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ABSTRACT One of the missions of fifth generation (5G) wireless networks is to provide massive

connectivity of the fast growing number of Internet of Things (IoT) devices. To satisfy this mission,

non-orthogonal multiple access (NOMA) has been recognized as a promising solution for 5G networks

to significantly improve the network capacity. Considered as a booster of IoT devices, and in parallel with

the development of NOMA techniques, multi-access edge computing (MEC) is also becoming one of the

key emerging technologies for 5G networks. In this paper, with an objective of maximizing the computation

rate of an MEC system, we investigate the computation offloading and subcarrier allocation problem in

Multi-carrier (MC) NOMA based MEC systems and address it using Deep Reinforcement Learning for

Online Computation Offloading (DRLOCO-MNM) algorithm. In particular, the DRLOCO-MNMhelps each

of the user equipments (UEs) decides between local and remote computation modes, and also assigns the

appropriate subcarrier to the UEs in the case of remote computation mode. The DRLOCO-MNM algorithm

is especially advantageous over the other machine learning techniques applied on NOMA because it does not

require labeled data for training or a complete definition of the channel environment. The DRLOCO-MNM

also does avoid the complexity found in many optimization algorithms used to solve channel allocation in

existing NOMA related studies. Numerical simulations and comparison with other algorithms show that our

proposed module and its algorithm considerably improve the computation rates of MEC systems.

INDEX TERMS 5G networks, deep reinforcement learning (DRL), multi access edge computing (MEC),

non-orthogonal multiple access (NOMA), online computation offloading.

I. INTRODUCTION

In 5G and beyond, user equipments (UEs) are expected to

run compute-intensive, latency-sensitive, and energy-hungry

applications. Some examples include online gaming, virtual/

augmented reality, real-time media streaming, natural lan-

guage processing, online healthcare services, vehicle to vehi-

cle applications and so on [1]–[6]. In addition, with the

emerging IoT technologies and intelligent transportation sys-

tems, a huge amount of sensory data also needs high mem-

ory and strong battery-equipped devices [7]. Nevertheless,

The associate editor coordinating the review of this manuscript and

approving it for publication was Hong-Ning Dai .

most of those UEs have some limitations like low processing

capabilities and weak energy storage battery. These defects

would hinder them from accomplishing the task-intensive

applications that come with the mentioned applications

[2], [3], [5], [7].

To cope with those challenges, MEC has been coined and

developed by the European Telecommunications Standards

Institute (ETSI). This MEC was developed as a new plat-

form to provide information technology and cloud computing

capabilities within the radio access network in close prox-

imity to mobile subscribers [8], [9]. With this technology,

UEs can migrate their intensive tasks to the edge of network

where computation resources are sufficient to process those
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applications [10]. As opposed to mobile cloud computing,

MEC is able to achieve lower latency and higher reliability

and energy efficiency, which are suitable for ultra-reliable

and low-latency applications in the emerging 5G networks

[2], [6], [9], [11], [12].

Practically, MEC involves wireless links through which

the UEs offload their tasks to the MEC server or download

the results processed by it. With an exponential increase

in the mobile Internet traffics over the past and the cur-

rent decades [13], even some analyses show that there

will be 80 billions of devices connected to the Internet by

2025, resulting in a tenfold traffic growth compared with

2016 [14], so equippingMECwith technologies which enable

it to accommodate a large number of UEs is indispensably

required. At this end, a number of researchers have devoted

their efforts to this field to mainly solve offloading deci-

sions and resource (communication and computation) sharing

among UEs [5], [9], [15]–[19].

Pham et al. in [9] with an objective to minimize the

system-wide computation overhead, studied a novel frame-

work for joint computation offloading and resources alloca-

tion in MEC networks with wireless backhaul. They jointly

considered offloading decision and computation resources.

Yu et al. in [20] studied a joint subcarrier and central process-

ing unit (CPU) time allocation for MEC. Specifically, they

considered a cloudlet in an orthogonal frequency-division

multiple access (OFDMA) system with multiple mobile

devices where they studied a coordinate management of

subcarriers and CPU of the cloudlet. Each subcarrier was

allocated at most one and only one UE. Their coordinate

scheduling of both subcarriers and CPU resources paid off

a huge amount of energy saving. However, it could be easily

inferred that the scheme resulted in a waste of bandwidth as

each subcarrier is occupied by only one UE.

Many more other researchers worked on the problem

of offloading decisions and resources allocation in the

orthogonal multiple access (OMA) settings. Chen et al.

in [15] deployed a deep reinforcement learning (DRL) based

decentralized dynamic computation offloading strategy. They

adopted deep deterministic policy gradient (DDPG) to enable

each UE to leverage only local observation of the MEC

system. This leverages gradually learn efficient policies for

dynamic power allocation of both local execution and com-

putation offloading in a continuous domain. Huang et al.

in [16] with an objective to acquire an online algorithm

under time-varying wireless channels, jointly optimized the

task into offloading decision and wireless resource allocation

to maximize the system-wide computation rate of all UEs.

