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Abstract—Auction design has recently been studied for dy-
namic resource bundling and VM provisioning in IaaS clouds,
but is mostly restricted to one-shot or offline setting. This work
targets a more realistic case of online VM auction design,
where: (i) cloud users bid for resources into the future to
assemble customized VMs with desired occupation durations,
possibly located in different data centers; (ii) the cloud provider
dynamically packs multiple types of resources on heterogeneous
physical machines (servers) into the requested VMs; (iii) the
operational costs of servers are considered in resource allocation;
(iv) both social welfare and the cloud provider’s net profit are to
be maximized over the system running span. We design truthful,
polynomial time auctions to achieve social welfare maximization
and/or the provider’s profit maximization with good competitive
ratios. Our mechanisms consist of two main modules: (1) an
online primal-dual optimization framework for VM allocation to
maximize the social welfare with server costs, and for revealing
the payments through the dual variables to guarantee truth-
fulness; and (2) a randomized reduction algorithm to convert
the social welfare maximizing auctions to ones that provide
a maximal expected profit for the provider, with competitive
ratios comparable to those for social welfare. We adopt a new
application of Fenchel duality in our primal-dual framework,
which provides richer structures for convex programs than
the commonly used Lagrangian duality, and our optimization
framework is general and expressive enough to handle various
convex server cost functions. The efficacy of the online auctions
is validated through careful theoretical analysis and trace-driven
simulation studies.

Index Terms—Cloud Computing; Auction; Resource Alloca-
tion; Pricing; Online Algorithms; Truthful Mechanisms

I. INTRODUCTION

As a major model in cloud computing services,
Infrastructure-as-a-Service (IaaS) clouds are proliferating
in today’s Internet. An IaaS cloud meets users’ realtime
resource demands through virtualization technologies, which
pack resources (e.g., CPU, RAM, disk) into virtual machines
(VMs). Major IaaS providers today typically offer pre-
configured VM instances of fixed types, with the number of
types increasing over the years. For example, Amazon EC2
currently provides 9 categories and 39 types of VMs [1], a
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substantial growth from a few years ago. Recently emerged
cloud platforms start to allow customized VMs that bundle
various resources at user-specified amounts [2][3]. Although
the granularity of resource provisioning keeps improving,
fixed pricing is still dominant in practice, charging customers
a fixed amount for each pre-configured VM [1] or each unit
of resources [2][3]. Despite the apparent simplicity, fixed-
price policies inherently lack market agility and efficiency,
jeopardizing the provider’s profit and customers’ utility.
Amazon EC2’s Spot Instance is a first-step attempt to apply
a market-based auction mechanism on VM provisioning, but
its prices have been discovered to be often not market-driven
[4], which can lead to untruthful bidding [5].

Towards better market-based pricing, auctions have recently
been designed for cloud resource allocation, for pre-configured
VMs of limited types [6][7], or for customized VMs with user-
specified resource bundles [8][9][10]. Most of the mechanisms
have focused on the one-shot or offline setting, assuming
that the bids are given all at once. Online VM auctions,
where bidders come and go at wish and allocations and
charging decisions are to be made on the spot, have only
been investigated in very limited setups. Wang et al. [7] and
Zhang et al. [11] consider only one type of VMs in their online
auctions. Shi et al. [8] study auctions over multiple rounds,
which are coupled together by an overall budget at each user,
while each acquired VM is still used for a single round. The
social welfare and revenue optimization in [10] is achieved
based on an assumption of allowing preemption of resources
reserved by a user, which is arguable at best in practice.

This work targets a more realistic and general setup in
online VM auction design with the following features. (I)
User-specified VM (future) start/end time and time-varying
resource bundle: Each cloud user submits a bid containing
multiple options, each demanding a VM assembled with a
customized bundle of resources, which can start execution at
any future time for any specified duration. The cloud provider
accepts at most one option in each bid. Besides, the resource
composition of each VM can vary over its duration, according
to the projected need of user workload. (II) Heterogeneous
servers with various resource capacities and operational costs:
The cloud provider dynamically packs multiple types of re-
sources on heterogeneous physical machines (servers) into the
requested VMs. Various server cost functions under different
server operational models are considered in resource alloca-
tion, which have not been modeled in previous cloud auctions.
(III) Social welfare maximization as well as profit maximiza-
tion in expectation: We design auctions that maximize the



IEEE/ACM TRANSACTIONS ON NETWORKING 2

social welfare on aggregate gain of the cloud provider and the
users (system efficiency), and auctions that maximize the cloud
provider’s net profit in expectation (another realistic objective),
while guaranteeing other properties including truthful bidding,
individual rationality and computationally efficiency over the
entire system running span.

The design of online allocation algorithms in our setup is
indeed challenging, when one aims to pursue social welfare
or profit that closely approaches that in the optimal offline
solution, computed using complete information in the system
span. Even in the offline setting, packing multiple types of
resources on heterogeneous servers into customized VMs
of time-varying resource composition and different durations
involves NP-hard combinatorial optimization problems. In the
online algorithm, the decision on packing or reserving re-
sources (if the VM is to start at a future time) for the requested
VM should be made upon receipt of each bid, without the
assistance of any future information. What’s more, even when
an online approximate allocation algorithm is in place, it can
be difficult to design a payment rule that works with the
allocation algorithm to guarantee desired properties such as
truthfulness [12]. The classic VCG mechanism, essentially
the only type of auction that guarantees both truthfulness and
economic efficiency in the offline setting [13], does not directly
work in the online case, since it requires the computation
of exact optimal allocation to guarantee truthfulness, which
cannot be calculated for the future requests.

The challenge further escalates when our auction model
involves operational costs of servers in the computation of
social welfare and profit (even in expectation). Most existing
auction designs ignore such (production) costs of resources,
but consider social welfare as only the overall value of
accepted bids and profit as the overall payment. Significant
difficulties are involved, preventing good results, when the
costs of resources are deducted in calculating social welfare
and profit, especially in the online setting: The allocation
problem with server costs contains a mixture of packing and
covering constraints (packing VM requests within resource ca-
pacities, and covering accepted requests by producing enough
resources and paying server costs)—such problems are known
to be more challenging than problems with only packing
constraints such as the previous models without server costs
[14]. Further, we seek to consider more generic server cost
functions that are convex instead of linear, and there were no
appropriate techniques for handling such non-linear costs until
very recently (see Sec. II for details).
Our Contributions. This paper leverages a recent develop-
ment in primal-dual online algorithm design and randomized
reduction techniques, to design a set of truthful, polynomial-
time online auctions for social welfare maximization or profit
maximization in expectation with good competitive ratios.
Our mechanisms consist of two main modules: (1) an on-
line primal-dual optimization framework for VM allocation
to maximize the social welfare with server costs, and for
revealing the payments through the dual variables to guarantee
truthfulness; and (2) a randomized reduction algorithm to con-
vert the social welfare maximizing auctions to ones that glean
a maximal expected profit for the provider, with competitive

ratios comparable to those for social welfare.
First, we model the social welfare (profit) maximization

problem using a primal-dual optimization framework, and
adopt a new application of Fenchel duality [15][16] for the
dual, which provides richer structures for convex programs
that guide the design and analysis of online auctions, than
the commonly used Lagrangian duality [17]. Our optimization
framework is general and expressive enough to handle various
convex server cost functions, e.g., cubic, linear, or zero infinity,
representing different server operation models in real-world
IaaS clouds.

Second, we design efficient primal-dual online auctions
for social welfare maximization, which extend the existing
online primal-dual resource allocation framework to handle
departures of resource requests, such that resources released
by completed VM requests can be reused by later bids. Ex-
isting online primal-dual resource allocation algorithms (e.g.,
[18][19]) do not handle resource re-use and time-varying re-
source demands in each request. To the best of our knowledge,
the only online primal-dual algorithms that address departure
of resource requests are those for online scheduling (e.g.,
[20]), which is structurally different from our problem and
the techniques cannot be easily translated to our setting. Other
highlights of the design include meticulously designed pricing
functions for updating the marginal prices per unit resource
according to the current resource usage levels, which play a
key role in achieving truthfulness and good competitive ratio.

Third, we extend our social welfare maximizing auctions
to profit maximizing in expectation ones using randomized
reduction, with minor losses in competitive ratios. To ob-
tain good competitive ratios in terms of the expected profit
with super-linear server costs (Sec. IV), we introduce a new
online primal-dual analysis for the expected profit. Previous
techniques usually compare the profit of online auctions with
the optimal social welfare, and do not easily generalize to
our model with server costs. In contrast, we compare the
the expected profit of our auctions with the dual objective
of the social welfare maximization convex program. To our
knowledge, using the online primal dual analysis for profit is
novel in the literature and may be of further interest for other
profit maximization problems.
Organization. We discuss related work in Sec. II, and define
the model in Sec. III. Sec. IV presents our online auction
under super-linear server cost functions. Sec. V discusses the
online auctions under linear server cost models. Simulations
are presented in Sec. VI. Sec. VII concludes the paper.

II. RELATED WORK

Allocating pre-configured types of VMs in an IaaS cloud
has been extensively studied with different focuses. Bel-
oglazov et al. [21] study energy-efficient allocation algorithms
for scheduling VMs to serve computing tasks. Joe-Wong et
al. [22] seek to balance efficiency and fairness when allocating
VMs to users. Maguluri et al. [23] investigate stochastic
models and algorithms for load balancing and VM allocation
to handle randomly arriving workloads. None of them inves-
tigates online optimized packing of customized VMs, which
is the focus of this work.
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Auction mechanisms have been at the focal point of recent
literature on VM pricing. Zaman and Grosu [6] study on-
demand VM allocation through a truthful auction, and show
through experiments that a higher revenue can be achieved
for the cloud provider. Their models do not include tailor-
made VM assembling. Zhang et al. [9] study customized VM
provisioning within one data center, and design a truthful
auction by applying an LP decomposition technique, achieving
a 2.72-approximation in social welfare in typical scenarios. All
these studies consider only one-round auctions , neglecting the
dynamical nature of users’ demands.

