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Online Content Popularity Prediction and Learning

in Wireless Edge Caching

Navneet Garg , Member, IEEE, Mathini Sellathurai, Senior Member, IEEE, Vimal Bhatia, Senior Member, IEEE,

B. N. Bharath, Member, IEEE, Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—Caching popular contents in advance is an impor-
tant technique to achieve low latency and reduce the backhaul
costs in future wireless communications. Considering a network
with base stations distributed as a Poisson point process, optimal
content placement caching probabilities are obtained to maximize
the average success probability (ASP) for a known content
popularity (CP) profile, which in practice is time-varying and
unknown in advance. In this paper, we first propose two online
prediction (OP) methods for forecasting CP viz., popularity
prediction model (PPM) and Grassmannian prediction model
(GPM), where the unconstrained coefficients for linear prediction
are obtained by solving constrained non-negative least squares.
To reduce the higher computational complexity per online round,
two online learning (OL) approaches viz., weighted-follow-the-
leader and weighted-follow-the-regularized-leader are proposed,
inspired by the OP models. In OP, ASP difference (i.e, the gap be-
tween the ASP achieved by prediction and that by known content
popularity) is bounded, while in OL, sub-linear MSE regret and
linear ASP regret bounds are obtained. With MovieLens dataset,
simulations verify that OP methods are better for MSE and ASP
difference minimization, while the OL approaches perform well
for the minimization of the MSE and ASP regrets.

Index Terms—linear prediction; caching; Poisson point process
(PPP); online learning.

I. INTRODUCTION

With the continuous development of various intelligent

devices such as smart vehicles, smart home appliances, mobile

devices, etc, and various sized innovative application services

such as news updates, high quality video feeds, software

updates, etc., wireless mobile communications has been expe-

riencing an unprecedented traffic surge with a lot of redundant

and repeated information, which limits the capacity of the

fronthaul and backhaul links [1]. To lower the redundant traf-

fic, caching has emerged as an effective solution for reducing

the peak data rates by pre-fetching the most popular contents

in the local cache storage of the base stations (BS). In the

recent years, caching at the BS is actively feasible due to

the reduced cost and size of the memory [2]. In the cache

enabled macro-cell networks, heterogeneous networks, D2D

networks, etc [2], given a set of a content library and the

respective content popularity (CP) profile, content placement

and delivery have been investigated in order to optimize the

various performance measures like backhaul latency delay [3],

server load [4], cache miss rate [5], [6], etc. With the known
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UK. V. Bhatia and B. Bettagere are with Indian Institute of Technology Indore
and Dharwad. T. Ratnarajah is with The University of Edinburgh, UK. The
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presentation.

CP profile, reinforcement learning approach [7] is presented

for learning the content placement matrix. In [3], femto-

caching is modeled as disjoint set cover problem. However, in

practice, CP profile is time-varying and not known in advance,

therefore, it needs to be estimated from the past observations

of the content requests. Deep learning based prediction is

employed with huge training data in [8], [9]. In [10], auto

regressive (AR) prediction cache is used to predict the number

of requests in the time series. Linear prediction approach

is investigated for video segments in [11]. Transfer learning

methods are used in [12] by leveraging content correlation

and information transfer between time periods. To learn CP

independently across contents, online policies are presented

for cache-awareness in [13], low complexity video caching in

[1], [14], user preference learning in [15], etc. These works

are employed for a particular system with the fixed number of

BSs and users, i.e., the statistical performance of the network

as whole is lacking with respect to content delivery in the

physical layer.

Parallelly, in the literature [5], [6], [16], geographical

caching in the Poisson point process (PPP) network is em-

ployed for multi-cell system to maximize cache hit rate with

respect to the content placement probabilities (CPPs), which

represent availability of the contents at the BSs. Similarly, in

[17], the area success probability and area spectral efficiency

are maximized for CPPs. In these works, PPP has been a useful

tool to assess the performance of a given network. Therefore, it

is important to understand the caching performance variations

with respect to time [18]. The above existing works with PPP

assume the CP profile to be known or unchanged over time. In

practical scenarios, the CP changes dynamically in both time

and space dimensions owing to randomness of user requests,

and needs to be predicted for the efficient caching placements.