Li et al. in [21] dedicated their efforts to design a rein-

forcement learning (RL)-based MEC computation offload-

ing system as a replacement of Markov decision process

(MDP). This MDP can obtain an optimal policy by dynamic

programming methods, which require a fixed state transi-

tion probability matrix p. However, as the number of users

increases and when the environment is not explicitly defined

(channel dynamism), the MDP becomes impractical. With a

goal to reduce the system-wide sum cost, they first designed

a Q-learning and then improved their model by using deep Q

network (DQN).

In the above papers, the deployed techniques in MEC are

in the OMA settings, where multiple UEs share a wireless

channel by yielding one another in either time (e.g., TDMA)

and frequency (e.g., OFDMA). In contrast with OMA where

radio resources are allocated orthogonally to multiple users,

NOMA allows multiple users to share the same resources

[22]–[24]. By serving multiple users simultaneously over

the same radio resources, more users can be supported, thus

leading to a significant increase in the network capacity and

system throughput [17], [24]. To this end, NOMA technique

has been recognized as a promising solution for 5G and have

attracted extensive research recently. These advantages of

NOMA are nevertheless available at the expense of intra-cell

interference as well as additional complexity at the receiver

side. To deal with this intra-cell interference and the com-

plexity, NOMA splits the users in the power domain based

on their respective channel conditions. At the receiver side,

it employs efficient multi-user detection techniques such as

successive interference cancellation [23].

Kiani et al. in [17], as the very first attempt to reap the

potential gains of NOMA in the context of MEC, proposed

an edge computing aware NOMA technique. Wang et al.

in [18] studied MEC system with multi-antenna NOMA-

based computation offloading. They considered the partial

offloading case, such that each user can partition the com-

putation task into two parts for local computing and offload-

ing. Under this setting, they minimized the weighted sum

of energy consumption of all users subject to computation

latency constraints. Ning et al. in [25] used a hybrid computa-

tion offloading framework for real-time traffic management

in 5G networks. Specifically, they considered both NOMA

enabled and vehicle-to-vehicle (V2V) based traffic offload-

ing. The problem was formulated as a joint task distribution,

subchannel assignment, and power allocation problem, with

the objective of maximizing the sum offloading rate. It is

worth noting that in our paper subchannel and subcarrier

terms have the same meaning and can be used interchange-

ably. Gui et al. in [26] proposed a novel and effective deep

learning (DL)-aided NOMA system, in which several NOMA

users with random deployment are served by one base station.

They proposed it as a remedy to the fundamental limits of the

existing NOMA systems such as high computational com-

plexity and sharply changing wireless channels. These limits

make exploiting the channel characteristics and deriving the

ideal allocation methods very difficult tasks. Even though

this paper tried to address the issue of variability of chan-

nel environment, it still needs deep neural network (DNN)

labeled training processes which also increase the complexity

of NOMA systems especially when there is a large number of

UEs as it is the case in 5G and IoT technologies [27], [28].

After analyzing all the improvement made on MEC, and

also the benefits of NOMA as an effective solution to increase

MEC capacity, we aim at investigating a NOMA-based
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MEC computation offloading scheme that uses DRL and

can adapt the changeability of wireless channel, and can

also work in the settings without necessarily proving labeled

data samples to train DNN. To the best of our knowledge,

this work is the first attempt to exploiting the benefits

of DRL for MC-NOMA-based MEC computation offload-

ing where environment (channel gains) cannot be modeled.

Differently from other reinforcement learning algorithms like

DQN or Q-learning [29], we do not necessarily need to

store Q values, and the training of DNN is accomplished

following experience replay as is in [30], [31]. Recently,

Yang et al. in [32] considered a cache-aided NOMA MEC

system. They employed a long-short term memory network

to predict the traffic patterns and task popularity. They

also applied single- agent Q-learning algorithm for resource

allocation and multi-agent Q-learning algorithm for task

offloading decisions. In [33], Doan et al. investigated two

methods for optimizing power allocation in cache-enabled

NOMA systems: a divide-and-conquer-based method and a

DRL-based scheme. Differently from the studies in [32], [33],

our work considers multi-carrier NOMA enabled MEC sys-

tems and proposes a DRL algorithm, by which both offload-

ing decisions and subcarrier assignment are optimized.

With an objective of maximizing the system computation

rate (in terms of bits processed over a given time duration),

we propose an Online Computation Offloading using DRL

algorithm to solve the problem of offloading decision and

subcarrier allocation in Multi-carrier NOMA-enabled MEC

systems (DRLOCO-MNM). The novel contributions of our

paper can be summarized as below.

1) By establishing an MC-NOMA system, we attempt to

solve the problem of subchannel allocation by using

DRL for the first time. We apply this technique instead

of the traditional DL algorithms which require fre-

quent parameter updating (training) such as Gui et al.

in [26] and complete awareness of the channel envi-

ronment, and other traditional optimization-based algo-

rithms which are complex and hard to solve.