Wang et al. [7] investigates an online truthful auction where
bidders may occupy a VM for multiple interval. Wu et. al. [24]
design greedy algorithms for VM allocation and pricing for
online bids with departures. However, their models are over-
simplified and consider one type of VM only. In the cloud
market investigated by Mashayekhy et al. [25], heterogeneous
VMs are investigated but serving delay is allowed for each bid.
They design a greedy allocation rule which always chooses
the bid with the highest bid price per unit of demand among
the current bids that are not served before their deadlines.
More realistically, upon the arrival of each bid, the accep-
tance/rejection and resource provisioning decisions should be
made immediately, which is much harder to achieve.

Shi et al. [8] propose auction mechanisms over multiple
rounds which are coupled together by the overall budget of
each user, while each acquired VM is used for only one
round. We investigate a more practical setup, where each VM
can be running for various durations into the future, where
it is significantly more challenging to guarantee truthfulness
and efficiency. Online VM allocation is also studied in [10],
but a strong assumption is made on allowing preemption
of resources already occupied.In addition, none of existing
cloud auctions consider server costs in the social welfare or
provider’s profit, which is included in our model.

The online primal dual framework (see [18] for a survey)
has been used to design online algorithms and auctions for
various problems, such as the ski rental problem, metrical
task system problem and ad auctions. The original online
primal dual framework focuses on linear programs, which
does not naturally model the convex cost functions considered
in this work. Recently, there have been studies on extending
the online primal dual framework to problems modeled by
convex programs, such as online scheduling on speed-scalable
machines [20] [26], and online combinatorial auctions with
production costs [19][27]. The former is structurally different
from our problem. The latter does not handle departures of re-
source requests, while in practical scenarios of VM allocations,
each VM only occupies the requested resources for a limited
period of time, and the resources can be released and reused
afterwards. This work extends the primal-dual framework to
handle VM departures and resource recycling.

III. PROBLEM MODEL

A. Cloud System and the Auction
We consider an IaaS cloud system consisting of K data

centers (DCs) offering users R types of resources, as exem-
plified by CPU, RAM, disk storage and bandwidth. We use

X to denote the set {1, 2, ..., X}. Let Sk denote the set of
servers in data center k ∈ K. Each server s ∈ Sk can provide
a maximum amount Crs of resource r ∈ R. Cloud users arrive
over time, and each requests one tailor-made VM for workload
execution, with the amount of resources needed for each VM
specified. The IaaS cloud provider acts as the auctioneer and
sells the VMs through an online auction.

There are N cloud users participating in the auction, ar-
riving one by one within the whole time span 1, 2, . . . , T .
Suppose user n ∈ N arrives at time tn and submits a bid
Bn consisting of In options of VMs with corresponding
data center locations. In each option i ∈ In of Bn, user n
requests a VM which comprises a bundle of resources in a
future usage duration. Suppose t−ni is the start time to run
the VM in option i of Bn and t+ni is the end time, where
tn ≤ t−ni < t+ni. Let dnir(t) denote the amount of type-r
resource to be occupied at time t specified in option i of
user n. We allow dnir(t) to resume different values over the
customized usage duration t ∈ [t−ni, t

+
ni], which enables each

VM to consume a different amount of each type of resource
over time. For example, at different stages of a MapReduce
job, different CPU and bandwidth capacities may be needed
[28]. dnir(t)’s are specified in the bid based on the projected
resource need of the bidder’s workload at different times,
e.g., according to previous execution of similar workloads.
Dynamic scaling of resources occupied by a running VM is
practically feasible through “hotplug” technologies that adjust
CPU cycles, memory and disks allocated to a running VM,
as supported in various virtualization environments including
Xen, VMWare and VirtualBox [29][30]. Without loss of
generality, we assume in the following discussions that the
demands dnir(t) are much smaller compared to the server
capacity Crsk. Moreover, we allow each user n to specify
a data center kni for in each option i ∈ In , as well as a
willingness-to-pay bni for option i for the respective tailor-
made VM to run between t−ni and t+ni in the specified data
centre (vni be the respective true valuation), which indicates
his preference of obtaining the corresponding VM in the data
center. For example, a user may specify a larger bidding price
for a VM allocated in a data centre that is close to him, than
a VM in a remote data center.

A bid can be expressed as (bidding language):

Bn = {t−ni, t
+
ni, {dnir(t)}r∈R,t∈[t−ni,t+ni]

, {kni}i∈In , {bni}i∈In}. (1)

Upon receiving each bid, the cloud provider decides whether
to accept it and for which option as well as on which server
in desired DC to provision the requested VM if accepted.
A binary variable xnis is set to 1 if option i of user n is
accepted with resources allocated on server s in DC kni, and
0 otherwise. The provider also computes a payment p̂ni? for
each winning bid n.

In practice, most cloud data centers keep their servers on,
which remain in the low-power idle mode if no jobs are
running, to avoid time-consuming booting up if switched com-
pletely off [31]. The decisions of server provisioning happen
at a much larger time scale than those for VM allocation,
e.g., Amazon EC2 adjusts its server provisioning roughly once
per month, according to discussions with Amazon employees.
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Therefore, we realistically assume that all
∑
k∈K Sk servers

are turned on in the span T under our investigation. Each
server consumes a basic amount of power with no VM
running, and the power usage increases with the increase of
resource occupied on the server. The operational cost of a
server is mainly due to the power cost, following a similar
increasing trend with power consumption. We use frsk(·) to
denote the cost function of server s in DC k on the amount
of type-r resource used on the server, as indicated by yrsk(t).
The cost function is defined as follows:

frsk(yrsk(t)) =

{
hrskyrsk(t)1+βrsk , yrsk(t) ∈ [0, Crsk]
+∞, yrsk(t) > Crsk

(2)

Parameter βrsk ≥ 0 decides the shape of the cost function,
according to different operational models of the server. hrsk
indicates the relative weight of the cost due to each type of
resource in the overall server cost. For example, Dynamic
Voltage Frequency Scaling (DVFS) has been widely supported
in virtualization platforms, which adjusts the frequency or
voltage of a CPU on the fly (often in response to the workload)
to conserve its power consumption [32]. When the CPU
voltage is elevated with the utilization, the CPU power usage
renders a cubic increase with the CPU voltage [33], and hence
we can approximately use βrsk = 2 in (2) where r denotes the
CPU. If DVFS is not enabled, measurements have shown that
the server power consumption increases roughly linearly with
the utilization of CPU, memory, disk I/O and network I/O [34],
and hence we set βrsk = 0 in this case. It has also been shown
that power consumption of memory, disk I/O and network I/O
are significantly lower than that of the CPU, further ranked
in a decreasing order among themselves [35], and the power
usage due to different resources is additive [34], confirming
our additive model of the costs due to different resources.

B. Mechanism Design Goals

We target the following properties in our auction design. (i)
Truthfulness: For any bidder, declaring his true valuation of
the VM and true information (e.g., bid arrival time) in his bid
always maximizes his utility, regardless of other users’ bids.
(ii) Computational efficiency: Polynomial-time algorithms for
resource allocation and payment calculation are needed for the
auction to run efficiently in an online fashion. (iii) Individual
rationality: Each bidder obtains a non-negative utility by
participating in the auction, and the cloud provider receives
a non-negative net profit. (iv) Social welfare maximization
or provider’s profit maximization: The cloud provider’s profit
equals the aggregate user payment minus server costs, i.e.,

∑
n∈N

∑
i∈In

p̂ni
∑

s∈Skni

xnis −
∑
t∈T

∑
k∈K

∑
s∈Sk

∑
r∈R

frsk(yrsk(t)). (3)

Bid n’s utility is vni − p̂ni if accepted in option i ∈ In, and
0 otherwise. The social welfare over system span T is the
sum of the provider’s profit and the bidders’ aggregate utility,∑
n∈N

∑
i∈In (vni−p̂ni)

∑
s∈Skni

xnis (valuation minus payment
of all winning bids), which equals the aggregate valuation of
the winning bids minus the server costs,

∑
n∈N

∑
i∈In

vni
∑

s∈Skni

xnis −
∑
t∈T

∑
k∈K

∑
s∈Sk

∑
r∈R

frsk(yrsk(t)),

and
∑
n∈N

∑
i∈In

bni
∑

s∈Skni

xnis −
∑
t∈T

∑
k∈K

∑
s∈Sk

∑
r∈R

frsk(yrsk(t))

under truthful bidding. A cloud system operates at the maximal
efficiency if social welfare is maximized over the running
span, benefiting both the cloud provider and users. An equally
natural goal is to maximize the provider’s profit, which we will
also pursue with efficient online auction design.

The offline VM allocation and winner determination prob-
lem can be formulated as follows, supposing all the informa-
tion of the N bids in total within system span T are known and
truthful bidding is guaranteed. The objective in (4) indicates
social welfare maximization, and can be easily changed to
profit maximization by replacing the social welfare with the
provider’s profit in (3).

maximize
∑
n∈N

∑
i∈In

∑
s∈Skni

bnixnis−
∑
t∈T

∑
k∈K

∑
s∈Sk

∑
r∈R

frsk(yrsk(t))

(4)

subject to: ∑
i∈In

∑
s∈Skni

xnis ≤ 1, ∀n ∈ N (4a)

∑
n∈N ,i∈In:

s∈Skni t
−
ni≤t≤t

+
ni

dnir(t)xnis ≤ yrsk(t), ∀r ∈ R, s ∈ Sk, k ∈ K, t ∈ T (4b)

xnis ∈ {0, 1}, ∀s ∈ Skni , i ∈ In, n ∈ N (4c)

yrsk(t) ≥ 0, ∀r ∈ R, s ∈ Sk, k ∈ K, t ∈ T (4d)

Here, constraint (4a) indicates that at most one option is
accepted for a user and the requested VM is provisioned on at
most one server of the data center. (4b) sums up the amount
of type-r resource needed by all accepted bids on server s of
DC k at t (counting only bids whose VMs are running at t)
into yrsk(t). Recall the definition of the cost function in (2):
by setting frsk(yrsk(t)) = +∞ when yrsk(t) exceeds Crsk
(the overall capacity of type-r resource on server s in DC k),
it is (implicitly) guaranteed that the allocation of each type of
resource on any server will not go beyond the capacity limit.

