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Online Audio-Visual Source Association for Chamber 
Music Performances

Bochen Li*, Karthik Dinesh*, Chenliang Xu†, Gaurav Sharma*,† and Zhiyan Duan*,†

In audio-visual recordings of music performances, visual cues from instrument players exhibit good temporal 
correspondence with the audio signals and the music content. These correspondences provide useful 
information for estimating source associations, i.e., for identifying the affiliation between players and 
sound sources or score parts. In this paper, we propose a computational system that models audio-visual 
correspondences to achieve source association for Western chamber music ensembles including strings, 
woodwind, and brass instruments. Through its three modules, the system models three typical types of 
correspondences between 1) body motion (e.g., bowing for string instruments and sliding for trombone) and 
note onsets, 2) finger motion (e.g., fingering for most woodwind and brass instruments) and note onsets, 
and 3) vibrato hand motion (e.g., fingering hand rolling for string instruments) and pitch fluctuations. 
Although the three modules are designed for estimating associations for different instruments, the 
overall system provides a universal framework for all common melodic instruments in Western chamber 
ensembles. The framework automatically and adaptively integrates the three modules, without requiring 
prior knowledge of the instrument types. The system operates in an online fashion, i.e., associations 
are updated as the audio-visual stream progresses. We evaluate the system on ensembles with different 
instruments and polyphony, ranging from duets to quintets. Results demonstrate that association accuracy 
increases as the duration of video excerpts increases. For string quintets, the accuracy is over 90% 
from just a 5-second video excerpt, while for woodwind, brass, and mixed-instrument quintets, a similar 
accuracy can be reached after processing 30 seconds of video. The result of the proposed framework is 
promising and enables novel applications such as interactive audio-visual music editing and auto-whirling 
camera in concerts.
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1. Introduction
Visual aspects of music performances are often important. 
In live concerts, performers use various kinds of body 
movements to express their emotions and to impress 
audiences (Parncutt and McPherson, 2002; Sörgjerd, 
2000). In music ensembles, visual interactions among 
musicians are important for coordination of timing and 
dynamics. In pop music, creative visual performances 
give artists a substantial competitive advantage. The 
inclusion of videos in music albums is shown to provide 
an eight-percent boost, on average, in purchase intent and 
improved perception (measured by Nielsen Holdings).1 
Even in prestigious classical music performances, research 
has shown that body movements and facial expressions 
of performers exert strong influences on the judgment of 

performance quality, for expert or novice audiences alike 
(Tsay, 2014).

On the technical side, the rapid expansion of digital 
storage and Internet bandwidth in the past decades 
has not only popularized video streaming services like 
YouTube but also significantly changed the way people 
enjoy music. With the surge of Virtual Reality (VR) 
and Augmented Reality (AR) technologies and their 
adoption in music entertainment, visual aspects of music 
performances will further gain importance in innovative 
music enjoyment experiences.

While Music Information Retrieval (MIR) based on the 
audio signal and symbolic score (e.g., MIDI) has been 
widely studied, only limited explorations have been 
conducted on the interplay of visual and acoustic aspects 
of music performances. The auditory and visual modalities 
are intimately related in music performances. Sounds 
from acoustic instruments are invariably mediated by 
the instrument players’ movements and characteristics of 
the movements are reflected in the resulting sounds. For 
example, the amplitude envelope and spectral evolution 
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of a violin note are directly related to the velocity and 
pressure of a bowing motion (Askenfelt, 1989) and 
fingering force (Obata et al., 2009); the timing of a clarinet 
note is often correlated to the fingering movements; 
the loudness of a drum hit is strongly related to the 
drumstick’s preparatory height and striking velocity (Dahl, 
2004). These characteristics have been utilized to solve 
traditional MIR problems such as multi-pitch analysis 
(Dinesh et al., 2017), music transcription (Paleari et al., 
2008), score alignment (Bazzica et al., 2014), and source 
separation (Parekh et al., 2017b). An overview of related 
literature is available (Duan et al., 2019).

Classical chamber music is performed by a small 
ensemble of instrumentalists, with one player per score 
part (Burkholder and Grout, 2014). In this paper, we 
study the relationship between the instrument players’ 
body movements and sound events in classical chamber 
ensemble performances. The aim is to solve the source 
association problem, i.e., identifying the bijection between 
score parts (MIDI or MusicXML format) and players in the 
video. The bijection, together with a score-informed audio 
source separation technique (Ewert et al., 2014), can allow 
users to separate the audio source for each particular 
player in the video.

Exploiting information in the video about instrument 
players’ movements for source association is challenging 
because many body movements (e.g., head movement) 
are irrelevant to sound articulation (Godøy and Jensenius, 
2009) and relevant movements (e.g., maneuvers with 
the fingers) can be subtle. In music ensembles, similar 
body movements can be observed among different 
musicians when they have similar rhythmic patterns. 
These challenges are especially pronounced when the 
video clip is short (e.g., from online streams) and when 
the ensemble is large. For a quintet, possible associations 
can be enumerated as 120 permutations, but only one is 
correct.

Source association enables novel research and 
applications. It is essential for leveraging the visual 
information to analyze individual sound sources in 
music performances. The related techniques include 
multi-pitch analysis (Dinesh et al., 2017), performance 
expressiveness analysis (Li et al., 2017b), and source 
separation (Parekh et al., 2017a). By exploiting source 
associations, one can envision an augmented video 
streaming service that allows users to click on a player 
in the video and isolate or enhance the corresponding 
source of the audio (Zhao et al., 2018). Based on SLAVE 
(Thomas et al., 2009), a music exploration system 
that manages multimedia music collections, one can 
envision an augmented sheet music display interface 
where for each score part, the visual performance of the 
specific player is retrieved and demonstrated. For music 
production, source association can help enable remixing 
of audio sources along with automatic video scene 
recomposition. An online source association system, 
which does not need to “look into the future”, can be 
further useful in online video streaming of live concerts. 
For example, it enables an auto-whirling camcorder to 
focus on the soloist.