2) With the DRLOCO-MNM module, the NOMA-based

MEC system can afford to accommodate considerable

high capacity. In fact, NOMA is able to accommodate

manyUEs. Defining their offloading decisions could be

obviously difficult if algorithms other than heuristics,

using for instance Branch and Bound such as [34],

are used. Interestingly, our proposed DRLOCO-MNM

algorithm helps many UEs decide their offloading

modes by considering few actions, and also assigns

subcarriers without complex optimization problems.

Therefore, it can easily serve more UEs by solving their

computation modes (i.e., local computing at the UE

or edge execution at the MEC server) and subcarrier

allocation by considering only two binary actions 0

or 1 for each UE.

3) We simulate the results of our proposed DRLOCO-

MNM algorithm, and the results witness that our

model contributes to a remarkable increase of MEC

computation rate. The system-wideweighted sum com-

putation rate increases as the number of subchannels

also increases.

4) We evaluate the performance of our DRLOCO-MNM

algorithm by comparing it with OMA (TDMA)-based

algorithm, optimal (exhaustive search) algorithm, edge

computing and local computing algorithms. The results

show that our algorithm achieves near-optimal perfor-

mances and outweighs the other algorithms.

5) Moreover, with this DRLOCO-MNM module we can

adjust the proportion of the UEs which can upload their

computation tasks through NOMA to the MEC server

and those which can run their computation locally.

This is especially beneficial to NOMA as it, in some

circumstances, is subject to changes of bandwidth or

experiences a high level of noise.

The remaining part of this paper is organized as follows.

In Section II, we describe the system model and prob-

lem formulation. In Section III, we describe in details the

DRLOCO-MNM algorithm used in the MC-NOMA MEC

system. Section IV is dedicated for the numerical results

presentation and finally we conclude our paper in Section V.

II. SYSTEM MODEL

A. NETWORK MODEL

In our work, an MEC architecture with N UEs and one

Macro-eNodeB (MeNB) is considered as shown in Fig. 1,

where anMEC server is co-hosted with theMeNB.We define

two sets N = {1, . . . ,N } and S = {1, . . . , S} denoting the

set of UEs and orthogonal subcarriers, respectively. Since in

NOMA a subcarrier can be shared by many UEs, the received

signal of the n-th UE at the MeNB contains not only desired

signal but also interfering signals from co-sharing UEs.

FIGURE 1. The illustration of an MC-NOMA MEC system, where more than
one UE can utilize the same spectrum resource for computation
offloading.
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LetUs denotes the set of orders of UEs sharing subcarrier s.

It is assumed that each UE can utilize at most one subcarrier

to offload its computations to the MEC server. We have

Us
⋂

Us′ = ∅, ∀s 6= s′, and
⋃

s∈SUs = N .

B. COMMUNICATION MODEL

Let X = {xsn|s ∈ S, n ∈ N } denotes the offloading

decision profile. If the n-th UE does not utilize subcarrier s,

xsn = 0 whereas xsn = 1 otherwise. Since each UE can

share the uplink spectrum resource from no more than one

subcarrier, we have the following constraint:
∑

s∈S

xsn ≤ 1, ∀n ∈ N . (1)

If |Us| = 1, ∀s ∈ S , NOMA-enabled MEC becomes

OMA-enabled MEC, where each subcarrier is assigned to

at most one UE. From the above offloading profile, we can

deduce another variable xn for each UE to characterize

whether the local computing or remote execution mode is

utilized. xn = 1 if the n-th UE decides to offload its com-

putations to MEC or xn = 0 when the n-th UE runs its

computations locally. We can easily deduce from Eq. (1) the

following equality:
∑

s∈S

xsn = xn. (2)

Let hsn(t) denotes the uplink channel gain between the

MeNB and the n-th UE at the time frame t and psn denotes

the transmit power of the n-th UE, both on subcarrier s. The

channel gains on the subcarrier s are sorted in the ascending

order and the bijection bs(·) represents this order, where

bs(j) denotes the position of UE j in the sorted sequence

on subcarrier s. This is in accordance with the fact that in

power-domain NOMA [23], the decoding order for uplink

NOMA follows the decreasing order of the channel gains

normalized by noise, while that of downlink NOMA is the

increasing order [35]. In the uplink NOMA, the MeNB will

start by decoding the powerfulN -th UE’s signals and perform

SIC to cancel the resulted interference. Then it will proceed

on decoding the (N − 1)-th UE’s signal and so on. Therefore,

when decoding UE j’s message, the signals intended for all

UEs i, where i > j, are canceled whereas the signals of

the UEs with i < j are treated as noise. Without loss of

generality, the received signals from UEs with bs(j) < bs(i)

is not decoded by UE i and thus is treated as noise [36]–[38].

The signal-to-interference-plus-noise ratio (SINR) of UE n

on subcarrier s is expressed as follows:

SINRsn(t) =
psnhsn(t)∑

j∈J (s,n)

psjhsj(t) + n0
, (3)

where J (s, n) denotes the set of UEs, on subcarrier s, whose

signals are treated as noise at the n-th UE. That noise is

defined as J (s, n) = {j ∈ Us : bs(j) < bs(n)}. For a more

simplified presentationwe encourage the interested readers to

read [39] where two-user decoding scheme has been studied.

