Agﬂ'g - wOKBWAQﬂ—Q - AQTM + (1 - gp) fpyzl
p p

Now consider the (1 —¢,)¢,(1 —¢,) firms, no, yes, no. Their period 4 price is:

Pa(i) = Ps(i) = Ayt
§ ) . 5
P
§ . A .
- (:l_—])f)Agﬂ'g + Por3A Tty — A,Ty.
P

Their total output in period 4 is:

&
(1-¢,)

Now consider the (1 — fp)fi firms of type (7), yes, no, no:

(6) —0(1—¢&,),(1 &) A3 + horsgits — Agig| + (1= €,)E,(1 = &,)Ya.

Pa(i) = ps(i) — Ayt
= Po(i) — Ayits — A,y
§

= P Ay — Ay — Ayia

(1 - fp)

Their total output is:

o § . R R .
(7) 94(2) = —0 ﬁAéﬂm — Aytg — Aty | + Y4
p
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Finally, consider the (1 —¢,)¢,(1 —¢,) type (8) firms, yes, no, yes:

pa(i) = i fpg )Agfu — [hok1 + U] sPa(i) — ks [Pa(i) — A i)
— a Epg )Agfu — [tor1 + 1 + Vo) Kspa(i) + YoksA,Ts
B OE—Z)SI)AQM — [Yok1 + 91 + ﬁsaf—pgp)Agfb + Pok3A, T3

their total output is:

S
(1-¢,)

(8) —0¢,(1-¢,)¢, Aty — okt + 1y + 1] Rag Aty + orsyiy | +€,(1-€,)E,Ya

L
1- fp)
7.5.4. Period N

Let the state of nature for firm ¢ in time ¢ be si € (0,1), where 0 means the firm cannot

i, N

optimize and 1 means it can. A history of firm i 1s stV = (s, ..., s%). In period ¢, the firm

+
inherits &, (i) and kt 1(7). We have that k: (1) = k (1) = p1(i) = 0. Then,

i\+ . . ,l
Pe(i) = { gy et — Yok, (1) = iy (3) if si =1
Pr-1(i) — ATy if st = 0.

)

for t =2,3,.... N. The demand for this firm’s product is:

Ue(2) = —0p,(1 )—i—YZ

It’s capital decision can be computed too:
=+ =t =~ .
ko1 (i) = Kiky (6) + Kok, (4) + Kape(2).

Let .
ﬁ(si,z\/)7 9 (Si,N)’ 2 (Si,N)

denote the relative price, output and beginning of period capital choice of a firm with history
sV, in period N. Let prob (s*V) denote the probability of history s“". To be concrete,
suppose N = 4. In this case, the eight possible s"* are given by the rows of the following

matrix:

i i en R an B e B an)
_ —_ 0O Ok = OO
_ O )OOk OO

0.]
oo



In this case, for a parameterization with £, = 0.2, we obtain the following 8 possible period

3 outputs:
1.2504, 1.1584, 1.2087, 1.1584, 1.2549, 1.1584, 1.2087, 1.1584

This is the output of the typical firm in period 4 of each history, with the first corresponding
to the first row in the above matrix, the second to the second row, etc. Here the first output
is the output of a firm with history 0,0,0, (don’t optimize in period 2, don’t optimize in
period 3, don’t optimize in period 4) and the last output is the output of the firm in period
4 with history, 1,1,1. Notice that the output of the firm in the last state is the lowest. This
is not surprising, since this firm has the highest price. These are the various possible prices

in period 4:
—0.0134, 0.0020, — 0.0064, 0.0020, — 0.0141, 0.0020, — 0.0064, 0.0020

Note that several of these are identical. (The ones that are identical are identical up to all
14 digits after the decimal that MATLAB displays.) The associated probabilities are:

0.0080, 0.0320, 0.0320, 0.1280, 0.0320, 0.1280, 0.1280, 0.5120.

These add up to unity, as they should. The probability of any history corresponds to the
number of firms that experience that history.

The total number of firms is unity, and total production in period 4 is 1.17 (i.e., this is
the product of each history’s probability and the production of the individual firm in that
category.). This is the average production across each individual firm. Note that the average
production of the firms that reoptimize in period 4, 1.1584, is less than the economy-wide
average.

There are 0.8 (=0.0320 + 0.1280 + 0.1280 + 0.5120) firms that optimize in period 4, so if
each firm in this category produced the economy-wide average, the group as a whole would
produce 0.9362 units of output. The histories in which optimization occurs in period 4 are
2, 4, 6, 8. They produce

0.92672 = 0.0320 x 1.1584 4 0.1280 x 1.1584 4 0.1280 x 1.1584 + 0.5120 x 1.1584,

which is less than their share, as expected.

Now consider the firms that did not optimize in period 4, and also did not optimize in
period 3. These correspond to histories 1 and 5. In period 4, there are .0040 of these firms,
and they produce a total of:

0.05016 = 0.0080 x 1.2504 + 0.0320 x 1.2549.
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The average output of firms in these categories is 1.254 (=0.05016/(.0080+.0320)). This is
higher than the economy-wide average of 1.17.

Now consider the one type of firm that did not reoptimize price in period 2. There are
0.008 of these firms and each one produces 1.2504 units of output. The total output they
produce is

0.0100 = 0.008 x 1.2504.

7.5.5. Price Dispersion

It is generally thought that different models have different implications for the reallocation
of resources in the wake of a demand shock, such as a monetary shock. Here, we discuss
various indicators of this. One statistic that would be of interest would be the fraction of
total output produced by firms that optimize price in the current period; firms that do not
optimize in the current period, but did optimize in the previous period; firms that did not
optimize in the current and previous period, but did optimize in the period before that, etc.
In addition, it would be useful to know not only the total output of these firms, but also the
average output of firms in each category.

This should be done for the model with firm-specific capital, and for the model without
firm-specific capital. In the case of the latter, the cross-sectional distribution of resources
and prices is obtained by simulations with 1, = 1, = k1 = k2 = k3 = 0. The model
without firm-specific capital should be simulated both for the case of full indexation and no

indexation.

8. Kalman Filter

The idea is to estimate the model using data on:

Aln(GDP,/Hours;)
Aln(GDP deflator;)
In(GDP;/Hours;) — In(W;/P;)

In(Hours;)
¥ - In(C;/GDPF,)
G In(I;/GDF,)
101 Federal Funds Rate,

In(GDP deflator;) + In(GDP;) — In(M2;)
Aln Investment Price
Capacity Utilization,

The first step is to express the time series model for X; implied by our model. Recall, the
law of motion for z; is:
Zt = Athl + BQt,
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where

Qt :petfl +€t7 Eeteé = V (81)
Here,
EMt
EMt
€Mz7t
Euzt
€t = nguz7t ,
gurvt
gﬂ’rvt
chUTvt
0
0
so that
U?M a?w 0 0 0 0 0 0 0 07
J?M 0?\4 0 0 0 0 0 0 0 0
0 0 o o0 cox O 0 0 00
0 0 Uiz UZZ czaiz 0 0 0 0 0
0 0 co? co? o2 0 0 0 00
V=10 o 00 0" 2 200 (8.2)
U#T J#T CTU#T
0 0 0 0 0 UZT JZT C’rO’iT 00
0 0 0 0 0 CTUZT cTaiT c%afw 00
0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0 |
Write
X, =a+71z+ 7251+ 7%,, (8.3)

where «, 7, 7, 7° are described in the first subsection below. Note that the law of motion
for z; can be written
2t = AZt,1 + Bp&t,l + Bet.

Let,
2t
5,: - Zt—1 9
01
so that the whole system can be written,
241 A 0 Bp 2 B
Zt =1 0 0 zier |+ 0| e,
Qt—‘rl 00 »p 0 I

or,
§ia1 = F&§ + veya,
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where

B
Q = Euvi=| 0 |Eee, (B 0 1)
1
BVB" 0 BV
= 0 0 0
VvB" 0 V

The observed data are a linear combination of £, plus noise:
yt == Hft + wt7

where R = Ew,w) is a diagonal matrix (sorry for the potentially confusing notation for the

variance-covariance matrix of the measurement error).

The problem of estimating this system is described in the second subsection below.