Therefore, in addition to PPP analysis, we investigate the CP

prediction models under dynamic scenarios, and its effect on

the caching, which have not been investigated in this context

to the best of the authors’ knowledge.

A. Motivation and Contributions

In this paper, for the PPP network where both the BS and

users are distributed as homogeneous PPP and content requests

are characterized using a global CP profile, we compute

the average success probability (ASP) caching measure as a

function of CPs and CPPs. ASP is the probability of successful

transmission of the content in the physical layer. From caching

perspective, it is a measure for content placement as well as
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content delivery. Further, to optimize ASP for a given CP

profile, an algorithm is proposed, which reduces the ASP

maximization with respect to CP and CPPs to the prediction

of CPs only. To optimize ASP for the future time slots,

online prediction (OP) and online learning (OL) methods

are investigated for the prediction of CP profile for the

next time slot. The prediction performance is measured by

mean squared error (MSE), while caching is evaluated via

ASP. Therefore, the challenge is to investigate the prediction

approach to maximize the ASP. It is shown at the end of

section III that the joint optimization of ASP and MSE is

non-convex and leads to a fixed MSE reduction. Therefore,

separate prediction approaches based on MSE are carried out.

Towards that, for OP methods, linear popularity prediction

model (PPM) and non-linear Grassmannian prediction model

(GPM) are proposed, and the respective prediction MSEs

and ASP differences are analyzed. The motivation behind

using linear prediction is that the parameters controlling the

popularity change (such as location, time, etc.) can be modeled

using linear predictors [19], and are already present in the

past observations. However, a constrained non-negative least

squares (CNNLS) optimization is required to solve per online

round. Therefore, to reduce the computational complexity, OL

methods are investigated which are inspired by PPM and

GPM. In OL methods, weighted follow-the-leader (FTL) and

weighted follow-the-regularized-leader (FoReL) are presented

and the corresponding MSE and ASP regret bounds are

analyzed. The difference between OP and OL is that OP yields

a linear sum of recent past observations for prediction, whereas

OL provides a convex sum of all the past ones. In simulations,

considering MovieLens dataset [20], the MSE, ASP and the

respective regrets are verified for both OP and OL methods.

It shows that OP methods are suitable when MSE and ASP

difference are minimized, while for the regret minimization,

OL approaches provide better results. The contribution of this

paper is summarized as follows:

• For a network with PPP distributed BSs and users, we

find the optimum CPPs to maximize the ASP, when the

popularity distribution is known. It shows that there are

three kinds of contents viz., most popular, mid-popular

and least popular. To maximize the ASP, most popular

content is placed in each cache, and the least popular

ones should be omitted, while the mid-popular content

needs strategic placement proportional to square-root of

content popularity (SCP). We provide the method to find

the indices of the contents of these three kinds.

• For a given CP profile, the ASP maximization with re-

spect to CP and CPPs is reduced to the prediction of CPs

only. Therefore, we start with an intuitive PPM approach.

However, the novel use of unconstrained coefficients

which enables to the predict any positive/negative change

in CP, leads to CNNLS with additional sum constraint.

This CNNLS is solved by modifying the existing fast-

NNLS algorithm, which does not deal with additional

constraints except non-negativity. Further, to improve the

ASP whose optimum value is proportional to SCP, GPM

is proposed to predict SCP.

• Since the OP methods require to solve an optimization

problem per online round, to reduce the computational

complexity, OL methods (weighted-FTL and weighted-

FoReL) are presented in order to minimize the MSE and

ASP regrets respectively. These methods are inspired by

PPM and GPM respectively.

• In OP, the bounds on the ASP difference are derived

which is minimized when CPs (for mid-popular contents)

are close to uniform. The analysis for regret bounds show

that they achieve sub-linear MSE regret and linear ASP

regrets.