In this paper, we build upon our previous work on 
source association for string instruments using bowing 
motion (Li et al., 2017a) and vibrato motion (Li et al., 
2017c), and propose the first universal system to address 
the problem for common melodic instruments in Western 
chamber ensembles such as string, woodwind, and brass 
instruments (barring polyphonic instruments such as piano 
and harp). This system does not require prior knowledge 
of instrumentation of the piece or pre-training of audio-
visual correspondence. The system input is the audio and 
video of the performance and the corresponding music 
score in a pianoroll representation, and the output is the 
association between audio or score tracks and players in the 
video, assuming audio and video tracks are synchronized 
and audio and score tracks are associated. After 
temporally aligning the score with the live performance 
from auditory cues, the system uses three modules to 
analyze different visual motion types that may be present 
in the performance, as shown in Figure 1. Because many 
performed motions are related to note onsets, the first 
two modules focus on the motion-onset correspondence. 
The first module extracts large-scale body motion, which 
mainly captures bowing motion of string instruments. 
The second module extracts subtle fingering motion 
and correlates this with note onsets. The correlation aids 
associations for woodwind and brass instruments, as pitch 
changes are mostly controlled by finger-operated keys. 
In addition to note onsets, variations of acoustic features 
via tone articulations also show correspondence with 
certain motion, for instance, for the vibrato articulation 
in string instruments. Therefore, the third module is 
designed to detect periodic fingering motion (if any) and 
to correlate them with the periodic pitch fluctuation 
estimated from audio. This module is primarily directed 
at string instruments, where vibrato articulations can be 
characterized from the visual modality. Note that the first 
and third modules are adapted from previously proposed 
systems by Li et al. (2017a, c) respectively, and the second 
module is proposed in this paper as the first solution for 
woodwind and brass instruments. Finally, we also propose 
to integrate the output of the three modules through 
weighted voting according to motion salience. It is noted 
that the system does not need to detect the instrument 
type; it simply extracts the three kinds of motion (if any) 
for each player and integrates their correspondence with 
score and audio tracks, jointly.

Figure 1: Outline of the proposed universal source asso-
ciation system for chamber ensemble performances. 
Three types of motion are modeled and correlated with 
the audio and score events in three modules.
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The proposed system works in an online fashion: the 
audio-score alignment, the correlation between motion 
and audio or score, and the association output are all 
updated in a frame-by-frame fashion without “looking 
into the future”. Associations in each frame are updated 
using the Hungarian algorithm (Kuhn, 1955), with a 
minimum computational cost. Experiments on 17,574 
audio-visual clips generated from 44 chamber music 
pieces in the URMP dataset (Li et al., 2019) that spans a 
polyphony range from duets to quintets, show that: 1) 
Different modules are helpful for different instruments, 
and the system is able to integrate them automatically to 
achieve a high overall accuracy; 2) Accuracy increases as 
longer video streams are available, reaching an average 
accuracy of 90% for 5-second video excerpts of string 
instruments, and for 30-second excerpts of woodwind and 
brass instruments. In summary, the proposed system for 
audio-visual source association:

•	 works	universally	for	all	instruments	common	in	
Western chamber ensemble performances,

•	 does	not	require	prior	knowledge	of	instrumenta-
tion, and

•	 relies	purely	on	motion	information	for	association	
without modeling instrument characteristics; which 
allows it to also work for ensembles of the same 
instrument type, e.g., violin duets.

In the following, we first review existing work on multi-
modal modeling in Section 2, and highlight challenges 
involved in source association in music performances. We 
then describe our proposed method in three modules for 
the different motion cues for associations in Section 3. In 
Section 4, we conduct systematic experiments to evaluate 
the proposed system. Finally, we conclude the paper in 
Section 5.

2. Related Work
2.1. Source Localization

When there is at most one active sound source at a time, 
the problem of audio-visual source association is also 
known as source localization, i.e., indicating the location 
of the sound source in the video. For audio-visual speech, 
source localization is helpful for speaker face segmentation 
(Liu and Sato, 2008). Early work on speaker localization 
correlates audio energy changes with pixel motion via 
non-linear diffusion (Casanovas and Vandergheynst, 
2010) or with semantic regions via video segmentation 
and tracking (Li et al., 2014). Other methods include 
time-delayed neural networks (Cutler and Davis, 2000), 
probabilistic multi-modal generative models (Fisher and 
Darrell, 2004), and Canonical Correlation Analysis (CCA) 
(Kidron et al., 2007; Izadinia et al., 2013).

More recent work proposes to localize semantic 
objects in unconstrained videos by learning deep multi-
modal representations. Owens and Efros (2018) propose 
a fused multi-sensory network to learn an audio-visual 
representation, which further localizes the sound objects 
on the video frames. Senocak et al. (2018) employ a 
similar two-stream network structure, where an attention 

mechanism is developed for sound source localization. 
A similar idea is adopted by Arandjelović and Zisserman 
(2018) for cross-modal retrieval and source localization, 
and by Tian et al. (2018) for both spatial and temporal 
localization.

2.2. Source Association for Separation

Other work deals with mixtures of active sources, 
where cross-modal association can be applied to isolate 
sounds that correspond to each visual object. Barzelay 
and Schechner (2007, 2010) detect drastic changes 
(i.e., onsets of events) in audio and video and then use 
their coincidence to associate audio-visual components 
that belong to the same source of harmonic sounds. 
Sigg et al. (2007) reformulate CCA by introducing non-
negativity and sparsity constraints on the coefficients of 
the projection directions to locate and separate sound 
sources in movies. In (Casanovas et al., 2010), auditory and 
visual modalities are decomposed into relevant structures 
using redundant representations for source localization. 
Segments, where only one source is active, are used to 
learn a timbre model for the separation of the source. 
Ephrat el al. (2018) propose a deep network-based model 
to isolate single speech signals from a mixture of sounds 
given the target speaker from the video. Gao et al. (2018) 
map audio frequency basis to individual visual objects via 
an audio-visual object model, which further guides audio 
source separation. Most of these methods, however, either 
deal with mixtures with at most two active sources or only 
focus on isolating one source from multiple active sources 
(e.g., background noises). The association problem for 
each individual source is not addressed.