Notice that the Kalman Filter system is completely characterized by (F, H, R, Q). These
in turn can be constructed from the model parameters (including the variances of the sto-
chastic shocks in V, as well as the measurement error variances.) Additional inputs required
are the initial state vector (51\0 = E(£,)) and the initial state covariance (P;p). Following

Hamilton p. 378, we set Py = X, where X satisfies the following Riccati equation!:
Y =FYXF +Q. (8.4)
In case this takes too much time to compute, we can also use X, where X satisfies
Y, =FY,F +Q,
r=1,2,..,7, and Xg = 0, for small 7, say © = 10.

8.1. The Reduced Form

Consider o
In 2t —n 22

I I =Ing —Inh +1nz;,
so that

t

'In Matlab, the command dare is a more efficient way of computing ¥ then a straightforward implemen-
tation of the solution, ie. ¥ =[I — (F® F)] ' Q.
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Now, the ‘normal’ interpretation of a hat over a variable is:

so that
5= (5 +1),
and
Ing;, = Ing+1In (}j\t + 1)
~ hl g + §t7
for Et small enough. The latter gives us an alternative interpretation of a variable with a

hat. We call this the log interpretation of a variable with a hat. Similarly,

Inh, = Inh+ hy,
In luz*,t = In Moo + ﬂz*,t
Substituting,
AIH% = (Z]t - ht) - <@t—1 - ht—l) +Inge. 4 fi
t
Using fi,«; = 7% fiy; + [1y, this reduces to:

o

Alnz—i = (}jt - fA“Lt> - (5,5,1 - iLt—l) +1Ing. + 1— aﬂTt + fzg-
but,
/?jt = Ty,
iLt = ThZt
Pt = Tu, Sty
fors = TuySt

where 7,, 7; are 16 dimensional row vectors with zeros everywhere except unity in one
location. For 7, the location is the 12" location; for 7; the location is the 9. Also, 7., and

Tu, are 10 dimensional row vectors with zeros everywhere, except unity in one location. For
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7., the location is 3 and for 7, the location is 6. Here are the z; and 6; vectors:

/é\tl (p)
ﬁit2(p)
At
T?Ltll(p) ./,ACMﬂg
7Tt5(p) 5M,t
£t6 /lz t
57 € Mz:t
u8(p) oy
SO R CC I Rl I
EIH’]. 10(]9) Epy it
thll j'r,t
g.:12 T
R,13 EMt—1
fu,14(p)
P15
0,16 (p)

Then,

a

Aln 2t = (Ty =Th)2e — (Ty — Th) 2o + I i + | ——7pp + 72 ) Or.
ht l—«

Now consider inflation:

P,
1 =1 =1 A
nPt_1 nm nm—+ T

= Inm+ 7,2,

where 7 is a 16 dimensional row vector with zeros everwhere except unity in the 5 location.
Note that this is the net inflation rate. This is converted to annualized terms by multiplying

by 4. Another way to compute this is based on the normal approximation of a hat:

A

Ty — T
Ty = .

™

Consider:
Ty — T = W7y

This is the deviation of the inflation rate (or, the net inflation rate) from its population

mean. Suppose we want the net inflation rate, 7, — 1, expressed in annual terms:

d(mp—m)+4(m—1) =4, +4(m —1).
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Now consider the excess of productivity over the real wage, all in logs:

ln&—lnwt = lnytzt

hy hy

= hlgt —lnht —lnﬁit

~ %
— Inw; 2

= g+, —Inh—h —Ind — o,
= (Ing—Inh—Inw) + (1y — Th — Tw) 2,

where 7, is a 16 dimensional row vector with zeros everywhere and unity in the 27¢ location.

Now consider the log of the consumption to output ratio:

In g = In ?tz":
Yt Ytz
= lng—Iny

= Inc—Ing+ (1. —7y) 2,

where 7. is a 16 dimensional row vector with zeros everywhere and unity in the first location.

The log of the investment to output ratio is:

T
In ty LA Ini; — In g,
t

= Ini—Ing+ (r; —7y) 2,

where 7; is a 16 dimensional row vector with zeros everywhere and unity in the 8 location.
Note here that investment must be valued in consumption units, just as output is, for this
ratio to be stationary.

Now consider the interest rate, R;. Using the log approximation:
log Ry = log R + R, = log R + TRz,

where TR is a 16-dimensional row vector with unity in the 13th location. Since R; is the

gross nominal rate of interest, log R; is approximately the net rate, R; — 1. Then,
Rt —1= IOgR + TRZt,

and the annualized rate is:
4(R;— 1) = 4log R+ 47rz.

Now consider how one proceeds under the normal approximation. In this case, R, = (R —
R)/R, so that
Rt — R <Rt + ].) 5

and the annualized net rate is:

A(R,—1) =4[R(rpz +1) — 1]
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Now consider the log of velocity:

Iny, —In %
= Ing —Ing,
where
@
TT SR
Then,

In 1, —ln% =Ing—Ing+ (1, — 7y) 2,
f

where 7, is a 16 dimensional row vector with zeros everywhere and unity in the 11 location.
Finally,
Ti
T
= —Inpy,
= —Inpy —jiy,

= —Inpy —7,.0;,

AlnPtI = In

where 7, is a 10-dimensional row vector with all zeros except unity in the 6 location.

We now consider capacity utilization, u;. We have
N Uy
iy = log (—) = logu; = Ty2s,
u

where 7, is a 16-dimensional row vector with zeros everywhere except a unity in the last
location.
Pulling all this together, in the following representation:

Xy =a+72+77_1+ 70, (8.5)
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we have:

Ty In g, Ty — Th
In % Inm T
In 3£ —Inw Ing—Inh—Inw Ty —Th— Tuw
In A, Inh Th
X, = In %t = Inc—1Ing + Te— Ty 2z (8.6)
ln% Ini —Iny Ti— Ty
In R, InR TR
lnyt—ln% Ing —1Ing Ty = Tq
Aln P/ —In py 0
—(Ty — Th) T Ty T 72
0 0
0 0
0 0
+ 0 Zi—1 + 0 Ht
0 0
0 0
0 0
0 “Tuy
S0,
Ty = Th —(Ty = 7n)
Tr 0
Ty —Th— Tw 0
Th 0
T = Te— Ty , T = 0
Ti— Ty 0
TR 0
Ty — Tq 0
0 0
ﬁTﬂr + 7.
0
0
0
¥ = 0
0
0
0
“Tuy

8.2. Estimation

Our system is completely characterized by (F, H, R, V). We could think of F' and H as being

functions of the parameters governing the exogenous shocks, which we would like to estimate.
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Denote these by the vector, 5. There is obviously a mapping from 5 (and the other model
parameters, which we here hold fixed) to F, H. So, we can also think of the system as being
characterized by (3, R, V).

In Hamilton’s section 13.4, he displays the likelihood function for this system. Let

1\ _
fo = (2—> [HPy H' + B
yis
1 ) _
X €Xp {—5 (yt - Hft\t—l) (HPt‘t_lH/ + R) ' (yt - H5t|t—1)} )

for t =1,2,...,T. Here, n is the dimension of ¢, and

St\tfl =k [§t|yt—17 ---7?41] )

t=1,2,.., with {;p = £ (), the unconditional expectation of §,. Also,

Pt+1\t = K |:(£t+1 - §t+1\t) (§t+1 - 5t+1|t), |yt7 o y1i|
= F[Pyo— Py (HPy o H + B) " HPy | F 40,
fort =1,2,....,T, with
Pp=FE (& — E&) (& — Eft)/-

Finally,
-1
ft+1\t = Fft\t—l + FPt|t—1H/ (HPﬂt—lHl + R) (y - Hft\t—l) .

Then, the log likelihood function is:

T
Z In ft'
t=1

Consider first the log of the exponential term here (suppose E (£,) = 0) :

(1)’ (HP1|0H/ + R)il (y1)

+(y2 = Héyp) (HPyH' +R) ™ (v — HEy)

+ (y3 — Héyp) (HPypH' + R) ™ (ys — Hyp)

+...+

+ (yr — H€T|T,1)/ (HPryr— H' + R)il (yr — Hépra)

Consider the derivative of this expression with respect to the matrix, R. Note that R enters
the first term only directly, in the expression being inverted. The matrix R enters in several
places in the second term, via §;; and via Py;.