• These analysis for both OP and OL methods are verified

via simulations for the MovieLens dataset. ASP and

ASP-regret are better for GPM and weighted-FoReL

respectively, whereas for MSE and MSE-regret, PPM and

weighted-FTL respectively provides better performance.

B. Organization

The organization of the paper is as follows: section II

describes the system model. In section III, ASP has been

maximized. For time-varying popularities, the next section IV

explains the online prediction methods, while the following

section V presents the online learning approaches. Simulation

results are provided in section VI. Section VII concludes the

paper.

C. Notations

Scalars, vectors, matrices and sets are represented by lower

case (a), lower case bold face (a), upper case bold face

(A) and calligraphic A letters respectively. Transpose and

Hermitian transpose product of matrices are denoted by (·)T
and (·)† respectively. The notations ‖ · ‖2 or ‖ · ‖, and ‖ · ‖F
denote the l2 norm and Frobenious norm. D(Ai) denotes a

block diagonal matrix with matrices Ai as its block diagonal

components. [N ] and |F| denote the set {1, . . . , N} and the

cardinality of the set. O(·) denotes the big-O notation, i.e.,

f(x) = O(g(x)) iff
|f(x)|
g(x) ≤M for all x where M is positive

real.

II. SYSTEM MODEL

We consider the edge caching scenario in a cellular network,

where a large number of BSs with limited cache size are

spatially distributed according to a two-dimensional (2D)

homogeneous PPP. For example, a dense area with small cells

and moderate user mobility, a park with relatively dense crowd

and high user mobility, or a stadium with ultra-dense crowd

and relatively very low user mobility are the instances of a

typical scenario that can be benefited from the edge caching

[15]. Owing to the variations in the density and the mobility

of users in different scenarios, the popularity of the contents

varies with time.

Let ΦBS denote the positions of base stations which are

distributed as PPP with density λbs > 0 as shown in Figure

1. These BSs serve the users which are also assumed to

be distributed as PPP. From Slivanyak-Mecke theorem, for

stationary and homogeneity of PPP, we consider a typical user
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Figure 1. BSs with cache L = 3, and users distributed as PPP. Users color
indicate their requesting content.

at the origin for evaluating the performance. Without loss of

generality, it is assumed that each content has the same size1

and each BS has the equal storage capacity to store up to L
contents from the content library F := {1, 2, . . . , f, . . . , N}.
The content library may change over time and is accessed via

backhaul link. Considering the user mobility, the BSs regularly

monitor the users during discrete time periods t = 1, 2, . . . , T ,

where T is the length of finite time horizon. During a discrete

time period, the position of the users remain unchanged.

Let nt,f denote the number of requests of f th file during

tth time period; nt =
∑N
f=1 nt,f be the total number of

requests; and pt,f =
nt,f

nt
represent the popularity of the

f th file. Due to large number of requests in a time slot,

pt,f is assumed to be the true content popularity unknown

in advance and is obtained by exchanging information among

BSs at the end of time slot t. For convenience, we use

pt = [pt,1, . . . , pt,N ]T to the content popularity profile vector

such that pTt 1 = 1 and pt ≥ 0. The cache memory at

the BS for tth time period is denoted by Lt, which is a

subset of F , such that |Lt| ≤ L. For simplicity, we adopt

probabilistic (random) placement method, where each content

f at time t is stored in the BS is given with the probability

qt,f = Pr [f ∈ Lt] , ∀f ∈ F [5]. The probability that in tth

time period, a typical user finds the desired content in the

cache depends on the distribution of contents in the random

set Lt through the one-set coverage probabilities qt,f , collected

in a vector form as qt = [qt,1, . . . , qt,N ]T . These probabilities

satisfy the cache constraint
∑N
f=1 qt,f ≤ L, ∀t.

