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Abstract

People routinely infer the goals of others by observing their actions over time.
Remarkably, we can do so even when those actions lead to failure, enabling us to
assist others when we detect that they might not achieve their goals. How might we
endow machines with similar capabilities? Here we present an architecture capable
of inferring an agent’s goals online from both optimal and non-optimal sequences
of actions. Our architecture models agents as boundedly-rational planners that
interleave search with execution by replanning, thereby accounting for sub-optimal
behavior. These models are specified as probabilistic programs, allowing us to rep-
resent and perform efficient Bayesian inference over an agent’s goals and internal
planning processes. To perform such inference, we develop Sequential Inverse
Plan Search (SIPS), a sequential Monte Carlo algorithm that exploits the online
replanning assumption of these models, limiting computation by incrementally
extending inferred plans as new actions are observed. We present experiments
showing that this modeling and inference architecture outperforms Bayesian inverse
reinforcement learning baselines, accurately inferring goals from both optimal and
non-optimal trajectories involving failure and back-tracking, while generalizing
across domains with compositional structure and sparse rewards.

1 Introduction

Everyday experience tells us that it is impossible to plan ahead for everything. Yet, not only do
humans still manage to achieve our goals by piecing together partial and approximate plans, we also
appear to account for this cognitive strategy when inferring the goals of others, understanding that
they might plan and act sub-optimally, or even fail to achieve their goals. Indeed, even 18-month
old infants seem capable of such inferences, offering their assistance to adults after observing them
execute failed plans [1]. How might we understand this ability to infer goals from such plans? And
how might we endow machines with this capacity, so they might assist us when our plans fail?

While there has been considerable work on inferring the goals and desires of agents, much of this
work has assumed that agents act optimally to achieve their goals. Even when this assumption is
relaxed, the forms of sub-optimality considered are often highly simplified. In inverse reinforcement
learning, for example, agents are assumed to either act optimally [2] or to exhibit Boltzmann-rational
action noise [3], while in the plan recognition literature, longer plans are assigned exponentially
decreasing probability [4]. None of these approaches account for the difficulty of planning itself,
which may lead agents to produce sub-optimal or failed plans. This not only makes them ill-equipped
to infer goals from such plans, but also saddles them with a cognitively implausible burden: If
inferring an agent’s goals requires knowing the optimal solution to reach each goal, then an observer
would need to compute the optimal plan or policy for all of those goals in advance [5]. Outside of the
simplest problems and domains, this is deeply intractable.
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Figure 1: Our architecture performing online Bayesian goal inference via Sequential Inverse Plan
Search. In (a), an agent exhibits a sub-optimal plan to acquire the blue gem, backtracking to pick up
the key required for the second door. In (b), an agent exhibits a failed plan to acquire the blue gem,
myopically using up its first key to get closer to the gem instead of realizing that it needs to collect
the bottom two keys. In both cases, our method not only manages to infer the correct goal by the end,
but also captures sharp human-like shifts in its inferences at key points, such as (a.ii) when the agent
picks up a key unnecessary for the red gem, (a.ii) when the agent starts to backtrack, (b.iii) when the
agent ignores the door to the red gem, or (b.iv) when the agent unlocks the first door to the blue gem.

In this paper, we present a unified modeling and inference architecture (Figure 2) that addresses both
of these limitations. In contrast to prior work that models agents as actors that are noisily rational, we
model agents as planners that are boundedly rational with respect to how much they plan, interleaving
resource-limited plan search with plan execution. This allows us to perform online Bayesian inference
of plans and goals even from highly sub-optimal trajectories involving backtracking or irreversible
failure (Figure 1). We do so by modeling agents as probabilistic programs (Figure 3), comprised
of goal priors and domain-general planning algorithms (Figure 2i), and interacting with a symbolic
environment model (Figure 2ii). Inference is then performed via Sequential Inverse Plan Search
(SIPS), a sequential Monte Carlo (SMC) algorithm that exploits the replanning assumption of our
agent models, incrementally inferring partial plans while limiting computational cost (Figure 2iii).