In Hamilton’s section 13.6, he shows how to use this system to compute things like
Eir = B16]00], t=1,2,..,T,
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where the observations correspond to periods t = 1,2,...,T, and the information set is the

whole data set:
QT = {yT; ceey yl}

Note that a subset of the elements in éﬂT correspond to the estimates of the shocks. In

addition, the estimate of the ‘true’ value of the data is given by
Xyr = H'é, 7.
We now derive the Kalman filter algorithm for solving the problem:
Epr = B[], t=1,2,..,T.

We begin with éuo

9. Reduced Form Vector Autoregression

We are interested in the VAR representation for (possibly a subset) of the variables in the 9
by 1 vector, X;, in (8.6). Let J (L) be an n by 9 matrix, which selects the subset of variables
that interest us. If the matrix, J (L), is the identity matrix, then the vector of variables
is just X, itself. We seek the model’s implied VAR representation for J (L) X;. We do this
by solving the Yule-Walker equations. We have to confront one problem, which is that the
fundamental shocks in our model may be smaller in number than the number of variables,
n. The first subsection below discusses how to proceed when the number of shocks is equal

ton (i.e., n = 3). We then discuss what to do in the other case.

9.1. Full Rank System

From the previous section, we have (the objects in the following representation are computed
in kalman_matrices.m, please verify that the elements of a, 7, 7, 7% in the code correspond
to what is in (8.6)):
X, =a+71z+ 72+ 7%,,
and
2 = Az + By,

and
9,5 = Petfl + Q”t?
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where 6, is as in (8.1), so that

1 0 O
1 0 O
0O 1 0
0O 1 0 -
Q = 8 COZ g_) >nt = E,uzﬂf )
00 1 Cprt
0 0 Cy
0 0 O
|0 0 0 |
and
o2, 0 0
Engny =V, = 0 Uiz 0
0 0 O'ZT

The variables in X; are as defined in (8.6). We now write out the moving average represen-
tation of X;. First,

% = (I—AL)"'Bf,
= (I=AL)™'B(I - pL)™'Qn,.

Then,
Xt = o+ TZ¢ + 'T—Zt_l —+ Taet (91)
= a+(r+7L) (I = AL)"'B(I = pL)~'Qn; + 7'(I — pL) "' Qn,
= a+[(r+7L) (I = AL)'B(I = pL)™ +7(I = pL) '] Qn,
=+ [+ T AL B4 ) (- pD) G
= « + D(L)nta
say, where

D(L) = [(t+7L)(I - AL 'B+ 7] (I — pL)'Q
Let Y; = J (L) X;. Then, the spectral density of Y; is:
Sy (w) = D(e"®)V,D(e™Y, (9.2)

where
D(e™™)=J (e7) D(e™™).

Let the covariance function of Y; be defined as:

C(r) = EY,Y/

t—7)

7=0,41,42 ...
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The following (‘inverse Fourier transform’) relationship is easy to establish:

C(r) = % / Sy (@)™ duv.

—T

This can be approximated using a Riemann sum:
N
1 & A
C(T) = lsz_,ooN Z Sy(wk>elwk’r,

where wy, = 2 for k = —N/2, ..., N/2 (see Sargent (1987, ch. 11, equation (20))). This sum
can be further simplified by taking into account the following property:

Sg(wk)eiw” = conj [Sg(—wk)e_wlq ,

where conj denotes complex conjugation. As a result, Sy(wg)e™'™ + Syj(—wg)e ™17 =

2re [Sy(wy)e™ 7], where re [z] denotes the real part of the complex variable, z. Then,

. 1 Z W T

C(r) = lszHooN Z Sy (wg)e™*T,
1 1 W1T WwoT w T
= NSY(WO) + N[Sy(wl)e + Sy(tdg)@ + ...+ Sy(wN/g)e N/2

—l—Sy(w,l)eiw_lT —l—Sy(w,g)eiw_zT 4o +SY(W7N/2+1)eiW7N/2+IT]

1 1 . . .
= NSY(CU()) + N[Sy(wl)elwﬂ— + SY(CUQ)@ZWW‘ 4+ ...+ SY(WN/2>6’MN/2T

+Sy (—w1)e ™7 + Sy (—wa)e T + ... + Sy (—wnya_1)e WN21T]
J-1
1 2

. 1 .
= NSY(WO) + N 2 re (Sy(wk)elwm) + —Sy(wN/g)GwN/2T,

N
1

where re(X') denotes the real part of X. In practice, a fairly small value of N will suffice for
this sum to converge.

Write the VAR representation of Y; (after removing the constant term) as follows:
V=AY, + . +AY ,+u,
where Ay, ..., A, remain to be determined. Note:
EYYY] = A\EY: Y, 4+ ...+ AEY, Y, |
for 7=1,2,.... . (These are the Yule-Walker equations.) Then, for 7 =1:

C(1) = A1C(0) + A0 (1) + A3C(=2) + ... + A,C(1 —p).
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Then, using the fact, C'(—7) = C(7)’, we obtain:
C(1) = A;C(0) + A.C(1) + A3C(2) + ... + A,C(p — 1),
since EY; 2Y{ | = (EY;1Y/,) = C(1). For 7 =2
C(2) = A1C(1) + AxC(0) + A3C(1) + ... + A,C(p—2)'.
Finally, for 7 = p -
Clp)=A1C(p—1)+AC(p—2)+ AsC(p—3) + ... + A,C(0).

It is convenient to write the Yule-Walker equations in matrix form. Let

c(0) C(p—1)
d=(C) - C()). X - A= (A 4y)
Clp—1) C(0)

We solve the Yule-Walker equations as follows:
f=dX*

The elements of 5 give us the VAR coefficient matrices for the time series representation of
Y;. The correct value of p is p = co. In practice, A, is small for small p. I suspect that p
about 3 or 4 is right. However, this has to be ‘tested’ by examining the magnitude of 4,4,
Apio, ete.

To complete the computation of the VAR, we require the variance covariance matrix of
the disturbances, u;, and the constant term. Call the variance-covariance matrix, V' = Euu;.

Here is one way to compute V. Note:

C(0)=EV"Y, =AC0H) +..+AC(p) + EuY;.

but,
EutY;’
= Eu [A)Y]  + .. +AY]  +u
= Fuwu, = W.
Here, we have taken into account that Fu,Y,/ = 0 for 7 = 1,2, ..., if p is large enough
and the eigenvalues of [[ — Az — ... — A,2”| lie inside the unit circle. So, we find W as the

solution to:

W = C(0) — [A4,C(1) + ... + A,C(p)] .
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The constant term in the VAR representation for Y; is v, where
v = [I—AI—AQ——AP]J(l)Oé

There is a question as to what the right choice of p is. In principle, p = oo with this
setup, but presumably p in fact only has to be quite small in order to get a ‘good” VAR
representation. Still, it’s not clear what a ‘good’ representation is. Here is one idea. The

VAR representation itself implies a spectral density:

S(wip) = [I — Are™™ — . — Ape ™) W I — Ale™ — .. — ALeir]
Note that this spectrum can be integrated to compute the implied covariance function,

C(7;p), from
CWWZL/SMWWM

2m J_,
If p is well-chosen, then C(7;p) is similar in size to C(7) for various 7. Similarly, if p is
properly chosen, then S(w;p) should be similar to Sy (w) for a range of w € (0, 7). It would
be useful to see a graph of the diagonal elements of C'(7;p) and C(7) for 7 =0, 1,2, ...., 10.
Similarly, it would be useful to see a graph of the diagonal elements (which are real) of
2k

S(wr;p) and Sy (wy) for wy = %+ and k = 0,..., N/2. Perhaps two sets of graphs could be

constructed, one with p = 4 and the other with p = 10.

9.2. Singular System

The calculations above will lead to invertibility problems when n > 3, because there are not
enough shocks in the model. However, in this case, the VAR analysis itself provides the rest

of the shocks. In particular, the VAR analysis implies:

Y;/ _ Y;Identzfzed + Y;Other,

Y-tldentified

where the two components are orthogonal and corresponds to J(L)X;. The spectral

density of this component is provided in (9.2). We will take two approaches to Y,°" In the
first, Y;9""" will be an iid process, so that its spectral density is simply a constant. In the

second, we will consider a more general time series representation.