The offline problem in (4) is a convex mixed integer pro-
gram with a concave objective function and linear constraints.
We relax the integrality constraints xnis ∈ {0, 1} to xnis ≥ 0
(constraint (4a) guarantees xnis ≤ 1), and apply Fenchel
duality [16] to the relaxed convex program. As compared to the
well-known Lagrangian duality defined generically for convex
and non-convex programs, Fenchel duality is defined only
for convex programs, and the derived Fenchel dual problems
typically present richer structures that guide the design and
analysis of primal-dual online algorithms.

Let un and prsk(t) be the dual variables associated with (4a)
and (4b), respectively. The Fenchel dual [16] of the relaxed
convex program is as follows:

minimize
∑
n∈N

un +
∑
t∈T

∑
k∈K

∑
s∈Sk

∑
r∈R

f∗rsk(prsk(t)) (5)

subject to:
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un ≥ bni −
t+ni∑
t=t−ni

∑
r∈R

dnir(t)prskni (t), ∀s ∈ Skni , i ∈ In, n ∈ N (5a)

prsk(t) ≥ 0, ∀r ∈ R, s ∈ [S], t ∈ T (5b)

un ≥ 0, ∀n ∈ N (5c)

where f?rsk(prsk(t)) is the conjugate of the cost function
frsk(·), defined as

f?rsk(prsk(t)) = sup
yrsk(t)≥0

{prsk(t)yrsk(t)− frsk(yrsk(t))} (6)

Proposition 1. The conjugate of frsk(yrsk(t)) in (2) is

f?rsk(prsk(t))

=

 (
prsk(t)
1+βrsk

)
1+βrsk
βrs

βrsk

(hrsk)
1

βrsk

, y0rsk(t) ≤ Crsk

Crskprsk(t)− hrsk(Crs)1+βrsk , y0rsk(t) > Crsk

(7)

where y0rsk(t) = ( prsk(t)
hrsk(1+βrsk)

)
1

βrsk .

The offline allocation problem and its Fenchel dual are
established assuming complete knowledge about the system
over its entire lifespan. In practice, with the arrival of bids,
the variables and constraints emerge gradually. For example,
on the arrival of user n, there is a set of new primal
variables xnis for all i ∈ In and s ∈ Skni subject to∑
i∈I
∑
s∈Skni

xnis ≤ 1. The cloud provider must decide
immediately whether to reject Bn or accept one of the options
of the bid. For the chosen option i? of a winning bid n,
the provider will select a server in the customized DC kni?

and calculate the user’s payment. In the following, we design
online primal-dual allocation algorithms and payment schemes
based on (4) and (5).

IV. ONLINE AUCTIONS FOR SOCIAL WELFARE AND
PROFIT MAXIMIZATION

In this section, we focus on the case of superlinear server
cost functions, i.e., hrsk > 0 and βrsk > 0 in (2), and design
online auctions for social welfare maximization (Sec. IV-A)
and profit maximization in expectation (Sec. IV-B). We will
discuss the case of linear server cost functions (with zero
server cost as a special case) in Sec. V.

A. Online Auction for Social Welfare Maximization

1) Auction Design: Deciding whether to serve a new bid
set Bn and how to choose an option i ∈ In as well as on
which server with the user’s location requirement fulfilled
is equivalent to choosing a feasible assignment for the new
primal variables xnis (i ∈ In, s ∈ Skni ). If the cloud
provider decides to serve bid i on some server si in data
center kni, then let xnis = 1, and increase the amount of
allocated resources yrs?kni? (t) (i? is the chosen option and
s? is the assigned server) by dni?r(t) on server s? in data
center kni for all resources r ∈ R and for all time slots
t ∈ [t−ni, t

+
ni]. As a result, the total server cost of s? in

kni,
∑
t∈T

∑
r∈R frs?kni(yrs?kni(t)), increases accordingly.

Otherwise, xnis will be zero for all servers s ∈ Skni .

VM Allocation. The question is whether and how to select
the option i? ∈ In for user n, as well as how to choose on
which server in the user specified data center kni? for the
chosen option i? if accepting Bn. For this we will look into
the dual program and resort to the KKT conditions [17]. With
bid set Bn, there is a new dual variable un ≥ 0 subject to
constraints (5a), i.e., un ≥ bni −

∑
t∈[t−ni,t

+
ni]

∑
r∈R dnir(t)prsk(t)

for all s ∈ Skni and all i ∈ In. The KKT conditions indicate
that in the offline primal and dual solutions to (4) and (5), xnis
must be zero unless constraint (5a) is tight for server s ∈ Skni
and i ∈ In. Thus, we let un be the maximal of 0 and the right
hand side (RHS) of constraints (5a), i.e., un =

max

{
0,maxs∈Skni ,

i∈In

{
bni −

∑
t∈[t−ni,t

+
ni]

∑
r∈R dnir(t)prsk(t)

}}
.

(8)

Accordingly, we adopt the following method to decide whether
to choose an option of a bid and on which server: the cloud
provider does not accept any bid i ∈ In, i.e., xnis = 0 for
all s ∈ Skni and i ∈ In, if no server s ∈ Skni for any bid
i ∈ In achieves a non-negative value on the RHS of (5a) (i.e.,
un = 0). Otherwise, we select a bid i? ∈ In and a server
s? ∈ Ski?n that maximizes the RHS.
Rationale: If we interpret prsk(t) as the marginal price
(a.k.a. payment) per unit of type-r resource on server s in
DC k at time t, then the second term on the RHS of (5a)
becomes the tentative payment that bid n should pay for the
requested resources in option i ∈ In on server s ∈ Skni , i.e.,

p̂ni =
∑

t∈[t−ni,t
+
ni]

∑
r∈R

dnir(t)prsk(t). (9)

So the RHS of (5a) for a given s and i is the utility of
Bn if option i is accepted and would be served on server s
in kni (valuation minus payment, assuming truthful bidding).
Since each bid have at most one accepted option, p̂ni? is the
final payment of user n, denoted by p̂ni? . Therefore, the above
method effectively selects an option i ∈ In and assigns it to
the server s that maximizes the utility of Bn, and un is user
n’s utility. In this way, we target utility maximization for each
user, leading to truthfulness and social welfare maximization.
Payment Design. Furthermore, the cloud provider updates the
marginal prices prsk(t) as the amounts of allocated resources
yrsk(t) change, before calculating tentative payment p̂ni of
each i ∈ In in Bn using (9), to ensure that: (i) the gain in
social welfare when a bid is served outweighs the loss in total
server cost, and (ii) the cloud does not allocate all resources to
low value bids that come early at the risk of having no capacity
left for high value bids in the future. Indeed, designing the
online pricing rules is the key to obtain a good competitive
ratio in social welfare, as compared to the offline optimum.
Again, our method of pricing is driven by the structure of the
offline primal and dual solutions. Let ỹrsk(t) be total demand
of resource r on server s in DC k at time t, and p̃rs(t) be
the respective marginal prices in the offline primal and dual
solutions. If ỹrsk(t) is smaller than the capacity Crsk, the
marginal price p̃rsk(t) shall be equal to the marginal cost per
unit of the resource, f ′rsk(ỹrsk(t)); if the demand meets its
capacity, the marginal price shall serve as a threshold to filter
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Algorithm 1: Primal-Dual Online Auction PD1

Input: K, S, R, C, h, β
Output: x,p

1 Define frsk(yrsk(t)) and prsk(yrsk(t))according to (2) and (10);
2 Initialize xnis = 0, yrsk(t) = 0, un = 0, prsk(t) = 0;
3 Upon the arrival of the nth bid
4 Get bidding language Bn according to (1);
5 (xni, p̂ni? , p, y) = CORE(K,S,R,Bn,p,y,p(y));
6 if ∃s? ∈ Skni? , xni?s? = 1 then
7 Accept bid n and allocate resources on server s? in kni? ;
8 Charge bid n at p̂ni? ;
9 else

10 Reject bid n;
11 end

Algorithm 2: One-Round Auction Algorithm CORE
Input: K, S, R, Bi, p, y,p(y)
Output: xni, p̂ni, p, y, (n, i?, s?)n∈N

1 Update the dual variable un (utility) according to (8);
2 if un > 0 then
3 (i?, s?) =

argmaxs∈Skni ,
i∈In

{
bni −

∑
t∈[t−ni,t

+
ni]

∑
r∈R dnir(t)prsk(t)

}
;

4 Calculate the payment of Bn if accepted in option i?:
5 p̂ni? =

∑
t∈[t−

ni?
,t+
ni?

]

∑
r∈R dni?r(t)prskni? (t).;

6 Update the primal variables:
7 xnis? = 1, and xnis = 0 for all (i, s) 6= (i?, s?);
8 yrs?kni? (t) = yrs?kni? (t) + dnir(t) ∀r ∈ R, t ∈ [t−ni, t

+
ni];

9 Update the dual marginal price variables:
10 prs?kni? (t) = prs?kni? (yrs?kni? (t)) ∀r ∈ R, t ∈ [t−ni, t

+
ni];

11 else
12 xnis = 0 for all s ∈ Sni and i ∈ In;
13 end

out the low value bids, such that the demand subject to the
prices is equal to the capacity.

