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Abstract

In recent years, the management and processing of so-called data streams has be-
come a topic of active research in several fields of computer science such as, e.g.,
distributed systems, database systems, and data mining. A data stream can roughly
be thought of as a transient, continuously increasing sequence of time-stamped data.
In this paper, we consider the problem of clustering parallel streams of real-valued
data, that is to say, continuously evolving time series. In other words, we are in-
terested in grouping data streams the evolution over time of which is similar in a
specific sense. In order to maintain an up-to-date clustering structure, it is neces-
sary to analyze the incoming data in an online manner, tolerating not more than a
constant time delay. For this purpose, we develop an efficient online version of the
classical K-means clustering algorithm. Our method’s efficiency is mainly due to a
scalable online transformation of the original data which allows for a fast computa-
tion of approximate distances between streams.
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1 Introduction

In recent years, so-called data streams have attracted considerable attention in
different fields of computer science such as, e.g., database systems, data min-
ing, or distributed systems. As the notion suggests, a data stream can roughly
be thought of as an ordered sequence of data items, where the input arrives
more or less continuously as time progresses [19,15,7]. There are various ap-
plications in which streams of this type are produced such as, e.g., network
monitoring, telecommunication systems, customer click streams, stock mar-
kets, or any type of multi-sensor system.
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A data stream system may constantly produce huge amounts of data. To
illustrate, imagine a multi-sensor system with 10,000 sensors each of which
sends a measurement every second of time. Regarding aspects of data storage,
management and processing, the continuous arrival of data items in multiple,
rapid, time-varying, and potentially unbounded streams raises new challenges
and research problems. Indeed, it is usually not feasible to simply store the ar-
riving data in a traditional database management system in order to perform
operations on that data later on. Rather, stream data must generally be pro-
cessed in an online manner in order to guarantee that results are up-to-date
and that queries can be answered with small time delay. The development of
corresponding stream processing systems is a topic of active research [4].

In this paper, we consider the problem of clustering data streams. Clustering
is one of the most important and frequently used data analysis techniques. It
refers to the grouping of objects into homogeneous classes or groups and is
commonly seen as a tool for discovering structure in data. In our context, the
goal is to maintain classes of data streams such that streams within one class
are similar to each other in a sense to be specified below. Roughly speaking,
we assume a large number of evolving data streams to be given, and we are
looking for groups of data streams that evolve similarly over time. Our focus
is on time-series data streams, which means that individual data items are
real numbers that can be thought of as a kind of measurement. There are
numerous applications for this type of data analysis such as e.g. clustering of
stock rates.

Apart from its practical relevance, this problem is also interesting from a
methodological point of view. Especially, the aspect of efficiency plays an im-
portant role: Firstly, data streams are complex, extremely high-dimensional
objects making the computation of similarity measures costly. Secondly, clus-
tering algorithms for data streams should be adaptive in the sense that up-to-
date clusters are offered at any time, taking new data items into consideration
as soon as they arrive. In this paper, we develop techniques for clustering
data streams that meet these requirements. More specifically, we develop an
efficient online version of the classical K-means clustering algorithm. The ef-
ficiency of our approach is mainly due to a scalable online transformation of
the original data which allows for a fast computation of approximate distances
between streams.

The remainder of the paper is organized as follows: Section 2 provides some
background information, both on data streams and on clustering. The main-
tenance and adequate preprocessing of data streams is addressed in Section 3.
Section 4 is given to the clustering of data streams and introduces an online
version of the K-means algorithm. A fuzzy extension of this approach is mo-
tivated and outlined in Section 5. In Section 6, some implementation issues
are discussed. Finally, experimental results are presented in Section 7.
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Fig. 1. Basic structure of a data stream model.

2 Background

2.1 The Data Stream Model

The data stream model assumes that input data are not available for random
access from disk or memory, such as relations in standard relational databases,
but rather arrive in the form of one or more continuous data streams. The
stream model differs from the standard relational model in the following ways

[1]:

The elements of a stream arrive incrementally in an “online” manner. That
is, the stream is “active” in the sense that the incoming items trigger oper-
ations on the data rather than being sent on request.

The order in which elements of a stream arrive are not under the control of
the system.

e Data streams are potentially of unbounded size.
e Data stream elements that have been processed are either discarded or

archived. They cannot be retrieved easily unless being stored in memory,
which is typically small relative to the size of the stream. (Stored/condensed
information about past data is often referred to as a synopsis, see Fig. 1).
Due to limited resources (memory) and strict time constraints, the compu-
tation of exact results will usually not be possible. Therefore, the processing
of stream data does commonly produce approzimate results [5].

2.2 Clustering

Clustering refers to the process of grouping a collection of objects into classes

or

“clusters” such that objects within the same class are similar in a certain

sense, and objects from different classes are dissimilar. In addition, the goal
is sometimes to arrange the clusters into a natural hierarchy (hierarchical
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clustering). Also, cluster analysis can be used as a form of descriptive statistics,
showing whether or not the data consists of a set of distinct subgroups.

Clustering algorithms proceed from given information about the similarity
between objects e.g. in the form of a proximity matriz. Usually, objects are
described in terms of a set of measurements from which similarity degrees
between pairs of objects are derived, using a kind of similarity or distance
measure. There are basically three types of clustering algorithms (see e.g. [23]):
Mixture modeling assumes an underlying probabilistic model, namely that the
data were generated by a probability density function, which is a mixture of
component density functions. Combinatorial algorithms do not assume such
a model. Instead, they proceed from an objective function to be maximized
and approach the problem of clustering as one of combinatorial optimization.
The third type of algorithms, so called mode-seekers, are somewhat similar to
mixture models. However, they take a non-parametric perspective and try to
estimate modes of the component density functions directly. Clusters are then
formed by looking at the closeness of the objects to these modes that serve as
cluster centers.