We consider the association of a BS to a user based on

both the channel state information (CSI) and the cached files

in the BSs. Specifically, when a user requests the f th file,

it associates with the BS that has the required file and the

1Contents of different sizes can always be split into data segments of same
size [15], [21].

strongest received power. The chances that the required file at

time t is available in the BS’s cache, is given by qt,f . If a file is

not available in any of the caches at the BSs, it is considered

as a failure event and the required file must be fetched via

backhaul link. Let ΦBS(f) denote the thinned PPP of the BSs

whose cache has the f th file. The associated kth BS transmits

the f th file to the typical user with the power P over the

Rayleigh fading channel, denoted by hi. At the typical user,

the received signal is given as

yf,k[t] =
∑

i∈ΦBS

hi[t]P
1/2r

−α/2
i xl,i[t] + w[t] (1)

= hk[t]P
1/2r

−α/2
k xf,k[t] + w[t] (2)

+
∑

i∈ΦBS(f)\{k}
hi[t]P

1/2r
−α/2
i xf,i[t]

+
∑

i∈Φc
BS

(f)

hi[t]P
1/2r

−α/2
i xl,i[t] (3)

where xf,k[t] is the transmitted symbol for f th file from the

kth BS, w[t] ∼ CN (0, σ2) is the additive Gaussian noise,

and α is the path loss exponent. The first term in the above

equation corresponds to the desired signal, the second term

pertains to the interfering transmission from the other BSs

(ΦBS(f) \ {k}) having the f th file transmitting to other users,

and the next term is for the interfering signals from BSs

(ΦcBS(f) = ΦBS \ ΦBS(f)), who do not have f th file in the

cache. For the above received signal model, the downlink

signal to interference plus noise ratio (SINR) at the typical

user can be given as

Γf,k[t] =
|hk[t]|2 Pr−αk

Ifk[t] + Icf [t] + σ2
, (4)

where Ifk[t] =
∑
i∈ΦBS(f)\{k} |hi[t]|

2
Pr−αi and Icf [t] =∑

i∈Φc
BS

(f) |hi[t]|
2
Pr−αi represents the received interference

power. Due to the concurrent transmissions in the PPP network

where the interference terms are dominant, it is essential to

ensure the successful reception of the f th file. Therefore,

from the user’s perspective, to maintain a quality of service

and measure the caching performance, we consider average

success probability, which is defined as the probability that the

achievable rate of a typical user exceeds the rate requirements

R0. The ASP can be written as

P (pt,qt) =
∑

f∈F
pt,fEk∈ΦBS

Pr {W log2 (1 + Γf,k[t]) ≥ R0} ,

(5)

where W is the transmission bandwidth.

In the above formulation, the popularity profile (pt) denotes

the global popularity across all the BSs, and the caching prob-

abilities (qt) represent the probabilistic status of the caches at

the BSs in the network. In practice, the cache placement at

time t+1, which depends on the caching probabilities (qt+1),

is decided by the present content popularity (pt). However,

the success probability in time t + 1 apparently depends on

the popularity in the time period t+1. Therefore, it is essential

to accurately predict the future content popularity in order to

maximize the success probability.
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As BSs monitors the mobility of the users and tracks the

popularities, we assume that the future popularity at time t+1
is related to the past ones by the following relation

pt+1 = ψt(p1, . . . ,pt) (6)

where ψt is an unknown function. The corresponding opti-

mum cache placement probabilities can be computed as some

function of present and the past content popularities as

q∗
t+1 = ϕt(pt+1;p1, . . . ,pt). (7)

Our objective in this paper is to maximize the ASP at time

t + 1 with respect to the content popularity profile and the

caching probabilities

(P0) max
ψt,ϕt

P (pt+1,qt+1) (8)

subject to (6), (7),

where at time t + 1, the above ideal ASP can be determined

using the popularity profile pt+1 and the respective caching

qt+1, if both are known perfectly in advance, which is

not possible in practice. Let p̂t+1 = ψ̂t(p1, . . . ,pt) and

q̂t+1 = ϕt(p̂t+1;p1, . . . ,pt) be the estimated future popular-

ity and the corresponding placement probabilities. Therefore,

we choose to maximize the estimated ASP as

(P1) max
ψ̂t,ϕt

P (p̂t+1, q̂t+1). (9)

