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Abstract: Models play a crucial role in explaining internal processes, estimating states, and managing
lithium-ion batteries. Electrochemical models can effectively illustrate the battery’s mechanism;
however, their complexity renders them unsuitable for onboard use in electric vehicles. On the
other hand, equivalent circuit models (ECMs) utilize a simple set of circuit elements to simulate
voltage–current characteristics. This approach is less complex and easier to implement. However,
most ECMs do not currently account for the nonlinear impact of operating conditions on battery
impedance, making it difficult to obtain accurate wideband impedance characteristics of the battery
when used in online applications. This article delves into the intrinsic mechanism of batteries and
discusses the influence of nonstationary conditions on impedance. An ECM designed for non-steady
state conditions is presented. Online adaptive adjustment of model parameters is achieved using the
forgetting factor recursive least squares (FFRLS) algorithm and varied parameters approach (VPA)
algorithm. Experimental results demonstrate the impressive performance of the model and parameter
identification method, enabling the accurate acquisition of online impedance.

Keywords: lithium-ion batteries; impedance; equivalent circuit model; nonlinear; recursive least
squares algorithm

1. Introduction

In recent years, electric vehicles have been considered a solution that can balance high
performance, energy conservation, and environmental protection requirements. Lithium-
ion batteries are widely used as vehicle power batteries due to their high energy density
and long lifespan. During the operation of electric vehicles, the battery management system
(BMS) is required to detect the temperature, voltage, and current of the battery and estimate
the battery state to ensure normal operation. The lithium-ion battery is a complex and
strongly coupled nonlinear system; moreover, ad under vehicle conditions, the battery
works in an unstable state, and its internal process changes with time. Therefore, it is very
difficult to estimate the state and response of the battery in real time. Establishing a suitable
battery model is considered one of the key methods available to achieve this goal, and there
has been considerable research in this field [1–10].

The battery model includes the electrochemical model and the equivalent circuit model
(ECM). The electrochemical model focuses on the internal electrode processes of the battery,
including the diffusion process of solid and liquid phases, the conduction process of solid
and liquid phases, and the electrochemical process of the electrode interface. Newman
et al. [11] summarized the relevant physical and chemical laws of these electrode processes
and established a porous electrode model for batteries for the first time, systematically
elucidating the electrode processes and mechanisms inside lithium-ion batteries. Electro-
chemical models are widely used in the study of aging [12], lithium plating [13–15], and
in the growth of SEI film [16]. Although electrochemical models can comprehensively

World Electr. Veh. J. 2023, 14, 168. https://doi.org/10.3390/wevj14070168 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj14070168
https://doi.org/10.3390/wevj14070168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0002-7228-9697
https://doi.org/10.3390/wevj14070168
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj14070168?type=check_update&version=1


World Electr. Veh. J. 2023, 14, 168 2 of 21

and accurately describe the internal processes of batteries, and because the parameters
of the model also have clear physical meanings, the large number of partial differential
equations and parameters that require identification makes it difficult to achieve online
control-oriented applications; therefore, they are usually used in simulation experiments.
Another commonly used battery model is the ECM. Unlike mechanistic-derived electro-
chemical models, the ECM uses a combination of equivalent elements such as inductance,
resistance, capacitance, the constant phase element (CPE), and the Warburg element to fit
the impedance of the battery and simulate its external behavior. These elements typically
correspond to each electrode process; therefore, they require a wide frequency range of
battery impedance for fitting. The ECM is composed of only a few equivalent elements, and
the model structure is simpler, making it more suitable for control-oriented applications in
vehicles. For example, Meng et al. [17] developed a battery charging control method based
on the ECM, taking the battery charging efficiency and battery health status into account,
and achieved good results. In the field of ECM research, Randles [18] proposed an ECM,
namely the Randles model, to describe battery impedance. The model consists of resistors,
capacitors, and a Warburg element. Eddine et al. [19] considered the charge transfer and
diffusion processes of batteries, improved the elements in the Randles model, and estab-
lished a fractional order ECM. Wang et al. [20] analyzed the electrochemical impedance
spectroscopy (EIS) characteristics of lithium-ion batteries and introduced CPEs to improve
the Randles model, enabling it to maintain higher accuracy. Most studies on ECMs have
simplified the electrode processes to linear, with the parameters of equivalent elements
being fixed values, without considering the impact of current on the electrode processes.
This may lead to significant errors in the model under high current conditions, making it
difficult to accurately describe the broadband impedance characteristics of the battery.