One of the most popular clustering methods, the so-called K-means algorithm
[22], belongs to the latter class. This algorithm starts by guessing K cluster
centers and then iterates the following steps until convergence is achieved:

e clusters are built by assigning each element to the closest cluster center;
e cach cluster center is replaced by the mean of the elements belonging to
that cluster.

K-means usually assumes that objects are described in terms of quantitative
attributes, i.e. that an object is a vector z € R". Dissimilarity between ob-
jects is defined by the Euclidean distance, and the above procedure actually
implements an iterative descent method that seeks to minimize the variance
measure (“within cluster” point scatter)

> 2 lm—alP (1)

k=1 z,,x,€Ck

where C} is the k-th cluster. In each iteration, the criterion (1) is indeed
improved, which means that convergence is assured. Still, it is not guaranteed
that the global minimum will be found, i.e., the final result may represent a
suboptimal local minimum of (1).
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2.8 Related Work

Stream data mining [12] is a topic of active research, and several adaptations
of standard statistical and data analysis methods to data streams or related
models have been developed recently (e.g. [8,33]). Likewise, several online data
mining methods have been proposed (e.g. [25,9,30,6,17,14]). In particular, the
problem of clustering in connection with data streams has been considered in
[20,11,29]. In these works, however, the problem is to cluster the elements of
one individual data stream, which is clearly different from our problem, where
the objects to be clustered are the streams themselves rather than single data
items thereof. To the best of our knowledge, the problem in this form has not
been addressed in the literature so far.

There is a bunch of work on time series data mining in general and on clus-
tering time series in particular [26]. Even though time series data mining is
of course related to stream data mining, one should not overlook important
differences between these fields. Particularly, time series are still static objects
that can be analyzed offline, whereas the focus in the context of data streams
is on dynamic adaptation and online data mining.

3 Preprocessing and Maintaining Data Streams

The first question in connection with the clustering of (active) data streams
concerns the concept of distance or, alternatively, similarity between streams.
What does similarity of two streams mean, and why should they, hence, fall
into one cluster?

Here, we are first of all interested in the qualitative, time-dependent evolu-
tion of a data stream. That is to say, two streams are considered similar if
their evolution over time shows similar characteristics. As an example con-
sider two stock rates both of which continuously increased between 9:00 a.m.
and 10:30 a.m. but then started to decrease until 11:30 a.m.

To capture this type of similarity, we shall simply derive the Euclidean dis-
tance between the normalization of two streams (a more precise definition
follows below). This measure satisfies our demands since it is closely related
to the (statistical) correlation between these streams. In fact, there is a sim-
ple linear relationship between the correlation of normalized time series (with
mean 0 and variance 1) and their (squared) Euclidean distance. There are
of course other reasonable measures of similarity for data streams or, more
specifically, time series [21], but Euclidean distance has desirable properties
and is commonly used in applications.
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Fig. 2. Data streams are compared within a sliding window of fixed size. In the

example above, the behavior of the two streams is obviously quite different. In the
example below, the two streams are similar to some extent.

\

3.1  Data Streams and Sliding Windows

The above example (clustering of stock rates) already suggests that one will
usually not be interested in the entire data streams, which are potentially of
unbounded length. Instead, it is reasonable to assume that recent observa-
tions are more important than past data. Therefore, one often concentrates
on a time window, that is a subsequence of a complete data stream. The most
common type of window is a so-called sliding window that is of fixed length
and comprises the w most recent observations (cf. Fig.2). A more general ap-
proach to taking the relevancy of observations into account is that of weighing.
Here, the idea is to associate a weight in the form of a real number to each
observation such that more recent observations receive higher weights.

When considering data streams in a sliding window of length w, a stream
(resp. the relevant part thereof) can formally be written as a w-dimensional
vector X = (zg,x1,...,%yw_1), where a single observation z, is simply a real
number. As shown in Fig. 3, we further partition a window into m blocks
(basic windows) of size v, which means that w = m - v (Table 1 provides a
summary of notation): !

X = (anl‘l)"' y Ly—1 | Lyy Ly+1s -+ 5 L2w—1 | | x(m—l)mx(m—l)v-‘rla"' axw—l)

B1 Bs Bm

Data streams will then be updated in a “block-wise” manner each time v new
items have been observed. This approach gains efficiency since the number of
necessary updates is reduced by a factor of v. On the other hand, we tolerate
the fact that the clustering structure is not always up-to-date. However, since

I Typical values as used in our experiments later on are w = 8192 and v = 1024.
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Fig. 3. A window of length w is divided into m blocks of size v.

symbol | meaning

X data stream

X™  |normalized data stream

x, single observation

T, | (94 1)-th element of block B,
w window length

v length of a block

m number of blocks in a window
c weighing constant
%4 weight vector
T mean value of a stream
s standard deviation of a stream
Table 1
Notation

the delay is at most one block size, this disadvantage is limited at least for
small enough blocks. Apart from that, one should note that a small number of
observations can change a stream but slightly, hence the clustering structure
in the “data stream space” will usually not change abruptly.