In the time t, where the true content popularity is pt, the

achievable ASP can be given as P (pt+1, q̂t+1(p̂t+1)). To

measure the discrepancy in the prediction and the optimization,

we define the MSE, the observed and expected ASP differ-

ences respectively as follows

Et(p̂t) = ‖pt − p̂t‖2, (10)

δt(p̂t) = P (pt,qt)− P (pt, q̂t(p̂t)) ≥ 0, (11)

∆t(p̂t) = P (pt,qt)− P (p̂t, q̂t) ≥ 0. (12)

In above, the observed ASP difference is the ASP difference

which is measured with respect to true popularity; while the

expected one is related to predicted ASP. The utility of the

former one is to analyze the caching theoretically, while the

latter is useful for the prediction as well. Since the placement

probabilities are function of the content popularities, in the

following, we first seek the optimum caching probabilities

given the content profile. Subsequently, we focus on the

prediction employing two classes of methods viz., OP and

OL.

III. AVERAGE SUCCESS PROBABILITY (ASP)

MAXIMIZATION

In a given time slot, the placement probabilities (qt) de-

pends on the content popularities (pt). Therefore, for the given

CP profile, we find the optimal placement probabilities to

maximize the ASP. Towards this, the following result presents

the ASP expression in terms of pt and qt. For clarity of

notation, we drop subscript t in this section.

Theorem 1. Average success probability of a typical user

requesting f th file with popularity pf and caching probability

qf is given as

P (p,q) =
N∑

f=1

pfg(qf ),

where g(q) = qC
∫∞
0

(dr2) exp
[
− (qA+ (1− q)B + qC) r2

−s0rα
(
σ2

P

) ]
, s0 = 2

R0
W − 1, C = πλbs, A = 2πλbs

s
2
α

0
1
α

∫∞
1
s0

(
u

2
α

−1

1+u

)
du, B = 2πλbss

2
α

0
1
α

∫∞
0

(
u

2
α

−1

1+u

)
du.

Proof: Proof is given in Appendix-A.

Since heterogeneous networks are usually interference lim-

ited, it is reasonable to neglect the noise i.e., σ2 = 0. For this

case, the corollary below simplifies the ASP.

Corollary 2. For interference limited case, i.e., σ2 = 0 or at

high SNR, the ASP is simplified as Ps(p,q) =
∑
f pfg0(qf ),

where

g0(q) = qC

∫ ∞

0

exp
[
− (qA+ (1− q)B + qC) r2

]
(dr2)

=
qC

qA+ (1− q)B + qC
. (13)

Now, given the content popularity profile (p), the next step

is to compute the placement probabilities to maximize the

ASP expression above. The ASP maximization problem can

be expressed as

(P3)max
q

Ps(p,q) (14)

subject to qT1 ≤ L (15)

which is a simplified problem of (8) and (9). The above

problem is convex, however, to be solvable in CVX tool [22],

the above problem can be cast in semi-definite program (SDP)

as

min
qT 1≤L,t

−tTp (16)

s.t.

[
qf (A−B + C) +B 1

1
(
A−B+C
BC tf − 1

B

)
]
� 0, ∀f

where
qfC

qfA+(1−qf )B+qfC
≥ tf has been simplified using

Schur’s lemma [22]. Analytically, the expression of the so-

lution is presented in the following theorem.

