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Abstract— The creation and adaptation of motor behaviors
is an important capability for autonomous robots. In this
paper we propose an approach for altering existing robot
behaviors online, where a human coach interactively changes
the robot motion to achieve the desired outcome. Using hand
gestures, the human coach can specify the desired modifications
to the previously acquired behavior. To preserve a natural
posture while performing the task, the movement is encoded
in the robot’s joint space using periodic dynamic movement
primitives. The coaching gestures are mapped to the robot
joint space via robot Jacobian and used to create a virtual
force field affecting the movement. A recursive least squares
technique is used to modify the existing movement with respect
to the virtual force field. The proposed approach was evaluated
on a simulated three degrees of freedom planar robot and on
a real humanoid robot, where human coaching gestures were
captured by an RGB-D sensor. Although our focus was on
rhythmic movements, the developed approach is also applicable
to discrete (point-to-point) movements.

I. INTRODUCTION

The interaction between a pupil and a teacher when

learning or improving existing skills usually involves natural

communication such as speech or gestures. Based on the

instructions of a coach, humans can quickly learn and modify

their motion patterns to achieve the desired behavior. The

development of an effecting coaching system for humanoid

robots is, however, a difficult task. In practice, modifying

robot behaviors remains the task of experts in robotics.

Robotics researchers developed various robot coaching

methods in the past decade. For example, Nakatani et al.

[1] used the coach’s qualitative evaluations of the robot

performance to improve balancing and walking. In [2],

supervised learning was combined with voice commands of

a human coach, where the voice commands were used as a

reward function in the learning algorithm. In [3], coaching

was used on a mobile platform with the emphasis on learning

high level task representations rather than motor skills. An

approach that uses qualitative, verbal instructions to modify

movements obtained by human demonstration was proposed

in [4]. The developed system was suitable also for non-expert

users. Kinesthetic teaching with iterative updates to modify

a humanoid behavior was proposed in [5]. An area closely

related to robot coaching is learning by demonstration, where

a variety of different methods were proposed [6], [7], [8], [9],
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[10], [11]. However, most of the learning by demonstration

methods do not address the problem of easily modifying an

existing behavior to acquire a new desired outcome.

We were inspired by the efficiency of human-to-human

skill transfer when developing a more effective approach to

modify the existing robot behaviors. Rather than learning

how to program robots, people can bring their own knowl-

edge from interacting with each other directly into the robot

domain [4]. Ideally, the human-robot interaction should focus

on approaches that are intuitive for a human coach. In this

paper we propose an approach for modifying existing robot

behaviors based on online guidance provided by the human

coach. The guidance is provided in the form of pointing

gestures, i. e. the coach indicates to the robot where and how

it should modify its motion. Such an interface is intuitive for

humans as movement shaping through physical guidance and

other means of communication is common in human motor

learning [12]. It allows also non-experts to teach and alter the

existing robot skills in order to obtain new desired outcomes.

A motor representation used to encode robot movements in

an online coaching system must have the ability to generate

smooth movements even when its parameters change online.

This is important to supply an immediate feedback to the

coach. Such a capability is provided by dynamic movement

primitives (DMPs) [13], [14], which are defined by a set of

critically damped second order linear differential equations,

supplemented with a nonlinear forcing term. In this paper we

focus on periodic movements [15], but the approach is fully

applicable to discrete (point-to-point) movements as well.

Periodic DMPs are often combined with adaptive oscillators

[16]. Adaptive oscillators generate a stable limit cycle and

provide the phase signal to the DMP. We assume that the

initial motion pattern has been defined somehow, e. g. by

kinesthetic guiding. To avoid losing postural information

when using redundant robots like humanoids, the demon-

strated motion pattern is encoded in the joint-space.

We developed a new DMP adaptation algorithm that can

be used to modify existing motor behaviors encoded by

DMPs based on human coaching gestures. The coaching

gestures are specified by pointing towards the part of the

movement that needs to be changed. The pointing gesture

defines the direction and magnitude of change. To demon-

strate the applicability of the proposed coaching approach,

we implemented it both in simulation and on a real humanoid

robot, where coaching gestures were obtained by Microsoft

Kinect RBG-D sensor and a body tracker. The paper is

organized as follows. In Section II we provide a short review

of periodic DMPs. We then describe the newly developed
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coaching algorithm. In Section III we analyze the properties

of the proposed algorithm in simulation and in Section IV we

evaluate it on a real humanoid robot. Conclusions, summary

and prospective future work are explained in Section V.