We assume data items to arrive synchronously, which means that all streams
will be updated simultaneously. An update of the stream X, in this connection
also referred to as X, is then accomplished by the following shift operation:

XOldI Bl|BQ|Bg|...|Bm_1|Bm
(2)
Xnew . BQ|Bg|...|Bm_1|Bm|Bm+1

where B,, 1 denotes the entering block.

Finally, we allow for an exponential weighing of observations (within a win-
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w—1—1

dow). The weight attached to observation x, is defined by ¢ , where
0 < ¢ < 1is a constant. We denote by V' the weight vector (¢~ ¢*=2...c")
and by V' ® X the coordinate-wise product of V' and a stream X:

vox & (" tag, 2wy APay ).
3.2  Normalization

Since we are interested in the relative behavior of a data stream, the original
streams have to be normalized in a first step. By normalization one usually
means a linear transformation of the original data such that the transformed
data has mean 0 and standard deviation 1. The corresponding transformation
simply consists of subtracting the original mean and dividing the result by
the standard deviation. Thus, we replace each value x, of a stream X by its
normalization

aif Ty —
pa ot 3)
Considering the weighing of data streams,  and s become the weighted aver-

age and standard deviation, respectively:

-1
1—c¢c ¥
= w—1—1
r = . E T, C s
_ ow
1 c =0
1—c w—1
8221 — . (l‘z—i‘)2 szl
—C =0
1 — c w—1

_ T . (l,l)Z . Cw—z—l . (j')2

~
Il
=)

As suggested above, T and s? are updated in a block-wise manner. Let X be
a stream and denote by z,, the (j+ 1)-th element of the s-th block B,. Partic-
ularly, the exiting block leaving the current window (“to the left”) is given by
the first block By = (10, Z11,- .. , Z1,-1). Moreover, the new block entering
the window (“from the right”) is Byt1 = (Zm41,0, Tmt1,1s- - - > Tmt10-1). We
maintain the following quantities for the stream X:

gt w—1 gt w—1
w—1—1 2 w—1—1
Q1 = sz-c , Q= Z(xl) e )
1=0 1=0
Likewise, we maintain for each block Bj the variables
dat v—1 dat v—1
k v—1—1 k 2 v—1—1
1= Zxkz'c ) QQ = Z(xkz) e .
1=0 1=0
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An update via shifting the current window by one block is then accomplished
by setting

Qr — Q- —Q1 -+ QT
Q2 — Q- —QF - +Qyt.

3.8 Discrete Fourier Transform

Another preprocessing step replaces the original data by its Discrete Fourier
Transform (DFT). As will be explained in more detail in section 3.5, this
provides a suitable basis for an efficient approximation of the distance between
data streams and, moreover, allows for the elimination of noise. The DFT of
a sequence X = (g, ... ,x,_1) is defined by the DFT coefficients

1w —i27f
DFTf(X)d:f—Zx-exp< ), f=0,1,... ,w—1,
Vuw = / w

where ¢ = 4/—1 is the imaginary unit.

Denote by X™ the normalized stream X defined through values (3). Moreover,
denote by V the weight vector (c*~! ... ) and recall that V & X™ is the
coordinate-wise product of V and X", i.e. the sequence of values

T, — T

wazfl

S

Since the DFT is a linear transformation, which means that
DFT(aX + YY) = aDFT(X) + SDFT(Y)

for all a;, > 0 and sequences X, Y, the DFT of V ® X" is given by

o
DFT(V ® X") = DFT (V ® x)
S

_ DFT(V@X—V@x)

S
DFT(V ® X) — DFT(V) ® &

S

Since DFT(V') can be computed in a preprocessing step, an incremental deriva-
tion is only necessary for DFT(V ® X).
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3.4 Computation of DFT Coefficients

Recall that the exiting and entering blocks are By = (210, %11, .. , Z1,0-1)
and By1 = (Tmi1.0 Tmi1dy -+ > Tme10-1), Tespectively. Denote by X4 =
By|Bs|...|B,, the current and by X" = By|Bs|...|Bny1 the new data
stream. Without taking weights into account, the DFT coefficients are up-
dated as follows [33]:

27 fu

DETy e w - DFTy
1 () iemr—y =l ey
+ — Ze w me,J—Ze v Ty, |-
\/E (]O 7=0

In connection with our weighing scheme, the weight of each element of the
stream must be adapted as well. More specifically, the weight of each element
z,, of X° is multiplied by ¢, and the weights of the new elements @11,
coming from block B,,,1, are given by ¢*=77!, 0 < 5 < v — 1. Noting that
DFT(c” - X°) = ¢" DFT;(X°) due to the linearity of the DFT, the DFT
coefficients are now modified as follows:

DFT; — "% - " DFT;

—1 v—1
1 [ i2nfe-) i2nf(v—y)
2rfg) 1 2mf(v—y) -1
b (Tt ey, o5 ey, )
\/E 7=0 7=0
Using the values
v—1
fodf 2rflv=y) . . 4
k= Ze v T gy, (4)

J=0

the above update rule simply becomes

127 fv
o 81 o)
As can be seen, the processing of one block basically comes down to maintain-
ing the - and (-coefficients. The time complexity of the above update proce-
dure is therefore O(nvu). Moreover, the procedure needs space O(nmu + nv):
For each stream, the [-coefficients have to be stored for each block plus the
complete last block.

10
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Fig. 4. Original (noisy) signal and DFT-filtered curve.