In this online setting, however, the cloud provider can see
only the current demands of resources, not the final demands.
Therefore, it predicts the final demands based on the current
ones and set prices accordingly. Our approach is predicting the
final demand of a resource r on server s in DC k to be δrsk
times its current demand if the predicted final demand does
not exceed the capacity, for a fixed parameter δrsk > 1 to be
determined later, and set the marginal price to be prsk(t) =
f ′rsk(δrskyrsk(t)). If the above predicted final demand exceeds
the capacity, the cloud provider needs to predict the final
threshold price (subject to which the demand equals the capac-
ity) and use it as the marginal price. For this we use the state-
of-the-art technique in online resource allocation (e.g., [36]),
and let the marginal price increase exponentially in the current
demand, i.e., prsk(t) = f ′rsk(Crsk) exp(θrsk(yrsk(t)− Crsk/δrsk)),
where θrsk is a parameter to be determined later, if the
predicted final demand exceeds the capacity. In summary, the
marginal price prsk(t), is defined to be a function on yrsk(t)
as follows (for all r ∈ R, s ∈ Sk, k ∈ K and t ∈ T ):

prsk(yrsk(t)) =

{
f ′rsk(δrskyrsk(t)), yrsk(t) ≤ Crsk

δrsk

f ′rsk(Crsk)e
θrsk(yrsk(t)−

Crsk
δrsk

)
, otherwise

(10)
We will show in Sec. IV-A2 that such a price function has nice
properties, guaranteeing competitiveness of the online auction.
Auction Mechanism. Directed by the discussions above, we

design the online auction algorithm PD1, as given in Alg. 1.
Upon arrival of each user n, we calculate the payment for a
winning bid with the chosen option i? ∈ In by summing up
the product of resource demand and current marginal price on
the selected server s? for all resources over the occupation
period (line 5). We update primal variables by setting xni?s?
of the selected bid and server to 1 (line 7), and increase the
utilization yrs?kni? (t) for different resources for future time
slots t ∈ [t−ni? , t

+
ni? ]. Here, i? labels the accepted option for

each winning bid and s? denotes the chosen server to provision
resources for the corresponding bid. They are both updated
each time the algorithm accepts a bid. We update the dual
marginal price variables prs?kni? (t)’s according to (10) (line
10). We note that recycling of resources is implicitly handled
by increasing yrs?kni? (t)’s with bid n’s resource demand, only
for time slots within specified duration [t−ni? , t

+
ni? ].

2) Analysis: (i) Truthfulness, Individual Rationality, and
Polynomial Time
Theorem 1. The online auction PD1 in Alg. 1 is truthful and
individually rational, and processes each bid in O(RSIT )
time, where S = maxk∈K Sk and I = maxn∈N In.

The detailed proof can be found in Appendix A.

(ii) Competitiveness in Social Welfare
We next analyze the competitive ratio of our online auction,

i.e., the worst-case upper-bound ratio of the social welfare
achieved by the offline solution of (4) to the overall social
welfare achieved by our online auction at the end of time
T . We start by introducing an online primal-dual analysis
framework, which bounds the ratio according to a bound
between the increase of primal objective value and the increase
of dual objective value at each step of the online algorithm.

Let P 0 = 0 and D0 be the initial values of the primal
and dual objectives. Let Pn and Dn denote the primal and
dual objective values after handling user n. ynrsk(t) denotes
the amount of allocated type-r resource on server s in DC k
after handling user n, and pnrsk(t) denotes the corresponding
marginal price. Note that PN and DN are the primal and
dual objective values at the end of time T . Let OPT be the
optimal primal objective value of (4), i.e., the offline optimal
social welfare.

Lemma 1. If (i) there is a constant α ≥ 1 such that the incre-
mental increase of the primal and dual objective values differ
by at most an α factor, i.e., Pn − Pn−1 ≥ 1

α (Dn −Dn−1),
for every step n, and (ii) the initial dual objective value D0

is at most 1
2OPT , then the algorithm is 2α competitive.

Proof. Summing up the inequality of each step n, we have

PN =
∑
n(Pn − Pn−1) ≥ 1

α

∑
n(Dn −Dn−1) = 1

α
(DN −D0).

Here, we use the fact that P 0 = 0. By weak duality [17],
DN ≥ OPT . Further by our assumption that D0 ≤ 1

2OPT ,
we have PN ≥ 1

2αOPT . So the algorithm is 2α competitive.

In fact, the initial dual value of our algorithm PD1 is
D0 = 0. Thus our algorithm is α (instead of 2α) com-
petitive, if we can find the smallest α ≥ 1 such that
Pn−Pn−1 ≥ 1

α (Dn−Dn−1) for all steps n, since it achieves
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PN = 1
α (DN −D0) = 1

αD
N ≥ 1

αOPT . The key to identify
this α is to show that our constructed marginal pricing function
prsk(t) in (10) satisfies an Allocation-Payment Relationship
contingent on this α, which is sufficient to guarantee the
inequality in Lemma 1, based on Theorem 2.

Definition 1. The Allocation-Payment Relationship for a given
parameter α ≥ 1 is

pn−1
rsk (t)

(
ynrsk(t)− yn−1

rsk (t)
)
−
(
frsk(ynrsk(t))− frsk(yn−1

rsk (t))
)

≥ 1
α

(
f?rsk(pnrsk(t))− f?rsk(pn−1

rsk (t))
)
, (11)

for all r ∈ R, s ∈ Sk, t ∈ [t−ni , t
+
ni ], i ∈ In and n ∈ N .

The Allocation-Payment Relationship shows that the dif-
ference between payment for type-r resource on server s in
DC k (according to the old price before handling n) and the
incremental cost of server s in DC k due to bid n’s additional
use of resource r, is no smaller than 1

α of the value increase of
the conjugate f?rsk due to the adjustment of the marginal price.
Since the payment of user n according to the adjusted price is
no smaller than pn−1rsk (t)dnir(t), it guarantees that the payment
from a bid if served can cover the loss in the server cost to a
guaranteed extent. Concretely, the following lemma shows that
the expected net profit is lower bounded by a constant fraction
of the increase in the dual objective due to the increase of dual
prices prsk(t).

Lemma 2. If the Allocation-Payment Relationship holds for
α ≥ 1, then for each user n, his accepted bid in ∈ Bn and the
corresponding server s? ∈ Skni? selected for serving option
i? of Bn satisfy

p̂ni?−
∑
t∈[t−ni,t

+
ni]

∑
r∈R

(
frs?k(ynrs?k(t))− frs?k(yn−1

rs?k(t))
)

≥ 1
α

(Dn −Dn−1 − un)

Proof. Recall that

p̂ni? =
∑

t∈[t−in ,t
+
in

]

∑
r∈R

(
ynrs? (t)− yn−1

rs? (t)
)
pn−1
rs?k(t)

and that Dn −Dn−1 =

un +
∑
t∈[t−in ,t

+
in

]

∑
r∈R

(
f?rs?k(pnrs?k(t))− f?rs?k(pn−1

rs?k(t))
)
.

The lemma follows by summing the Allocation-Payment
Relationship (11) over all r ∈ R and t ∈ [t−in , t

+
in

].

Theorem 2. If the Allocation-Payment Relationship holds for
α ≥ 1, then Pn − Pn−1 ≥ 1

α
(Dn −Dn−1) for all n ∈ N .

Proof. If user n is rejected, then Pn−Pn−1 = Dn−Dn−1 = 0.
Otherwise, The change of primal objective is Pn − Pn−1 =

bni −
∑
t∈[t−in ,t

+
in

]

∑
r∈R

(
frs?k(ynrs?k(t))− frs?k(yn−1

rs?k(t))
)

Note that bni = un + p̂ni? . By Lemma 2, we get that

Pn − Pn−1 ≥ un + 1
α

(Dn −Dn−1 − un)

By un ≥ 0, α ≥ 1, we have Pn − Pn−1 ≥ 1
α

(Dn −Dn−1).

We next find the smallest α ≥ 1 for which our marginal
price functions satisfy the respective Allocation-Payment Rela-
tionship. Note that each inequality (11) in Definition 1 involves
only quantities about the same resource r and the same server
s. Therefore, we will identify a separate ratio αrsk ≥ 1 for

each combination of r, s, and k such that the marginal pricing
functions on r, s and k satisfy the Differential Allocation-
Payment Relationship decided by this αrsk (Definition 2).
We can then take α as the maximum of all αrsk’s, i.e.,
α = maxr∈R,s∈Sk,k∈K] αrsk, to satisfy (11) for all r, s and
k. Then we can derive a differential version of the Allocation-
Payment Relation (11) based on dnir(t) = dyrsk(t) for all
k ∈ K, s ∈ Sk, t ∈ [t−ni, t

+
ni], as follows:

Definition 2. The Differential Allocation-Payment Relation-
ship for a given parameter αrs ≥ 1 is

prsk(t)dyrsk(t)− f ′rsk(yrsk(t))dyrsk(t)
≥ 1

αrsk
f?rsk

′
(prsk(t))dprsk(t),

∀r ∈ R, s ∈ Sk, k ∈ K, t ∈ [t−ni, t
+
ni], i ∈ In, and n ∈ N . (12)

Lemma 3. The marginal payment function defined in (10)
satisfies the Differential Allocation-Payment Relationship for

αrsk = max
{
4(1 + βrsk),

2(1+βrsk)
βrsk

ln( Ur

hrsk(1+βrsk)C
βrsk
rsk

)}
,

with parameters

δrsk = max
{
2, (1 + βrsk)

1
βrsk

}
,

θrsk = max
{
δrsk
Crsk

βrsk,
δrsk

Crsk(δrsk−1)
ln( Ur

hrsk(1+βrsk)C
βrsk
rsk

)}
,

where Ur = max
i∈In,n∈N ,t∈T

bni
dnir(t)

is the upper bound of the value per unit of resource r per
unit of time. It serves as the upper bound of the unit price of
resource r such that no bid could be accepted at price Ur.

We will need the following lemma, which states that the
marginal payment is greater than the marginal cost by at least
a 1 + βrsk factor.

Lemma 4. For yrsk(t) ∈ [0, Crsk] and the corresponding
prsk(t), we have that prsk(t) ≥ (1 + βrsk)f ′rsk

(
yrsk(t)

)
=

hrsk(1 + βrsk)2yrsk(t)βrsk , for the parameters in Lemma 3.

The proofs of Lemma 4 and Lemma 3 are given in Appen-
dices B and C. We next obtain the competitive ratio of online
auction PD1.

Theorem 3. The online auction PD1 in Alg. 1
is α1-competitive in social welfare, for α1 =
maxr∈R,s∈Sk,k∈K αrsk with the parameters given in
Lemma 3.