Another major challenge in the application of battery models is the identification
of model parameters. In this field, the Levenberg–Marquardt (L–M) algorithm [21,22]
and intelligent optimization algorithms such as the particle swarm optimization (PSO)
algorithm [23,24] are commonly used. The intelligent optimization algorithm has strong
universality and good applicability to the model structure and can overcome the problem
of the L–M algorithm easily falling into local optima. However, the computational com-
plexity of the intelligent optimization algorithm is large, making it difficult to apply online.
Therefore, algorithms such as the deviation compensation recursive least squares algorithm
and decoupling weighted recursive least squares algorithm have been proposed for the
online identification of battery model parameters [25,26]. When fitting the impedance of
a battery, a fractional order ECM is used to reflect the electrode process characteristics
more accurately. Fractional order elements, i.e., CPEs, are used to replace ideal capac-
itors to describe the impedance characteristics at medium to high frequencies. Unlike
integer-order models, fractional-order models require a special method to convert them
from the frequency domain to the time domain for identification. Cai et al. [27] established
the fractional-order ECM of the battery, achieved the discretization of the fractional-order
elements in the model in the time domain according to the G-L definition of fractional-order
calculus, and identified the model parameters based on the double unscented Kalman
filter algorithm. Wu et al. [28] studied the fractional order model of lithium-ion batteries
and identified the model parameters based on the L–M method and time-domain data.
However, the fractional order was fixed to 0.5 or 1 during the identification process. Wang
et al. [20] established a fractional-order ECM with a variable order; however, the fractional
order needs to be determined using an offline algorithm such as PSO. Due to the nonlinear-
ity and time-varying battery impedance, the order of the fractional-order model changes
with operating conditions and states, resulting in continuous changes in the time-domain
structure of the fractional-order model. Therefore, it is necessary to identify and adjust
the order of the fractional order online. In existing research involving online identification
methods for fractional order model parameters, the order is mostly set to a fixed value
or obtained through offline methods, lacking an adaptive adjustment of the order to the
operating conditions.
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To establish a suitable ECM, the accurate impedance of the battery must be ob-
tained over a wide frequency range. Cai et al. [29] used the M-sequence to measure
the impedance of the battery, obtaining the impedance measurement in the frequency range
of 1000 Hz~1 Hz in about 1 s. The impedance measurement speed is much faster than the
traditional impedance measurement methods, and the real-time impedance information
of the battery can be obtained in vehicle applications; Secondly, it is necessary to analyze
the obtained impedance to establish an ECM. In existing research, the battery model does
not consider the nonlinear effect of current on the electrode processes and cannot accu-
rately describe the battery impedance characteristics under non-steady state conditions.
Finally, it is necessary to identify the model parameters. In existing research, most online
identification methods for models do not consider the adaptive adjustment of the order
of fractional order elements with operating conditions, as well as the identification of the
nonlinear impact of current on impedance.

Considering the research gap, the main contribution of this article is as follows: (1) By
combining the control equation of the basic electrode processes inside the battery, an ECM
is established, considering the influence of current under non-steady state operating condi-
tions; (2) According to the definition of fractional calculus and the discretization method,
the battery model is discretization. On this basis, the ECM parameters are identified,
and broadband impedance is obtained using the forgetting factor recursive least squares
(FFRLS) algorithm.

The remainder of this article is organized as follows: Section 2 studies the relationship
between battery impedance characteristics and current bias through experiments. Section 3
establishes a battery model based on Section 2. In Section 4, the discretization of the battery
model is realized, and the parameters of the model are adaptively identified based on FFRLS
and the varied parameters approach (VPA) algorithms. Section 5 verifies the accuracy of
the battery model and model parameter identification method through experiments. Lastly,
Section 6 concludes the article.

2. Experimental Section

The experiment was conducted on the Samsung INR18650-29E batteries with a nomi-
nal capacity of 2.75 Ah. To clearly understand the impedance characteristics of the battery
for modeling, broadband impedance was quickly measured, referring to the broadband
impedance fast measurement method based on M-sequence excitation, as proposed in our
previous work [29]. Readers can find more details there.

Figure 1 shows the measured impedance in the frequency range of 1000 Hz~1 Hz at
different temperatures and SOC. As the charging rate increases, the arc in the mid-frequency
region of the impedance spectrum gradually contracts, and the same pattern occurs during
discharge. Comparing Figure 1c,e,f, it can be seen that, the lower the temperature is, the
greater the impedance will be; moreover, as the charging rate increases, the more obvious
the contraction of the arc in the mid-frequency range of the impedance spectrum becomes.
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discharge at 35 °C and 50% SOC. 
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Figure 1. Broadband impedance measurement results based on M-sequence excitation under different
battery states: (a) charge at 25 ◦C and 30% SOC; (b) discharge at 25 ◦C and 30% SOC; (c) charge
at 25 ◦C and 50% SOC; (d) discharge at 25 ◦C and 70% SOC; (e) charge at 5 ◦C and 50% SOC;
(f) discharge at 35 ◦C and 50% SOC.

3. Modeling

To explain and describe the above experimental results, an impedance model of the
battery is derived from the electrode process mechanism. This model starts with the Butler–
Volmer equation. It describes the relationship between the electrode reaction overpotential
ηi and the Faraday current density jfd,i, as shown in Equation (1).

jfd,i = j0,i

[
exp

(
αF
RT

ηi

)
− exp

(
−(1− α)F

RT
ηi

)]
(1)

where j0,i is the exchange current density; R is the universal gas constant; F is the Faraday
constant; α is the electrode reaction transfer coefficient; T is the temperature.