2.3. Source Association for Chamber Ensembles

The source association problem for music ensembles is 
more challenging since all the available sound sources (the 
players) are active almost all the time, and the difficulty 
increases dramatically as the number of sources increases. 
Although each score part is performed by one player in 
chamber music, the same kind of instruments are often 
used for different score parts (e.g., a violin duet). Therefore, 
approaches aiming at learning deep representations that 
map acoustic features with visual appearances to localize 
each source (Owens and Efros, 2018; Senocak et al., 2018; 
Arandjelović and Zisserman, 2018) are not applicable. 
Instead, one needs to recognize the distinct motion of 
different players and correlate them with the music 
content to achieve association.

Bazzica et al. (2014) first propose to distinguish play from 
non-play conditions for each player in an orchestra, which 
are compared with each score part to solve the temporal 
alignment. In our previous work (Li et al., 2017a), we 
propose an approach to solving the association problem 
for string ensembles with up to five simultaneously active 
sources in a score-informed fashion. The approach analyzes 
the bowing motion and correlates it with note onsets in 
score parts. The assumptions are that many note onsets 
correspond to the beginning of bowing strokes and that 
different instrumental parts often have different rhythmic 
patterns. When these assumptions are invalid, for example, 
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when multiple notes are played within a single bow stroke 
(i.e., legato bowing) or when different parts show a similar 
rhythmic pattern, the approach becomes less robust. Later 
we propose a complementary approach (Li et al., 2017c) 
which correlates the fingering hand rolling motion with 
pitch fluctuations of vibrato notes for the association 
of string instruments. However, the method only works 
when vibrato notes are played. To our best knowledge, 
there is neither an existing work on integrating the 
bowing motion and vibrato motion for source association 
for string instruments, nor any extensions of the concept 
to deal with non-string instruments.

3. Method
The proposed system takes data in three modalities as 
the input: the audio recordings, the video recordings, and 
the music scores of the chamber music performances. 
As illustrated in Figure 1, the system uses three parallel 
modules to model three types of temporal correspondence 
between motions detected in the video and music events 
captured in other modalities for different instrumentalists. 
In this section, we present the system in detail.

3.1. Performance-Score Alignment

As the proposed approach is score informed, a preliminary 
step for the system is to temporally align the music 
score with the dynamic timing of the audio-visual 
ensemble performance (assuming audio and video are 
pre-synchronized). The temporal alignment is achieved 
through audio-score alignment on the harmonic content 
(Müller, 2015). To do so, the audio is first converted to 
short-time Fourier spectral magnitudes with a 42.7 ms 
frame length (2048 samples for a 48 kHz sampling rate), 
10 ms hop size, Hamming window, and zero padding to 
produce 4 times the original length. The short-time Fourier 
spectral magnitudes are then mapped to 12-dimonsional 
chroma vectors, where each element represents a pitch 
class. Each chroma vector is normalized by its root mean 
square (RMS) value. A similar operation is applied to the 
score, which is segmented into non-overlapping frames of 
the same duration using the default tempo notated in the 
score. A 12-D binary chroma vector is calculated for each 
frame to indicate the presence (taking more than 50% 
of the frame) or absence of each pitch class. The chroma 
vector is then normalized by its RMS value.

In offline scenarios where the entire performance is 
available beforehand, the alignment can be obtained 
by the dynamic time warping (DTW) algorithm (Müller, 
2007), which is robust and efficient (Müller et al., 2006). 
In online scenarios where the performance data arrives as 
a live stream, one commonly used framework is an online 
DTW algorithm (Dixon, 2005), which provides options 
such as the “forward-backward strategy” to reconsider 
past decisions (Arzt el al., 2008), or incorporating a 
tempo model (Arzt and Widmer, 2010) for robustness. 
An alternative framework employs a stochastic model 
(Grubb and Dannenberg, 1997; Duan and Pardo, 2011b), 
where the score position hypotheses are represented by 
a probability density function. In this paper, to deal with 
online video streaming scenarios, we apply the online 

method proposed by Duan and Pardo (2011b), which is 
based on a hidden Markov model with a 2-D continuous 
state space to represent the score position and tempo. This 
framework is previously evaluated on the Bach10 dataset 
(Duan et al., 2010) showing decent results. A further 
qualitative check confirms a good alignment performance 
on the URMP dataset used in our experiments.

3.2. Onset Correspondence with Body Motion

3.2.1. Body Motion Extraction

In music performances, body motion of performers 
conveys important musical expressions and ideas, e.g., 
the head nodding at leading notes. For some instruments, 
body motion directly articulates notes (e.g., strings, drums) 
or controls the pitch (e.g., trombones). To capture body 
motion from video recordings, one approach is optical 
flow estimation. In our previous approach (Li et al., 2017a) 
we apply optical flow estimation to extract bowing motion 
of string players. However, we argue that this pixel-level 
analysis may not be ideal for semantic-level understanding 
of body gestures and movements, and can be less robust 
to occlusions and camera viewpoint changes.