Proof. By Lemma 3, the marginal prices used by online
auction PD1 satisfies the Differential Allocation-Payment Re-
lationship defined in (12) for α1. By the assumption that each
dyrs?k = yirs?k(t)−yn−1rs?k(t) = dnir(t) is very small compared
to the capacity (and that dyrsk(t) = ynrsk(t) − yn−1rsk (t) = 0
for any s 6= s? or k 6= kni), we get that

frsk
(
ynrsk(t)

)
− frsk

(
yn−1
rsk (t)

)
= f ′rsk

(
yn−1
rsk (t)

)(
ynrsk(t)− yn−1

rsk (t)
)

f?rsk
(
pnrsk(t)

)
− f?rsk

(
pn−1
rsk (t)

)
= f?′rsk

(
pn−1
rsk (t)

)(
pnrsk(t)− pn−1

rsk (t)
)
.

So (12) holds implies that the Allocation-Payment Relation-
ship (11) also holds for α1. Then, by Lemma 1, Theorem 2,
the theorem follows.



IEEE/ACM TRANSACTIONS ON NETWORKING 8

Algorithm 3: Randomized Online Auction RPD1

Input: S, K, R, C, h, β, Lr , Ur
Output: x,p

1 DEFINE χ = maxr∈[R]
RUr
Lr

, β̃ = min
s∈Sk,r∈R

βrsk;

2 INITIALIZE xis = 0, yrs(t) = 0, ui = 0, prs(t) = 0;

3 Upon the arrival of the ith bid
4 Get bidding language Bi according to (1);
5 (xni, p̂ni,p,y) = CORE(K,S,R,Bn,p,y,p(y));
6 if ∃s?, i?, xni?s? = 1 then
7 Update

p̃ni? = max
{∑

r∈R
∑
t∈[t−i ,t

+
i ]
dnir(t)

Lr
R
, p̂ni?

}
8 Generate a random number η such that:

η =

{
1 with prob. 1

2
2j with prob. 1

2 log2 χ
for j = 1, . . . , log2 χ

(13)

9 if bi ≥ ηp̃i then
10 Accept option i? of bid n, serve it on s? of kni? , and charge

ηp̃ni? ;
11 else
12 Reject bid n;
13 end
14 else
15 Reject bid n;
16 end

B. Online Auction for Profit Maximization in Expectation

Next, we present an online auction for profit maximization
in expectation based on the social welfare maximizing online
auction PD1, inspired by a randomized reduction technique
[37]. While the idea of increasing the payment by a randomly
chosen power-of-2 factor is similar to [37], the analysis of
[37] does not extend to our setting with server costs and
our analysis is fundamentally different. In particular, we will
use an online primal-dual analysis, comparing the expected
profit of our online auction to the dual objective value of
the social welfare optimization problem. To the best of our
knowledge, using the online primal dual framework to analyze
profit is new in the literature, and the only known technique
for analyzing profit with resource costs is the work by Blum
et al. [27]. However, the competitive ratio achieved by their
technique grows logarithmically in the number of bids, which
is undesirable as we are interested in systems involving a
large number of bids. In contrast, our competitive ratio is
independent on the number of bids. Further, the technique of
[27] incurs an additive loss in expected profit (other than the
multiplicative competitive ratio) while our technique does not.

1) Auction Design: We first introduce a few parameters:
βmin is the minimum of βrsk; Lr and Ur are the lower and
upper bounds of a user’s value per unit of resource per unit
of time, respectively.

βmin = min
r∈R,s∈Sk,k∈K

βrsk

Lr = min
i∈In,n∈N

bin

R
∑
t∈[t−i ,t

+
i ]
dnir(t)

Ur = max
i∈In,n∈N ,t∈T

bin

dnir(t)

(14)

The online auction RPD1 is presented in Alg. 3. The idea is
to use PD1 to first obtain a tentative allocation and payment

for each bid, and then re-examine each tentatively accepted
bid with a boosted payment to improve profit in expectation.
If the bidding price of the bid is larger than the respective
boosted payment, it will be accepted; otherwise it will be
rejected. Here, PD1 serves as a pre-screening step that filters
out low-value bids, giving us a set of bids whose total value
is comparable to the offline optimal social welfare (according
to the competitive analysis of PD1). The problem is that the
payment chosen by PD1 for, say, the bid Bin , could be much
smaller than its true value bin , leaving us with little profit. To
resolve this problem, RPD1 increases the tentative payment
in two steps to guarantee that it is close to the true value vi
with non-trivial probability. First note that for any resource r,
by the definition of Lr, the true value (bid price) of bid Bin
is at least

bni ≥
∑
t∈[t−in ,t

+
in

] dnir(t)Lr .

Since the above holds for any resource, we further get that

bnin ≥
∑
r∈R

∑
t∈[t−in ,t

+
in

] dnir(t)
Lr
R

By this observation, RPD1 raises the tentative payment to

p̃ni? = max
{∑

r∈R
∑
t∈[t−in ,t

+
in

] dnir(t)
Lr
R , p̂ni?

}
The above payment can still be very far from the true value
vni? , where i? is the chosen option of the tentatively accepted
bid n. Hence, RPD1 further multiply p̃ni? by a randomly
chosen power of 2, denoted as η, which is drawn from a
carefully chosen distribution (i.e., (13)). By doing so, the final
payment is within a factor of 2 (and lower than) the true value
vni? with non-trivial probability. We note that Alg. 3 requires
Ur and Lr as input, whose exact values are not known before
all bids have arrived. Instead, we adopt estimated values of
the upper and lower bounds as input to our online algorithm,
e.g., based on past experience. We will show in the simulations
good performance of the auction even if the estimation is quite
different from the actual value.

2) Analysis: (i) Truthfulness, Individual Rationality, and
Polynomial Time

Theorem 4. The randomized online auction RPD1 in Alg. 3
is truthful and individually rational, and processes each bid
in O(RSIT ) time, where S = maxk∈K Sk and I = maxn∈N In.

The proof of truthfulness and time complexity of bid
processing follows similarly to the proof of Theorem 1, and
is hence omitted.
(ii) Competitiveness in Expected Profit

Theorem 5. The randomized online auction RPD1 in Alg. 3
is O(α1 + log2 χ)-competitive in expected profit, where α1

is given in Theorem 3, χ = maxr∈R
RUr
Lr

with Ur and Lr
defined in (14).

Proof. Let Rn denote the expected profit that RPD1 generates
from the first n bids (R0 = 0). We will use an analysis similar
to the online primal dual approach, and show that for any
n ∈ N , we have

O
(
α1 + log2 χ

)
· (Rn −Rn−1) ≥ Dn −Dn−1 (15)

where Dn is dual objective of primal dual auction PD1
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after handling user n. The theorem follows because the ex-
pected profit of RPD1 at the end of the instance satisfies
O
(
α1 + log2 χ

)
RN ≥ DN − D0 ≥ OPT , where the last

inequality holds because DN ≥ OPT (weak duality) and
D0 = 0 (definition of PD1). It remains to prove (15). If bid
n is not accepted by PD1, it is not accepted by RPD1 either.
Therefore, both sides of (15) are zero. Next, suppose option
i? of bid n is accepted by PD1. Let

cni? =
∑
t∈[t−

ni?
,t+
ni?

]

∑
r∈R f

′
rs?k

(
yrs?k(t)

)
dyrs?k(t) (16)

denote the increase of server costs if option i? of bid n is
accepted. Then,

Rn −Rn−1 = Pr[η = 1] ·
(
p̃ni? − cni?

)
+
∑log2 χ
j=1 Pr[η = 2j ] · 1bni?≥2j p̃ni?

· 2j
(
p̃ni? − cni?

)
= 1

2

(
p̃ni? − cni?

)
+ 1

2 log2 χ

∑log2 χ
j=1 1bni?≥2j p̃ni?

·
(
2j p̃ni? − cni?

)
(17)

where 1bni?≥2j p̃ni? equals 1 if bni? ≥ 2j p̃n, and equals
0 otherwise. By Lemma 2 and Lemma 3 (also recall the
definition of cni in (16)), we have

p̃ni? − cni? ≥ p̂ni? − cni? ≥ 1
α1

(Dn −Dn−1 − un) (18)

So the first term of (17) alone is almost sufficient for showing
(15) modulo the un term. The rest of the proof is divided
into two cases depending on whether bni? < 2p̃ni? (only
the first term in (17) is non-zero, but bni? and, thus, un are
small), or not (bni? and, thus, un are large, but we get positive
contribution from the second term of (17)).
Case 1: bni? < 2p̃ni? . Note that

p̃ni? ≥ p̂ni? =
∑
r∈R

∑
t∈[t−

ni?
,t+
ni?

]
prs?k(t)dyrs?k(t) .

By Lemma 4, p̃ni? is at least∑
r∈R

∑
t∈[t−

ni?
,t+
ni?

]
(1+βrsk)f ′rs?k

(
yrsk(t)

)
dyrs?k(t) ≥ (1+βmin)cni?

Note that 1bni?≥2j p̃ni? = 0 for all j ≥ 1. We get that

Rn −Rn−1 = 1
2

(
p̃ni? − cni?

)
≥ 1

6
(p̂ni? − cni? ) + 1

3

(
p̃ni? − cni?

)
(p̃ni? ≥ p̂ni? )

≥ 1
6

(p̂ni? − cni? ) + βmin
3(1+βmin)

p̃ni? (p̃ni? ≥ (1 + βmin)cni? )

≥ 1
6

(p̂ni? − cni? ) + βmin
6(1+βmin)

un (un ≤ bni? < 2p̃ni? )

≥ 1
6α1

(Dn −Dn−1 − un) + βmin
6(1+βmin)

un (by (18))

By definition of αrsk, αrsk ≥ 1
βrsk

. Recall α1 =

maxr∈R,s∈Sk,k∈K αrsk. So α1 ≥ 1 + 1
βmin

. Putting together,
(15) follows because

Rn−Rn−1 ≥ 1
6α1

(Dn−Dn−1−un) + βmin
6
un ≥ 1

6α1
(Dn−Dn−1)

Case 2: bni? ≥ 2p̃ni? . On one hand, by our choice of p̃ni? ,
it is at least p̃ni? ≥

∑
r∈R

∑
t∈[t−

ni?
,t+
ni?

] dnir(t)
Lr
R .

On the other hand, by the definition of Ur, the true value
is at most bni? ≤

∑
r∈R

∑
t∈[t−

ni?
,t+
ni?