This interference combines both the channel intrinsic noise

power n0, and the sum
∑

j∈J (s,n) psjhsj(t) which is the inter-

ference introduced by co-subcarrier UEs. For UE n on subcar-

rier s, the achievable data rate is Rsn = B log2(1 + SINRsn),

where B is the bandwidth of an orthogonal subcarrier.

C. COMPUTATIONAL MODEL

Each UE n has a computational task of In = (Dn,Cn) where

Dn denotes the input data size (in bits) and Cn denotes the

computation workload (CPU cycles per bit) of UE n.

In the local computation mode, i.e., xn = 0, the UE relies

on its capability and processes its applications. Let f ln denotes

the computing speed (CPU cycles per second) of UE n where

the superscript l symbolizes the local computation mode. The

task In completion time can be computed as T ln = (Dn ×

Cn)/f
l
n and it can be easily shown that the computation rate

achieved by the n-th UE in the local mode depends on its CPU

computing speed and is expressed as follows:

r ln =
f ln

Cn
. (4)

In the case of remote computation, i.e., xn = 1, the pro-

cessor’s computing speed of the n-th UE is supposed to

be unable to accomplish the task given, therefore it seeks

help on the MEC server to run its heavy computations.

Consequently, it uses one of the subcarriers to send its task

to MEC server. The computation rate of the n-th UE in

offloading mode can be expressed as follows:

ron (t) = B
∑

s∈S

xsn log2


1 +

psnhsn(t)∑
j∈J (s,n)

psjhsj(t) + n0


 . (5)

The metric ‘‘computation rate’’ has been considered and

evaluated in many existing studies on MEC, e.g., compu-

tation rate maximization in wireless powered MEC system

with partial offloading and binary offloading [40], [41], and

in UAV-enabled wireless powered MEC system with both

partial and binary offloading [42]. It is worth mentioning that

other performance metrics can be used in our DRL frame-

work, such as, energy efficiency and completion latency [43],

and computation overhead [4], [9].

D. PROBLEM FORMULATION

We aim to maximize the system-wide computation rate of the

MC-NOMA based MEC network in a tagged time frame t .

We define the matrix of channel gains at the time frame t

as H(t) = [h1(t),h2(t), . . . ,hS (t)] and each element of

H(t) is defined as hs(t) = [hs1(t), hs2(t), . . . , hsN (t)] that

denotes the time-varying wireless channel gain of the N UEs

on subcarrier s at the time frame t . Thus, the weighted sum

computation rate of the MEC system is denoted as

Q(H,X) ,

N∑

n=1

wn

(
(1 − xn)r

l
n + xnr

o
n

)
, (6)
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FIGURE 2. The schematics of the proposed DRLOCO-MNM algorithm.

where wn > 0 denotes the weight assigned to the n-th UE

and ron is the computation rate of the n-th UE in the chosen

subcarrier s out of all other subcarriers calculated using

Eq. (5). For each channel realization H , we are interested

in maximizing the total weighted sum computation rate as

follows:

Q∗(H,X) = max
X

Q(H,X)

subject to
∑

s∈S

xsn≤1, ∀n ∈ N , s∈S. (7)

The primordial step to solve this system-wide computation

rate is to determine the value of xsn and deduce xn, which are

subcarrier allocation and offloading decision, respectively.

To solve it, we adopt the algorithm in [16] and modify it so

that our proposed algorithm not only solves the offloading

decision as it did in the original work but also assigns subcar-

riers to UEs, along with other tasks in the MC-NOMA based

MEC settings considered in our work.

III. THE DRLOCO-MNM ALGORITHM

Deep reinforcement learning shares the same basic con-

cepts with reinforcement learning in that it is also an

agent-environment interaction process. However, reinforce-

ment learning becomes less effective when dealing with

actual complicated problems of high dimensional-state and

action spaces. To overcome this challenge, DRL is built in

two components: offline DNN and online Q-leaning [44].

In the offline phase, a DNN is constructed, which can infer

for each state-action pair its Q value to be used for the online

phase. Sufficient training data is needed for the offline DNN

construction. In the online phase, deep Q-learning is adopted

for the action selection (i.e., the ǫ-greedy policy, in our case

this is the computation of Q∗(H,X)) and Q value update.

In an online learning case, the agent gradually gathers expe-

rience in the environment. The online offloading property of

the DRL lies on the fact that its interaction with the channel

environment is on the go basis, without prior training of

data [44], [45].

99102 VOLUME 8, 2020



M. Nduwayezu et al.: Online Computation Offloading in NOMA-Based MEC: A DRL Approach

The detailed schematic diagram of our DRLOCO-MNM

algorithm can be seen in Fig. 2. It is composed of three

main consecutive stages namely offloading action generation,

offloading policies update, and subcarrier selection for UEs.