II. COACHING SYSTEM

The basic framework of our coaching system consists of

periodic Dynamic Movement Primitives (DMPs) combined

with an adaptive frequency oscillator [16], which can extract

the phase and the frequency from an arbitrary periodic signal.

This framework is also called a two-layered system for

movement imitation [15]. In our previous work [15], [16], we

proposed a learning algorithm that can be used to extract the

basic frequency from the demonstrated periodic movement,

learn the waveform of one period, and reconstruct the desired

waveform at an arbitrary frequency. To learn a new control

policy based on the human coaching gestures, this two-

layered imitation system is embedded into the proposed

control framework for coaching.

A. Dynamic movement primitives combined with adaptive

frequency oscillators

The first layer of the imitation system is based on adaptive

frequency oscillators combined with the adaptive Fourier

series. The details and the properties of the learning approach

are given in [16]. In summary, an adaptive frequency oscilla-

tor is defined by a set of second order differential equations

φ̇ = Ω−K · e · sin(φ), (1)

Ω̇ =−K · e · sin(φ), (2)

where Ω is the extracted frequency, φ is the phase, K is the

coupling constant and e is the difference between the actual

and the estimated input signal. Here we denote the input

signal by v and the estimated signal by v̂. The input signal

v is the signal on which the motion pattern is synchronized.

Note that once the error signal e becomes zero we obtain

Ω̇= 0 and φ̇ =Ω. The estimated input signal v̂ is represented

as

v̂ =

m

∑
c=0

(αc cos(cφ)+βc sin(cφ)). (3)

Here m is the size of the Fourier series. Our learning

algorithm simultaneously estimates the frequency Ω and the

input signal v̂, i e. the weights αc and βc. See [16] for details.

We augment this first layer by anchoring the dynamic

movement primitives to the phase signal φ of the adap-

tive oscillator as in [15], [16]. This makes it possible to

synchronize an arbitrary trajectory to an arbitrary periodic

signal congruent with the desired behavior. The basic equa-

tions of dynamic movement primitives are summarized from

[14], [13], [15]. For a single degree of freedom denoted

by y, which can either be one of the internal joint-space

coordinates or one of the external task-space coordinates,

the following system of linear differential equations with

constant coefficients, augmented by a nonlinear forceing term

f , has been applied to derive DMPs

ż = Ω(αz (βz(g− y)− z)+ f ) , (4)

ẏ = Ωz, (5)

where αz and βz are the positive constants, which guarantee

that the system monotonically converges to the desired

trajectory, g is the center of oscillation, and f is the nonlinear

part that determines the shape of the trajectory. It is given

by

f (φ) =

N

∑
i=1

wiψi(φ)

N

∑
i=1

ψi(φ)

r, (6)

where r is the parameter that can be used to modulate the

amplitude of the movement and ψ are the Gaussian like

kernel functions given by

ψi(φ) = exp(h(cos(φ − ci)−1)) . (7)

Here, h is the width and ci is the distribution on one period.

If not stated otherwise, in the following we used ci, i =
1, . . . ,25, and they were equally spread between 0 and 2π .

By applying the locally weighted regression the system

can learn the shape of the trajectory on-line. The equations

for incremental learning are summarized from [15], where

the equations (4) and (5) were rewritten as one second order

differential equation

fd =
ÿd

Ω2
−αz

(

βz(g− yd)−
ẏd

Ω

)

. (8)

Here the triplet of yd , ẏd and ÿd denotes the desired position,

the velocity and the acceleration. To update the weights wi

of the kernel function ψi, we use the recursive least-squares

method with the forgetting factor λ . In our experiments, the

forgetting factor was set to λ = 0.9995. With the given target

(8), the recursive algorithm updates the weights wi using the

following rule

Pi(t +1) =
1

λ

(

Pi(t)−
Pi(t)

2r2

λ
ψi(φ(t))

+Pi(t)r2

)

, (9)

wi(t +1) = wi(t)+ψi(φ(t))Pi(t +1)rer(t), (10)

er(t) = fd(t)−wi(t)r. (11)

If not stated otherwise, we use wi(0) = 0 and Pi(0) = 1,

where i = 1, ...,25.

In general DMPs provide a comprehensive framework

for generating smooth kinematic control policies. Other

important properties are: time invariance, online modulations

including using a repulsive force to influence the course

of the trajectory, framework for the trajectory learning, and

smooth behavior in case of sudden change in the trajectory.