Our architecture delivers both accuracy and speed by being built in Gen, a general-purpose prob-
abilistic programming system that supports customized inference using data-driven proposals and
involutive rejuvenation kernels [6, 7, 8], alongside an embedding of the Planning Domain Definition
Language [9, 10], enabling the use of fast general-purpose planners [11] as modeling components.
We evaluate our approach against a Bayesian inverse reinforcement learning baseline [12] on a wide
variety of planning domains that exhibit compositional task structure and sparse rewards (e.g. Figure
1), achieving high accuracy on many domains, often with orders of magnitude less computation.
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Figure 2: Our modeling and inference architecture is comprised of: (i) A programmatic model of a
boundedly rational planning agent, implemented in the Gen probabilistic programming system; (ii)
An environment model specified in the Planning Domain Definition Language (PDDL), facilitating
support for a wide variety of planning domains and state-of-the-art symbolic planners; (iii) Sequential
Inverse Plan Search (SIPS), a novel SMC algorithm that exploits the replanning assumption of our
agent model to reduce computation, extending hypothesized plans only as new observations arrive.

2 Related Work

Inverse reinforcement learning (IRL). A long line of work has shown how to learn reward functions
as explanations of goal-directed agent behavior via inverse reinforcement learning [2, 13, 12, 14].
However, most such approaches are too costly for online settings of complex domains, as they
require solving the underlying Markov Decision Process (MDP) for every posited goal or reward
function, and for all possible initial states [15, 5]. Our approach instead assumes that agents are
online model-based planners. This greatly reduces computation time, while also better reflecting
humans’ intuitive understanding of other agents.

Bayesian theory-of-mind (BToM). Computational models of humans’ intuitive theory-of-mind
posit that we understand other’s actions by Bayesian inference of their likely goals and beliefs.
These models, largely built upon the same MDP formalism used in IRL, have been shown to make
predictions that correspond closely with human inferences [16, 17, 18, 19, 20, 21, 22]. Some recent
work also models agents using probabilistic programs [23, 24]. Our research extends this line of work
by explicitly modeling an agent’s partial plans, or intentions [25]. This allows our architecture to infer
final goals from instrumental subgoals produced as part of a plan, and to account for sub-optimality
in those plans, thereby enriching the range of mental inferences that BToM models can explain.

Plan recognition as planning (PRP). Our work is related to the literature on plan recognition as
planning, which performs goal and plan inference by using classical satisficing planners to model plan
likelihoods given a goal [26, 4, 27, 28, 29, 30]. However, because these approaches use a heuristic
likelihood model that assumes goals are always achievable, they are unable to infer likely goals when
irreversible failures occur. In contrast, we model agents as online planners who may occasionally
execute partial plans that lead to dead ends.

Online goal inference. Several recent papers have extended IRL to an online setting, but these have
either focused on maximum-likelihood estimation in 1D state spaces [31, 32], or utilize an expensive
value iteration subroutine that is unlikely to scale [33]. In contrast, we develop a sequential Monte
Carlo algorithm that exploits the online nature of the agent models in order to perform incremental
plan inference with limited computation cost.

Inferences from sub-optimal behavior. We build upon a growing body of research on inferring
goals and preferences while accounting for human sub-optimality [3, 24, 34, 35, 36, 37], introducing
a model of boundedly-rational planning as resource-limited search. This reflects a natural principle
of resource rationality under which agents are less likely to engage in costly computations [38, 39].
Unlike prior models of myopic agents which assign zero reward to future states beyond some time
horizon [34, 36], our approach accounts for myopic planning in domains with instrumental subgoals
and sparse rewards.
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3.2 Modeling Sub-Optimal Plans and Actions

To model sub-optimal plans, the basic insight we follow is that agents like ourselves are boundedly
rational: we attempt to plan to achieve our goals efficiently, but are limited by our cognitive resources.
The primary limitation we consider is that full-horizon planning is often costly or intractable. Instead,
it may often make sense to form partial plans towards promising intermediate states, execute them,
and replan from there. We model this by assuming that agents only search for a plan up to some
budget η, before executing a partial plan to a promising state found during search. We operationalize
η as the maximum number of nodes expanded (i.e., states explored), which we treat as a random
variable sampled from a negative binomial distribution:

η ∼ NEGATIVE-BINOMIAL(r, q) (6)

The parameters r (maximum failure count) and q (continuation probability) characterize the per-
sistence of a planner who may choose to give up after expanding each node. When r > 1, this
distribution peaks at medium values of η, then decreases exponentially, modeling agents that are
unlikely to form extremely long plans, which are costly, or extremely short plans, which are unhelpful.