9.2.1. Independent Noise
We suppose that Y,0*" is iid over time and

E}/;Other}/tOtherl —F

Here, F' may be quite simple, including having zeros everywhere except a scalar on one of

its diagonal elements. Obviously, The spectral density of Y,%%" S(w), is just S(w) = F.
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9.2.2. Dependent Noise
To obtain the time series representation of the other component, consider:
X7 = B(L)XP1 + Cey,
where ¢; has a variance-covariance matrix equal to the identity matrix and X" is com-

posed of the variables in the vector autoregression:

Aln (relative price of investment,)
Aln (GDP,/Hours;)

Aln (GDP deflator;)
Capacity Utilization,

Other _ In (Hours, )
- In (GDP,/Hours;) — In (W, /P,)
101 In (C;/GDP;)
In(l;/GDF,)

Federal Funds Rate;
In(GDP deflator;) + In (GDP;) — In (M Z M)

To recover B(L) and C, it is useful to recall the structural form of our VAR
A XM = A(L)X PN + &,
where &; has diagonal variance-covariance matrix, D. Then, the reduced form is:
XPther = ATYA(L) X2 + AV Dey,

where &, has variance-covariance matrix equal to the identity matrix, and v/D is the diagonal

matrix formed by computing the square root of the diagonal elements of D.? Then,
X0 — B(L)XO + Coea,

where?

B(L) = A;*A(L), C = A;"V/D.

Now, the matrix, C, is 10 by 10. The object, Cs, is C' with its first, second and ninth columns
removed and €9, is €; with the first, second and ninth elements removed. The moving average

representation of X2™er is:

XOther — I — B(L)] ™" Chey.

2The matrix D can be found by applying the MATLAB file getV.m to the fitted VAR disturbances,
erzout, produced by the call to mkimplrnew.m. To see exactly how this is done, see lines 32 and 34 in
spectdecomp.m.

30ur benchmark estimate sets B(L) = By + B1L + BoL? + B3L?. The B’s may be obtained from the
output of mkimplrnew.m. In particular, azeroout= A; YA(L), where azeroout is a 10 by 4*10 matrix. Here,
By is the first 10 by 10 block of this matrix, B; is the second one, and so on. Also, aObetazout corresponds
to Ao.
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Define .J to be the 9 by 10 matrix which makes the elements of X°"¢" conformable with the
elements of X;. In particular, if [ is the 10 by 10 identity matrix and

(=102,3,6,5,7,8,9,10,1], (9.3)

then
J=1I(C,2), (9.4)

using MATLAB notation. Thus, J is a 9 by 10 matrix, which is constructed from the into

the elements of X; that interest us. Then, the moving average representation of J(L).JXZ!er
is:
yOther — J(L)J [I — B(L)] ™" Coeoy.
The spectral density of Y, is:
S(w) = J(e ™) [I — B(e™™)e™] ™" CoCy [I — B(é®)'e™] " J I (™).
9.2.3. Spectrum of the Data

The spectrum of Y; = Y, entified 4 yOther g
Sy(w) = Sx(w) + Sw),

where S¢(w) is given in (9.2). The VAR representation of Y; is formed by solving the
Yule-Walker equations based on the covariance function obtained by integrating (inverse

Fourier-transforming) Sy (w).

9.3. Invertibility

We now ask whether the fundamental shocks exist in the space of Y;_;, j =1,2,... . If they
do not, then we cannot hope to recover them using a VAR, regardless of the lag length, p.

To determine invertibility, consider the nonsingular case first. From (9.1):
X =a+ D(L)n,,
so that (ignoring the constant term):

Yy = D(L)n,,

where D(L) = .J(L)D(L). Solving this, we obtain that the shocks, 7,, can be represented as

linear combination of current and past Y; as follows:

. ~1
n = [D)] v
= DY+ D1Yi1+ DyYy o+ D3V 3+ ..,
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where
D(L)=Dy+ Dil+ .. = [D(1)] -

We can obtain Dj, 71=0,1,2,... by:

D; = % B [[?(e’i“’)} - eI dw.
This sum can be evaluated using the Riemann approximation discussed above, although we
do not have any symmetry we can appeal to here. The question of invertibility corresponds
to whether D; — 0 as j — oo. We can determine this numerically.
If, in the calculation of the VAR representation of Y; discussed above, p is large enough,
then the VAR representation here and the one above should be virtually identical. The VAR

representation computed here is:
Y, = [-Dy'Dy] Yiy + [-Dy'Dy] Yy g+ [~Dy'Ds] Yy + ... + 1w,
where

w = Dy'n,
Buw), = Dy'V, [Dal],.

We now consider the singular case. The moving average representation of Y; now is:

Eat

Y, = lD(L)‘lij(L) I — B(L)]™ 02} ( e )

What follows can be done easily only if J(L) is square, so that the matrix in square brackets

is square. Inverting this:

<m>zpwﬁﬂ@u_mml@}wa

Eat

Let ] »
D == / [D(e‘iw)_lfJ(e_iw) [1—B<e—iw)}‘lc2] ¢ duy.

~ o

Let Djl denote the upper 3 x 3 block of D;. The proposition that n, lies in the space of

current and past Y; corresponds to

D} — 0, j — oo.
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10. Forecasting Using the Kalman Filter and Non-Identified VAR
Disturbances

Let the 10 x 1 vector of non-identified VAR disturbances be denoted w;, where

/
S £ £
Wy = Blwt_l + ...+ qut—q + 02 < 5211; ) ) ( 5211; ) ( 5211; ) = ],

using notation taken from the ACEL manuscript. (The matrices, By, ..., By, in the ACEL
project can be recovered from aObetazout, which is produced by mkimplrnew.m, in the
program, main.m. The first column of aObetazout is the constant term in the VAR, and the
next 10 by 10 block is By, the following 10 by 10 block is B, etc.) Here, Cy is a 10 x 7
matrix. It is the columns of the C' matrix discussed in ACEL, which correspond to the
non-identified shocks. (To find Cs, first compute C' = inv(azeroout) * sqrt(getV (erzout)),
then, Cy is columns 3-8 and 10 of C.) We add w; to the state equation in the Kalman filter.
The other part of our stochastic process comes from the solution to the model, (5.2), and

the law of motion for the exogenous shocks, (5.3):

Zt = A2t71+Bet
0 = pbi1+ey,

or,
2t = AZt_l + Bp0t_1 + Bet.
Let,
2t
Zt—1
0
ft: Wy
Wt—q+1
and
[ B x p 0 0 0 7
16x16 16x16 16x10  10%10
0 0o --- 0 0
16x16
0 0 p 0o --- 0 0
F=1 0 0 0 By -+ By1 B, |-
0 0 0 1 0 0
| 0 0 0 0 I 0 |
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where p is defined in (5.4), so that the state equation can be written,

B@t
0
€t
. F . C E1t
§=F& 1 +u, v = 2\ egy 5
0
0
Bet
0
€t
C clt 1! / €1t / /
Q = Evw, = 2\ gy eeB 0 e ) c; 0 0
0
0
[ BVB" 0 BV 0 0 0 ]
0 0O O 0 0 0
vB" 0 V 0 0 0
— 0 0O O C’gC’é 0 0 ’
0 0O O 0 0 0
| 0 0O O 0 o --- 0_

where V' is defined in (8.2). The observer equation is written:

Y = HE,

where
H=[Jr g5 Jr’ JJ 0 - 0],

9x1

where .J is defined in (9.4). Also, J is a matrix that selects which variables we want to work
with. If J is the 9-dimensional identity matrix, then we work with all variables in X; (see
(8.6)). These are also the variables in the ACEL var (see (11.1) below), except that capacity
utilitzation is excluded. In case we want to work with a system that does not include the 7"
variable in X,, then make J the 9 dimensional identity matrix, with the i* row deleted. If
we don’t want the i'* or j** elements of X;, then make .J the 9 dimensional identity matrix

with the i'* and j** rows deleted, etc.
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We now have all the necessary inputs for the Kalman filter, with two exceptions. We
need the matrix called P by forecastkalman.m. It corresponds to ¥ in (8.4). There are two
ways we can get P. We can find P by iterating in the manner described right after (8.4),
starting with P = (). Alternatively, we can execute the following MATLAB command...[P]
= dare(F’,zeros(size(F)),Q). It would be good to verify that dare is doing what it should, by
verifying that the output of dare satisfies the equation to be solved, namely (8.4).