In this paper, we propose to apply OpenPose (Cao 
et al., 2017) on each frame, a multi-person pose estimation 
approach to extract body skeleton coordinates for all the 
players on stage without pre-segmentation of the video 
recording. A skeleton in each frame is represented as 
a 20-D vector y(t) corresponding to the horizontal and 
vertical coordinates of the 10 upper body joints, including 
nose, neck, shoulders, elbows, wrists, and hips. We do not 
include lower body joints as they are usually less relevant 
to music events. Figure 2 shows video frames of several 
instrumentalists with the extracted body skeletons. To 
form a continuous skeleton sequence across time, we 
eliminate joint coordinates if the confidence score from 
OpenPose is smaller than 0.2 and the L

2
 distance between 

a joint in consecutive frames is larger than 10% of the 
head-hip distance, which is considered the maximal 
regular movement in a ≈30-FPS video without shot 
transition. We also temporally smooth their coordinates 
using a moving average with a 5-frame window size. These 
post-processing steps are referred from (Li et al., 2018b) 
where the same approach is applied to extract skeletons 
for pianists. We then take the two hips as reference 
coordinates to align the body position across frames. 

Figure 2: Body motion extraction. Upper body  skeletons 
(second row) are extracted with OpenPose (Cao et 
al., 2017) in each video frame (first row) followed by 
 temporal smoothing.
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Finally, we calculate motion velocities z(t) as the derivative 
of y(t) w.r.t. time. Compared to optical flow estimation, this 
gesture-based motion analysis approach is semantically 
more meaningful, less computationally expensive, and 
more robust to occlusions and camera viewpoint changes 
such as camera zooming or panning.

To extract motion related to note onsets in each video 
frame, for each player we denote the motion velocities 
of n frames in the past as Z ∈ ℝn×20 and apply principal 
component analysis (PCA) by eigenvalue decomposition 
ZTZ = V∑VT, where V and ∑ represent the matrix 
of eigenvectors and the corresponding eigenvalues 
respectively. We then project the motion velocity z(t) onto 
the principal component direction (first column of V) and 
take its absolute value as the motion salience s(t). Choosing 
the salient motion discards the direction information of 
the motion (e.g., up/down-bow for violinists), which is 
less relevant to timing than the amplitude information. 
We set n to 150 frames, i.e., 5 seconds in time, assuming a 
player’s pose stays consistent in this range. To reduce the 
computational cost, we update V every 1 second (assuming 
consistent motion patterns within a short period).

3.2.2. Onset Likelihood

From the motion salience s(t), we infer the timings of 
the motion strokes that are potentially related to score 
note onsets. As a note onset often corresponds to the 
beginning or ending of a sound articulation motion (e.g., 
a bowing stroke for string instruments), the motion speed 
at the onset is often small. Therefore, local minima of the 
motion salience s(t) are often indicative of note onsets. 
Let Ω be the set of all the local minima throughout a 
piece. For each local minimum τ ∈ Ω, we represent the 
likelihood of a note onset as a(τ) = maxγ∈[τ,τ+30] s(γ) – s(τ) 
that is determined by the maximum speed of the motion 
stroke considering the following 30 frames: the larger the 
value of a(τ) the more likely that a note onset is activated 
by the motion stroke. Here 30 frames are considered to 
span the high energy part of most notes. Therefore, we 
can define an onset likelihood curve φ

b
(t) derived from 

body motion analysis as 

 ( ) ( ) ( ) ( )* ,b at t t
τ

φ τ δ τ
∈Ω

⎛ ⎞
⎜ ⎟= ⋅ −
⎜ ⎟
⎝ ⎠
∑ N  (1)

where δ(t) is the Dirac delta function, * is the convolution 
operation, and (t) is a Gaussian function to give each 
predicted onset time a tolerance (width) with a standard 
deviation of 3 frames (100 ms) (considering some slight 
non-synchronization between different modalities in the 
recording file). It is noted that φ

b
(t) can be calculated in an 

online fashion, with a delay of up to 1 second due to the 
search for the local maximum after each local minimum. 
Figure 3 plots the onset likelihood curve φ

b
(t) along with 

the associated and temporally aligned score part as piano-
roll, where the note onset timings are marked as red circles. 
We find that many of the note onsets can be associated 
with peaks of φ

b
(t). The correspondence between the 

notes and peaks sets the basis for the association between 
score and motion, as described below.

3.2.3. Pair-wise Correspondence

We extract the motion-based onset likelihood curve for 
each player from the video performance as [ ] ( )p

b tφ , where p 
is the player index. From each part of the temporally aligned 
score, we use a binary impulse train ψ[q](t) to represent the 
note onsets, where q is the part index, ψ [q](t) = 1 if there 
is a note onset in the t-th frame of the q-th score part and 
ψ [q](t) = 0 otherwise. Then the pair-wise matching score 
between the p-th player and the q-th score part, up to the 
t-th frame, can be calculated through inner product:

 ( ) ( ) ( )[ , ] [ ] [ ]

0

.
t

p q p q
b bM t

τ

φ τ ψ τ
=

= ⋅∑  (2)

This can be updated in an online fashion as new temporal 
frames arrive.

3.3. Onset Correspondence with Finger Motion

3.3.1. Finger Motion Extraction

While note articulation is visible in the body movements 
of string instrumentalists, this is generally not the case for 
woodwind and brass players, where notes are articulated 
by blowing into the reed or mouthpiece, showing little 
visible motion around the mouth. However, pitch changes 
of these instruments are mostly controlled by finger-
operated keys, resulting in synchronized events between 
finger movements and note onsets (Palmer et al., 2007). 
Compared to body motion, finger motion is more subtle 
and more prone to occlusion. In this section, we propose 
to extract finger motion and correlate it with note onsets.