3.5 Distance Approximation and Smoothing

We now turn to the problem of computing the Euclidean distance

vl = (- w?) "

1=0

between two streams X and Y (resp. the distance ||V X" —V ©Y™|| between
their normalized and weighted versions) in an efficient way. A useful property
of the DFT is the fact that it preserves Euclidean distance, i.e.

X = Y| = [[DFT(X) — DFT(Y) . ()

Furthermore, the most important information is contained in the first DF'T
coefficients. In fact, using only these coefficients within the inverse transfor-
mation (which recovers the original signal X from its transform DFT(X))
comes down to implementing a low-pass filter and, hence, to using DFT as a
smoothing technique (see Fig. 4 for an illustration).

Therefore, a reasonable idea is to approximate the distance (5) by using only
the first © < w rather than all of the DFT coefficients and, hence, to store
the values (4) only for f = 0,...,u — 1. More specifically, since the middle
DFT coefficients are usually close to 0, the value

u—1 1/2
(2 > (DFT{(X) — DFT;(Y))(DFT;(X) - DFTf(Y))>
=1

is a good approximation to (5). Here, we have used that DFT,_;,; = DFTy,
where DFT is the complex conjugate of DFT ;. Moreover, the first coefficient
DFTy can be dropped, as for real-valued sequences the first DFT coefficient
is given by the mean of that sequence, which vanishes in our case (recall that
we normalize streams in a first step).

The above approximation has two advantages. First, by filtering noise we cap-

11
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1. Initialize K cluster centers at random

2. Repeat

3. Assign each stream to the closest center

4 Replace each center by the center of its associated cluster
5 If a new block is complete:

6. Update the streams and pairwise distances

7 Update the optimal cluster number K

Fig. 5. Incremental version of the K-means algorithm for clustering data streams.

ture only those properties of a stream that are important for its characteristic
time-dependent behavior. Second, the computation of the distance between
two streams becomes much more efficient due to the related dimensionality
reduction.

4 Clustering Data Streams

The previous section has presented an efficient method for computing the (ap-
proximate) pair-wise Euclidean distances between data streams in an incre-
mental way. On the basis of these distances, it is principally possible to apply
any clustering method. In this section, we propose an incremental version of
the well-known K-means algorithm. K-means appears especially suitable in
our context, as it is an iterative procedure that can be extended to the online
setting in a natural way.

Our incremental K-means method works as shown in Fig. 5: The standard
K-means algorithm is run on the current data streams. As soon as a new
block is available for all streams, the current streams are updated by the shift
operation (2). Standard K-means is then simply continued. In other words,
the clustering structure of the current streams is taken as an initialization for
the clustering structure of the new streams. This initialization will usually be
good or even optimal since the new streams will differ from the current ones
but slightly (see Fig. 6 for an illustration).

An important additional feature that distinguishes our algorithm from stan-
dard K-means is an incremental adaptation of the cluster number K. Needless
to say, such an adaptation is very important in the context of our application
where the clustering structure can change over time. Choosing the right num-
ber K is a question of practical importance in standard K-means also, and a
number of (heuristic) strategies has been proposed. A common approach is to
look at the cluster dissimilarity (the sum of distances between objects and their
associated cluster centers) for a set of candidate values K € {1,2,..., Kyuz}-
The cluster dissimilarity is obviously a decreasing function of K, and one ex-

12



To appear in Data & Knowledge Engineering

o® o
0 o ©
® o0 o ® 0
°
@0 O e 0° .o
) ° o
o @
® oo o
°

Fig. 6. A slight change of the data streams, here indicated as points, will usually
not change the clustering structure drastically. In this example, the clusters before
(light points) and after the modification (dark points) are even identical.

pects that this function will show a kind of irregularity at K™, the optimal
number of clusters: The benefit of increasing the cluster number K will usually
be large if K < K* but will be comparatively small otherwise. This intuition
has been formalized, e.g. by the recently proposed gap statistic [31].

Unfortunately, the above strategy is not practicable in our case as it requires
the consideration of too large a number of candidate values. Our adaptation
process rather works as follows: In each iteration phase, one test is made in
order to check whether the clustering structure can be improved by increasing
or decreasing K*, the current (hopefully optimal) cluster number. By iteration
phase we mean the phase between the entry of new blocks, i.e. while the
streams to be clustered remain unchanged.

We restrict ourselves to adaptations of K* by =1, which is again justified
by the fact that the clustering structure will usually not change abruptly. In
order to evaluate a clustering structure, we make use of a standard quality
measures, especially the well-known separation indez [32]. Good results have
also been obtained with a measure that has recently been proposed in [28].

Let Q(K) denote the above quality measure for the cluster number K resp. the
clustering obtained for this number. The optimal cluster number is then up-
dated as follows:

K* — argmax{Q(K* —1),Q(K"),Q(K*+ 1)}.

Intuitively, going from K* to K*—1 means that one of the current clusters has
disappeared, e.g. since the streams in this cluster have become very similar
to the streams in a neighbored cluster. Thus, Q(K* — 1) is derived as follows:
One of the current candidate clusters is tentatively removed, which means
that each of its elements is re-assigned to the closest cluster (center) among
the remaining ones (note that different elements might be assigned to different
clusters). The quality of the clustering structure thus obtained in then com-
puted. This is repeated K times, i.e., each of the current clusters is removed
by way of trial. The best clustering structure is then chosen, i.e., Q(K* — 1)

13
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Fig. 7. Snapshots of a dynamic clustering structure at different time points (upper
left to lower right).

is defined by the quality of the best structure.