Finally, the Kalman filter also requires the data. For this, load aceldat.mat, and the data
are in the 171 by 10 matrix, vardata. To proceed type in MATLAB,

data=vardata(:,{)’;

where ( is the vector in (9.3). In addition, if there is an element of ¢ that is not desired in
the analysis (i.e., it is excluded by J above), then it should be deleted from (.

We will also be interested in forecasts using the VAR alone. The easiest way to do this is
to simply replace C5CY in the construction of @), with C'C". In addition, H should be replaced
with

H=[000 JJ 0 - 0].

That is, where J7r, J7, J7° were, there should be zeros instead. This is very inefficient
computationally, but the computations go so quickly, that we shouldn’t worry about this.
For checking purposes there are two issues. One is whether the data have been imported
correctly. The other is whether the various model/VAR, parameters have been imported
correctly and whether the state space/observer system has been put together properly. We
can check the latter by computing impulse response functions and comparing them to ACEL.

Our system is:

& = F§ 1+

v = HE,,
where
EMt
Bet €M7t
0 Epums
€t Ep ¢
€
ool ) oo |
) pyst
0 Eppt
: CYE oyt
0 0
0
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We can write ¢e; as

€t = D E’uz’t s

where D is 10 by 3:

[1 0 0 ]
1 0 0
0 1 0
0 1 O
0 c, O
D= 0 0 1
0 0 1
0 0 Cy
0 0 O
00 0

We should look at the dynamic response of each element in y; to a one standard deviation
shock in each of (¢, €y 4, €y ¢). In particular, let the shock occur in period ¢ = 1, so that
vy # 0. Set v, = 0 for all ¢ > 0. Then, compute £, = v; and §, = F¢, ; for t > 1. Finally,
yr = HE, for t > 1. To get impulse responses that are comparable to ACEL, the elements
in y; will have to be ‘unwound’ appropriately. For example, ACEL reports the response of

output, while output is not directly one of the elements of ;.

11. Variance Decompositions

In this section we analyze the residuals from the VAR and we in particular study the percent
of the variance in output due to embodied, neutral and policy shocks. The first subsection

discusses technicalities. The second, the results.

11.1. Technicalities

The data in the VAR are, in logs:

(1—L)p;
(1= L)(y: — he)
(1 - L)pt
Uy
hy
Y, = Yo — hy — wy (11.1)
Ct — Yt
ptI + 1L —y
Ry
Yt + P — My
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Consider

I,
p;

so that Y; = F(L)Y;, where F(L) is defined as follows:

(1-L)p;
(1 - L)(yt - ht)
(1 - L>pt
Ut
hy
Y — hy —wy
Ct— Ut
pi+ L —uy
Ry
Yt +pr —my

Also, note Y; = F(L)'Y,.

Now, we have that

where ¢; is a 10 X 1 vector of shocks with variance-covariance matrix equal to the identity

matrix. Now, we actually are interested in properties of velocity, y; + p; — my, in addition to

s

— o oo |

-1

Y,
Y,
Y,

0 0 00 0

0 0 0 0 —(1 —L)

0 1/4 0 0 0

0 0 01 0

0 0 00 1

0 0 00 -1

0 0 0 0 0

0 0 00 0

0 0 1 0 0
1 __1 0 0

41-L) 4(1-L)

= A(L)Y;Fl + Ce’it,
= [I—A(L)] " Cs,
= F(L)7'I - AL)] " Ce
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the other variables in fft Thus, let Y; be:

n 10 0 0 000000 .

4(1 = L)my 01 0 0 000000 t
4(1— L)p, 00 1 0 000000 i“l_LL)mt
R, 00 0 1 000000 (;%)pt

uy 00 0 0 100000 t

Y, = hy —l00 o0 0 010000 Zt

w, 00 0 0 001000 '

¢ 00 0 0 000100 W

I 00 0 0 000010 ?

Yt +pr — my L0 4(11—L) _4(11—L) 000000 p§

Pl 00 0 0 00000 1] t

= G(L)Y,

say. The spectral density, Sy (e=™), of Y} is:

-1

Sy (e7™) = G(e ™) F(e ™)~ [I — A(e’i“’)r1 cc’ [I — A(ei‘”)'] [F(eiw)’l]/ G(e™).

The identified shocks are the first, second and ninth. Let the 10 by 10 matrix of zeros with
only a unity in the j" diagonal element be denoted I;. The spectral density of Y; assuming

only the j* shock is activated is denoted:
Si(e7™) = G(e ™) F(e™™) L [I — A(e™™)] " CLC [I — A(e®)] " [F(e™)™Y] G(e™).
It is easy to verify that

10 ‘ ' ‘
D SL(e™) = Sy(e™).
j=1

This corresponds to the additive decomposition of variance of Y;. Let diag(X) be the diagonal
elements of the matrix, X. We can define the fraction of the variance due to shock j at
frequency w by: '
diag (SL(e=™
var(j) = 28 (S (e)
diag (Sy(e~*))

where the division means element by element division of the two vectors. Thus, the first

element of the 10 by 1 vector var(j) is the fraction of variance in the growth rate of p!
accounted for by the jth shock.
We can obtain the fraction of variance over a range of frequencies, by using the following

formula for a variance:
N
L " pe ) = 1 LS e
o | e = szHOON e ,
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where f is the spectral density of a scalar random variable, and w;, = 2LN’“ fork=—-N/2,...,N/2
(see Sargent (1987, ch. 11, equation (20))).

Suppose the range of frequencies that interests us goes from period of fluctuation a
to period of fluctuation b. The frequency corresponding to a given period of fluctuation is
27 /period. So, this range of periods (say, a is 8 periods and b is 32 periods, as in the business
cycle with quarterly data) corresponds to k, = N/a and k, = N/b (these can be rounded to
the nearest integer). Note, too, that a spectrum is symmetric about zero. Then, the fraction

of variance in the range, a to b, is

>y, diag(Sy(e))
>k, diag(Sy (e7r))

Here again, the ratio of two column vectors means element by element division. Note that

the correct formula should scale the numerator and denominator by 2/N, which cancel in

the ratio.

11.2. Results

The following figure displays results for the estimated policy shocks, after multiplication by
100. The top panel displays the estimated policy shocks themselves. The lower left panel
shows the standard deviation of the shocks, computed using a centered set of 7 observations.
The bottom right panel displays the centered moving average of the shocks. Note that the
standard deviation rises very sharply during the period bracketted by the two stars. These
correspond to 1979Q1 and 1985Q4, respectively. The standard deviation of the shocks rises
to over 150 basis points in the high variance period. The mean is actually 102 basis points
in this period. The standard deviation of the shocks in the early period is on average 52
basis points, and over the later period it is on average 44 basis points. The bottom right
panel shows that this high variance is concentrated in the high frequencies. Although it is

quite evident from the quarterly shocks observed in the first panel, it is less evidence in the
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smoothed shocks.

Analysis of Policy Shock
actual shocks

1965 1970 1975 1980 1985 1990 1995

standard deviation, based on centered set of 7 observations

2000

mean, 7 quarter centered moving average

0.6¢

0.4¢

1970 1980 1990 2000 1970 1980 1990

We computed the variance decompositions of the shocks, in two different ways. One was
the spectral approach described in the previous subsection. This produced the following
results. For the HP filtered data, the fraction of variance due to the disembodied, neutral
and all three shocks is:

0.16, 0.13, 0.14, 0.43

Thus, the three shocks account for 43 percent of the HP filtered output data. Of this, 16
percent is due to the disembodied shock, 13 percent to the neutral shock and 14 percent to
the monetary policy shock. The results for the bandpass filtered data, allowing components

with period 8 quarters to 32 quarters to pass, we obtained the following results:
0.15, 0.13, 0.15, 0.42.