At each time frame t , the DNN receives S subcarriers’ chan-

nel gain vectors in the form of H(t) as inputs and each of its

elements generates relaxed offloading actions X̂ s(t). As the

output of the DNN, the offloading action value of each UE

is not a binary 0 or 1. This relaxed value is represented by

a parameterized function fθ (t) such that X̂ s(t) = fθ(t) (hs(t)),

where

X̂ s(t) = {x̂sn(t)|x̂sn(t) ∈ [0, 1], n = 1, . . . ,N },

and x̂sn(t) denotes the n-th entry of X̂ s(t). By parameterized

we mean that its values depend on the parameters θ (t) of

the DNN and those parameters change when experiment

replay training is performedwhich alsomeans that the relaxed

values change whenever we train the DNN.

This relaxed value is then quantized following a quantiza-

tion function gk defined as

gk : X̂ s 7→ {xsk |xsk ∈ [0, 1]N , k = 1, . . . ,K }

to generate multiple binary actions among which we choose

the best offloading actions x∗
s ∈ [0, 1]N . The quantization

adopted is the order preserving quantization (OP)method that

produces at most N binary offloading actions and has the

advantage of balancing the algorithm complexity and perfor-

mance (the more number of offloading actions K , the more

the accuracy of learning but the more the complexity). Also

more details on this quantization process and OP quantization

method can be found in [16].

Each of the subcarriers goes through the same process:

Apply the channel gain to DNN, compute the optimal reward

Q∗(hs, xsk ) and then consider the corresponding action as the

optimal one x∗
s . Then we deduce the reinforcement learning

policy as

π : hs 7→ x
∗
s . (8)

This optimal reward is the highest computation rate of the

action k , out of all the other K actions, computed over all the

UEs.

All the channel gains hs(t) of H(t) at the time frame t

along with the best action x∗
s are stored in the memory and

will be used to train the DNN after some interval of time δ.

The n-th UE compares the possible reward in terms of com-

putation rate it may benefit from using a subcarrier s and

chooses accordingly. If the n-th UE cannot benefit from all

the subcarriers (the optimal actions of the n-th UE at time

frame t seen in all subcarriers is a binary 0), the offloading

mode will be local computation. By contrast, if it realizes an

optimal reward in a subcarrier s (at least one optimal action

of the n-th UE at time frame t seen in all subcarriers is a

binary 1), comparatively to the other subcarriers, it chooses

that subcarrier and offloads its computations to the MEC

server. As it can be seen in Fig. 3, at the time frame t , each

FIGURE 3. Subcarrier selection process.

subcarrier channel gain shall generate an offloading decision

and rewards for each UE. Then each UE shall choose one

of the subcarriers by comparing all the possible rewards in

those subcarriers. If in all subcarriers the offloading decisions

are all zero for a particular n-th UE, that user shall solve

its applications locally. By contrast, if at least a binary 1 in

the offloading decisions is found in one subcarrier or more

according to Fig. 3, the user shall use the subcarrier with

the highest reward and send its computations to the MEC

server. The detailed process can also be read in Alg. 1.

Based on the steps of our DRLOCO-MNM algorithm,

the process involved and the output desired, we devised the

Alg. 1. The algorithm runs in one time frame and runs for

all subchannels. Its inputs are the channel gains of UEs on

multiple subcarriers and the output is the offloading decisions

of UEs and their corresponding allocated subcarriers in the

case of remote computation. The proposed algorithm runs as

follows:

• Firstly, the algorithm initializes the DNN with random

parameters θ1, where the subscript 1 means initial time

frame, and empties the DNN memory R. It also sets the

iteration number, which is the number of time frames it

runs, and specifies the number of subcarriers to be used

and the time interval after which the DNNmemory shall

be trained.

• Secondly, the algorithm goes through the actual process

of generating outputs by running from 1 to a maximum

M times (line 4 up to 26). In a typical time frame,

the algorithm connects the DNN to a number of channel

gain vectors of different subcarriers (line 5 to 14), and

each produces X̂ s. Then, the relaxed values are quantized

into K offloading actions, each k having N binary num-

bers. Each user is assigned either 0 or 1, which defines

VOLUME 8, 2020 99103



M. Nduwayezu et al.: Online Computation Offloading in NOMA-Based MEC: A DRL Approach

Algorithm1TheDRLOCO-MNMAlgorithm to theOffload-

ing Decision and Subcarrier Allocation Optimization in

MC-NOMA MEC Systems

1: Input: Channel gains H(t) at the time frame t .

2: Output: Offloading action xsn, ∀s ∈ S, n ∈ N , and cor-

responding allocated subcarriers, both at the time frame

t .

3: Initialize the DNNwith random parameters θ1 and empty

the memory R. Set the iteration number M , number of

subcarriers S, and the training interval δ.

4: for t = 1, . . . , M do

5: for s = 1, . . . , S do

6: Generate relaxed actions X̂ s(t) = fθ (t) (hs(t)).

7: Quantize X̂ s(t) into K binary actions gk
(
X̂ s(t)

)
.

8: Compute Q∗ (hs(t), xsk) for all {xsk , k =

1, . . . ,K }.

9: Select x∗
s (t) = argmax

k=1,...,K

Q∗ (hs(t), xsk).