Going from K* to K* + 1 assumes that an additional cluster has emerged,
e.g. since a homogeneous cluster of streams has separated into two groups. To
create this cluster we complement the existing K* centers by one center that
is defined by a randomly chosen object (stream). The probability of a stream
to be selected is reasonably defined as an increasing function of the stream’s
distance from its cluster center. In order to compute Q(K* + 1), we try out
a fixed number of randomly chosen objects and select the one that gives the
best clustering.

In order to process one block, our online clustering procedure needs time
O(nuK?); the complexity is quadratic in K since, in connection with the
adaptation of the number of clusters, each of the current clusters is tenta-
tively removed. The space complexity of the procedure is O(nukK), since the
distances have to be maintained for each stream and cluster.

5 Fuzzy Clustering

Fuzzy (K-means) clustering is a generalization of standard (K-means) cluster-
ing that has proved to be useful in many practical applications. In standard
clustering, each object is assigned to one cluster in an unequivocal way. As
opposed to this, in fuzzy clustering an object x may belong to different clus-
ters at the same time, and the degree to which it belongs to the -th cluster
is expressed in terms of a membership degree p,(z). Consequently, the bound-
ary of single clusters and the transition between different clusters are usually
“smooth” rather than abrupt.

This aspect is of special importance in the context of our application. In fact,

14
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since data streams are evolving objects in a very high-dimensional space, the
clustering structure can change over time, and it usually does so in a smooth
way. To illustrate, suppose that the objects to be clustered are continuously
moving points in a two-dimensional space.? Fig. 7 shows snapshots of a dy-
namic clustering structure at different time points. At the beginning, there is
only one big cluster. However, this cluster begins to divide itself into three
small clusters, two of which are then again combined into one cluster. Thus,
there are time points where the structure definitely consists of one (first pic-
ture), two (sixth picture), and three (fourth picture) clusters. In-between,
however, there are intermediate states, for which it is not always possible to
determine the number of clusters or to assign an object to one cluster in an
unequivocal way.

The fuzzy variant of K-means clustering seeks to minimize the following ob-
jective function [3]:

S s — o ()™ (6)

1=1 y=1

where yi,, = p,(x,) is the membership of the ¢-th object z, in the j-th cluster,
and ¢, is the j-th center. In the commonly employed probabilistic version of
fuzzy K-means, it is assumed that

K

Z_:lluw = ZNJ(%) =1 (7)

for all x, [24]. As the name suggests, the membership degrees might then also
be interpreted as probability degrees.

The constant m > 1 in (6) is called the fuzzifier and controls the overlap
(“smoothness”) of the clusters (a common choice is m = 2). To realize the
effect of the fuzzifier, consider first the (non-fuzzy) case m = 1. Since each
distance d,, = ||z, — ¢,|| is weighted by the membership p,,, minimizing (6)
while satisfying (7) is obviously achieved by assigning a membership of 1 to the
cluster (center) having minimal distance d,, and 0 to all other clusters. Now,
raising membership degrees to the power m > 1 comes down to decreasing
the weights of the distances d,,, and the smaller a membership degree p,,,
the stronger the corresponding decrease. Thus, it might then be reasonable
to shift some of the unit mass in (7) from high membership degrees to lower
ones. Consequently, the higher m is, the more “fuzzy” the clustering structure
will become. To give a concrete example, let d,; = 1/4 and d,» = 3/4. For

2 We note that, even though these objects might in principle be thought of as data
streams over an extremely short window (w = 2), the movement of the points in
this example is not typical of data streams.

15
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m = 1, the optimal solution is to assign z, to the first cluster, i.e., p,; = 1 and
tye = 0. For m = 2, the optimal distribution is u,; = 3/4 and p,, = 1/4.

Minimizing (6) subject to (7) defines a constrained optimization problem.?
The clustering algorithm approximates an optimal (or at least locally optimal)
solution by means of an iterative scheme that alternates between recomputing
the optimal centers according to

D1 Ty (/‘LZ])m
Z?:l (Mz])m

and membership degrees according to

K 2/(m-1)\ ~*
= (3 (M)
vy = :
’ = \lz. — el
In connection with the adaptive determination of the cluster number K, a
validity measure for evaluating a clustering structure is needed. Several such
measures have been proposed for the fuzzy case. We obtained the best experi-

mental results with the fuzzy-variant of the separation index, which is defined
as

C]:

—1 Zf(:l |z, — &l N?f

n - ming g ||Cp — ¢

(8)

As most validity measures do, (8) puts the inter-cluster variability (numerator)
in relation to the intra-cluster variability (denominator). In this case, the latter
is simply determined by the minimal distance between two cluster centers.
Obviously, the smaller the separation index, the better the clustering structure.

In our experiments with fuzzy clustering, we observed the following undesir-
able effect: If a single data stream changes its characteristic behavior, it usually
moves from one cluster to another one. While doing so, the stream itself is
often identified as a separate cluster. This is caused by the fact that, roughly
speaking, the validity measure (8) prefers small but homogeneous clusters to
large but diverse ones.