For the Faraday current at the electrode interface participating in electrochemical
reactions, considering the influence of reaction overpotential and reactant concentration,
the Faraday current density can be expressed as Equation (2).

Zfd,i = Rct,i − Rct,i

(
∂jfd,i

∂cs,surf,i

)
∆cs,surf,i

∆jfd,i
= Rct,i + Zd,i (2)

From the above equation, the Faraday impedance mainly consists of two parts: the
charge transfer resistance Rct,i and diffusion impedance Zd,i. This article mainly analyzes
the charge transfer resistance under non-steady state conditions.

Under quasi-steady state conditions, there is no DC bias, and the amplitude of the
excitation current is very small. The exponential term in Equation (1) can be expanded using
Taylor expansion near η = 0 to obtain the charge transfer resistance under quasi-steady
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state conditions, as shown in Equation (3), with the subscript ss indicating quasi-steady
state conditions.

Rct,ss,i =

(
∂ηi

∂jfd,i

)
ss
=

RT
Fj0,i

(3)

However, when the charging and discharging current of the battery is high, that is,
under non-steady state conditions, the Faraday current density at the electrode interface is
high, and the first-order Taylor approximation of Equation (1) mentioned above is no longer
applicable. For Equation (1), assuming that the electrode reaction transfer coefficients of
the positive and negative electrodes are equal, i.e., α = 0.5 [30], according to Equation (1),
Equation (4) can be obtained.

F
2RT

ηi = ln

 jfd,i

2j0,i
+

√(
jfd,i

2j0,i

)2
+ 1

 (4)

According to the definition of charge transfer resistance Rct,ss,i under quasi-steady state
conditions in Equation (3), the deformation sorting of Equation (4) can obtain the charge
transfer resistance Rct,ts,i under non-steady state conditions, as shown in Equation (5).

Rct,ts,i =
ηi

jfd,i
=

RT
Fj0,i
·

ln

(
jfd,i
2j0,i

+

√(
jfd,i
2j0,i

)2
+ 1

)
jfd,i
2j0,i

= Rct,ss,i ·
ln

(
jfd,i
2j0,i

+

√(
jfd,i
2j0,i

)2
+ 1

)
jfd,i
2j0,i

(5)

where the subscript ts represents non-steady state conditions, indicating that its value will
change with the magnitude of the loading current.

It can be seen from Equation (5) that, unlike the quasi-steady state condition, the
charge transfer resistance Rct,ts,i under the unsteady state condition is related to the Faraday
current density jfd,i and the exchange current density j0,i. When the Faraday current
density jfd,i = 0, Rct,ts,i is equal to the charge transfer resistance Rct,ts,i under quasi-steady
state conditions.

The battery impedance model established in this article mainly focuses on the impedance
characteristics in the frequency range of 1000 Hz~1 Hz, as shown in Figure 1. This frequency
range can basically cover the charge transfer process at different temperatures. In addition to
Faraday impedance, the non-Faraday process at the electrode interface includes the charg-
ing and discharging processes of SEI film equivalent capacitance and electric double-layer
capacitance, which are described using corresponding equivalent resistance and equiva-
lent capacitance.

Due to the dispersion effect of porous electrodes, the characteristics of the electric
double-layer capacitance in the impedance spectrum deviate from the impedance character-
istics of the ideal capacitor [31]. Therefore, the impedance model established in this article
replaces the ideal capacitor with a CPE, thereby more accurately describing the impedance
characteristics of the electric double-layer capacitance. The expression for the impedance of
a CPE, Zdl, is shown in Equation (6).

Zdl =
1

Tdl(jω)α (6)

where Tdl and α are parameters of CPEs, ω is the angular frequency. α is the fractional
order that satisfies 0 ≤ α ≤ 1.

The impedance of SEI film can be equivalent to the impedance of SEI film resistance
Rfilm and film capacitance Cfilm in parallel. The impedance of the SEI film is shown as a
circular arc in the high-frequency region in the impedance spectrum. However, it can be
seen from the impedance spectra obtained from the battery under different states of charge
and discharge in Figure 1 that the circular arc in the high-frequency region is not obvious.
Moreover, unlike the charge transfer resistance, the SEI film impedance does not change
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with the magnitude of the loading current [32]. To reduce the complexity of the model and
facilitate online application, the impedance of the SEI film is ignored in the impedance
model. The impedance model established in this article under non-steady state conditions
is shown in Figure 2 [20].
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Since the expression of the charge transfer resistance shown in Equation (5) is related
to the Faraday current density jfd, while the actual measured data are current, it is necessary
to establish a relationship between current density and current magnitude. Introducing
the concept of electrode active surface area A, the relationship between jfd and A satisfies
IR = jfd A, where IR is the current flowing through the branch of the charge transfer
resistance. The active surface area of the electrode can be calculated using Equation (7).

Ai = SLias,i =
3εs,iSLi

Ri
(7)

where Ri is the radius of the solid phase particle; εs,i is the volume fraction of the solid
phase component; S is the cross-sectional area of the electrode; Li is the thickness of the
positive or negative electrode area.