10: Update the memory by adding
(
hs(t), x

∗
sk

)
in R.

11: for n = 1, 2, . . . ,N do

12: Compute the Q∗
(
hsn(t), x

∗
sn(t)

)
.

13: end for

14: end for

15: for n = 1, . . . ,N do

16: if x∗
sn(t) = 0 for all s ∈ S then

17: xn =
∑

s∈S xsn = 0: local computation

mode.

18: else if x∗
sn(t) 6= 0 for at least one subcarrier then

19: xn = 1 and s∗ = argmax
s∈S

Q∗
(
hsn(t), x

∗
sn

)
.

20: end if

21: end for

22: if t mod δ = 0 then

23: Uniformly sample a batch of data set

{(hsτ , x
∗
sτ )|τ ∈ τ (t)} from the memory.

24: Train the DNN with {(hsτ , x
∗
sτ )|τ ∈ τ (t)} and

update θ (t) using the Adam algorithm.

25: end if

26: end for

its computation mode. Among those different quantized

values, the algorithm selects the best (x∗
s ) based on the

calculated reward. It computes the weighted sum com-

putation rate that would be incurred by adopting each xk
and then compares them. It then selects the best action

as the one corresponding to the highest return.

• Thirdly, the algorithm updates the memory with that

optimal action and the current channel gain hs.

• Fourthly, the algorithm computes and stores the returns

of each UE on its action in the optimal quantized

value x∗
s (lines 11 to 13) and then the loop which runs

through all subcarriers terminates.

• Fifthly, the algorithm goes through the returns of each

UE computed in all subcarriers and compares them

to choose the best return value and its corresponding

subcarrier (lines 16 to 22) according to the concept

shown in Fig. 3. At this stage, the subcarrier is allocated.

As the optimal actions have been also stored along with

the optimal returns of all UEs, the algorithm checks the

action values binary) for each user and if they are all

zeroes, the n-th UE handles its computations locally, but

if at least one binary 1 is present, the UE uses the remote

computation mode.

• The last stage of the algorithm is the training of the

DNN memory (lines 22 till 25). It does so by retrieving

a batch of channel gains and corresponding optimal

values, which have been stored in the memory at each

channel gain realization. The output of the training is the

parameter of DNN θ that is used to train the next time

frame.

With this training, the DNN runs from the past channel to

gain the optimal action values and then becomes smarter.

Therefore in the next realization of the channel gain, the DNN

shall generate better more actions to improve the return

(computation rate).

IV. PERFORMANCE SIMULATIONS

A. DNN MEMORY SETTINGS AND TRAINING

TheDNN of the DRLwe used is composed of one input layer,

two hidden layers, and one output layer. The first and second

hidden layers have 120 and 80 hidden neurons, respectively.

We implemented the DRLOCO-MNM algorithm in Python

version 3.6.4 with TensorFlow 1.4. The batch size defined

as Ŵ, was set to be 128, 256, and as high as 512 according

to the number of subcarriers used so that it can train as many

samples as they are stored in memory. The memory size was

set to be 1024. Our algorithm updates the memory S times

in each time frame. In order to avoid the risk of training the

memory (changing the parameters θ (t)) in the middle of time

frame t , a risk that could cause some subcarriers to be treated

at different θ parameters, we set the training interval to be

proportional to the number of subcarriers employed as δ =

V × S, where V is a constant.

The time-varying channel gain we used hs(t) is generated

according to hsn(t) = h̄snαsn(t). Where αsn(t) is an indepen-

dent random channel fading factor distributed exponentially

around a unit mean. In the same expression, h̄sn is the average

channel gain that follows the free space path loss model h̄sn =

Ad

(
3.108

4π fcdn

)de
, where the Ad , fc, de, and dn are the antenna

gain, carrier frequency, path loss exponent and distance from

the n-th UE to the MeNB, respectively. In the experiment we

used Ad = 4.11, fc = 915 Mhz and de = 2.8. The value

of dn used is in the range of (2.5, 5.2) meters with uniform

distribution [16].

B. COMPUTATION RATE PERFORMANCE

Now each UE has decided its computation mode and the

offloading UEs have been allocated subcarriers to migrate

their heavy computations to the MEC server. The task to be
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accomplished by each UE is done by either the UE locally or

by the MEC server remotely.

The computation task assigned to the UEs is the face recog-

nition application, where the task I is set as I = (420, 1000);

the computation input data size (420 in kB) and the total

required number of CPU cycles in Megacycles, respectively

[9], [46]. The CPU computational capacity f ln of UE is set

to be 1.0 GHz. The noise power n0 = −100 dBm and the

transmit power is set to be 20 dBm for all UEs [9]. The system

bandwidth is 10 MHz and subcarrier bandwidth is assigned

according to the number of subcarriers we use. For example,

if the number of subcarriers is 5 each of those subcarriers shall

have 2 MHz. With this system bandwidth, we are expecting

more than 10 UEs to benefit from it and send their application

to MEC server because they can share subcarriers. However,

if OMA is used, at maximum only 10 UEs can be deployed

in this system. At this end, the capability of MC-NOMA to

increase system capacity is reiterated.