] dni?r(t)Ur

So bni?
p̃ni?

≤ RUr
Lr
≤ χ. Since η is a randomly chosen power

of 2 between 1 and χ, with probability 1
2 log2 χ

, η satisfies
1
2bni? ≤ ηp̃ni? ≤ bni? and, thus, RPD1 accepts option i?

of bid n and obtains profit at least 1
2bni? in expectation.

Therefore, Rn−Rn−1 ≥ 1
2 (p̃ni?−cni?)+ 1

2 log2 χ
1
2bni? (recall

(17)). By (18), the first term is at least 1
2α1

(Dn−Dn−1−un).

Algorithm 4: Primal-Dual Online Auction PD2

Input: S, R, C, h, σ
Output: x,p

1 DEFINE frsk(yrsk(t)) and prsk(yrsk(t)) according to (19) and (21);
2 INITIALIZE
xnis = 0, yrsk(t) = 0, un = 0, prsk(t) = Lr−hrsk

2R
∑
k∈K Sk

+ hrsk;

3 Upon the arrival of the ith bid
4 Get bidding lauguage Bi according to (1);
5 (xni, p̂ni, p, y) = CORE(K,S,R,Bn,p,y,p(y));
6 if ∃i?, s?, xni?s? = 1 then
7 Accept bid n on server s? of kni? , and charge it at p̂ni? ;
8 else
9 Reject bid n;

10 end

The second term is at least 1
4 log2 χ

ui because bid i’s utility
is at most its value. Putting together, the expected profit from
bid i is at least

Rn −Rn−1 ≥ 1
2α1

(Dn −Dn−1 − un) + 1
4 log2 χ

un

≥ 1
2α1+4 log2 χ

(Dn −Dn−1 − un) + 1
2α1+4 log2 χ

un

= 1
2α1+4 log2 χ

(Dn −Dn−1)

So the theorem holds in case 2 as well.

(iii) Competitiveness in Social Welfare

Theorem 6. Randomized online auction RPD1 in Alg. 3 is
2α1-competitive in expected social welfare, where α1 is given
in Theorem 3.

Proof. Consider any bid i that is accepted by PD1, RPD1 will
tentatively accept the bid and then re-examine it with randomly
chosen boosted payment. With probability 1

2 , η = 1. Further
note that when η = 1, bni? ≥ ηp̃ni? and, thus, RPD1 will
accept option i? of bid n. In sum, for every bid i that is
accepted by PD1, RPD1 would accepted it with probability at
least 1

2 . Therefore, the expected social welfare of RPD1 is at
least a half of the social welfare of PD1.

V. EXTENSION TO LINEAR SERVER COSTS

In this section, we extend the auction design in Sec. IV to
the setting of linear server cost functions, i.e., βrs = 0 in (2)
such that

frsk(yrsk(t)) =
{

hrskyrsk(t), yrsk(t) ∈ [0, Crsk]
+∞, yrsk(t) > Crsk

(19)

which says that the marginal cost per unit of resource usage
is a constant (hrsk) within the capacity constraint.

Proposition 2. The conjugate of frsk(yrsk(t)) defined in (19)
is
f?rsk(prsk(t)) =

{
0, prsk(t) ≤ hrsk
(prsk(t)− hrsk)Crs, prsk(t) > hrsk

(20)

A. Social Welfare Maximization

We adapt online auction PD1 to online auction PD2 for
linear cost functions, as given in Alg. 4. We define a new
marginal payment function:

prsk(yrsk(t)) = Lr−hrsk
2R

∑
k∈K Sk

(
2R

∑
k∈K Sk(Ur−hrsk)
Lr−hrsk

) yrsk(t)

Crsk +hrsk ,

(21)
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where Lr and Ur are defined in (14). For each i of bid n such
that bni/

∑
t∈[t−ni,t

+
ni
dnir(t) ≤ hrsk, its value is smaller than

the server cost needed to serve it and, thus, will be rejected. So
we can assume without loss of generality that Lr > hrsk. The
marginal price prsk(t) is a function of the amount of currently
allocated resource yrsk(t). prsk(t) is higher than marginal
operational cost hrsk to guarantee non-negative utility of the
provider. The initial marginal price is low enough such that
any bid (subject to Lr which lower bounds a bid’s value per
unit of resource per unit of time) will be accepted. Then, the
marginal price prsk(t) increases as yrsk(t) increases to ensure
that a server will not allocate all capacity of a resource to low
value bids. Finally, the marginal price is high enough (larger
than Ur – upper bound of a bid’s value per unit of resource
per unit of time) when yrsk(t) > Crsk to make sure a server
will not allocate more resources than its capacity. PD2 also
uses PD1 as a sub-routine. The only difference between PD1

and PD2 are the marginal price functions and initial values of
the marginal prices, due to different server cost functions.

Theorem 7. The online auction PD2 in Alg. 4 is truthful and
individually rational, and runs in polynomial time.

The proof is similar to that of Theorem 1 and thus omitted.

Theorem 8. The online auction PD2 in Alg. 4 is 2α2-
competitive in social welfare with

α2 = max
r∈R,s∈Sk,k∈K

ln(
2R

∑
k∈K Sk(Ur−hrsk)
Lr−hrsk

) , (22)

assuming the offline optimal social welfare (OPT) is at least
1

R
∑
k∈K Sk

∑
t∈T

∑
k∈K

∑
s∈Sk

∑
r∈R(Lr − hrsk)Crsk .

Before we get to the proof of the theorem, let us first explain
how to interpret the assumed lower bound on the offline
optimal social welfare. Recall that Lr − hrsk is the minimum
social welfare generated by a bid that demands resource r and
is allocated to server s in DC k, per unit of resource r and
per unit of time. Thus,

(
Lr−hrsk

)
Crsk is the minimal social

welfare generated by all bids that demand resource r and are
allocated to server s of DC k if the entire capacity of resource
r on server s of DC k is occupied for each time slot. So the
assumption in the above theorem is essentially saying that in
the offline solution, there are enough workloads to exhaust at
least one resource on one server at each time slot, which is
easily satisfied in real-world cloud systems.

Proof. Let αrsk = ln
2R

∑
k∈K Sk(Ur−hrsk)
Lr−hrsk . We will show that

the marginal payment function defined in (21) satisfies the Dif-
ferential Allocation-Payment Relationship for all resource r,
server s, and time t with parameter αrsk, i.e., prsk(t)dyrsk(t)−
f ′rsk(yrsk(t))dyrsk(t) ≥ 1

αrsk
f?′rsk(prsk(t))dprsk(t), and that the

initial value of the dual objective is at most 1
2OPT . Then,

given α2 = maxr∈R,s∈Sk,k∈K αrsk, the theorem will follow
from Lemma 1 and Theorem 2.

By (21), we get prsk(t) > Ur when the demand ex-
ceeds the capacity, i.e., yrsk(t) > Crsk. So by our choice
of prsk(t), the cloud provider will never allocate more re-
sources than its capacity, i.e., yrsk(t) ≤ Crsk. In addi-
tion, the initial marginal price prsk(0) = Lr−hrsk

2R
∑
k∈K Sk

+

hrsk > hrsk, and the marginal prices are non-decreasing.

Algorithm 5: Randomized Online Auction RPD2

Input: K, S, R, C, h, Lr , Ur
Output: x,p

1 DEFINE frsk(yrsk(t)) and prsk(yrsk(t))according to (19) and (21);

2 DEFINE χ = maxr∈R,s∈Sk,k∈K
2R

∑
k∈K Sk(Ur−hrsk)
Lr−hrsk

;
3 INIT.
xnis = 0, yrsk(t) = 0, un = 0, prsk(t) = Lr−hrsk

2R
∑
k∈K Sk

+ hrsk;

4 Upon the arrival of the nth bid
5 Get bidding language Bi according to (1);
6 (xni, p̂ni,p,y) = CORE(S,R,Bn,p,y,p(y));
7 if ∃i?, s?, xni?s? = 1 then
8 Generate a random number η such that:

η =

{
1 with prob. 1

2

2j with prob. 1
2 log2 χ

for j = 1, . . . , log2 χ
(23)

if bi ≥ ηp̂i then
9 Accept option i? of bid n on server s? of kni? , and charge

ηp̂ni? ;
10 else
11 Reject bid n;
12 end
13 else
14 Reject bid n;
15 end

Therefore in the rest of the discussion, we may assume
that f ′rsk(yrsk(t)) = hrsk and f?′rsk(prsk(t)) = Crsk.
Putting them into the above differential inequality, it be-
comes

(
prsk(t)−hrsk

)
dyrsk(t) ≥ Crsk

αrsk
dprsk(t), which holds

with equality by our choice of prsk(t) and that αrsk =

ln
2R

∑
k∈K Sk(Ur−hrsk)
Lr−hrsk . Finally, according to (5) and (20),

D0 = 1
2

1
R

∑
k∈K Sk

∑
k∈K

∑
s∈Sk

∑
r∈R(Lr − hrsk)Crsk ≤ 1

2
OPT.

The last inequality is based on the assumption in the theorem.

B. Profit Maximization in Expectation

Next, we present an extension of PD2 that achieves a
competitive ratio comparable to 2α2 in provider’s expected
profit. Alg. 5 gives our randomized online auction for profit
maximization in expectation. Similar to how RPD1 extends
PD1, RPD2 first use PD2 as a black box to obtain a tentative
allocation xnis and payment p̂ni? for each bid n. Then it raises
the payment by a factor of η ≥ 1 and accepts the bid only
when its value is higher than the new payment. The difference
lies in the different values of χ, which decides the distribution
from which η is sampled.

Theorem 9. The online auction RPD2 in Alg. 5 is truthful
and individually rational, and runs in polynomial time.

The proof is similar to that of Theorem 4 and thus omitted.
The expected profit guarantee will be presented in Theorem

10. We first show a few technical lemmas that are needed
for the proof of Theorem 10 (proofs of lemmas given in
appendices D—F). Let Bni be the VM i of n. Let A? be
the set of bids with the options i? accepted by social welfare
maximizing online auction PD2 and O be the set of bids with
the options i accepted by the omniscient optimal algorithm
for social welfare maximization. cni is the cost occurs by an
accepted option i of bid n in (16).
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Lemma 5. The optimal profit in expectation of any truthful
and individually rational auction (online or offline) of our
problem is upper bounded by∑

Bni?∈A?
(bni? − cni? ) +

∑
Bni∈O(min{pni, bni} − cni) (24)

Lemma 6. The first term of (24) is upper bounded by 4 log2 χ
times the expected profit of online auction RPD2.