By introducing the relationship between the active surface area A of the electrode and
the current density jfd into Equation (5), the expression for the influence of current on the
charge transfer resistance under non-steady state conditions can be obtained [33], as shown
in Equation (8).

Rct(IR) =
η

IR
=

RT
AFj0

·
ln

(
IR

2Aj0
+

√(
IR

2Aj0

)2
+ 1

)
IR

2Aj0

= Rct,0 ·
ln
(

kI IR +
√
(kI IR)

2 + 1
)

kI IR
(8)

where Rct,0 = RT
AFj0

is the charge transfer resistance under quasi-steady state conditions,
that is, the charge transfer resistance at IR = 0; kI is the current dependence coefficient of
the charge transfer resistance, which satisfies kI =

1
2Aj0

.
In summary, the impedance expression of the impedance model shown in Figure 2

is shown in Equation (9). This model considers the nonlinear effect of the current on
the charge transfer resistance and still has a high accuracy under high-rate charging and
discharging conditions.

Z = R0 +
Rct(IR)

1 + Rct(IR)Tdlsα
(9)

4. Methodology
4.1. Discretization of Impedance Model

The impedance model established contains CPE with fractional order characteristics.
Fractional order elements cannot be discretized directly through bilinear transformation.
Fractional order elements should be converted from frequency domain to time domain
discrete form according to the relevant theory of fractional calculus. According to the circuit
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structure of the battery impedance model shown in Figure 2, the transfer function expres-
sion of impedance in the frequency domain can be obtained, as shown in Equation (10).

Ud(s)−UOCV(s)
I(s)

= R0 +
Rct(IR)

1 + Rct(IR)Tdlsα
(10)

where UOCV is the open circuit voltage of the battery; Ud is the terminal voltage of the
battery; I is the current of the battery; R0 is the ohmic internal resistance; Rct(IR) is the
charge transfer resistance.

According to Equation (8), because the relationship between Rct and the current is
complex, in order to facilitate the discretization of the model, it is assumed that there is a
linear relationship between the overpotential and current, that is, the current is unbiased
and the amplitude is small. At this time, Rct(IR) degenerates to Rct,0 under quasi-steady
state conditions. The following algorithm first identifies Rct,0 and, based on this, identifies
the relationship between the current and the charge transfer resistance under non-steady
state conditions; then, it corrects the quasi-steady state charge transfer resistance Rct,0. The
next discretization process uses Rct,0 instead of Rct(IR).

For the system in Figure 2, the system input is u(t) = I(t), which is the battery current,
and the system output is y(t) = Ud(t)−UOCV(t). Since the observed value of the system is
the terminal voltage, the open circuit voltage is also taken as the quantity e to be identified;
moreover, the above relationship is incorporated into Equation (10), and its discretization
processing is performed to obtain the difference equation of the recursive relationship
between the battery terminal voltage and the battery current, as shown in Equation (11).

Ud(k) = aUd(k− 1) + bI(k) + cI(k− 1) + (1− a)e

= aUd(k− 1) + bI(k) + cI(k− 1) + d
(11)

where d = (1− a)e. Assuming order α is known, the model parameters can be obtained
from the identified values a, b, c, d, as shown in Equation (12).

R0 = − c
a

Rct,0 = − ab+c
a−α + c

a + b

Tdl =
a2Tα

αc+abα

e = d
1−a

(12)

where T is the sampling period. As the sampling frequency of the voltage and current used
in the parameter identification algorithm in this article is 10 kHz, the sampling period T is
0.1 ms.

4.2. Online Identification Algorithm for Impedance Models

The FFRLS algorithm can effectively solve the problem of data saturation during
the recursive process of the recursive least squares (RLS) algorithm, prevent estimation
divergence, and maintain the fast convergence speed of the algorithm. The recursive
calculation equations of the FFRLS algorithm are shown in Equations (13)–(15).

Kk =
Pk−1ϕk

λ +ϕT
k Pk−1ϕk

(13)

θ̂k = θ̂k−1 + Kk(yk −ϕT
k θ̂k−1) (14)

Pk =
1
λ

(
Pk−1 −Kkϕ

T
k Pk−1

)
(15)
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where k represents the time; θ̂k is the estimated parameter value at time k; ϕ(k) is the
data vector; yk −ϕT

k θ̂k−1 is the deviation caused by the parameter estimation value at
time k− 1 used for k-time prediction; Kk is the gain matrix; Pk is the covariance matrix;
forgetting factor λ indicates the speed of forgetting old data, with a general value range of
0.95 ≤ λ ≤ 1.

A smaller λ causes a faster forgetting speed, which accelerates the convergence speed
of the algorithm; however, if λ is too small, this can lead to the poor stability of the
algorithm. The closer λ is to 1, the higher the stability of the algorithm becomes. When
λ = 1, it indicates that the old data has not been forgotten, and the FFRLS algorithm is
equivalent to the recursive least squares algorithm.