Our goal is to maximize the system-wide computation rate,

which is the sum of computation rates of all UEs. We start

by plotting in Fig. 4a the computation rates of different

subcarriers when the time frame is 100 with a rolling interval

of 50. We plot it on a short time frame scale to show that

the computation rates reach stability after some time frames.

The ‘xCh’ on the legends, stands for the number of channels

or subchannels used by the MC-NOMA system. In Fig. 4b,

we then plot the computation rates under different subcarriers

when the number of time frames is 3000 and rolling interval

is 100. From that figure, we can see clearly that as we increase

the number of subcarriers, the computation rates increase.

We also notice that the computation rates have already sta-

bilized to a certain value at time frame of 3000. Moreover,

as the sum computation rates are the results of comparison

among different channel gains, we have some fluctuations in

the convergence of the optimal computation rate especially

when the number of subchannels of the NOMA-based MEC

system increases. However, what is interesting, and as the

main goal of ourMC-NOMAbasedMEC is to have improved

computation rates by increasing the number of subchannels.

C. COST FUNCTIONS

The loss function used to train the DNN (updating the θ (t)

parameters) is defined as an average cross-entropy loss as:

L(θ (t)) = −
1

|τ (t)|

∑

τ∈τ (t)

( (
x
∗

τ

)⊤
log fθ(t)(hsτ )

+
(
1 − x

∗

τ

)⊤
log

(
1 − fθ (t)(hsτ )

) )
,

where |τ (t)| denotes the size of τ (t), the superscript ⊤ indi-

cates the transpose operator, and the log function denotes

the element-wise logarithmic operation of a vector. This loss

function applies the ADAM algorithm and we direct readers

to read [47] for a more detailed explanation.

Our proposed algorithm has the advantage of increasing

the convergence speed when training DNN and this speed

increases as the number of subcarriers of our MC-NOMA

FIGURE 4. Moving average of the system-wide weighted sum of
computation rates Q of different subcarriers.

system also increases. This can be clearly seen from the cost

functions plotted in Fig. 5. The training steps required to

converge reduce as we increase the number of subchannels

used. We can visualize that the convergence is reached at

150 training steps in the case of 1 subchannel, about only

50 training steps for 2 subchannels, and about only 10 train-

ing steps for the 10 subchannels. These observations justify

the reason why our DRLOCO-MNM algorithm learns fast.

Intuitively, this fast convergence is attributed to the fact that

the DNN memory R of the DRLOCO-MNM records many
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FIGURE 5. Training loss function of DNN for different subcarriers when
time frames is 300.

different optimal offloading actions x∗
s of different channel

gains in a single time frame; therefore, the proposed algo-

rithm realizes the optimal offloading policy quickly. And

these optimal offloading policies are applied to every hs(t)

element of H(t). On the Fig. 5, the learning steps are 1/10

of the total time frames used. This is a result of the training

interval (δ) used which is 10, 20 and 100 for single channel,

2 channels, and 10 channels, respectively.

D. COMPUTATION RATE PERFORMANCE COMPARISONS

OF DIFFERENT ALGORITHMS

In Fig. 6, we compare our DRLOCO-MNM algorithm

with four different other algorithms. We first compare with

another DRL based algorithm, namely DROO, but with

OMA (TDMA) settings [16]. Then, inorder to assess the gain

of using DRL-based algorithm, we also compare our algo-

rithm against three non-DRL based representative benchmark

algorithms:

• Exhaustive search: In this algorithm we exhaustively

enumerate all the possible combinations of UEs’ com-

putationmodes and subcarrier allocation and then output

the best performer in terms of computation rate. Here,

if S = 1 we would have a binary choice; all the users

compute either locally or remotely by using a single

subcarrier. If S = 2, all UEs would have three options

namely local computation, remote computation with

subcarrier 1 or remote computation with subcarrier 2.

Thus we choose the optimal option among all those

possible for all the UEs.

• Edge computing: In this algorithm we presume that all

UEs are incapable of carrying out their computations

FIGURE 6. Comparisons of computation rate performances of different
Algorithms.

therefore we force them to offload their computations

to the edge (MEC), i.e., xn = 1, n = 1, . . . ,N .

• Local computing: In this algorithm we presume that all

UEs have a sufficient computation capability therefore

we force them to carry out their computations locally by

themselves, i.e., xn = 0, n = 1, . . . ,N .

We simulate the performances of those different algo-

rithms under varying number of subcarriers. Because a high

number of users would render our simulation prohibitive,

we limit our simulation to 3 UEs. Each point in the figure is

an average computation rate calculated over 1000 different

wireless channel realizations (1000 time frames). With our

DRLOCO-MNM, offloading UEs communicate their com-

putations simultaneously by using different subcarriers dif-

ferently from the DROO (OMA) which sequences its users

over time on a single carrier. Thus from the Fig. 6 the com-

putation rate of our algorithm increases with the increase in

the number of subcarriers while that of the DROO remains

constant.