In order to avoid this problem, we have used two modifications of the standard
fuzzy K-means approach. Since these modifications are more or less known,
we shall not describe them in detail here but restrict ourselves to outlining the
basic ideas: In possibilistic K-means clustering, as suggested by Krishnapuram
and Keller [27], the constraint (7) is weakened by replacing the equality with
an inequality: 3% | y1,(x) < 1. Thus, it is possible that an object (data stream)

3 As most clustering problems, the standard K-means problem is known to be NP-
hard (see e.g. [13]).
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Fig. 8. First online visualization tool.

has a low degree of membership in all clusters. For instance, a stream moving
from one cluster to an other one might be assigned low membership degrees
in both clusters.

The second approach considers a special “noise cluster”, to which isolated
objects (outliers) can be assigned [10]. We found that the performance of this
method could further be improved by punishing very small clusters. This was
accomplished as follows: For all clusters having a cardinality of less than 2 in
terms of the sum of membership degrees, m, the separation index was divided
by a factor m/2.

6 Implementation

Our online clustering method has been implemented under XX (eXtensi-
ble and fleXible Library). The latter is a JAVA library for query processing
developed and maintained at the Informatics Institute of Marburg Univer-
sity [2], and meanwhile utilized by numerous (international) research groups.
Apart from several index structures, this library offers built-in operators for
creating, combining and processing queries.

As the name suggests, the basic philosophy of XXL is its flexibility and the
possibility to easily extend the library. Currently, a package called PIPES is
developed for the handling of active data streams. This package offers abstract
classes for the implementation of data sources and operators, which can be
combined into so-called query graphs in a flexible way.

We have used PIPES for our implementation. Roughly speaking, the pro-
cess of clustering corresponds to an operator. As input this operator receives
(blocks of ) data items from the (active) data streams. As output it produces
the current cluster number for each stream. This output can be used by any
other operator, e.g. by visualization tools that we have developed as well.
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Fig. 9. Second online visualization tool.

Fig. 8 shows an example of an online visualization. Basically, this tool shows
a table the rows of which correspond to the data streams. What can be seen
here is the top of a list consisting of 230 stock rates whose overall length is
230. Each column stands for one cluster, and a stream’s current cluster is indi-
cated by a square. Thus, a square moves horizontally each time the clustering
structure changes, making this tool very convenient for visual inspection. Fur-
ther, each cluster is characterized by means of a prototypical stream showing
the qualitative behavior of the streams in that cluster. As can be seen, in our
example there are currently three types of stock rates showing a similar evo-
lution over the last 16 hours, the size of the sliding window. The first type, for
instance, decreased slightly during the first half of that time period and then
began to increase until the end of the observed period of time.

A second visualization tool, illustrated in Fig. 9, shows the recent history
of the clustering structure, rather than only the current state. Again, each
row corresponds to a stream. Now, however, each column corresponds to a
time point. Each cluster is identified by a color (here a symbol for better
visualization), and these colors are used to identify a stream’s cluster at the
different time points.

7 Experimental Validation

A convincing experimental validation of our approach is difficult for at least
three reasons. Firstly, the evaluation of clustering methods is an intricate
problem anyway, since an objectively “correct solution” in the sense of a real
clustering structure does usually not exist, at least not in the case of real-world
data.* Moreover, the performance of a clustering method strongly depends
on the choice of the data set (selective superiority problem). In fact, most
methods give good results for a particular type of data but otherwise per-
form poorly. Secondly, since our approach is the first method for clustering
complete data streams, there are no alternative methods to compare with.
Thirdly, real-world streaming data is currently not available in a form that

4 Since measuring the quality of results becomes even more intricate in fuzzy clus-
tering, we focused on standard K-means in our experiments.
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is suitable for conducting systematic experiments. Therefore, we decided to
carry out additional experiments with synthetic data. As an important ad-
vantage of synthetic data let us note that it allows for conducting experiments
in a controlled way and, hence, to answer specific questions concerning the
performance of a method and its behavior under particular conditions. Cor-
responding experiments are presented in Section 7.1. In Section 7.2, a second
experimental study using real-world data (stock rates) is presented.

7.1 Synthetic Data

In order to get an impression of the practical performance and applicability
of our approach, we have investigated the following two aspects: (a) The ef-
ficiency of the method in terms of its runtime. (b) The performance of the
method in terms of the quality of clustering structures. In both cases, the aim
was to evaluate our online implementation of K-means clustering, including
the efficient preprocessing of data streams, rather than the clustering method
itself. In fact, K-means is a thoroughly investigated algorithm with known
advantages and disadvantages.

Synthetic data was generated in the following way: First, a prototype p(-) is
generated for each cluster. This prototype is a stochastic process defined by
means of a second-order difference equation:

p(t+ At) = p(t) +p'(t + At)
P+ At) = p'(t) +u(t),

t =0,At,2At.... The u(t) are independent random variables, uniformly dis-
tributed in an interval [—a,a]. Of course, the smaller the constant a is, the
smoother the stochastic process p(-) will be. The elements that (should) be-
long to the cluster are then generated by “distorting” the prototype, both
horizontally (by stretching the time axis) and vertically (by adding noise).
More precisely, a data stream x(-) is defined by

() = p(t+h(t) +g(t),

where h(-) and g(-) are stochastic processes that are generated in the same
way as the prototype p(+).5 Fig. 10 shows a typical prototype together with
a distortion x(-).

> However, the constant a that determines the smoothness of a process can be
different for p(-), h(-), and g(-).
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Fig. 11. Mean processing time per block and standard deviation for different num-
bers of DFT coefficients (increasing curve), average processing time and standard
deviation for the original streams (horizontal lines).