Combining the discretization results of the impedance model shown in Equation
(11), the data vector can be obtained as ϕ(k) = [Ud(k− 1), I(k), I(k− 1), 1]T , the model
parameter vector to be identified is θ = [R0, Rct,0, Tdl, e]T , the parameter vector used for
the FFRLS algorithm recursive process is θd = [a, b, c, d]T , and the relation between θd and
θ is shown in Equation (12). The parameter identification process based on the FFRLS
algorithm is shown in Figure 3.
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In the parameter identification process based on the FFRLS algorithm mentioned
above, it is assumed that the order α of the CPE is known. However, the order of the
CPE will change with operating conditions and battery status; therefore, an adaptive
identification of the order is necessary. When the order of the CPE changes, the battery
terminal voltage can be expressed in the form of Equation (16).

Ûd(α) =
αRct,0Tdl

Rct,0Tdl+Tα Ud(k− 1) + (R0+Rct,0)Tα+R0Rct,0Tdl
Rct,0Tdl+Tα I(k)

− αR0Rct,0Tdl
Rct,0Tdl+Tα I(k− 1) + (1−α)Rct,0Tdl+Tα

Rct,0Tdl+Tα e
(16)

Based on this, the objective function F(α) = min
∣∣Ud(k)− Ûd(α)

∣∣ can be constructed.
When the F(α) obtained at a certain value of order α is the minimum value of all repeated
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processes at time k, the order value is the optimal identification result at time k and is used
in the recursive iteration at the next time. Set the optimal order obtained from the previous
moment as the optimal order obtained from the current moment as the initial value αk for
the current order optimization. The number of trial and error attempts for the order is N,
and the step size for each trial and error is ∆α. Set αk as the center value of order α during
the repeated verification process at the current moment, and the range of change for α at
the current moment is αk − N∆α

2 ≤ α ≤ αk +
N∆α

2 . The larger the number of trial and error
attempts N, the smaller the step size ∆α for each trial and error is, leading to more accurate
results of the order in the identification; however, the amount of computation will also
increase accordingly. This article sets the initial values of ∆α = 0.01, N = 20, and α = 0.8.

Due to the small sampling period of voltage and current in the parameter identification
algorithm in this article, executing the order trial and error process at each sampling time
will greatly increase the computational workload. Therefore, the minimum time interval
for performing order adjustment is set to 1 s, and a terminal voltage error threshold is set.
The order identification process is executed only when the terminal voltage error exceeds
the threshold at a certain time. The process of the order adaptive identification algorithm is
shown in Figure 4.
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Under the quasi-steady state condition of an unbiased small current, the overpoten-
tial and current exhibit an approximately linear relationship. Under this premise, the
identification of the transfer resistance using the FFRLS algorithm is accurate. When the
charging and discharging current of the battery is large, the overpotential and current
exhibit a complex nonlinear relationship, and the charge transfer resistance is affected by
the current. Therefore, it is necessary to correct Rct,0 according to Equation (8). At this
time, it is necessary to identify the current dependence coefficient kI of the charge transfer
resistance. Due to kI =

1
2Aj0

, determined by the exchange current density and the active
surface area of the electrode, both of which change with the aging state and temperature
of the battery, the parameter kI must adapt to changes in battery states. Therefore, a first
in first out (FIFO) data queue is needed to collect eligible current and voltage data online.
After the queue has collected enough data, parameter optimization algorithms are executed
on the voltage and current data in the queue. The optimization goal is to minimize the root
mean square error between the measured terminal voltage and the model terminal voltage,
thereby obtaining the value of parameter kI.

In Equation (8), the current flowing through the charge transfer resistance needs to be
obtained. However, according to the connection relationship between the charge transfer
resistance and the electric double-layer capacitance described in Figure 5, the obtained
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battery current flows through two branches. During battery charging and discharging, the
electric double-layer capacitance also undergoes corresponding charging and discharging
processes, and the current flowing through the equivalent capacitor Idl(t) also constantly
changes. When the capacitor is fully charged or discharged, Idl(t) is close to 0. At this
point, all battery current flows through the charge transfer resistance, i.e., IR(t) = I(t), and
the battery current can be used for parameter identification.
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branch during the charging process.

Using Simulink to simulate the circuit model shown in Figure 5, by changing the
values of Rct and Cdl for multiple sets of simulations, it was found that the time required
for Idl to decrease to 1/10, 000 of I is related to the time constant of the RC circuit, which
is about seven times the time constant. Therefore, it is believed that, after 1 s of charging
current loading, the capacitor is fully charged and all battery current flows through the
charge transfer resistance.