The results are very similar to what was found for the HP filter. The similarity of findings

based on the HP and band-pass filters has been noticed before.
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We also computed these variance decompositions using a time domain procedure. In one,
we generated 1,000 replications of 1,000 artificial data sets each, by bootstrapping the fitted

disturbances. For HP filtered data, we obtained the following results:
0.16 (0.029), 0.13 (0.025), 0.14 (0.030), 0.43 (0.069).

Numbers in parentheses are standard deviations across replications. The Monte Carlo stan-
dard error corresponds to these numbers, divided by /1000 = 32. Putting the Monte Carlos

standard errors in parentheses instead,
0.16 (0.00092), 0.13 (0.00079), 0.14 (0.00095), 0.43 (0.0022).

Clearly, these numbers coincide with the ones obtained using the spectral method. The

variance decompositions for band pass filtered data are:
0.17 (0.0012),0.14 (0.0011),0.14 (0.0012),0.44 (0.0028).

There are differences here with what was reported based on the spectral procedure, and these
are greater than what can be accounted for with Monte Carlo standard error. When the
number of observations was increased to 4,000 (only one replication), the following results

were obtained for the band pass filter:
0.18, 0.14, 0.15, 0.51

These calculations were then repeated, except that the disturbances were drawn from the
Normal distribution:
0.17, 0.15, 0.13, 0.41.

These results resemble more closely the ones obtained using the bootstrap with 1,000 ob-
servations. There is some (slightly) troubling sensitivity evident in the band pass filter
calculations.

Turning to the variance decompositions obtained by simulating the model’s response to
the fitted residuals, we have, for the HP filter:

0.210(25.9), 0.105(69.0), 0.312(3.4), 0.644(13),

where numbers in parentheses are the percent of times that the simulated statistic (167
observations, 1,000 replications) exceeds the corresponding empirical value. (The simulations
were done by bootstrap for this.) Note that all the statistics have reasonable p—values, except
the one for policy, where the p—value is 3.4 percent.

Turning to the band pass filter, we have

0.265(20.2), 0.099(70.5), 0.420(2.6), 0.747(11.9).
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Now the p—value for the policy shock is even lower. When the simulations underlying the
p-value were done with random numbers generated by the Normal distribution, the p—values
for the HP filter, policy shock, was 4.6 percent and for the band pass filter it was 3.4 percent.
Not much different. The p-values rose somewhat, to 5.4 and 3.8 percent, respectively, when
shocks for the early, middle and late period, in terms of variance, were drawn separately.
One way to visualize the empirical results is to see what the data would have been like
with only the three identified shocks, compared with what it was with all the actual shocks.

We can see this in the following figure:

Figure 9: Historical decomposition — monetary policy and technology shocks
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Note how highly correlated the two components are. Now let’s have a look at the results for
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the individual shocks. The results for the embodied technology shock are:

Figure 8: Historical decomposition — embodied technology shocks only
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Figure 7: Historical decomposition — neutral technology shocks only
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Finally, here are the monetary policy shocks:

Figure 6: Historical decomposition — monetary policy shocks only
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One way to think about the small p—values just described is as follows. The ‘empirical’
variance decompositions were computed by simulating the model’s response to the actual
fitted disturbances, in the sequence in which they were estimated to occur. This is what gives
rise to the high estimated of the fraction of variance due to all shocks and to the policy shock
in particular. The lower numbers were obtained by randomly reshuffling these disturbances.

The difference in results can be seen in the following two figures. The next figure displays
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results for the HP filter:

hp filter

embodied shock neutral shock

0 200 400 600 800 1000 0 200 400 600 800 1000

policy shock all three shocks

0.4
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0O 260 460 660 860 1000 00 260 460 660 860 1000

Each figure has two horizontal lines, though in the upper right figure the two lines are hard
to distinguish. The lower line is the population value of the variance decomposition, com-
puted using the spectral method. The upper line is the value of the variance decomposition

computed for the data. Note how that line is very high for the policy shock.
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The results for the band pass filter can be seen in the following figure:

bandpass filter (8,32)
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Again, note how uncharacteristically high the contribution of the policy shock is to the
variance in output.

Evidently, one gets one variance decomposition results for the actual sequence of shocks
estimated with the fitted VAR and a different one when the shocks are shuffled. This suggests
that there may be serial correlation in the shocks. This motivated going to a 6 lag VAR. We
now report results based on this. The results are quite different. In particular, the estimate

of the variance decomposition based on the fitted residuals is, for the HP filter:
0.175(45.5),0.075(45.1), 0.272(33.2), 0.432(52.9),

where (as before) numbers in parentheses are the frequency that bootstrapped variance
decompositions are bigger than the empirical one. Note how high the empirical p value now
is. For the Band Pass filter, the results are:

0.221(36.8),0.094(36.4), 0.341(26.5), 0.447(53.7).

Again, p—values are quite high. It is interesting to see these results in pictures. For the HP
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filter, we have:
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Now, the asymptotic variance decompositions are essentially indistinguishable, and both are

in the mean of the simulated variance decompositions. For the Band Pass filter, we have:

bandpass filter (8,32)
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Here, the empirical variance decomposition for the policy shock is slightly higher than the
corresponding asymptotic estimate, but the difference really isn’t very noticeable.

So, the variance of output due to our shocks is now much lower. It is interesting to ask
what this does for the picture of the historical decomposition of shocks. Here is the picture
for the three shocks together:

Figure 9: Historical decomposition — monetary policy and technology shocks
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Here are the

results for the embodied technology shock:

Figure 8: Historical decomposition — embodied technology shocks only
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Figure 7: Historical decomposition — neutral technology shocks only
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Finally, for the monetary policy shock:

Figure 6: Historical decomposition — monetary policy shocks only
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11.3. Conclusion

Our empirical estimates suggest that the three shocks account for a large fraction of the
business cycle variation in output. The policy shock is particularly important. However,
when we simulate the VAR in small or large samples, we find that the variance of output
due to the policy shock is relatively small, and our three shocks account for less than half
the variance of output. Why this sharp difference between the empirical estimate and the
properties of the VAR? Perhaps the residuals represent an ‘unusual’ realization, or maybe
the model has not been characterized properly. For example, one hypothesis is that there is
heteroscedasticity in the results. This is motivated by the above figure. However, when this
was modeled, it was found that this hypothesis does not explain the difference between the
properties of the estimated VAR and of the fitted residuals.

12. Mapping from z;, s; to VAR Variables

The data that go into the VAR are a transformation on the variables in z; and s;. There
are two transformations possible, and which is used seems to make a difference. Here, we

describe in detail what these two transformations are.
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12.1. Jesper Transformation

This is the transformation used in Jesper’s code. The first step is to take z;, s; into unscale.m
and produce a transformed series (see GenSimData.m), and in the second step the result is
transformed into the data actually used in the VAR. We first discuss unscale.

The first thing that unscale.m does is to recover iy, and fi,, from the 6th and 3rd

elements of s, respectively. Then, fi.. , is constructed using the relation discussed previously,

N N o

Poxp = Hzp + 1_ e
The next thing is to recover the level of these variables. For this it is useful to note that
there are two interpretations of a variable with a hat. The ‘normal’ interpretation is that it

is a deviation from the steady state, expressed as a fraction of the steady state:

ﬂ _ Hep — My
! g

Note that this also be written as

:&z,t—i_l: @

z

At the same time, recall that log(1 + x) ~ x for x small, so that since fi_, is small, it is

approximately true that

A /’Lz,t
/%zm—r = logpu,, —log ..

z

We refer to this as the ‘log interpretation of fi,,’.From this last approximation, note that

(since p,, = z/z-1), the cumulative sum of the f,,’s is:

:&’z,l + /:LZ,2 + ..+ [Lz,t

= log ('uz’l) + log (M'Z’2> + ...+ log (M'z’t>
22 25 22
_ 1 PRV R
2z, .z
2t
2
- o )

= logz — logzy — tlog(u,).