This model also assumes access to a planning algorithm capable of producing partial plans. While we
support any such planner as a sub-component, in this work we focus on A* search due to its ability to
support domain-general heuristics that can guide search in human-like ways [11, 41]. We also modify
A* so that search is stochastic, modeling agent sub-optimality during search. In particular, instead of
always expanding the most promising successor state, we sample successor s with probability:

Pexpand(s) ∝ exp(−f(s, g)/γ) (7)

where γ is a noise parameter controlling the randomness of search, and f(s, g) = c(s) + h(s, g) is
the estimated total plan cost, i.e. the sum of the path cost c(s) so far with the heuristic goal distance
h(s, g). On termination, we simply return the most recently selected successor state, which is likely
to have low total plan cost f(s, g) if the heuristic h(s, g) is informative and the noise γ is low.

We incorporate these limitations into a model of how a boundedly rational planning agent interleaves
search and execution, specified by the probabilistic programs UPDATE-PLAN and SELECT-ACTION

in Figure 3b. At each time t, the agent may reach the end of its last made plan pt−1 or encounter a
state st not anticipated by the plan, in which case it will call the base planner (probabilistic A*) with
a randomly sampled node budget η. The partial plan produced is then used to extend the original
plan. Otherwise, the agent will simply continue executing its original plan, performing no additional
computation. Note that by replanning when the unexpected occurs, the agent automatically handles
some amount of stochasticity, as well as errors in its environment model.

4 Online Bayesian Goal Inference

Having specified our model, we can now state the problem of Bayesian goal inference. We assume
that an observer receives a sequence of potentially noisy state observations o1:t = (o1, ..., ot). Given
the observations up to timestep t and a set of possible goals G, the observer’s aim is to infer the
agent’s goal g ∈ G by computing the posterior:

P (g|o1:t) ∝ P (g)
∑

s1:t
a1:t

p1:t

∏t−1
τ=0 P (oτ+1|sτ+1)P (sτ+1|sτ , aτ )P (aτ |sτ , pτ )P (pτ |sτ , pτ−1, g) (8)

Computing this posterior exactly is intractable, as it requires marginalizing over all the random
latent variables sτ , aτ , and pτ . Instead, we develop a sequential Monte Carlo procedure, shown
in Algorithm 1, to perform approximate inference in an online manner, using samples from the
posterior P (g|o1:t−1) at time t− 1 to inform sampling from the posterior P (g|o1:t) at time t. We call
this algorithm Sequential Inverse Plan Search (SIPS), because it sequentially inverts a search-based
planning algorithm, inferring sequences of partial plans that are likely given the observations, and
consequently the likely goals.

As in standard particle filtering schemes, we first sample a set of particles or hypotheses i ∈ [1, k],
with corresponding weights wi (lines 3-5). Each particle corresponds to a particular plan piτ and goal
gi. As each new observation oτ arrives, we extend the particles (lines 12–14) and reweight them by
their likelihood of producing that observation (line 15). The collection of weighted particles thus
approximates the full posterior over the unobserved variables in our model, including the agent’s
plans and goals. We describe several key features of this algorithm below.
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Algorithm 1 Sequential Inverse Plan Search (SIPS) for online Bayesian goal inference

1: procedure SIPS(s0, o1:t, )
2: parameters: k, number of particles; c, resampling threshold

3: wi ← 1 for i ∈ [1, k] ⊲ Initialize particle weights

4: si
0
, pi

0
, ai

0
← s0, [], no-op for i ∈ [1, k] ⊲ Initialize states, plans and actions

5: gi ∼ GOAL-PRIOR() for i ∈ [1, k] ⊲ Sample k particles from goal prior
6: for τ ∈ [1, t] do