The algorithm designed in this article judges the current data at each moment. When
the charging/discharging rate is greater than or equal to 0.1C (C-rate) and the duration
exceeds 1 s, the data meets the conditions for entering the queue; Continue to make
judgments on the following data. When the charge/discharge ratio is greater than or equal
to 0.2C, store the measured current and voltage data at the current time, as well as the model
parameters identified by the FFRLS algorithm, in the queue. When the current direction at
a certain moment is opposite to the current direction of the data in the queue, the data at
that moment is discarded, and the queue condition count is set to 0. Starting from the next
moment, the queue condition judgment is re-executed. Therefore, the data in the queue is
obtained by continuing to charge or discharge while ensuring that the electric double-layer
capacitor is fully charged or discharged; moreover, the charging or discharging rate is not
less than 0.2C, which can be used to identify the nonlinear relationship between the charge
transfer resistance and current. A parameter optimization algorithm is executed when the
amount of data in the queue reaches the set value. While executing the algorithm, data
that meet the requirements still enter the queue from the end of the queue. If the amount
of data in the queue exceeds the capacity of the queue, the earliest data will be discarded
from the beginning of the queue.

After sufficient data are stored in the queue, the VPA algorithm is used to identify the
current dependence coefficient kI of the charge transfer resistance. VPA is a pattern search
algorithm. Waag et al. [34] first proposed VPA as a model parameter optimization method
and applied the parameter identification results to battery diagnosis. Moreover, the FFRLS
algorithm has already estimated the parameter vector θ = [R0, Rct,0, Tdl, e]T of the model
at each moment, based on which the VPA only needs to identify kI as a parameter. For
each sampling time in the queue, the transfer resistance Rct,KI under non-steady state is
calculated according to Equation (17).

Rct,kI = Rct,0 ·
ln
(

kI I +
√
(kI I)2 + 1

)
kI I

(17)

Since the data in the queue are obtained after the equivalent electric double-layer
capacitor is fully charged or emptied, it meets the requirements of Idl(t) = 0. Therefore,
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the predicted terminal voltage Upred of the model at each time can be calculated using
Equation (18).

Upred =
(

R0 + Rct,kI

)
I(t) + e (18)

The root mean square error (RMSE) of the measurement terminal voltage Umeas and
the model prediction terminal voltage Upred of the data in the queue are selected as the cost
functions for parameter optimization, as shown in Equation (19), where N is the number of
data in the queue. The optimization goal of the algorithm is to minimize the cost function.

RMSE =

√√√√ 1
N

N

∑
k=1

(
Upred −Umeas

)2
(19)

In each iteration of VPA, there are three variations in the value of kI based on
the optimal parameter kI,ref obtained from the previous iteration: kI,ref,

(
1 + kvary

)
kI,ref,(

1− kvary
)
kI,ref. Where 0 < kvary < 1, the variation range of parameter kI is determined,

and setting kvary = 0.8 in the initial stage can obtain a relatively wide search range. For
the three variants of kI, the RMSE of the terminal voltage in the queue is calculated based
on Equations (17)–(19). The optimal parameter is the kI variation form that minimizes the
RMSE, which serves as the reference value for the next iteration. If the optimal parameter
obtained in a certain iteration is still kI,ref, it indicates that the search range of kI is too
large. Therefore, in the next iteration, halve kvary to narrow the range of kI changes. Repeat
the above iterative process until the terminal voltage RMSE meets the preset accuracy or
reaches the maximum number of iterations. The maximum number of iterations depends
on the processor’s computing power and allowed computing time. The larger the number
of iterations, the more accurate the estimation result of kI, ensuring that the algorithm
can converge to the accurate value of kI. Figure 6 shows the convergence of kI during the
execution of a VPA algorithm, where the initial value is kI,0 = 0.01. From Figure 6, it can
be seen that the optimal value of kI is about 0.0205; moreover, the points near the optimal
value are relatively dense, indicating that the algorithm gradually decreases kvary during
the iteration process, the search range gradually approaches the optimal value, and the
search range gradually decreases.
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In summary, the identification process for the current dependence coefficient kI of the
charge transfer resistance is as follows.

Step 1: Initialize the capacity of the queue M = 2000, the initial value of kI, kI,0 = 0.01,
the parameter determining the range of changes of kI: kvary = 0.8.

Step 2: After executing the FFRLS recursive process at each sampling time, judge the
current data: if the charging/discharging ratio is greater than or equal to 0.1C, add one to
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the count. Due to the sampling frequency fs = 10kHz, when the count exceeds 10,000, it
indicates that it has been continuously charged or discharged for 1 s and that the following
data have met the admission conditions.

Step 3: Continue to assess the current data. If the charge/discharge ratio is greater
than or equal to 0.2C, store the measured current, terminal voltage, and model parameter
θ = [R0, Rct,0, Tdl, e]T estimated using the FFRLS algorithm at the current time in the queue.

Step 4: Start executing the kI identification algorithm when 1000 sets of data have
been stored in the queue. Firstly, based on the initial values of Rct,0 and kI estimated using
the FFRLS algorithm at each moment in the queue, the corresponding Rct,kI is calculated
according to Equation (17). Calculate the RMSE of the terminal voltage in the current queue
according to Equations (18) and (19).