This suggests computing log z; using
log z = log 2o + tlog () + floy + flop + o+ fioy-
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There is another way to approximate log(z;) based on the ‘normal’ interpretation of /i, :

2t N
Mz,t - - luz (Mz,t + ]‘) .
Zt—1
Here, one computes
2t
Myilyo s My = =
20

so that

logz; = log (p%l) + ...+ log (,um) + log 2
= tlog(p,) + log (ﬂZJ + 1) + log (,&272 + 1) +...+log (ﬂz,t + 1) )

Note that we could apply a second order Taylor series expansion, to obtain:

. 1, |2
logz = tlog(p.) + froq = 5 (1)

. 1, . 1,
+:uz,2 - 5 (:uz72)2 +o Tt :uz,t - 5 (ljjz,lt)2

These different ways of computing log(z;) will give the same answer if ji_, is close zero.

The time series representation of i, is given by:

Moy = p,uz:uztfl + Epz it

where 0, = 0.06, and ,,_ is the standard deviation of - ;. Let’s adopt the log interpertation
of the hat, so that:

log Mot = (1 - p) log(,uz) + puz lOg -1 + Epz ity

or,
log z; —log 2,1 = (1 — p) log(p,) + p,,. (log z—1 — log z;_») + €42 4.

Thus, €,-, is a shock to log(z;). Suppose we get a one-standard deviation positive shock to
€uz - This induces a move in log z; by o,,_, i.e., Alog z; = 0,,_, where A means the difference
between what log(z;) is with the shock and what it would have been in the absence of a shock.
To get this into percent terms, multiply o, by 100. With o, = 0.06, this means that a
one-standard deviation (i.e., a shock of ‘typical’ magnitude) disturbance in ¢,: ; moves z, by
6 percent. This is too big to make any sense. For example, the first draft of ACEL reports
that the standard deviation of €,-; estimated by Prescott is 1 percent. It also reports our
estimate of 0.12 percent. A sensible interpretation of what we have here is that the standard

deviation of the shock to neutral technology is 0.06 percent.
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In unscale.m, the level of technology is computed using the log approximation (see the
cumulative sum in the code). After computing the level of technology, the program computes

money growth. (Implicitly, it sets o = 0.) It does so by evaluating:
Gt — Q-1+ Tt + [l g,
for t = 1,...,T. Writing this out more carefully (using the log approximation),

log@—log£+logﬂ+logw
q q m

= logQ; —log P, —log 2 — [log Q11 — log P,y —log 2, ]
+log my — log m + log i+, — log pu .

= logQy —log Qi1 — logm — log f,.

(Because the object on the left of the equality is zero in steady state, this says that
the growth rate of transactions balances is equal to inflation plus the growth rate of the
economy, i.e., the growth rate of z;.) The program multiplies the above by 4 and calls the
result mgrowth. This is clearly an annualized, decimal, growth rate.

Next unscale.m computes ‘output’, which is @ = % The program then adds to this, the
quantity fi ., :
s+ floe

Using the log approximation, this is (recall, §; = v;/2]),

log < y*t~) + log z; — log 2§ — tlog(js,+)
Y
log () — log § — log 25 — t log(y,+ ).

Consumption and hours are handled in the same way. Capital utilization (‘capa’) is i, which
we interpret as logu;, which is ‘like’ u; — 1.

In the case of R; (‘fedf’), unscale.m computes ARR,, which is 4 (R; — R) under the normal
interpretation of R,. Inflation is handled in the same way. The factor, 4, converts to annual.
Unfortunately, neither of these transformations is correct. Both the interest rate and the
inflation rate are expressed in annual, decimal terms.

Velocity is

log (y;) — log§ — log 25 — tlog(p,-) — ¢ — [log z; — log 25 — tlog(t,-)]

Q * *
= Ptt - )~ logi —log 2} — tlog(u..)]

— log (y) — log § — log 2§ — tlog(s1..) — log (

= log (y:) — log (%) —log § + log q.
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Consider pinv. The cumulative sum of jiy ; is
log T — log Yo — tlog(py).

These data are loaded into a matrix, SimData.

In summary, unscale produces as output,
[output, mgrowth, infl, fedf, capa, hours, rwage, cons, invest, vel, pinv]

The variables here computed using the log approximation are output, mgrowth, capa, hours,
rwage, cons, invest, vel, pinv. Variables computed using the normal approximation are infl,
fedf. In the calculations, the shocks have been multiplied by 100.

12.2. Riccardo’s Approximation

This approximation uses the linearized mapping from z;, 6; to X; in (8.3). This mapping is

described in detail in section 8.1.

13. Estimation and Identification of VAR Impulse Response Func-
tions

Following is the structural form representation of our VAR system:
AY, = A(L)Y; 1 + e (13.1)
The parameters of the reduced form are related to those of the structural form by:
C = Ayt B(L) = Ay A(L). (13.2)

We obtain impulse responses by first estimating the parameters of the structural form, map-

ping these into the reduced form, and then simulating (?7?).

13.0.1. Monetary Policy Shocks

We assume that policy makers manipulate the monetary instruments under their control in

order to ensure that the following interest rate targeting rule is satisfied:
Rt = f(Qt) + €nrt, (133)

where g, is the monetary policy shock. We interpret (13.3) as a reduced form Taylor rule.
To ensure identification of the monetary policy shock, we assume f is linear, §2; contains

Yi-1, ..., Yi_4 and the only date ¢ variables in €, are {Aa;, Apy, Y1, }. Finally, we assume that
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ere is orthogonal with €. It is easy to verify that these identifying assumptions correspond

to the following restrictions on Ag:
T 4Ll 12 413
Ayt Ayt Ay 0 0
Ayt AyT AR 0 0
1x1  1x1 1xe Ix1 1x1

A= | A AT AP0 0 | (13.4)

.A.O7 1407 .A.O7 1407

1x1
1x1 1x1 1x6 1xz
5,1 5,2 5,3 5, 5,5
Agm Agt Ayt A Ay

| 1x1 1x1 1x6 1x1 1x1

The second to last row of Ay corresponds to the monetary policy rule, (13.3). The zero
in this row reflects our assumption that €); does not include the last variable in Y;. The
right two columns of zeros in the first 8 rows of Ay reflect our identifying assumption that a
monetary policy shock has no contemporaneous impact on Aa;, Apy; or Yis. Suppose there
were a non-zero term somewhere in the first 8 rows of column 9. Since the interest rate is
affected by the monetary policy shock, this would imply that a variable in the first 8 rows
of column 9 is affected by a policy shock, contradicting our identification assumption. Now
suppose that there were a non-zero term in at least one of the eight rows of column 10 in Aj.
Since the money supply is affected by the monetary policy shock, this would imply that a
variable in the first 8 rows of column 10 is affected by a monetary policy shoc, contradicting

our identification assumption.

13.0.2. Technology Shocks

As stated above, we assume that the only shocks which have a non-zero impact on the long-
run level of productivity are innovations to neutral and capital-embodied technology. The
only shock that has an effect on the price of investment in the long run is a shock to capital-
embodied technology. Like the monetary policy shocks, the identification assumptions on
the technology shocks imply a set of zero restrictions on an expression that combines the
autoregressive parameters in the VAR and A;'. We do not exhibit these restrictions here,
because it turns out to be more convenient to pursue a variant of the approach advocated

by Shapiro and Watson.

13.1. Estimation of Impulse Responses

To discuss our estimation strategy, it is useful to write out the equations of the structural
system explicitly, taking into account the restrictions implied by our assumptions about

long-run effects of shocks and our assumptions about the effects of a monetary policy shock.
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Apart from a constant, the first equation in (13.1) can be written as follows:

N

e
App = an<L>Apn,1+au<L>A2at+a13<L>Amt+a14<L>ARt,1+a15<L>AY2,H+f (13.5)
0

where A = (1 — L). The presence of A in front of each of Aa;, Yi;, Ri—1, Ya,1 reflects
our identification assumption that shocks other than ey ; have no impact on py; in the long
run. The polynomial lag operators, correspond to the relevant entries of the first row of
Ap — A(L)L, scaled by Aé’l. The restriction that only capital embodied technology shocks
have a non-zero impact on the relative price of investment at infinity is equivalent to imposing
a unit root in each of the lag polynomials associated with Aa;, Y1, Ri—1 and Y5, 1. Also
note that we exclude the contemporaneous values of R; and Ys; from the right side of (13.5).
This reflects our assumption that monetary policy shocks do not have a contemporaneous
impact on the price of investment (see the discussion about Ay above).