7: if EFFECTIVE-SAMPLE-SIZE(w1, ..., wk)/k < c then ⊲ Resample and rejuvenate

8: gi, si
1:τ , p

i
1:τ , a

i
1:τ ∼ RESAMPLE([gi, s1:τ , p1:τ , a1:τ ]1:k) for i ∈ [1, k]

9: gi, si
1:τ , p

i
1:τ , a

i
1:τ ∼ REJUVENATE(gi, o1:τ , si1:τ , p

i
1:τ , a

i
1:τ ) for i ∈ [1, k]

10: end if
11: for i ∈ [1, k] do ⊲ Extend each particle to timestep τ
12: siτ ∼ P (sτ |siτ−1

, aiτ−1
) ⊲ Sample state transition

13: piτ ∼ UPDATE-PLAN(pτ |siτ , p
i
τ−1

, gi) ⊲ Extend plan if necessary

14: aiτ ∼ SELECT-ACTION(aτ |siτ , p
i
τ ) ⊲ Select action

15: wi ← wi · P (oτ |siτ ) ⊲ Update particle weight
16: end for
17: end for
18: w̃i ← wi/

∑k
j=1

wj for i ∈ [1, k] ⊲ Normalize particle weights

19: return [(g1, w1), ..., (gk, wk)] ⊲ Return weighted goal particles
20: end procedure
21:
22: procedure REJUVENATE(g, o1:τ , s1:τ , p1:τ , a1:τ ) ⊲ Metropolis-Hasting rejuvenation move
23: parameters: pg , goal rejuvenation probability
24: if BERNOULLI(pg) then ⊲ Heuristic-driven goal proposal
25: g′ ∼ Q(g) := SOFTMAX([h(oτ , g) for g ∈ G]) ⊲ Propose g′

0
based on est. distance to oτ

26: s′
1:τ , p

′

1:τ , a
′

1:τ ∼ P (s1:τ , p1:τ , a1:τ |g) ⊲ Sample trajectory under new goal g
27: α← Q(g)/Q(g′) ⊲ Compute proposal ratio
28: else ⊲ Error-driven replanning proposal
29: t∗ ∼ Q(t∗|s1:τ , o1:τ ) ⊲ Sample a time close to when s1:τ diverges from o1:τ
30: s′t∗:τ , p

′

t∗:τ
, a′t∗:τ ∼ Q(st∗:τ , pt∗:τ , at∗:τ |ot∗:τ ) ⊲ Propose new plan sequence p′t∗:τ

31: α← Q(st∗:τ , pt∗:τ , at∗:τ |ot∗:τ )/Q(s′t∗:τ , p
′

t∗:τ
, a′t∗:τ |ot∗:τ ) ⊲ Compute proposal ratio

32: α← α ·Q(t∗|s′1:τ , o1:τ )/Q(t∗|s1:τ , o1:τ ) ⊲ Reweight by auxiliary proposal ratio

33: end if
34: α← α · P (o1:τ |s′1:τ )/P (o1:τ |s1:τ ) ⊲ Compute acceptance ratio

35: return g′
0
, s′

1:τ , p
′

1:τ , a
′

1:τ if BERNOULLI(min(α, 1)) else g0, s1:τ , p1:τ , a1:τ ⊲ Accept or reject proposals

36: end procedure

4.1 Online Extension of Hypothesized Partial Plans

A key aspect that makes SIPS a genuinely online algorithm is the modeling assumption that agents
also plan online. This obviates the need for the observer to precompute a complete plan or policy for
each of the agent’s possible goals in advance, and instead defers such computation to the point where
the agent reaches a time t that the observer’s hypothesized plans do not yet reach. In particular, for
each particle i, the corresponding plan hypothesis pit−1 is extended (Algorithm 1, line 13) by running

the UPDATE-PLAN procedure in Figure 3b.i, which only performs additional computation if pit−1
does not already contain a planned action for time t and state st. This means that at any given time t,
only a small number of plans require extension, limiting the number of expensive planning calls.