Step 5: Set the initial value of kI as the reference value kI,ref for the first iteration, so that
kI is kI,ref,

(
1 + kvary

)
kI,ref,

(
1− kvary

)
kI,ref, and calculate the RMSE of the terminal voltage

of the data in the current queue according to Equations (17)–(19).
Step 6: Among the three variants of kI relative to the reference value, the kI value that

minimizes the terminal voltage RMSE is the optimal parameter kI,best for this iteration and
is set as the reference value for the next iteration of kI. If kI,best and the reference value kI,ref
of this iteration are the same, then kvary will be halved in the next iteration.

Step 7: Repeat the iteration process of steps 5 and 6 until the terminal voltage RMSE
meets the preset accuracy or reaches the maximum number of iterations. The execution of
this VPA algorithm is completed, and the optimal value kI,best of kI is output, and kI,best is
used as the initial value of kI for the next algorithm execution.

The identification process of the current dependence coefficient kI of the charge transfer
resistance is shown in Figure 7. At each sampling time, after executing the FFRLS recursive
process, only a simple assessment of the current data needs to be made. After storing the
eligible data in the queue, the next recursive process can be executed. The identification
process of kI based on data in the queue is executed in parallel with the FFRLS algorithm;
therefore, the identification algorithm of kI will not reduce the overall parameter identifica-
tion speed. The identification result kI,best of kI output after each algorithm execution will
be used for the correction of Rct,0 from the current time until the kI identification algorithm
is executed again to obtain a new identification result kI,best and to update the old value.
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5. Results and Discussion
5.1. Verification of Impedance Model

Based on the battery model shown in Figure 2, commercial software Zview® (version
3.1) was used to fit the broadband impedance measured based on M-sequence excitation
when the battery in Figure 1 was charged and discharged at different rates and at different
temperatures and SOC. The frequency range was 1000 Hz~1 Hz. The impedance fitting
results are shown in Figure 8.
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Figure 8. Comparison of impedance measurement results and impedance model fitting results under
different battery states: (a) Charge at 25 ◦C and 50% SOC; (b) discharge at 25 ◦C and 50% SOC; (c)
charge at 25 ◦C and 70% SOC; (d) discharge at 5 ◦C and 50% SOC.

From the fitting results shown in Figure 8, it can be seen that the impedance model
established in this article can accurately fit the circular arcs in the frequency band of the
impedance spectrum. To further demonstrate the accuracy of the model, the RMSE between
the output impedance of the model and the measured impedance is calculated as the fitting
error of the model. The calculation method is shown in Equation (20)

RMSE =

√√√√√ n
∑

i=1

(
(Z′ i − z′ i)

2 + (Z′′ i − z′′ i)
2
)

n
(20)

where n is the number of frequency points, Z′ i and Z′′ i are the real and imaginary parts
of the impedance calculated theoretically at a certain frequency; zi

′ and zi
′′ are the real

and imaginary parts of the impedance obtained experimentally at that frequency [29]. The
fitting errors of the model under different battery states are listed in Table 1.
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Table 1. Fitting errors of the impedance model under different battery states.

Temperature SOC Charge/Discharge
Rate RMSE/mΩ Temperature SOC Charge/Discharge

Rate RMSE/mΩ

25 ◦C
50%

0.3C 0.425
25 ◦C 70%

0.3C 0.458
0.6C 0.478 0.6C 0.427
−0.3C 0.450

5 ◦C
50%

0.3C 0.406
−0.6C 0.493 0.6C 0.379

30%
0.3C 0.462

35 ◦C
0.3C 0.495

0.6C 0.397 0.6C 0.484

From Table 1, it can be seen that the fitting error between the measured impedance
of the battery under different SOC and temperature states, the charging and discharging
conditions at different rates, and the impedance output of the model within the same
frequency range, is within 0.5 mΩ. This indicates that the impedance model has high
accuracy in the frequency domain, and that the form of the model can accurately describe
the impedance characteristics of the battery.

5.2. Verification of Parameter Identification Methods

The battery is charged at a rate of 0.5C (1.375 A) at 25 ◦C and 50% SOC. The M-
sequence excitation is superimposed on the charging current, and the current excitation
is continuous. Figure 9 shows the changes in the excitation current and battery terminal
voltage during a certain cycle of the M-sequence during the charging process.
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Figure 9. In this figure, schemes follow the same formatting. Current and voltage changes within
one cycle of the M-sequence during charging at a rate of 0.5C at 25 ◦C and 50% SOC: (a) current;
(b) terminal voltage.