We apply OpenPose again to extract the positions of 
all the finger joints from each player. Due to the limited 
video resolution and occlusion, the result is not robust 
enough to estimate the motion. Inspired by our previous 
work (Li et al., 2017c), we use optical flow estimation (Sun 
et al., 2010) to capture this subtle motion at the pixel 
level. To reduce the computational cost, we set a region 

Figure 3: Example correspondence between body motion 
and note onsets. Top: temporally aligned score part with 
onsets marked by red circles. Middle: extracted motion 
salience (primarily bowing motion) from the visual 
 performance of a violin player. Bottom: derived onset 
likelihood curve from the motion salience.
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of interest (ROI) around the detected finger joints from 
OpenPose for optical flow estimation. The ROI is centered 
at the median of all the finger joints for each hand, and 
spans to cover all the joints. Similar to body skeletons, 
we smooth the joint coordinates using a moving average 
filter with a window size of 5 frames. Then we compute 
the optical flow estimation inside the ROI. Again, to 
eliminate the rigid and affine motion, each optical flow 
vector is reduced by the average motion vector of the ROI, 
resulting in a motion vector u(i j)(t) at pixel (i, j) and frame t. 
Figure 4 takes one flute player and one clarinet player as 
examples to visualize the optical flow estimation of one-
hand finger motion in five consecutive frames, where the 
estimated finger joint positions are overlaid on the first 
video frames.

3.3.2. Onset Likelihood

On each frame we take the maximum value of pixel-wise 
motion magnitude |u(i j )(t)| across all the pixels in the ROI 
as the motion flux, which captures the finger movements 
corresponding to pitch changes and is directly considered 
as onset likelihood φf (t) from finger motion. Figure 5 plots 
an onset likelihood curve φ

f
(t) along with the associated 

and temporally aligned score part as piano-roll. We can 

observe salient motion flux around most note onset 
frames. Compared to Figure 3, the correspondence of 
note onsets to fingering motion for woodwind and brass 
instruments is not as robust as that to body motion for 
string instruments. The observation can be attributed 
to the fact that fine-grained motion is more sensitive to 
irrelevant motion. In addition, repeated notes for wind 
instruments are usually not reflected by finger maneuvers 
on the keys.

Analogous to Eq. (2), the pair-wise matching score from 
finger motion can be calculated as:

 ( ) ( ) ( )[ , ] [ ] [ ]

0

.
t

p q p q
f fM t

τ

φ τ ψ τ
=

= ⋅∑  (3)

3.4. Pitch Correspondence with Vibrato Motion

In addition to the onset time, variations of acoustic 
features throughout the entire process of some note 
articulations show correspondence with specific motion. 
Vibrato is one such feature. Vibrato is a commonly used 
artistic note articulation method to color a tone and 
express emotions in music performances. Physically, 
vibrato is generated by pitch modulation of a note in 
a periodic fashion. For string instruments, vibrato 
is often visible as the left hand rolling motion on the 
fingerboard. The relationship between visible motion 
and vibrato motivates us to follow our previous work 
(Li et al., 2017c) to extract the fine motion and find the 
correspondence with pitch contours extracted from the 
audio modality.

3.4.1. Vibrato Motion Extraction

We retrieve the finger motion u(i j )(t) as computed from 
the previous section. Although the vibrato motion is 
mostly a rigid motion (fingers move together with little 
relative movement), it is periodic and very fast (usually 
about 4–7.5 Hz (Geringer et al., 2010)), and hence it is 
not removed as slower rigid/affine motions are. Figure 6 
illustrates several frames of the optical flow estimation 
of the vibrato hand motion for the two players. For each 
frame t, we take the average motion vector across all pixels 
within the ROI as u(t) = [u

x
(t), u

y
(t)]T, where the motion 

direction is preserved for vibrato detection.

Figure 4: Optical flow visualization of finger motion in 
five consecutive frames corresponding to note changes. 
The color encoding scheme is adopted from Baker et al. 
(2011).

Figure 5: Example correspondence between finger 
motion and note onsets of a flute player. Top: tem-
porally aligned score part with onsets marked by red 
circles. Bottom: extracted motion flux from finger 
 movements.
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Figure 6: Optical flow visualization of hand motion 
 corresponding to vibrato articulation. The color encod-
ing scheme is adopted from Baker et al. (2011).
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The vibrato detection module works as a binary 
classifier as proposed and trained by Li et al. (2017b). The 
classifier is implemented as a support vector machine 
(SVM) that takes as input an 8-D feature extracted from 
each sample, including the zero crossing rate of the 
x- and y- motion velocities and their auto-correlations, 
the energy in the 3–9 Hz frequency range, and the 
auto-correlation peaks. According to Li et al. (2017b), 
this method achieves a vibrato detection accuracy of 
over 90%, regardless of the polyphony number and 
instrument type within the string instrument family. 
Here each input sample is a 1-second segment of u(t) 
(again introducing an average 0.5-second delay of the 
association system).

For each detected vibrato segment, we perform PCA 
on u(t) within this 1-second segment to obtain the 1-D 
principal motion velocity curve v(t). We then integrate 
v(t) over time to calculate a motion displacement curve, 
d(t), which corresponds to the length fluctuation of the 
vibrating string, and hence the pitch fluctuation of the 
note. We normalize each vibrato segment of d(t) to zero 
mean and unit variance. We set the non-vibrato segments 
of d(t) to zero.

3.4.2. Pitch Contour Extraction

Utilizing the score information, we apply Soundprism 
(Duan and Pardo, 2011a), an online score-informed 
source separation system, to separate the polyphonic 
audio mixture into individual sources. Note that although 
audio recordings of individual instrumental tracks are 
available in the dataset, we do not use them as they 
are not generally available in real concert scenarios. To 
extract the pitch contour, we perform a score-informed 
pitch estimation step on each separated audio source, 
as described by our previous work (Li et al., 2017c). 
The pitch contour of each note segment is normalized 
to have zero mean and unit variance, and is denoted as 
f(t). The normalization operation discards the original 
pitch height information, and only preserves the pitch 
changes from the central frequency within each note. 
Figure 7 plots a 1-second segment of the normalized 
pitch contour overlaid with a motion displacement 
curve from the associated track (left) and a random track 
(right). Similar to Eqs. (2) and (3), we calculate the vibrato 
correspondence as:

 ( ) ( ) ( )[ , ] [ ] [ ]

0

.
t

p q p q
vM t d f

τ

τ τ
=

= ⋅∑  (4)

3.5. Integrating All Correspondences

We integrate the three modules to calculate the pair-wise 
correspondence between visual motion and score or audio 
events considering both onset timing and the entire note 
articulation process. The calculation is presented as
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where [ , ] ( )p q
bM t , [ , ] ( )p q

fM t , and [ , ] ( )p q
vM t  represent the 

normalized correspondence across all of the pair-wise 
combinations between N players and N tracks as:
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and w
b
, w

f
, w

v
 represent the weighting parameters to 

re-scale the normalized correspondences from different 
modules. Weight w

v
 is set as 2w

f
, to place greater emphasis 

on finger motion with vibrato patterns. Weights w
b
 and 

w
f
 are linearly related to their motion salience/flux in the 

past frames as
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The linear relationship recovers the original scale of 
body and finger motion to weight the correspondences 
M

b
(t) and M

f
(t). It allows the system to focus on the 

part with stronger motion cues, such as body motion 
for string instrumentalists and finger motion for wind 
instrumentalists. In Section 4, we test the components in 
isolation as well as some combinations of them.

For an ensemble with N players, the number of possible 
associations is the factorial of N. Let σ (·) be a permutation 
function from p ∈ [1, N] to q ∈ [1, N] that represents one 
association candidate, where the p-th player is associated 
with the σ (p)-th track. For each association candidate σ, we 
calculate an overall association score as the product of the 
N pair-wise correspondence values. The final association 
solution σ̂  is returned to maximize the association score as:

 [ , ( )] [ , ( )]

11

ˆ argmax argmin log .
N N

p p p p

pp

M Mσ σ

σ σ
σ

==

= = −∑∏  (8)

The replacement of product with sum of negative 
logarithms makes the efficient Hungarian algorithm 
(Kuhn, 1955) directly applicable for finding the best 
association.

4. Experiments
4.1. Dataset

The proposed source association system is evaluated on 
the URMP dataset (Li et al., 2019). To our best knowledge, 
this is the only publicly available multi-track audio-
visual music performance dataset that is suitable for our 

Figure 7: The same segment of normalized pitch contour 
f(t) (green) overlaid with the motion displacement curve 
d(t) (black) from the associated track (left) and another 
random track (right).
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evaluations. It contains 44 classical chamber ensemble 
pieces ranging from duets to quintets, assembled from 
149 individually recorded tracks. Each piece comes with 
an audio recording (48 kHz, 24 bits) of the ensemble 
performance along with the audio recording for each 
individual instrument track, an assembled video 
recording (1080P, 29.97 FPS) of all instrumentalists as a 
whole, pitch and note annotations for each track, and the 
corresponding MIDI file as music score. In the assembled 
video recording, players are arranged horizontally 
from left to right, with the right-front side exposed to 
camera. The video has a static view without camera 
panning or zooming or shot transitions during the whole 
performance. The whole dataset is accessible from (Li et 
al., 2018a).

We further expand the dataset by creating all possible 
track combinations within each piece. In the expanded 
set, audio is remixed from the provided individual 
audio tracks. For videos, we directly use the estimated 
pose of each player from the original video ensembles 
for augmented track combinations. This process gives 
equivalent results as if we first create the assembled 
videos of the augmented instrumental combinations 
and then run OpenPose on these assembled videos, but 
requires less computation in the experiments. For the 
example of a quartet, we further generate 6 duets and 
4 trios from the 4 original tracks. Note that we do not 
combine tracks across pieces, to ensure the naturalness of 
the expanded set. The total expanded dataset comprises 
171 duets, 126 trios, 47 quartets, and 7 quintets. The 
number of pieces for different instrument arrangements 
are listed in Table 1.

To further understand the dataset, we calculate the 
onset overlap rate for each original piece. This statistic 
is defined as the percentage of onset positions that are 
shared by two or more tracks for each piece. This statistic 
is relevant to the performance of the proposed source 
association approach, as two out of the three motion 
analysis modules rely on onset patterns to associate 
players with tracks. Figure 8 plots this statistic for all of 
the original 44 pieces. While the rate varies much from 
one piece to another, we see a general increasing trend as 
the polyphony increases.

4.2. System Setup

For implementation, the audio is processed with a 
frame length of 42.7 ms and a hop size of 10 ms for 
score following and pitch contour extraction. When 
calculating the vibrato correspondence, the motion 
curve extracted from the 29.97-frame-per-second (FPS) 
video is up-sampled to 100 FPS, enabling a synchronized 
time resolution between the audio and video. As vibrato 
detection is performed on 1-second segments and the 
onset likelihood curve from body motion is derived 
from a local maximum within future 30 video frames 
(≈1 second), the system has a 1-second inherent delay 
when it runs for real-time applications. The past 5 seconds 
of body and finger motion velocities are stored in memory 
to apply PCA (described in Section 3.2.1) and to calculate 
the weighting parameters in Eq. (7).

For evaluation, we first address each track independently 
to investigate the quality of the extracted onset likelihood 
features, using the traditional onset detection measures. 
Then we evaluate the association performance on the 
expanded set of ensemble pieces. The results are grouped 
by different ensemble types and sizes, from duets to 
quintets, which directly correlates with the difficulty level. 
Note that whatever number of tracks are present in the 
performance, only one association is correct. We do not 
include a quantitative evaluation of the score following 
and vibrato detection modules in this paper, since they 
have been fully evaluated in the previous work.

4.3. Onset Detection Evaluation

As two modules of the proposed system rely on the 
synchronization cues of onset timing between different 
modalities, we evaluate the quality of our proposed onset 
likelihood curves that are extracted from body motion and 
finger motion. To do so, we set up an onset detection task. 
We take the onset likelihood curve as the onset detection 
function (Bello et al., 2005), and perform peak-picking to 
retrieve the onsets. A true positive detection is counted 
when a detected onset is within a tolerance window of 
3 video frames (100 ms). This is wider than the standard 
50ms in the literature, since the precise timing is not the 
main focus of the source association system.