4.2 Managing Hypothesis Diversity via Resampling and Rejuvenation

We also introduce resampling and rejuvenation steps into SIPS in order to ensure particle diversity.
Whenever the effective sample size falls below a threshold c (line 7), we resample the particles (line 8),
thereby pruning low-weight hypotheses. We then rejuvenate by applying a mixture of two data-driven
Metropolis-Hastings kernels to each particle. The first kernel uses a heuristic-driven goal proposal
(lines 25-27), proposing goals g̃ ∈ G which are close in heuristic distance h(oτ , g̃) to the last observed
state oτ . This allows SIPS to reintroduce goals that were pruned, but later become more likely. The
second kernel uses an error-driven replanning proposal (lines 29-32), which samples a time close to
the divergence point between the hypothesized and observed trajectories, and then proposes to replan
from that time, thereby constructing a new sequence of hypothesized partial plans that are less likely
to diverge from the observations. Despite the complexity of these proposals, acceptance ratios are
automatically calculated via Gen’s support for involutive kernels [8]. Collectively, these steps help to
ensure that hypotheses are both diverse and likely given the observations.
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5 Experiments

We conducted several sets of experiments that demonstrate the human-likeness, accuracy, speed,
and robustness of our approach. We first present experiments demonstrating the novel capacity
of SIPS to infer goals from sub-optimal trajectories involving backtracking and failure (Figure 1).
Comparing these inferences against human goal inferences shows that SIPS is more human-like
than baseline approaches (Figure 4). We also evaluate the accuracy and speed of SIPS on a variety
of planning domains (Table 1a), showing that it outperforms Bayesian IRL baselines. Finally, we
present robustness experiments showing that SIPS can infer goals even when the data-generating
model differs from the model assumed by the algorithm (Table 1b).

5.1 Domains

We validate our approach on domains with varying degrees of complexity, both in terms of the
size of the state space |S| and the number of possible goals |G|. All domains are characterized by
compositional structure and sparse rewards, posing a challenge for standard MDP-based approaches.

Taxi (|G| = 3, |S| = 125): A benchmark domain used in hierarchical reinforcement learning [42],
where a taxi has to transport a passenger from one location to another in a gridworld.

Doors, Keys, & Gems (|G| = 3, |S| ∼ 105): A domain in which an agent must navigate a maze with
doors, keys, and gems (Figure 1). Each key can be used once to unlock a door, allowing the agent to
acquire items behind that door. Goals correspond to acquiring one out of three colored gems.

Block Words (|G| = 5, |S| ∼ 105): A Blocks World variant adapted from [4] where blocks are
labeled with letters. Goals correspond to block towers that spell one of a set of five English words.

Intrusion Detection (|G| = 20, |S| ∼ 1030): A cybersecurity-inspired domain drawn from [4],
where an agent might perform a variety of attacks on a set of servers. There are 20 possible goals,
each corresponding to a set of attacks (e.g. cyber-vandalism or data-theft) on up to 10 servers.

5.2 Baselines

We implemented Bayesian IRL (BIRL) baselines by running value iteration to compute a Boltzman-
rational policy π(at|st, g) for each possible goal g ∈ G. Following the setting of early Bayesian
theory-of-mind approaches [18], we treated goals as indicator reward functions, and assumed a
uniform prior P (g) over goals. Inference was then performed by exact computation of the posterior
over reward functions, using the policy as the likelihood for observed actions. Unless otherwise
stated, we used a discount factor of 0.9, and Boltzmann noise parameter α=1.

Due to the exponentially large state space of many of our domains, standard value iteration (VI) often
failed to converge even after 106 iterations. As such, we implemented two variants of BIRL that use
asynchronous VI, sampling states instead of fully enumerating them. The first, unbiased BIRL, uses
uniform random sampling of the state space up to 250,000 iterations, sufficient for convergence in the
Block Words domain. The second, oracle BIRL, assumes oracular access to the full set of observed
trajectories in advance, and performing biased sampling of states that appear in those trajectories.
Although inapplicable in practice for online use, this ensures that the computed policy is able to reach
the goal in all cases, making it a useful benchmark for comparison.