Even though the DMP framework already posseses meth-

ods for amplitude, phase and frequency modulation, these

modulations are insufficient to modify the behavior within a

general coaching system. To modify the behavior online with

a human in the loop, we propose an algorithm that can update
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the weights of the DMP based on the coaching gestures. The

goal is to provide means to generate arbitrary modifications

to the available movement patterns and successfully perform

the desired task. The coaching system can also be used for

building a library of motion patterns, which can later be used

by movement generalization methods [17].

B. Coaching with Potential Fields

The primary goal of movement modeling with dynamical

systems is to exploit the coupling phenomena to generate

more complex behaviors [14]. We showed in the previous

section how two dynamical systems can be connected to-

gether for imitation learning of periodic movements. In this

section we discuss how to modify a robot trajectory online

based on the input of a human coach. An ability to modulate

movement trajectories online based on the human input is a

very important capability for robots that interact with humans

in natural environments. The proposed algorithm can modify

the robot’s motion online based on the human in the loop

coaching gestures and is therefore an important step towards

providing such a capability.

There are different ways for adding a coupling term to

modify motion patterns. For example, it can be added to the

transformation system or to the canonical system, or even to

both [14]. For 3-D Cartesian space movements, Hoffmann et

al. [18] showed that obstacle avoidance can be achieved by

adding a coupling term CCCy to Eq. (4)

ż = Ω(αz (βz(ggg−y)− z)+CCCy + fff ) , (12)

where yyy, zzz, ggg, CCCy, and fff are in this case three dimensional

values. In [18] this equation was used to drive the robot’s

behavior and ensure obstacle avoidance. In our case we

intend to modify the behavior permanently, therefore we use

this term as input to the recursive least-squares method for

updating the weights of the canonical system. Since in this

case the reference trajectory is simply the output of the DMP

(there is no training signal yd , ẏd and ÿd), er(t) as defined

in Eq. (11) would be equal to zero if the DMP equations

had not changed. However, since the differential equation (4)

was changed to (12), there is an additional coupling term CCCy,

which was not accounted for during training. Thus Eq. (11)

transforms into

er(t) =Cy, j(t), (13)

where Cy, j(t) is the coupling term for the degree of freedom

denoted by j.

A proper definition of the coupling term CCCy is crucial

and of course task dependent. To enable coaching by human

gestures, we modified the obstacle avoidance coupling term

CCCy from [18] as follows

CCCy = γ s(||ooo− xxx||) exp(−βφ) ddd, (14)

Here xxx is the Cartesian position of the end-effector, ooo is the

center position of the perturbation potential field (defined by

hand position), ddd is the perturbation direction (defined by

the pointing gesture), γ and β are the scaling factors, φ is

given by

φ = arccos

(

(ooo− xxx)T ẋxx

||(ooo− xxx)|| ||ẋxx||

)

. (15)

s(r) is defined as

s(r) =
1

1+ eη(r−rm)
, (16)

where η is the scaling factor and rm the distance at which the

perturbation field should start affecting the robot’s motion.

A one degree of freedom example for the coupling term is

shown in Fig. 1.
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Fig. 1. One degree of freedom example coupling term Cy with parameters
η = 30, rm = 0.2, γ = 1, and β =−20/π .

To update the trajectories in joint-space while they are

perturbed in task space, where the coupling term is denoted

by CCCy, a pseudo inverse of the task Jacobian is used. This

essentially maps the task space velocities into the joint space

velocities with q̇qq = Jẋxx. By applying a similar transformation

to CCCy we obtain

CCCq = J†CCCy. (17)

where CCCq = [Cq,1 Cq,2 ... Cq,k]
T and k is the number of

the robot’s degrees of freedom. The components of (17) are

now inserted into (13), which is used for updating the DMP

weights wi using (9) and (10). In this way we ensure that the

joint space trajectories encoded by the DMPs are properly

modified according to the coach’s instructions.

Keeping the movement representation in the joint space is

beneficial because our initial movement trajectories, which

are encoded by DMPs, are usually acquired by kinesthetic

guiding. By using joint space trajectories we avoid losing

information about the selected robot configuration during

human guiding on a redundant robot. Hence the DMP repre-

sentation should remain in the joint space and the behavior

should be modified there.
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III. SIMULATION RESULTS

To show the properties of the proposed approach, we first

applied it to a simulated 3 degrees of freedom planar robot.

The robot was simulated using Planar Manipulator Toolbox

[19]. The initial joint space trajectory was defined such that it

produced a circular motion in the task space. The frequency

of motion was constant and it was set to 0.5 Hz. If not stated

otherwise, the coaching parameters were γ = 100, η = 20,

rm = 0.35, and β =−8/π .