The measured current and voltage data in Figure 9 are used as inputs for the parameter
identification algorithm. Figure 10 shows the comparison between the predicted terminal
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voltage and the measured terminal voltage obtained from the model parameter identifi-
cation algorithm proposed in this paper. In Figure 10a, the model predicts the terminal
voltage based on the FFRLS algorithm and order adaptive identification algorithm, without
identifying kI to correct the charge transfer resistance under high current conditions; in
Figure 10b, the VPA algorithm is used to identify the current dependence coefficient kI
of the charge transfer resistance and to correct the charge transfer resistance under high-
current conditions based on the result in Figure 10a; Figure 10c shows the comparison
results of terminal voltage errors under two scenarios: (a) and (b). It can be clearly seen that
the model in Figure 10b can accurately track and measure the terminal voltage, and that
the terminal voltage error is smaller. The root mean square error of the terminal voltage in
Figure 10a is 2.85 mV, while the root mean square error of the terminal voltage in Figure 10b
is 0.228 mV. It can be seen that, after the kI correction of the charge transfer resistance, the
prediction accuracy of the terminal voltage in the parameter identification algorithm is
greatly improved.
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Figure 11 shows the identification results of the ohmic resistance R0, transfer resistance
Rct, and double-layer capacitance Tdl obtained using the above parameter identification
algorithm, with the current and voltage signals shown in Figure 9 as inputs.
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From Figure 11b, it can be seen that, after kI correction, the charge transfer resistance
value decreases compared to Rct,0. Based on the impedance model and model parameter
identification results, the impedance spectrum within a frequency range of 1000 Hz~1 Hz
was reconstructed and compared with the experimental impedance. As shown in Figure 12,
it can be seen that, after Rct,0 is corrected by the current dependence coefficient kI of the
charge transfer resistance, the reconstructed impedance spectrum basically coincides with
the measured impedance spectrum. The RMSE between the reconstructed impedance and
the measured impedance in the frequency range of 1000 Hz~1 Hz is calculated. The RMSE
without kI correction is 0.729 mΩ, and the RMSE after kI correction is 0.358 mΩ.
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In order to further verify the adaptability of the parameter identification algorithm
under different operating conditions, the current and voltage data of the battery during
charging and discharging at different rates at different temperatures and SOC were used
as input data for the identification algorithm. The output results of the model terminal
voltage in the time domain and the reconstruction results of the impedance spectrum in the
frequency domain were obtained. Figure 13 shows the time-domain and frequency-domain
identification results of the battery when discharged at a rate of 1C (2.75 A) at 25 ◦C and
30% SOC. Figure 14 shows the time-domain and frequency-domain identification results of
the battery when charged at a rate of 1C (2.75A) at 5 ◦C and 50% SOC.
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terminal voltage with kI correction; (c) comparison of terminal voltage errors; (d) reconstructed
impedance spectrum.
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From Figures 13 and 14, it can be seen that, after kI correction, the terminal voltage
output by the model in the time domain can more accurately track the measured terminal
voltage. In the frequency domain, the reconstruction results of the impedance spectrum can
better fit and calculate the impedance spectrum. To further demonstrate the accuracy of the
battery model and model parameter identification algorithm, Table 2 summarizes the RMSE
between the measured terminal voltage and the model output terminal voltage obtained by
applying the impedance model and parameter identification algorithm when the battery is
charged or discharged at different rates and at different temperatures and SOC, as well as
the RMSE between the reconstructed impedance and the experimental impedance within a
frequency range of 1000 Hz~1 Hz based on the parameter identification results, representing
the identification accuracy in the time domain and frequency domain, respectively.

Table 2. RMSE of terminal voltage and impedance under different operating conditions.

Temperature SOC Charge/
Discharge Rate

Terminal
Voltage

RMSE/mV

Impedance
RMSE/mΩ

25 ◦C

50%

0.5C 0.228 0.358
1C 0.154 0.324
−0.5C 0.286 0.426
−1C 0.215 0.379

30%
0.5C 0.239 0.361
1C 0.173 0.412

70%
0.5C 0.112 0.344
1C 0.237 0.466

5 ◦C 50%
0.5C 0.258 0.438
1C 0.279 0.435

35 ◦C 50%
0.5C 0.281 0.472
1C 0.292 0.493

From Table 2, it can be seen that, under different operating conditions, the terminal
voltage RMSE obtained based on the parameter identification algorithm proposed in
this article is less than 0.3 mV, and the impedance RMSE is less than 0.5 mΩ, indicating
that the algorithm has high identification accuracy in both time and frequency domains
under different operating conditions. In terms of model parameter identification ability
for different battery cells, Lai et al. [35] achieved an accurate parameter identification of
batteries in different aging states using the FFRLS algorithm. Therefore, we have reason to
believe that the parameter identification method we used has good properties for different
battery cells.

6. Conclusions

Starting from the mechanism of lithium-ion batteries, this article proposes an impedance
model suitable for non-steady state conditions. Unlike the impedance model of batter-
ies under quasi-steady state conditions, the impedance model established in this article
considers the nonlinear characteristics of batteries. An online parameter identification algo-
rithm for impedance models under non-steady state conditions has been proposed. This
includes a preliminary identification algorithm for model parameters based on the FFRLS
algorithm, an adaptive identification algorithm for the order of CPEs, as well as for the
identification method used for the current dependence coefficient kI of the charge transfer
resistance based on the VPA algorithm. The established model and proposed algorithm
were validated. In the time domain, and the RMSE of the output terminal voltage of the
model under different operating conditions was less than 0.3 mV. In the frequency domain,
the impedance spectrum reconstructed based on the identified model parameters coincides
with the impedance spectrum calculated based on the M sequence, and the RMSE of the
impedance under different operating conditions was less than 0.5 mΩ.
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