5.3 Human-Like Goal Inference from Sub-optimal and Failed Plans

To investigate the novel human-like capabilities of our approach, we performed a set of qualitative
experiments on a set of trajectories designed to exhibit notable sub-optimality or failure. The
experiments were performed on the Doors, Keys & Gems domain because it allows for irreversible
failures. Two illustrative examples are shown in Figure 1, and more are provided in the supplement.
In Figure 1a, SIPS accurately infers goals from a sub-optimal plan with backtracking, initially placing
more posterior mass on the yellow gem when the agent acquires the first key (panel ii), but then
switching to the blue gem once the agent backtracks to the second key (panel iv). In Figure 1b, SIPS
remains uncertain about all three goals when the first key is acquired (panel ii), but discards the red
gem as a possibility when the agent walks past the door (panel iii), and finally converges upon the
blue gem when the agent myopically unlocks the first door required to access that gem (panel iv).
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(c) Bayesian IRL (oracle)

(b) Sequential Inverse Plan Search (ours)

(a) Human Inferences (cross-subject average)

Time

Time

Time

r = 0.99

r = 0.80
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Figure 4: (a) Average human goal inferences over time (±1 std.) for the sub-optimal trajectory in
Figure 1a, compared to (b) inferences made by SIPS and (c) oracle BIRL. We omit unbiased BIRL
because unbiased VI fails to converge for this domain, producing a flat posterior. In (d) we show a
scatterplot of mean human inferences against algorithm inferences across all trajectories.

In addition to posterior convergence, the inferences made by SIPS display human-like changes at key
timepoints. We quantified this human-likeness by collecting human goal inferences on ten trajectories
(six sub-optimal or failed) in a pilot study with N=8 subjects. Human inferences were collected every
six timesteps, and a comparison against SIPS and the oracle BIRL baseline is shown in Figure 4. For
the trajectory in in Figure 1a, human inferences (Figure 4a) display extremely similar qualitative
trends as SIPS (Figure 4b, r=0.99). Oracle BIRL correlates less well (Figure 4c, r=0.80), assigning
high probability to the yellow gem even after the agent backtracks at t ≥ 18. This is because
Boltzmann action noise assigns significant likelihood to the undoing of past actions. As Figure 4d
shows, SIPS also correlates more strongly with mean human inferences across the dataset. Inferences
made SIPS (yellow) hew closely to the diagonal, achieving a correlation of r=0.89, indicating that
the agent model assumed by SIPS is similar to humans’ theory-of-mind. In contrast, inferences made
by BIRL (blue) are much more diffuse, achieving a correlation of only r=0.51.

5.4 Accuracy, Speed and Robustness of Inference

To evaluate accuracy and speed, we ran each inference method on a dataset of optimal and non-
optimal agent trajectories for each domain, assuming a uniform prior over goals. The optimal
trajectories were generated using A* search with an admissible heuristic for each possible goal in
the domain. Non-optimal trajectories were generated using the replanning agent model in Figure 3b,
with parameters r=2, q=0.95, γ=0.1. We found that with matched model parameters, SIPS achieved
good performance with 10 particles per goal without the use of rejuvenation moves, so we report
those results here. Further experimental details and parameters can be found in the supplement.

We summarize the results of these experiments in Table 1a, with additional results in the supplement.
Our method greatly outperforms the unbiased BIRL baseline in both accuracy and speed in three
out of four domains, with an average runtime (AC) often several orders of magnitude smaller. This
is largely because unbiased VI fails to converge except for the highly restricted Taxi domain. In
contrast, SIPS requires far less initial computation, albeit with higher marginal cost due its online
generation of partial plans. In fact, it achieves comparable accuracy and speed to the oracle BIRL
baseline, sometimes with less computation (e.g. in Doors, Keys & Gems). SIPS also produces higher
estimates of the goal posterior P (gtrue|o). This is a reflection of the underlying agent model, which
assumes randomness at the level of planning instead of acting. As a result, even a few observations
can provide substantial evidence that a particular plan and goal was chosen.