Fig. 2 shows simulation results where the coaching point

was defined with the parameters ooo = [1.8,−0.6] ddd = [0,1]T .

The coaching command was inserted at the selected position

after 5 seconds. On the right plot we can see the evolution

of the task space trajectory. Here the red line shows the

initial task space motion and the green line the task space

motion after coaching. The grey lines show the evolution

of DMP modification in time. It can be seen that the

coaching command was only acting at the desired location

and therefore it did not affect the rest of the initial trajectory.

This can also be seen in the bottom plot left where the scale

of the coupling term used in recursive least squares is shown.

Here we can see that the coupling term only acts when the

end-effector is close to the perturbation point. In addition,

we can see that the coupling term is iteratively converging

towards zero. The first three plots on the left show the joint

trajectories in time. We can see that they are modified only

when the end-effector is near to the perturbation point and

that they remain smooth.
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Fig. 2. Simulation results where the circular motion in task space was
pushed in. Coaching command parameters were ooo = [1.8,−0.6] and ddd =
[0,1]T . The coaching point was activated after 5 seconds.

Similar results can also be observed in Fig. 3, where the

initial task space trajectory was pushed out. In this case the

coaching point parameters were ooo = [1.8,0.8] ddd = [0,1]T .

Again the coaching point was inserted after 5 seconds. We

can see the same basic performance as in the case of Fig. 2.

This two study cases clearly show that we can easily modify

the task space behavior at the desired point to achieve the

desired course of movement, even though the trajectories are

encoded in the joint space. These two case studies show

that we can smoothly and iteratively modify the task space

behavior in an arbitrary direction.
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Fig. 3. Simulation results where the circular motion in task space was
pushed out. Coaching command parameters were ooo = [1.8,0.8] and ddd =
[0,1]T . The coaching command was activated after 5 seconds.

To further support the last statement we show in Fig. 4

an experiment where the coaching command is kept at

the constant distance to the end-effector. In other word,

the perturbation point moves along the trajectory and the

perturbation direction ddd is in this case focused towards the

centre of the circle. The coaching begins after 5 seconds.

Here we can see in the right plot that the motion is constantly

modified and directed towards the center of the circle. The

final task space trajectory is indicated with the green line

and the initial trajectory with the red line. In the first three

plots left we can also see that as expected, the amplitude of

motion is decreasing for all three joints.
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Fig. 4. Simulation results where the circular motion in task space was
pushed in all the time, i. e. the direction of coaching command was towards
the center of the circle all the time. The coaching began after 5 seconds.

IV. ROBOT EXPERIMENTS

To show the applicability of the proposed approach in

real world, we implemented it on the JST-ICORP/SARCOS

humanoid robot CBi [20]. We used the Microsoft Kinect

sensor and the associated body tracker to capture human

coaching gestures [21]. Fig. 5 shows the experimental setup,

where the body tracking results can be seen on the display

in the background.

4773



To acquire the human coaching gestures in the coordinate

system of the robot, we calibrated the Microsoft Kinect

sensor to the robot base coordinate system. To obtain the

appropriate transformation matrix, we recorded at least four

pairs of points in both coordinate systems. For this purpose

the human coach placed his hand at the same location as the

robot’s end-effector and the position of the human hand and

the robot’s end-effector were measured in the Kinect’s and

robot base coordinate system, respectively. The transforma-

tion matrix was calculated using least-squares fitting of two

points set as described in [22].

Fig. 5. Experimental setup, where a human coach is modifying the robot’s
motion. The human coaching gesture is captured using Microsoft Kinect
sensor.

To make coaching as intuitive as possible, we developed an

interface where the human coach can modify the trajectory

by either pushing it away from him using his right hand or

attracting it towards him with his left hand. The coaching

direction was calculated using the wrist and the elbow

location. For the right hand, which pushes the trajectory away

form the coach, the direction is given by

dddR =
xxxw,R − xxxe,R

||xxxw,R − xxxe,R||
, (18)

where the xxxw,R and the xxxe,R are the Cartesian positions of the

right hand wrist and the right hand elbow in the robot’s base

coordinate system. For attracting the trajectory towards the

coach, the direction is given by

dddL =
xxxe,L − xxxw,L

||xxxe,L − xxxw,L||
. (19)

Here xxxw,L and the xxxe,L are respectively the Cartesian positions

of the left hand wrist and the left hand elbow in the robot’s

base coordinate system.