7.1.1 FEfficiency

We have conducted experiments with 100 data streams, generated as distor-
tions of 6 prototypes. The parameter a was set, respectively, to 0.04, 0.04, and
0.5 for the processes p(-), h(-), and g(-). The window size and block size were
set to 8192 and 1024, respectively.

As an efficiency parameter we have measured the time needed in order to
process one block, that is to preprocess the data and to update the clustering
structure. Fig. 11 shows the mean processing time together with the standard
deviation for different numbers of DF'T coefficients. Moreover, we have plotted
the average processing time and standard deviation for the original streams.
As it was to be expected, the time complexity increases as an approximately
linear function of the number of DFT coefficients. The critical number of
coefficients is around 1500. That is, when using 1500 or more DFT coefficients,
the preprocessing of the data will no longer pay off.

As can be seen in Fig. 11, the processing time for one block is & 7 seconds.
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Thus, the system can process streams with an arrival rate of ~ 150 elements
per second. When approximating the original streams with 250 DFT coeffi-
cients, an arrival rate of ~ 1000 per second can be handled. As an aside, we
note that the memory requirements are not critical in this application, as the
number of data streams is still manageable.

7.1.2  Quality

As already noted above, measuring the quality of a clustering structure is an
intricate problem. Even in our case, where artificial clusters are generated in a
controlled way, it is not clear that the clusters thus obtained correspond to the
“correct” clustering structure. In fact, if by chance two artificial clusters (resp.
their prototypes) become similar enough, they actually define a single real
cluster. Thus, the relation between the correct number of (real) clusters, K*,

and the number of artificial clusters, K,, is not an equality but an inequality:
K*<K,."

Due to the above reasons, we refrained from computing an absolute measure
of the quality of a clustering structure. Rather, we aimed at comparing the
clustering structure obtained by our online method, involving the compres-
sion of (windowed) data streams, with the structure that would have been
obtained by clustering the original, uncompressed (windowed) data streams.
In other words, we were interested in the quality loss caused by the online pre-
processing of the data. Recall that in our approach, distances are computed
after having transformed the original data streams from a w-dimensional space
to a u-dimensional space, where u < w. In other words, a clustering structure
is derived for approximations of the original streams. Therefore, the result
might of course differ from the result obtained for the original streams (i.e. for
u = w), even though intuitively one would expect that a slight perturbation of
the original streams will not have a strong effect on the clustering structure.

Here, we face the problem of measuring the dissimilarity or distance between
two clustering structures. Again, this problem is by no means trivial. A rea-
sonable distance measure could be defined by the proportion of pairs (X,Y)
of data streams such that X and Y belong to the same cluster in one of the
structures but to different clusters in the other one. A drawback of this mea-
sure is the fact that it critically depends on the cluster number. For example,
suppose that a single cluster in the first structure is split into two clusters in
the second structure. In this case, the above measure will suddenly become
very large, even though the two structures might not be regarded as being
extremely dissimilar. Moreover, the distance strongly depends on the size of
the corresponding cluster, which is also not desirable.

6 The case where an artificial cluster is divided into two or more real clusters is
negligible for large enough windows.
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Fig. 13. Average quality of the clustering structure for different numbers of blocks
per window.

Due to these difficulties, we decided to employ a rather simple distance mea-
sure that only checks whether two structures are completely identical (distance
0) or not (distance 1). The curves in Fig. 12 show the average quality for differ-
ent numbers of DF'T coefficients. That is, the value plotted at time point ¢ is
the average of the distances at time points 0, At,2At. . .t, i.e., the proportion
of time points where the online clustering structure is identical to the refer-
ence structure (derived offline). As was to be expected, the larger the number
of coefficients is, the higher the average quality becomes. In any case, the re-
sults are rather satisfying. For example, by using only 25 DFT coefficients,
the chance to derive an identical structure is approximately 70%. Again, how-
ever, let us point out that the number of coefficients needed to obtain a good
approximation to the reference structure will usually depend on the regularity
(smoothness) of the streams.

We also investigated the dependence of the clustering quality on the number
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Fig. 14. Changing number of clusters over time.

of blocks per window, using the same quality measure as above (and 50 DFT
coefficients). As can be seen in Fig. 13, the quality seems to increase with the
number of blocks, an effect which is perhaps not evident in the first instance.
It is likely, however, that a more frequent updating of the streams will reduce
the approximation error, i.e., the distance between the original stream and its
compressed representation, on average. This in turn can explain the positive
effect that increasing the number of blocks has on the clustering quality.

Finally, in order to test our scheme for adapting the number of clusters, we
varied the number of artificial clusters in the data generating process: Starting
with three clusters, the number of clusters was doubled at time points 25 and
75, and again reduced to three at time points 50 and 100. Doubling resp.
rejoining a cluster was simply accomplished by temporarily using a completely
different data generating process for one half of the streams in that cluster.
As can be seen in Fig. 14, the number of clusters is adapted correctly with
a relatively small delay. Note that this experiment also supports evidence for
our conjecture that the number of real clusters is sometimes smaller than the
number of artificial clusters (2 instead of 3 resp. 5 instead of 6 in our example).

7.2  Real-World Data: Stock Rates

In a second experimental study, we applied our online approach to the clus-
tering of stock rates taken from the German HDAX index. During the time
period from May 14 to June 1, 2004, the rates of this index were recorded
every minute of time. For clustering the 111 data streams thus obtained, a
window size of 240 minutes and a block size of 15 minutes were used. The
weight parameter was set such that the smallest weight in a block (i.e. the
weight of the oldest element) is 0.4.