Given the specific assumptions made by our agent model, a reasonable question is whether inference is
robust to plans generated by other agent models or actual humans. To address this, we also performed
a series of robustness experiments for two domains (Table 1b) on data generated by mismatched
model parameters r, q, γ, mismatched planning heuristics h, Boltzmann-rational RL agents, optimal
agents, and 5 pilot human subjects (30 trajectories per subject).
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Accuracy Runtime

Domain Method
P (gtrue|o) Top-1

C0 (s) MC (s) AC (s) N
Q1 Q2 Q3 Q1 Q2 Q3

Taxi
(3 Goals)

SIPS (ours) 0.44 0.50 0.62 0.53 0.56 0.67 13.0 1.80 2.55 1429
BIRL (unbiased) 0.34 0.35 0.79 0.33 0.42 0.92 2.22 0.00 0.16 10000
BIRL (oracle) 0.37 0.47 0.81 0.42 0.44 0.86 1.63 0.00 0.12 2500

Doors,
Keys & Gems

(3 Goals)

SIPS (ours) 0.37 0.51 0.61 0.74 0.74 0.74 3.30 0.70 0.86 2099
BIRL (unbiased) 0.33 0.33 0.33 0.33 0.33 0.33 3326 0.12 154 250000
BIRL (oracle) 0.37 0.36 0.42 0.44 0.60 0.80 150 0.12 7.01 10000

Block Words
(5 Goals)

SIPS (ours) 0.47 0.83 0.90 0.78 0.84 0.91 20.8 2.46 4.15 2506
BIRL (unbiased) 0.20 0.20 0.21 0.42 0.49 0.56 687 0.27 63.6 250000
BIRL (oracle) 0.20 0.29 0.45 0.73 0.80 0.96 22.2 0.05 2.12 10000

Intrusion
Detection
(20 Goals)

SIPS (ours) 0.56 0.87 0.87 0.65 0.87 0.87 375 6.60 28.0 13321
BIRL (unbiased) 0.05 0.05 0.05 0.05 0.05 0.05 18038 0.75 1069 250000
BIRL (oracle) 0.09 0.24 0.53 0.94 1.00 1.00 98 0.02 6.00 10000

(a) Accuracy and runtime of goal inference across domains and inference methods. We quantify accuracy
at the 1st, 2nd and 3rd quartiles (Q1–Q3) of each observed trajectory via the posterior probability of the true
goal P (gtrue|o), and the fraction of problems where gtrue is top-ranked (Top-1). We measure runtime in terms of
the start-up cost (C0), marginal cost per timestep (MC), and average cost per timestep (AC) in seconds. We also
report the total number of states visited (N) during either search or value iteration as a platform-independent
measure. Excluding the oracle baseline, the best metrics are bolded.

Persistence (r) Persistence (q) RL Optimal
Domain 1 2* 4 0.8 0.9 0.95* α=50

Doors, Keys, Gems 0.60 0.73 0.73 0.53 0.60 0.73 0.58 0.80
Block Words 0.90 0.87 0.90 0.70 0.83 0.87 0.82 0.80

Search Noise. (γ) Heuristic (h) Humans
Domain 0.5 0.1* 0.02 Mh.* Mz. GC. hadd* n=5

Doors, Keys, Gems 0.67 0.73 0.77 0.73 0.90 – – 0.79
Block Words 0.83 0.87 0.87 – – 0.43 0.87 0.73

(b) Robustness to model mismatch. Top-1 accuracy of SIPS at the third time quartile (Q3), evaluated on data
generated by mismatched parameters, Boltzmann-rational RL agents, optimal agents, and humans. We ran SIPS
assuming r=2, q=0.95, T=10. For Doors, Keys, Gems, we assumed a Manhattan (Mh.) heuristic against a
maze distance (Mz.) heuristic. For Block Words, we assumed hadd against the naive goal count (GC.) heuristic.
Matched parameters are starred (*).