Lemma 7. The second term of (24) can be upper bounded
by α2 times the profit of online auction PD2, i.e.,∑

Bni∈O(min{pni, bni} − cni) ≤ α2
∑
Bni?∈A?

(p̂ni? − cni? ) (25)

where α2 is defined in (22).

Lemma 8. The expected profit of RPD2 is at least a half of
the profit of PD2.

Proof. It follows from that for every bid n, RPD2 uses the
same allocation and payment as in PD2 with probability 1

2 .

Theorem 10. The randomized online auction RPD2 in Alg. 5
is
(

4
ln 2 + 2

)
α2-competitive in terms of expected profit.

Proof. Combining Lemmas 5, 6, 7 and 8, the optimal
expected profit is upper bounded by 4 log2 χ + 2α2 times
the expected profit of RPD2. By the choice of χ =

maxr∈R,s∈Sk,k∈K
2R

∑
k∈K Sk(Ur−hrsk)
Lr−hrsk

and the definition of α2

in (22), we get log2 χ = 1
ln 2

lnχ = 1
ln 2

α2. So the theorem
follows.

Theorem 11. The randomized online auction RPD2 in Alg. 5
is 4α2-competitive in terms of expected social welfare.

Finally, we note that as a special case, the online auctions
in this section also handle the case with no server costs within
the capacity, which is equivalent to having hrsk = 0, and the
server cost functions as the following zero infinity functions:

frsk(yrsk(t)) =

{
0, yrsk(t) ∈ [0, Crsk]
+∞, yrsk(t) > Crsk

(26)

The properties shown for linear cost functions apply to zero
infinity costs, with proofs omitted due to duplicity.

VI. PERFORMANCE EVALUATION

We evaluate our auctions using trace-driven simulations,
exploiting Google cluster-usage data [38]. A job comprises
multiple tasks, each of which is accompanied by its resource
requirement (CPU, RAM and disk). Google cluster data pro-
vides the arrival time of each job, and the start time and
end time of each task in a job. Thus we translate each job
into a VM, requesting R = 3 types of resources at the
demands extracted from the traces (note demand dnir(t) here
is not much smaller than Crsk, though our theoretical analysis
assumed so). We randomly combine 1 to 10 VMs (as options)
to compose a bid. We set T = 5000 and each time slot
is 10 seconds long [39]. We set the arrival time according
to the job arrival time in Google data, the start (end) time
of VM usage in the bids, t−ni (t+ni) according to the earliest
(latest) time slot in the VM durations of the corresponding
tasks. We randomly choose a DC for each option. We set bni
by multiplying the corresponding resource demands by unit

prices randomly picked within different ranges, according to
the upper and lower bounds of users’ value per unit of resource
per unit of time, Ur and Lr, which we will vary in different
experiments. We will vary the span between bid arrival time
and the VM start time. The number of data centers (K) is
13 according to the number of Google data centers [40]. We
simulate servers with heterogenous resource capacities (Crsk)
following the distribution of server configurations summarized
from the Google data as follows (CPU and Memory units are
normalized so that the maximum capacity is 1):

# of machines 6732 3863 1001 795 126
(percentage) (53%) (30%) (8%) (6%) (3%)

CPU 0.50 0.50 0.50 1.00 0.25
Memory 0.50 0.25 0.750 1.00 0.25

Since the Google data does not provide disk configurations
of servers, we set the disk storage capacity of our servers
randomly within [320, 800](GB). The total capacity of each
type of resource to provision, and hence the number of servers
in each DC to simulate, is roughly according to the total
amount of demand from all bids multiplying a random number
in [0.4, 0.8]. hrsk is set within [0.4, 0.6] for CPU (different
for different servers s), and within [0.005, 0.02] for RAM
and disk, roughly following the percentage measured in [35].
For superlinear cost functions, we set βrsk within [1.7, 2.2]
for CPU and within [0.5, 1] for RAM and disk [33][35]. By
default, Ur = 50, Lr = 1.

We compare our algorithms with the offline optimum and
three existing schemes Twice-the-Cost (TC), Twice-the-Index
(TI) [27], and RSM [10]. TC and TI share similar basic
ideas with ours, but adopt different marginal pricing functions:
For TC, prsk(yrsk(t)) = 2f

′

rsk(yrsk(t)) (the current marginal
payment is twice of the current marginal cost); for TI ,
prsk(yrsk(t)) = f

′

rsk(2yrsk(t)) (the current marginal payment
is the marginal cost on twice of the current resource usage).
RSM uses a similar price function with PD2 for the problem
allowing preemption without considering server cost. We dis-
able preemption of RSM and consider corresponding server
cost in the comparison with PD1(RPD1) and PD2(RPD2).

A. Comparison with Offline Optimum

We first study the performance ratios (PRs) achieved by
our online auctions, computed by dividing the offline optimal
social welfare obtained by solving (4) exactly using Gurobi
Optimizer, by the social welfare/profit achieved by the re-
spective online algorithm. Due to the high time complexity
of solving the offline convex program with a large number of
variables, we set the largest number of bids to be 6000 in this
set of experiments. Fig. 1 illustrates that a smaller performance
ratio comes with a larger Γ, which is the average number of
time slots between the bid arrival time to its specified VM
start time over all the bids. This result is interesting but quite
reasonable: a group of bids apply for a future occupation
duration; the earlier they arrive before their actual resource
occupation starts, the more future information the system can
learn, and better allocation and payment decisions can be
made. In Fig. 2 and 3, we use Ũr and L̃r, the estimated
values of Ur or Lr as input to RPD1, which are at different
percentages as divided by the real Ur or Lr. We see that both
overestimation and underestimation have minor influence in
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Fig. 3: PR ofRPD1 in profit (different values
of L̃r/Lr)
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Fig. 5: Compare PD1, TC, TI and RSM
(welfare); RPD1, TC, TI and RSM (profit)
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Fig. 6: Compare PD2, TC and RSM (wel-
fare); RPD2, TC and RSM (profit)

the performance, as compared to that achieved by the real Ur
or Lr (the case of 100% in the figures), and underestimation of
Ur and overestimation of Lr are more desirable. In Fig. 4, we
evaluate the performance ratio of PD2 with a varying number
of time slots of the average VM durations of all the bids. It
shows that the VM duration rarely influences the performance
of PD2 which also demonstrates the improvement of PD2 in
this work compared to that in [41]. In addition, all figures
show that the performance ratio becomes smaller with the
increase of the number of bids. When bid number increases,
the total demands of resources increase, and more servers
are provisioned. It is because we always choose a cheapest
server for each coming bid in (8), and hence the solution space
becomes larger when the number of servers increases, leading
to better performance ratios. The results for PD2 and RPD2

are similar to the cases of PD1 and RPD1, and we omit them
here due to space constraints.

B. Comparison with Existing Schemes

We next compare the social welfare and profit achieved
by our auctions with TC and TI at larger scales of the
system. Fig. 5 shows that (i.) the social welfare achieved by
our PD1 outperforms those by TC, TI and RSM ; (ii.) the
profit achieved by our RPD1 outperforms those achieved by
TC, TI , and RSM . Especially, we observe through our
experiments that the marginal payment function in TC can not
filter out low value bids when the used resource of a server
approaches its full capacity, and with TI , maximally only half
of the capacity on a server can be allocated due to the +∞
part of the cost function, both leading to lower social welfare.
Due to space limit, we compare PD2 and RPD2 with TC
and RSM in terms of social welfare (W (·)) and profit (P (·)),
respectively, in the same Fig. 6. Our algorithms outperform
TC and RSM in both cases.

VII. CONCLUDING REMARKS

This work designs truthful and efficient online VM auctions
where cloud users have multiple options to require future
resources for her tailor-made VM with different running
durations and location preferences, targeting social welfare

maximization and cloud provider’s profit maximization. We
consider server costs in our auction model, and handle the
resulting significantly more challenging mechanism design by
leveraging a set of latest, novel primal-dual online optimization
and randomized reduction techniques. Our primal-dual frame-
work adopts a new application of Fenchel duality and handles
various convex server cost functions. It further allows request
departures and resource recycling while guaranteeing good
competitive ratios, which existing online primal-dual resource
allocation frameworks do not handle. For profit maximization,
we introduce a new online primal-dual analysis to obtain
good competitive ratios with super-linear server costs, which
is new in the literature. Trace driven simulations validate
our theoretical analysis and show good performance of our
mechanisms as compared to the offline solution and two
existing mechanisms on similar frameworks.
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APPENDIX A
PROOF OF THEOREM 1