Figure 9 plots the precision versus recall by varying 
the peak-picking threshold on the onset likelihood 
curves extracted from body motion and finger motion 
respectively. Precision and recall are calculated for each 
instrument across all pieces in the original dataset. 
Observing Figure 9 reveals that the onset likelihood curve 

Table 1: The number of pieces for different instrument 
arrangements from the original and expanded URMP 
dataset.

 String Wind Mixed Total

Original Duet  2  6  3  11

Trio  2  6  4  12

Quartet  5  6  3  14

Quintet  2  4  1  7

Expanded Duet  57  91  23  171

Trio  41  65  20  126

Quartet  15  25  7  47

Quintet  2  4  1  7

Figure 8: Onset overlap rate for each piece from the 
 original URMP dataset.
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extracted from body motion shows better correlation with 
the ground-truth onset timings for string instruments, 
while, that from finger motion shows better correlation 
for woodwind and brass instruments. An exception is 
trombone, where the onset likelihood curve extracted 
from body motion shows better correlation than that 
from finger motion. This observation is not surprising 
as the trombone pitch change (hence note transition) is 
mainly performed by moving the slide using the right arm 
(body motion).

Another interesting observation is that although the 
onset likelihood curve φ

b
(t) in Figure 3 is visually less 

noisy than φ
f
(t) in Figure 5, the recall calculated from φ

b
(t) 

for string instruments cannot reach as high a value as that 
of wind instruments calculated from φ

f
(t). We argue that 

this is because legato bowing (i.e., articulating a sequence 
of notes from one sustained bowing action) is widely 
used in string instrument performances, where onset 
detection from bow motion misses some true positives. 
This explains the upper bound of recall rates (around 
80% as in Figure 9(a)) for string instruments. For wind 
instruments, there are also onsets that are not visible such 
as repeated notes, but the number is much smaller, which 
explains why the recall rates can reach closely to 100% in 
Figure 9(b).

4.4. Source Association Evaluation

In this section we evaluate the source association 
performance, first for each module (corresponding to each 
component in Eq. (5) independently, then for the finally 
integrated approach. We use association accuracy as the 
evaluation measure, which is defined as the percentage 
of correctly associated pieces among all testing pieces. 
A piece is considered correctly associated if the exactly 
correct bijection between players and score or audio tracks 
is retrieved. Note that the difficulty of source association 
increases dramatically from small to large ensembles. In 
a quintet ensemble, there are in total 5! = 120 bijection 
candidates, and only one is considered correct. Therefore, 
we divide our evaluation based on the size of ensembles.

Besides the ensemble size, the length of the performance 
also affects the difficulty of the association problem, 
assuming longer pieces provide richer cues. In an online 
setting, we hope that the proposed system can retrieve 
the correct association as quickly as possible. Therefore, 
in the experiments, we segment the testing pieces into 

non-overlapping excerpts for each of the following 
lengths: 5, 10, 15, 20, 25, and 30 seconds. When doing so, 
we first remove the beginning and the last 5 seconds of 
each piece as the performance may not cover the entire 
length of those segments. This segmentation further 
expands the testing pieces to a large number of evaluation 
samples, totaling 17,574 samples, as presented in Table 2.

4.4.1. Body Motion

We first evaluate the source association performance 
using the normalized onset correspondence bM  between 
score parts and body motion (the first component of 
Eq. (5)). Figure 10(a)–(c) shows the association accuracy 
for ensembles consisting of string, wind, and mixed 
instruments with various levels of polyphony. Note that 
the “All Ensembles” evaluated in Figure 10(c) and (f) 
contain all the instrument categories from Table 2, i.e., 
String+Wind+Mixed. For each piece, we plot how the 
association accuracy varies as the duration of the input 
stream increases from 5 to 30 seconds. Each marker in 
the figure is the association accuracy calculated from the 
number of excerpts shown in Table 2.

Comparing different ensemble sizes, the association 
accuracy decreases as the number of players or tracks 
increases. From Figure 10(a), we find that correlating 
onsets with body motion is beneficial for string 
instruments. Note that this evaluation is reproduced 
from our previous work (Li et al., 2017a) as one baseline 
system here. The accuracy increases as the duration of 
video stream increases, which provides more cues to solve 
the association. The accuracy reaches around 90% for all 
ensemble sizes when the video stream duration reaches 

Figure 9: Onset detection evaluation results from: (a) 
body motion, and (b) finger motion, for different 
 instruments.
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Table 2: The number of evaluation samples with different 
length and instrumentation for source association.

String Excerpt duration (sec)

5  10  15  20  25  30

Duet  1323  642  420  303  236  200

Trio  1044  506  333  240  189  158

Quartet  355  172  114  82  65  54

Quintet  64  31  21  15  12  10

Wind Excerpt duration (sec)

5  10  15  20  25  30

Duet  1809  887  557  435  323  266

Trio  1275  626  391  309  229  187

Quartet  474  232  145  115  86  68

Quintet  66  32  20  16  12  9

Mixed Excerpt duration (sec)

5  10  15  20  25  30

Duet  441  203  141  96  82  60

Trio  380  174  121  82  70  51

Quartet  199  92  64  44  37  28

Quintet  22  10  7  5  4  3
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30 seconds. This strategy based on onset correspondence 
from body motion, however, is not effective for wind 
instruments, where the association accuracy remains 
around random guess accuracy as shown in Figure 10(b), 
e.g., 1/6 for trios. This observation is consistent with 
our expectations and the onset detection evaluations in 
Figure 9.