We cannot use ordinary least squares to obtain a consistent estimate of the coefficients
in (13.5) because A2%a; and AYy, are in general correlated with ey;. We apply two stage
least squares to estimate the parameters using as instruments a constant, Aa;_;, Apri_;,
Yie_;, Ri_;, and Yo, _;, i = 1,2,3,4. The coefficients in the first row of the structural form
can then be obtained by scaling the instrumental variables estimates up by A};l, where A(l)’l
is estimated as the (positive) square root of the variance of the fitted disturbance in the
instrumental variables relation.

The second equation in (13.1) can be written as:

2,27

€z
Aa; = am(L)AaH+a21(L)Aplt+a23(L)AY1t+a24(L)ARt,1+a25(L)AY2,t,1+A—t (13.6)
0

where the polynomial lag operators correspond to the relevant entries of the second row of
Ay — A(L)L, scaled by AS’Q. The presence of a unit root in the polynomial lag operators
multiplying Y3, R:—1 and Y5,_; reflects our assumption that non-technology shocks have no
impact on a; at infinity*. Our assumptions do not imply a similar unit root restriction on
the polynomial lag operator multiplying Apy;. This is because, by assumption, the moving
average relating non capital-embodied technology shocks to Apy; already has a unit root.
The fact that the contemporaneous values of R; and Ys; are excluded from (13.6) reflects our
assumption that monetary policy shocks do not have a contemporaneous impact on labor
productivity (see the discussion about Ay above).

We cannot use ordinary least squares to obtain a consistent estimate of the coefficients in
(13.6), because e, is, in general, correlated with Ap;, and AY7y,. Instead, we apply two-stage

least squares using as instruments a constant, éy;, Aa;—;, Apr—i, Yii—i, Ri—i, and Ya,_;, for

4For further discussion, see Shapiro and Watson (1988), and the more recent papers by Christiano,
Eichenbaum and Vigfusson (2003, 2003a, 2003b) and Fisher (2003).
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i =1,2,3,4. Here, éy is the fitted disturbance from (13.5). By including this disturbance as
an instrument, we are imposing our assumption that neutral and capital-embodied technol-
ogy shocks are orthogonal. The coefficients in the second row of the structural form can be
obtained by scaling the instrumental variables estimates up by Aﬁ’Z. Here, Aﬁ’Z is estimated
as the (positive) square root of the variance of the fitted disturbances in the instrumental
variables relation.

The next set of 6 equations in (13.1) can be written as follows:
AP Aay + AZ Apr + AYYy = b(L)Yi_y + ey (13.7)

The ninth equation in (13.1) is just the policy rule:

14¢1 /4&2 [4&3 e
A44Ap1t+A44Aat—|— 0y, (L)YH+AY§.

Ry + A44

(13.8)
Consistent estimates of the parameters in (13.8) can be obtained by ordinary least squares
with R; as the dependent variable. This is because, by assumption, e,;; is not correlated
with Aa;, Apre and Yy;. The fitted ey’s are orthogonal to e.;’s and ey;’s. This is epp;’s are
orthogonal to the variables that span the space in which the innovations to technology lie.
The parameters of the 9" row of the structural form are obtained by scaling the estimates
up by A§=3, where A§73 is estimated as the positive square root of the variance of the fitted
residuals. Finally, according to the last equation:

A5,1 A5,2 A5,3 A5 4
A55Aat + A55Ap1t + A55§/1t + Ag5

Yo + R, =d(L)Y, 1+ —=
The coefficients in this relation can be estimated by ordinary least squares. This is because
e9: is not correlated with the other contemporaneous variables in this relation. This reflects
that Y5, does not enter any of the other equations. The parameter, A8’5, can be estimated as
the square root of the estimated variance of the disturbances in this relation. The parameters
in the last row of the structural form are then suitably scaled up by A8’5.

The previous argument establishes that rows 1, 2, 9 and 10 of A, are identified. The
block of 6 rows in the middle is not identified. To see this, let w denote an arbitrary
6 x 6 orthonormal matrix, ww' = Is. Suppose Ay and A(L) is some set of structural form

parameters that satisfies all our restrictions. Let the orthonormal matrix, W, be defined as

follows:
2£2 2%6  2x2
W= 692 66 692 : (13.9)
0 0 I

2x2  2x6 2x2
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It is easy to verify that the reduced form corresponding to the parameters, WAy, WA(L)

also satisfies our restrictions, and leads to the same reduced form:
Y = (WA)) " WA(L)Y; 1 + (WA~ We,.
To see this, note:
(WA)"WAL) = AJ'W'WA(L) = A" A(L)
B (W A) " WuuW' [(WAy) '] = BAGWWeew [A5' W)
= A (A1)
Recall that impulse response functions can be computed using the matrices in B(L) and the

columns of A, Tt is easy to see that the impulse responses to ey, €,; and ey, are invariant

to w. This is because:
(WA
It can be verified that columns 1, 2, 9 and 10 of A;'W’ coincide with those of A;".

We conclude that there is a family of observational equivalent parameterizations of the

= AW,

structural form, which is consistent with our identifying assumptions on the monetary policy
shock and the technology shocks. We arbitrarily select an element in this family as follows.
Let @ and R be orthonormal and lower triangular (with positive diagonal terms) matrices,
respectively, in the QR decomposition of A33. That is, A3* = QR. This decomposition is
unique and guaranteed to exist given that A3® is non-singular, a property implied by our
assumption that Ag is invertible. Now, suppose we have a particular parameterization in
hand in which A3 is not lower triangular. Then, the QR decomposition guarantees that
we can find an orthonormal matrix, w, such that wA3? is lower triangular. Suppose that
A3 is already lower triangular. How many orthonormal matrices have the property that
premultiplication of A3 preserves lower triangularity of the result? There is only one. The
fact that wAZ® and A3® are both lower triangular implies that w is too. But orthonormality
of w under these circumstances implies that it is the Choleski decomposition of the identity
matrix, which known to be unique and equal to the identity matrix itself. We conclude that
we may, without loss of generality, restrict A3? to be lower triangular. This restriction does
not restrict the reduced form in any way, nor does it restrict the set of possible impulse
response functions associated with ey, €5, ey or ey.

Thus, in (13.7) A3® is lower triangular. We seek consistent estimates of the parameters of
(13.7), with this restriction imposed. Ordinary least squares will not work as an estimation
procedure here because of simultaneity. To see this, consider the first equation in (13.7).
Suppose the left hand variable is the first element in Y7;. The only current period explanatory

variables are Aa; and Apy. But, note from the first and second equations in the structural
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form that Aa; and Apy; respond to Y3, and, hence, to the innovations in Y7j;. That is, Aay
and Apy, is correlated with the first element in e;;. We can instrument for Aa; using e,
the (scaled) residual from the first structural equation, and for Apy; using ey, the (scaled)
residual from the second structural equation.

Now consider the second equation in (13.7). Think of the left hand variable as being
the second variable in Y3;. The current period explanatory variables in that equation are
Aay, Apry and the first variable in Y;,. All of these variables are correlated with the second
element in eq;. To see this, note that a disturbance in the second element of e;; ends up in
Aa; and Apy; via the first and second equations in the structural form, because Yi; appears
in those equations. This explains why Aa; and Apy; are correlated with the second element
of ey;. But, the first element in Y73, is also correlated with this variable because Aa; and Apy;
are ‘explanatory’ variables in the equation determining the first element in Y7, i.e., the first
equation in (13.7). So, we need an instrument for Aa;, Ap;; and the first element of Yi,.
For this, use e, ex and the residual from the first equation in (13.7). Thus, moving down
the equations in (13.7), we use as instruments e,;, ey, and the disturbances in the previous
equations in (13.7).

With Ay and A(L) in hand, we are now in a position to compute the reduced form,
using (13.2). The dynamic responses of Y; to technology and monetary policy shocks may

be computed by simulating (??7) with i = 1,2, 9, respectively.
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