The same figure shows that our algorithm can achieve

a near-optimal performance. The computation rate of our

DRLOCO-MNM algorithm and that of the optimal algorithm

(exhaustive search) are quite similar. When compared to the

edge, our algorithm tremendously outperforms it. The first

reason for this is because all UEs in the edge computing

migrate their computations to MEC regardless of the channel

conditions, i.e., whether the channel gain is low or high, there-

fore they miss the leverage of their computation capability

when the channel environment is unfavorable. The second

reason is a high co-channel interference. This results from

the fact that all UEs need a subchannel to send their data

to MEC.

The weighted sum computation rate achieved by the local

computing algorithm is the lowest of the four. Indeed it is
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because the performance of this algorithm depends on the

UE’s computation capability f ln which is lower compared

to that of MEC. However, it is also worth noting that the

UEs forced to run their computations locally miss to enjoy

the high computations that the edge offers when the channel

environment would be favorable for them. We also remind

that the computation rate is independent of the subcarriers

used as there is no channel needed. In fact, this comparison of

our algorithm against theDROOand the other non-DRL algo-

rithms shows that it can significantly increase computation

rate when the number of subcarriers is increased and that it

can adapt to the dynamism of wireless channel environment.

E. PROPORTION OF UEs IN LOCAL COMPUTATION

The proportion of UEs computing their applications locally is

relatively lower than those sending their computations to the

MEC server. That proportion depends highly on the number

of subcarriers used and the initial level of quantization (K) of

the relaxed output (X̂) fromDNN. As it can be seen in Fig. 7a,

where K is 10, the number of UEs in local mode is zero

except when we use 2 subcarriers where we have only one

instance of UE in local mode. By contrast, when we decrease

the value of K down to 2 as in Fig. 7b, the number of UEs

computing locally increases noticeably reaching even four

in the case of 2 subcarriers but only 1 for 10 subcarriers.

The intuition behind the decrease in the local UEs as we

increase the number of subcarriers is because UEs have more

option of subcarriers to choose from therefore a few of them

compute locally. Moreover, the UEs in local mode increase

following a decrease in K level because the DRLOCO-MNM

algorithm does not explore many combinations (actions) of

UEs, thus resulting in many zeros (the UEs in local mode

have 0 in all subcarriers). This is another advantage of our

DRLOCO-MNM algorithm because it gives option to regu-

late the number of UEs on the available number of subcarriers

(accordingly bandwidth size).

F. COMPUTATIONAL COMPLEXITY

The complexity of our algorithm in terms of time of exe-

cution depends highly on the offloading decision and sub-

channel allocation stages. Table 1 compares the CPU times

TABLE 1. Comparison of time complexity of different algorithms. The
times are measured in seconds.

FIGURE 7. Proportion of UEs in local computation for different numbers
of subcarriers.

of the different algorithms. We can easily notice that the

time complexity of exhaustively enumerating all the possi-

ble offloading modes is the highest of the three algorithms.

The high computation rate that can be achieved by that

algorithm (optimal) comes with the cost of time. Obviously

this algorithm would be impractical with a high number of

users. In addition, this optimal algorithm is also unfavorable

with MC-NOMA because its CPU time increases when the

number of subcarriers also increases as it can be seen in the

table. By contrast, our algorithm which uses MC-NOMA has

another advantage of saving CPU time when it uses more

subcarriers. This is since the training interval as has been

defined in Subsection A. The more the number of subchan-

nels, the fewer frequencies of training. When the CPU time
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of our algorithm is compared to that of the DROO that uses

OMA (TDMA) we observe that our algorithm tends to be

slightly more time complex than DROO. This time complex-

ity discrepancy between the SC-NOMA and DROO (OMA)

algorithms, 5.9 × 10−2 against 3.4 × 10−2, is the result of the

fact that our algorithm requires time to decide a subchannel in

addition to the CPU time required to decide offloading status.

However, the time required to train DNN is almost the same in

both algorithms, 1.8 × 10−3 seconds to train the DNN in our

algorithm is approximately the same as 2 × 10−3 seconds of

the DROO algorithm. We opt not to include edge and local

computation algorithm in the complexity analysis because

they do not run the process of choosing the computation

mode, a process which is key to the time complexity.

V. CONCLUSION

In this paper, we considered an online algorithm to maxi-

mize the weighted sum computation rate of an MC-NOMA

enabled MEC network with binary computation offloading,

and proposed a DRL-based algorithm, DRLOCO-MNM,

to solve both the computation mode and subcarrier alloca-

tion. Thus instead of requiring manually labeled data train-

ing, the proposed algorithm can learn by experience replay

to improve the computation offloading policy. Simulation

results showed that our algorithm can achieve near-optimal

results and significantly achieves higher computation rates

as compared to the OMA (TDMA) based algorithm scheme.

Also, the convergence speed of our DRLOCO-MNM algo-

rithm improved. This improvement is a result of the fact

that the proposed algorithm realizes many optimal offloading

actions in one time frame, in addition to order-preserving

quantization and adaptability of the algorithm in setting the

DNN parameters by experience replay.
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