4.4.2. Finger Motion

We then evaluate the source association performance 
using the normalized onset correspondence fM  between 
score parts and finger motion (the second component 
of Eq. (5)). The association accuracy is plotted in 
Figure 10(d)–(f), with the same set of pieces used 
for the evaluations plotted in Figure 10(a)–(c). From 
Figure 10(d)–(f) we can observe that finger motion is a 
more prominent cue for note onsets for wind instruments 
(except for trombone). When a 30-second video excerpt 
is available, the association accuracy reaches about 90% 
for all sizes of wind ensembles. These observations are 
also consistent with our onset detection evaluations in 
Figure 9. For string instruments, however, the extracted 
finger motion is mostly vibrato motion, which is not 
relevant to note onsets.

Figure 10 also reveals some limitations of the 
source association solution based on onset-motion 
correspondence. First, there are many note onsets 
not revealed by body or finger motion, such as notes 
played with legato bowing for string instruments and 
repeated notes from wind instruments, as analyzed in 

Section 4.3. Second, as note synchronization between 
players is fundamental to ensemble performance, note 
onsets between tracks have high chances to overlap with 
each other, as shown in Figure 8. These limitations restrict 
the association performance for approaches that only rely 
on onset-motion correspondence, especially from short 
video excerpts.

4.4.3. Vibrato Motion

The correspondence between pitch fluctuations and 
vibrato motion (denoted as vM , the third component of 
Eq. (5)) helps to retrieve the source association on a finer 
level for string instrumentalists. The evaluation result 
is plotted in Figure 11(a) for the same set of pieces 
performed by string ensembles used for evaluations 
plotted in Figure 10(a). Note that this baseline is the 
same system as proposed in our previous work (Li et al., 
2017c). We do not include the wind instrument group 
here since no vibrato pattern can be detected from finger 
motion. We find that the source association reaches a 
high accuracy from shorter video clips, i.e., 90% after 10 
seconds. The limitation of this approach is that vibrato 
articulation is not guaranteed to be always present in the 
performance. We thus combine this module with the onset 
correspondence from body motion, the two dominant cues 
to solve association for string instruments, to evaluate the 
association accuracy as shown in Figure 11(b). The two 
components from bM  and vM  work together to reach a 
high association accuracy from a short video stream.

4.4.4. The Integrated System

Finally, we evaluate the proposed complete source 
association system after integrating all the modules 
together, as presented in Eq. (5). The evaluated pieces are 
the same as the ones plotted in Figure 10. This presents a 
universal source association system for common melodic 
instruments. Overall wind instruments have less chance 
to retrieve the correct association than string instruments, 
since only the subtle finger motion contributes to the 
correspondence with onset events. This correspondence 
is often inaccessible due to overlapping onsets across 
tracks or repeating onsets as analyzed in Section 
4.4.2. Comparing Figure 12(a) with Figure 11(b), or 

Figure 10: (a)–(c): Source association accuracy only 
using onset correspondence between score parts 
and body motion (the first component bM  in Eq. (5)). 
(d)–(f): Source association accuracy only using onset 
correspondence between score parts and finger motion 
(the second component fM  in Eq. (5)).
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Figure 11: Source association accuracy of string ensem-
bles by (a) only using vibrato correspondence between 
pitch fluctuation and hand motion ( vM  in Eq. (5)), and 
(b) combining vibrato correspondence with onset cor-
respondence from body motion ( bM  and vM  in Eq. (5)).
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Figure 12(b) with Figure 10(e), we observe that adding 
components with irrelevant association cues does not 
harm the system, thanks to the weighting strategy in 
Eq. (5) over different modules. Comparing Figure 12(c) 
with Figure 10(c) and (f), the integrated system greatly 
improves the association accuracy for pieces with mixed 
types of instruments. The association accuracy for mixed 
ensembles is between that of pure string and wind 
ensembles.

4.5. Discussion

The proposed source association system is designed 
and evaluated for the online scenario, where all the 
system components do not rely on the performance 
data after the current time instant. Note that due to the 
limitations of the dataset, we have not systematically 
evaluated the robustness of the system against camera 
viewpoint changes. However, we argue that this will 
not be a big problem for the proposed system, as 
all the rigid/affine motions are easy to eliminate by 
setting up reference points (e.g., players’ hips) after 
extracting the skeleton data for each player. Another 
challenge in a real-world application is introduced by 
camera shot transitions in music video post-production. 
One suggested strategy is to clear the accumulated 
association scores and re-register the players when a 
shot transition is detected. But further experiments 
need to be conducted to validate this strategy. Another 
limitation of the experiments is that all the players in 
the dataset have their front-right side facing the camera 
with most finger motion visible. If this is not satisfied 
in real scenarios, only the first computation module 
(correspondence between body motion and note onsets) 
provides useful information, making the system only 
work for string ensembles.

5. Conclusion
In this paper, we propose an online source association 
system for Western chamber ensembles, which aims 
to retrieve the association between players in the video 
and the audio or score tracks, through the analysis of 
cross-modal temporal correspondences. We designed 
three modules to model different correspondences 
between 1) body motion and note onsets, 2) finger 
motion and note onsets, and 3) vibrato motion and pitch 
fluctuations. Although these correspondences apply 
to different kinds of instruments, the proposed system 
automatically integrates them in an adaptive fashion, 
without the need for knowing the instrument types. This 
makes the system a universal framework for common 
instruments in Western chamber ensembles including 
strings, woodwind, and brass instruments. In addition, the 
system runs in an online fashion to update association 
results as the video stream progresses. Experiments with 
audio-visual recordings of performances with different 
levels of polyphony and instrumentation demonstrate 
that the accuracy of the proposed system increases with 
the length of video streams, and high accuracy is achieved 
within a relatively short interval. The accuracy for string 
ensembles is generally better than that for woodwind, 
brass, and mixed-instrument ensembles because more 
correspondences are modeled for these instruments.

Note
 1 www.nielsen.com.
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