Table 1: Accuracy, runtime, and robustness of inference.

As Table 1b shows, SIPS is relatively robust to data generated by these other models and parameters.
Although performance can degrade with mismatch, this is partly due to the difficulty of inference
from highly random behavior (e.g. q=0.8, h=GC.). On the other hand, when mismatched parameters
are more optimal, performance can improve (e.g. h=Mz.). Importantly, SIPS also does well on human
data, showing robustness even when the planner is unknown. While our boundedly rational agent
model cannot possibly capture all aspects of human planning, these experiments suggest that it is
serves as a reasonable approximation, similar to our intuitive theories of other people’s minds.

6 Limitations and Future Work

In this paper, we demonstrated an architecture capable of online inference of goals and plans, even
when those plans might fail. However, important limitations remain. First, we considered only finite
sets of goals, but the space of goals that humans pursue is easily infinite. Relatedly, we assume that
these goals are final, instead of accounting for the hierarchical and instrumental nature of goals and
plans. A promising next step would thus be to express hierarchies of goals and plans as probabilistic
grammars or programs [43, 44, 45], capturing both the infinitude and structure of the motives we
attribute to each other [46, 47]. Second, unlike the domains considered here, the environments we
operate in often involve stochastic dynamics and infinite action spaces [48, 49]. A natural extension
would be to integrate Monte Carlo Tree Search or sample-based motion planners into our architecture
as modeling components [23], potentially parameterized by learned heuristics [50]. With hope, our
architecture might then approach the full complexity of problems that we face everyday, whether one
is stacking blocks as a kid, finding the right keys for the right doors, or writing a research paper.
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7 Broader Impact

We embarked upon this research in the belief that, as increasingly powerful autonomous systems
become embedded in our society, it may eventually become necessary for them to accurately under-
stand our goals and values, so as to robustly act in our collective interest. Crucially, this will require
such systems to understand the ways in which humans routinely fail to achieve our goals, and not
take that as evidence that those goals were never desired. Due to our manifold cognitive limitations,
gaps emerge between our goals and our intentions, our intentions and our actions, our beliefs and our
conclusions, and our ideals and our practices. To the extent that we would like machines to aid us
in actualizing the goals and ideals we most value, rather than those we appear to be acting towards,
it will be critical for them to understand how, when, and why those gaps emerge. This aspect of
the value alignment problem has thus far been under-explored [51]. By performing this research at
the intersection of cognitive science and AI, we hope to lay some of the conceptual and technical
groundwork that may be necessary to understand our boundedly-rational behavior.

Of course, the ability to infer the goals of others, and to do so online and despite failures, has
many more immediate uses, each of them with its own set of benefits and risks. Perhaps the most
straightforwardly beneficial are assistive use cases, such as smart user interfaces [52], intelligent
personal assistants, and collaborative robots, which may offer to aid a user if that user appears to
be pursuing a sub-optimal plan. However, even those use cases come with the risk of reducing
human autonomy, and care should be taken so that such applications ensure the autonomy and willing
consent of those being aided [53].

More concerning however is the potential for such technology to be abused for manipulative, offensive,
or surveillance purposes. While the research presented in this paper is nowhere near the level of
integration that would be necessary for active surveillance or manipulation, it is highly likely that
mature versions of similar technology will be co-opted for such purposes by governments, militaries,
and the security industry [54, 55]. Although detecting and inferring “suspicious intent” may not
seem harmful in its own right, these uses need to be considered within the broader context of society,
especially the ways in which marginalized peoples are over-policed and incarcerated [56]. Given
these risks, we urge future research on this topic to consider seriously the ways in which technology
of this sort will most likely be used, by which institutions, and whether those uses will tend to lead to
just and beneficial outcomes for society as a whole. The ability to infer and understand the motives
of others is a skill that can be wielded to both great benefit and great harm. We ought to use it wisely.

8 Code Availability

Code for the architecture and experiments presented in this paper is available at https://github.
com/ztangent/Plinf.jl/tree/neurips-2020-experiments, as part of the Plinf.jl pack-
age for Bayesian inverse planning.
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