Since Microsoft Kinect sensor relies on depth information

and our humanoid robot has similar body proportions as a

human, the body tracker sometimes becomes confused if the

human approaches the robot very closely. For this reason

the human coach did not approach the robot too closely in

our experiments. Instead, the center of the potential field

generated by each hand was moved slightly away from the

respective hand. For the right hand, the origin of the potential

field defined by the coaching gesture was moved in the

direction of the coaching gesture

oooR = xxxR +ξRdddR, (20)

where ξR is the scalar that defines the distance between the

hand and the center of the coaching point in the direction

of dddR. Similar equation is used also for the left hand which

attracts the trajectory towards the hand.

oooL = xxxL −ξLdddL. (21)

Here, the effective coaching point is moved in the opposite

direction of perturbation dddL. With such modifications the

effective origins of potential fields are always in front of

the human hands in the direction of pointing at the distance

defined by ξR and ξL.

To determine which hand is active, we use the distance

between both wrist positions xxxw,L, xxxw,R and the robot’s end-

effector position xxx. The active hand is the one which is closer

to the robot’s hand position.

To show the applicability of the interface for online

modification of the initial rhythmic movement using human

in the loop coaching gestures, we first provide an example of

pulling-in the task space trajectory. The parameters were set

to γ = 10, η = 10, rm = 0.15 and β =−10/π . Fig. 6 shows

the task space motion of the robot’s end-effector in the x−y

plane. We can see a successful modification of the motion

based on the human coaching gestures. In Fig. 7 we show

the corresponding joint space trajectories as a function of

time. The teaching of the new motion pattern begins after 5

seconds, which is indicated with the first vertical line. We can

see that the joint space trajectory was modified successfully

to achieve the desired task space motion. In Fig. 7 we can see

that at approximately 50 seconds the human coach stopped
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Fig. 6. Task space motion of the robot’s end-effector, where human coach
was modifying the motion pattern. The initial trajectory is in red and the
final trajectory is in green. The time evolution of the trajectory modification
is indicated with grey line.
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Fig. 7. Joint space motion in time of the robot’s right hand, while coaching.
Vertical lines indicate the important events described in text.

modifying the behavior and at approximately 55 seconds the

new motion pattern was switched back to the original motion

pattern. At this point the difference between original motion

trajectory and the modified motion trajectory is even more

evident. The snapshots showing the original and the modified

trajectory of the humanoid arm movement are shown in

Fig. 8. This experiment is also shown in the supplementary

video.

Fig. 9 shows four different modifications of the original

motion. In the top row we can see the horizontal pushing and

pulling of the motion in the x-y plane and in the bottom row

the vertical pushing and pulling in y-z plane. As we can see,

the human coach was successful at modifying the movement

of the robot in the desired direction using either the pushing

or pulling technique, i. e. using either the right or the left

hand to define the coaching gesture.

V. CONCLUSION AND FUTURE WORK

In this paper we developed a new coaching methodol-

ogy that makes use of coaching gestures to modify an

existing movement encoded by a periodic DMP. The DMP

modification method is based on a recursive least-squares

technique for updating the weights of periodic DMPs. With

the developed system a human teacher can iteratively modify

the previously acquired trajectories. It operates online and

can therefore provide an immediate feedback to the coach.

We presented simulation case studies where we successfully

modified the joint space trajectories to obtain the new desired

task space motions. The same method was also applied to

the JST-ICORP/SARCOS humanoid robot CBi, where the

human coach modified the humanoid robot’s behavior to

obtain the desired outcome. The proposed approach can

easily be extended to discrete DMPs.
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Fig. 9. Four different modifications of the original motion, which are also
shown in the supplemental video. The top left graph corresponds to example
1, the top right graph to example 2, the bottom left graph to example 4 and
the bottom right graph to example 5 in the supplemental video.

The main limitation of the coaching interface was the

inability of the body tracker to distinguish between the robot

and the human arm when a human teacher was close to

the robot. Although the use of Microsoft Kinect sensor is

beneficial because it can be used without much preparations,

i. e. no markers or other special equipment is necessary,

we believe that marker-based systems with more accurate

tracking would provide a better and more accurate interface

to modify the humanoid robot’s movements. With a more

reliable tracking of human coaching gestures, we could

achieve similar results on the real robot as showed in Fig. 4,

which is based on simulated data. The implementation and

evaluation of the proposed algorithm with a more accurate

body tracking system is an important goal of our future work.

On the other hand, it is important that the human interface

stays as intuitive as possible.
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