Fig. 15 shows three exemplary stock rates recorded between 04-05-14, 11:29
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Fig. 15. Three exemplary stock rates (deviation from the mean value) recorded
between 04-05-14, 11:29 a.m. and 04-05-14, 3:44 p.m.

a.m. and 04-05-14, 3:44 p.m. To improve the illustration, we didn’t plot the
rates directly but their deviation from the mean. Even though the stocks
of DEUTSCHE TELEKOM and KARSTADT QUELLE are closer in absolute
value, the qualitative evolution is more similar for ALLIANZ and DEUTSCHE
TELEKOM (dotted and dashed line). In fact, after normalization the distance
between the latter is ~ 5.5 while the distance between the former is ~ 19.6.

The dynamic grouping of stocks provides valuable information that could be
interesting for analysts and stockbrokers. For example, changing trends and
tendencies can often be recognized by simply inspecting one of the online vi-
sualization tools. In general, however, the evolution of the clustering structure
will be the point of departure for further types of data analysis and data min-
ing. That is, the output of our online clustering tool will be the input of other
data mining methods.

Just to illustrate this idea, we have used the dynamic clustering structure in
order to derive similarity degrees between pairs of stock rates. The similarity
between two stocks is simply defined as the proportion of time points for which
the two stocks are in the same cluster. In particular, the similarity is 1 (0)
if the stocks are always (never) in the same cluster. On the basis of these
similarity degrees, we have clustered the stocks, using a standard hierarchical
clustering method. A graphical illustration of the result is shown in Fig. 16.
The fact that there is no marked structure suggests that our original clustering
of data streams is indeed dynamic in the sense that the grouping of stock
rates changes in the course of time. This is also confirmed by the statistical
distribution of similarity degrees, which is approximately normal with mean
~ 0.4 and standard deviation ~ 0.085 (cf. Fig. 17). In other words, extremely
similar or dissimilar stocks are rather rare.
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Fig. 16. Visualization of the hierarchical clustering structure (dendogram). Rows
and columns correspond to stock rates. The darker a field is, the higher is the
corresponding similarity degree.
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Fig. 17. Distribution of similarity degrees, plotted in the form of a histogram to-

gether with the fitted normal distribution (smooth curve).

Some interesting findings have also been obtained by further analyzing the
highly similar stock rates. First of all, the small cluster of maximally simi-
lar stocks consists of the main index (HDAX) together with a few very large
companies such as e.g. VW, DAIMLER, and BMW. This is hardly astonish-
ing, since these stocks do of course dominate the index. However, there were
also pairs of stock rates the high similarity of which was much less obvious
and, hence, called for an explanation. This concerns, for example, the stocks
of DEUTSCHE BANK and THYSSEN KRUPP. Interestingly enough, by further
investigating this case we found a press release from May 19 (five days af-
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ter we started recording the stocks) in which the DEUTSCHE BANK warned
against selling THYSSEN KRUPP stocks. Indeed, it turned out that there is a
connection between these two stocks (companies), which is a bit involved but
makes plausible their similar evolution.

8 Summary

In this paper, we have addressed the problem of clustering data streams in an
online manner. To this end, we have developed an adaptable, scalable online
version of the K-means algorithm for data streams. A key aspect of our method
is an efficient preprocessing step which includes an incremental computation of
the distance between data streams, using a DF'T approximation of the original
data. This way, it becomes possible to cluster thousands of data streams in
real-time.

We have also implemented a fuzzy version of online K-means clustering. In
fuzzy cluster analysis, an object can belong to more than one cluster, and the
degree of membership in each cluster in characterized by means of a number
between 0 and 1. This extension of the standard approach appears particularly
reasonable in the context of online clustering: If a data stream moves from
one cluster to another cluster, it usually does so in a “smooth” rather than an
abrupt manner.

In order to investigate the performance and applicability of our approach, we
have performed experiments with both synthetic and real-world data. The
results of these experiments have shown that our method achieves an extreme
gain in efficiency at the cost of an acceptable (often very small) loss in quality.
Since we are not aware of other methods for the problem of online clustering
of data streams as considered in this paper, it was of course not possible to
compare our approach with alternative methods.

Going beyond the relatively simple K-means approach by trying out other
clustering methods is a topic of ongoing and future work. In this respect, one
might think of extensions of K-means, such as Gath-Geva clustering [16], as
well as alternative methods such as e.g. self-organizing maps. Likewise, other
techniques might be tested in the preprocessing step of our framework, es-
pecially for the online approximation of data streams. For example, several
interesting techniques based on wavelet analysis have been proposed recently
(e.g. [18]). A first examination of these techniques has shown that they cannot
be used directly for our purpose (for example because they maintain approx-
imations of other types of stream summaries, or because they can only deal
with finite domains). This does not exclude, however, that they might be
adapted in one way or the other.
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We conclude the paper by noting that our method does not necessarily produce
the end product of a data mining process. Actually, it transforms a set of
data streams into a new set of streams the elements of which are cluster
memberships. These “cluster streams” can then be analyzed by means of other
data mining tools. This point has been nicely illustrated by the experiments
with stock rates. Investigating this idea in more detail and developing (online!)
methods suitable for analyzing such cluster streams is an important topic of
ongoing work.

Acknowledgements: The authors like to express their gratitude for the use-
ful comments and suggestions of three anonymous reviewers.
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