Proof. (Truthfulness in bidding price) The marginal prices
are independent on the bidding price for any option in each
bid. Further, we always assign bids to servers to maximize
each bid’s utility given the current marginal prices. Upon the
arrival of each bidder, we only choose the option that yields
the maximal utility for the bidder among all the options in his
bid and accept it if the utility is positive, which is also what
the bidder looks for. In this way, our mechanism is equivalent
to one sequential posted price mechanism (e.g., [42]), where
the auctioneer posts the prices to a bidder and let the bidder
choose his best option, which maximizes his utility, to submit.
Under the take-it-or-leave-it pricing scheme, a bidder cannot
improve his utility by lying about his bidding price for his best
option [42]: if the bidding price for the best option is higher
than the corresponding true value, the bidder may suffer from
a negative utility; if the bidding price is lower than the true
value, this option may not be selected, resulting in lower utility
for the bidder. Moreover, reporting fake bidding prices for the
user’s other options cannot increase the utility of the user: case
(i.) faking bidding price in a non-optimal option such that it
becomes the best option leads to a user utility under the non-
optimal option, which is not the maximum utility that the user
can achieve; case (ii.) reporting a false bidding price for a non-
optimal option such that it is still not the best option does no
influence the user utility. Therefore, even for a multi-minded
bidder, reporting truthful bidding prices for all his options is
the dominant strategy.
(Truthfulness in arrival time) Since the marginal prices are
non-decreasing in the amount of allocated resources, which
is non-decreasing over the resource allocation time. Hence a
bidder cannot decrease the total price of the resource that it
requests by delaying its arrival. Note that the arrival time of
a bid is the first time the bidder is aware of her demands so
the arrival time can not be earlier.
(Truthfulness in resource occupation times) Dropping part of
the true resource occupation duration in the request would risk
failing to complete the job. So no bidder would do that. On the
other hand, the marginal prices are non-negative according to
(10). So requesting a superset of the true resource occupation
duration increases a bidder’s payment and decreases her utility.
(Individually rational) By (8), the bidder’s utility is non-
negative. The profit under any realization of our randomized
algorithms of the provider is also non-negative by (10) which
implies prsk(yrsk(t)) > f ′rsk(yrsk(t)).
(Polynomial running time) We assume that the algorithm can
compute the differentials of marginal server cost functions,
i.e., f ′rsk in constant time. To process a user n, we compute
the payment if option i is accepted, which runs in O(RSIT )
time. Then, we computes un and decides the allocation and
payment by checking the utilityin O(Sknini

?) time. Finally,
we update yrsk(t) and prsk(t) in O(RSIT ) time.
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APPENDIX B
PROOF OF LEMMA 4

Proof. It is easy to verify when yrsk(t) ≤ Crsk
δrsk

according
to (10) and the choice of δrsk in Lemma 3. Next, as-
sume that yrsk(t) ≥ Crsk

δrsk
. In this case, prsk(t) = hrsk(1 +

βrsk)C
βrsk
rsk e

θrsk(yrsk(t)−
Crsk
δrsk

). So the inequality is equivalent

to eθrskyrsk(t)

yrsk(t)
βrsk

≥ (1+βrsk)e

θrskCrsk
δrsk

C
βrsk
rsk

. Recall that δrsk ≥ (1 +

βrsk)1/βrsk , The above inequality holds with equality for
yrsk(t) = Crsk

δrsk
. Next, it suffices to show that eθrskyrsk(t)

yrsk(t)
βrsk

is non-decreasing as yrsk(t) increases. Its derivative is
eθrskyrsk(t)(θrskyrsk(t)−βrsk)

yrsk(t)
1+βrsk

. By our choice of θrsk ≥ δrskβrsk
Crsk

and the assumption that yrsk(t) ≥ Crsk
δrsk

, θrskyrsk(t) − βrsk ≥ 0

and the above derivative is non-negative.

APPENDIX C
PROOF OF LEMMA 3

Proof. By our choice of prsk(t), we have yrsk(t) ≤ Crsk, due
to prsk(t) = hrsk(1+βrsk)C

βrsk
rsk e

θrsk(Crsk−
Crsk
δrsk

) ≥ Ur (yrsk(t) =

Crsk). Therefore, we may assume in the rest of the proof
that yrsk(t) ≤ Crsk and, thus, f ′rsk(yrsk(t)) = hrsk(1 +
βrsk)yrsk(t)βrsk . Next, according to the piece-wise definition
of f?′rsk, the proof is divided into two cases.
Case 1: yrsk(t) ≤ Crsk

δrsk
. By the definition of prsk(t) in (10),

prsk(t) = f ′rsk(δrskyrsk(t)) = hrsk(1 + βrsk)δ
βrsk
rsk yrsk(t)βrsk . (27)

Thus the Differential Allocation-Payment Relationship in this
case is equivalent to (δ

βrsk
rsk −1) ≥ 1

αrsk
βrskδ

βrsk+1
rsk . If βrsk ≥ 1,

then δrsk = max
{

2, (1 + βrsk)
1

βrsk

}
= 2 and δβrsk+1

rsk =

2δβrskrsk = 4δβrskrsk − 2δβrskrsk ≤ 4δβrskrsk − 4. So we get that
βrskδ

βrsk+1

rsk

δ
βrsk
rsk −1

≤ 4βrsk < αrsk. If βrsk < 1, then δrsk =

(1 + βrsk)
1

βrsk , and βrskδ
βrsk+1

rsk

δ
βrsk
rsk

−1
≤ e(1 + βrsk) < αrsk.

Case 2: Crsk
δrsk
≤ yrsk(t) ≤ Crsk.

Recall that when yrsk(t) ≥ Crsk
δrsk

, the marginal payment is

prsk(t) = hrsk(1 + βrsk)C
βrsk
rsk e

θrsk(yrsk(t)−
Crsk
δrsk

)
(28)

By Lemma 4, to show the Differential Allocation-
Payment Relationship in this case, it suffices to show
βrsk

1+βrsk
prsk(t)dyrsk(t) ≥ 1

αrsk
Crskdprsk(t). On the other hand,

by the definition of the marginal payment in (28), we have
dprsk(t) = θrskprsk(t)dyrsk(t). So it remains to show that
θrsk ≤ βrsk

Crsk(1+βrsk)
αrsk. By our choice of parameters,

θrsk ≤ e
Crsk

βrsk = βrsk
Crsk(1+βrsk)

e(1 + βrsk) (δrsk ≤ e)

≤ βrsk
Crsk(1+βrsk)

e(1 + βrsk) ≤ βrsk
Crsk(1+βrsk)

αrsk

θrsk ≤ 2
Crsk

ln( Ur

hrsk(1+βrsk)C
βrsk
rsk

)
(δrsk ≥ 2)

≤ βrsk
Crsk(1+βrsk)

2(1+βrsk)
βrsk

ln( Ur

hrsk(1+βrsk)C
βrsk
rsk

)
≤ βrsk

Crsk(1+βrsk)
αrsk .

APPENDIX D
PROOF OF LEMMA 5

Proof. The expected profit of any truthful and individually
rational auction is upper bounded by the optimal social
welfare, i.e.,

∑
Bni∈O(bni − cni). For each Bni ∈ O, if

bni ≤ pni, bni = min{bni, pni}; otherwise we have bni−cni ≤

bni?−p̂ni?+p̂ni−cni = bni?−p̂ni?+min{bni, p̂ni}−cni. Plus
the commonly accepted bids with options, we upper bound the
optimal social welfare.

APPENDIX E
PROOF OF LEMMA 6

Proof. Due to the linear cost function in this case,
the incurred cost by an accepted bid n is cni? =∑
t∈[t−

ni?
,t+
ni?

]

∑
r∈R dni?r(t)hrs?kni? , where s? is the server

that serves the winning bid n. By the definition of PD2, for
any tentatively accepted bid Bni? ∈ A?, the tentative profit
from bid i is at least p̂ni? − cn

=
∑
r∈R

∑
t∈[t−

ni?
,t+
ni?

]

(
dni?r(t)prs?kni (t)− dni?r(t)hrs?kni?

)
≥
∑
r∈R

∑
t∈[t−

ni?
,t+
ni?

]
dni?r(t)

(
prs?kni (0)− hrs?kni (t)

)
Since prsk(0) = Lr−hrsk

2RSK + hrsk, we further have

p̂ni? − cn ≥
∑
r∈R

∑
t∈[t−

ni?
,t+
ni?

]
dni?r(t)

Lr−hrs?kni?
2RSK

On the other hand, the maximum profit under any realization
of our randomized algorithm from the chosen option i? ∈ In
of any bid n served on any server s ∈ Skni? is at most bni? −
cni? ≤

∑
r∈R

∑
t∈[t−

ni?
,t+
ni?

] dni?r(t)(Ur−hrs?kni? ). We have

that bni?−cni?
p̂ni?−cn

≤ 2RSK(Ur−hrsk)
Lr−hrsk ≤ χ. By the definition of η

in (23), η is a randomly chosen power of 2 between 1 and χ
and, thus, satisfies that 1

2 (bni?−cn) ≤ η(p̂ni?−cn) ≤ (bni?−
cn) with probability at least 1

2 log2 χ
. In this case, RPD2 will

accept the bid ni? of user n and generate profit η(p̂ni?−cn) ≥
1
2 (bni? − cn) in expectation. Therefore, the expected profit
generated by RPD2 from every Bni? ∈ A? (that is, tentatively
accepted by PD2) is at least 1

2 log2 χ
· 12 (bni?−cn). The expected

profit of RPD2 is at least 1
4 log2 χ

∑
Bni?∈A?(bni? − cn).

APPENDIX F
PROOF OF LEMMA 7

Proof. Consider a virtual instance of our online problem
where the bid ni? of user n in the virtual instance has the
same demands dni?r(t) over [t−ni? , t

+
ni? ] as in the original

instance, but has bidding prices min{bni? , p̂ni?} instead of
bni? . Then, the online auction PD2 would accept the same
set of bids in the virtual instance as in the original instance.
The social welfare of PD2 in the virtual instance is therefore∑
ni?∈A?(p̂ni? − cn). Further note that choosing all Bni ∈ O

is a feasible solution in the virtual instance and gets social wel-
fare

∑
Bni∈O\A?(min{bni, p̂ni}−cn). The lemma now follows

from the competitive ratio of online algorithm PD2.
APPENDIX G

PROOF OF THEOREM 11
Proof. The set of accepted bids of the online auction
RPD2 is a subset of that of PD2. Let B? denote the
set of accepted bids of RPD2. Recall A? denotes the
set of accepted bids of PD2. Define a random variable
as b′ni? = {bni? , if bni? ≥ ηp̂ni? ; 0, otherwise }. The ex-
pected social welfare of RPD2 is: E

[∑
Bni?∈B?

(bni? −
cn)
]

= E
[∑

Bni?∈A?
(b′ni? − cn)

]
. Note that A? = {Bni? :

bni? ≥ p̂ni?}. Thus we have E
[∑

Bni? :bni?≥p̂ni?
(b′ni? − cn)

]
=∑

Bni? :bni?≥p̂ni?
E
[
b′ni? − cn

]
=
∑
Bni? :bni?≥p̂ni?

(bni? − cn) ·
Pr[bni? ≥ ηp̂ni? ] ≥ 1

2

∑
Bni?∈A?

(bni? − cn).