Theorem 3. The solution of the maximization problem in (14)

is given as

q∗f = arg max
qT 1≤L

Ps(p,q) (17)

=





1, f ∈ R(
B

A+C−B

) [
ηp̄f

1T p̄P
− 1
]
, f ∈ P

0, f ∈ Z
(18)

where p̄ =
√
p, Z = {i|qi = 0} ,R = {i|qi = 1}, and P =

F \ {Z ∪R} = {i|0 < qi < 1}. The corresponding ASP is

obtained as

Ps(p) = Ps(p,q
∗) =

(
C

A+ C −B

)
p̄T Z̄p̄
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= pTa (R,P)−
(

C

A+ C −B

) (
p̄TP1

)2

η
(19)

where aP denotes the sub-vector of a with the entries

given by P , Z̄ = D
(
A+C−B
A+C I|R|,ZP ,0|Z|

)
, ZP =

I|P| − 11
T

η , η = |P| + (L − |R|)A−B+C
B , and aT =[

C
A+C1

T
|R|,

C
A+C−B1T|P|,0

T
|Z|

]
.

Proof: Proof is given in Appendix-B.

The above expression shows that when the popularity of

the f th content is high (pf → 1) i.e. for most popular

contents, its caching probability is one i.e. f th content should

be stored at each BS’s cache. On the other hand, when the

contents are least popular (pf → 0), it is reasonable not to

cache the content at any of the cache storages. For the mid-

popular contents 0 < pf < 1, the expression of q∗f depends

on the index sets (Z and R), which can be obtained from

KKT conditions in the proof of Theorem 3. The procedure

to get these sets are presented in Algorithm 1. In the first

part of the algorithm, the set R is obtained by individually

checking the f th content popularity for q∗f = 1 in the

decreasing order of popularities, i.e., checking vf > 0, we

have C
B

[(
B

A+C

)2
pf − (p̄T

P
1)

2

η2

]
> 0, =⇒ B

A+C p̄j >
1
T
p̄P

η .

In the later part, similarly the remaining content popularities in

ascending order for q∗f = 0 yields the set Z , i.e., for wf < 0,

we have C
B pf − C

B

(p̄T
P
1)

2

η2 > 0, =⇒ p̄f >
p̄

T
P
1

η . The last set

is obtained as P = F \ {Z ∪R}.
Now, with the caching probabilities obtained for a PPP

network, a random caching strategy is utilized to place the

content in individual caches [5]. Thus, with the caching prob-

Algorithm 1 Getting Index sets for ASP maximization

Input: Content popularity p in the descending order

Output: the sets of indices R, Z and P
1: Initialize R = ∅, P = F \ R, j = 0.

2: while B
A+C p̄j >

1
T
p̄P

η and j ≤ N do

3: R ← R∪ {j}, P ← P \ {j}, and j = j + 1
4: end while

5: Initialize Z = ∅, P = F \ {R ∪ Z}, j = N .

6: while p̄j >
1
T
p̄P

η and j ≥ 1 do

7: Z ← Z ∪ {j}, P ← P \ {j}, and j = j − 1
8: end while

abilities known as a function of content popularities, the ideal,

estimated and achievable ASPs can be given as Ps(pt+1) =
Ps(pt+1,qt+1(pt+1)), Ps(p̂t+1) = Ps(p̂t+1, q̂t+1(p̂t+1)),
and Ps(pt+1, q̂t+1(p̂t+1)) respectively. The ASP maximiza-

tion problems (P0) simplifies to Ps(pt+1) as pt+1 is known

in (P0). Similarly, (P1) can be recast as

max
ψ̂t

Ps(p̂t+1), (20)

which suggests to maximize the future ASP based on the data

up to the present content popularities. Therefore, it is important

to accurately predict the future CP in order to cache contents in

advance. Based on the past content popularities, we employ

two classes of methods to obtain the accurate prediction to

further optimize the ASP. For each of the classes, we propose

two models based on PPM and GPM. The motivation to use

these is as follows. To maximize the ASP, the prediction should

be as close to the ground truth, i.e., the mean squared error of

the popularities should be minimized which leads to PPM.

Further, from the Theorem 3, it can be observed that the

square-root of content popularities maximize the ASP. This

observation leads to GPM, which is presented in details in the

next section.

Remark (Reliability Assumption for analysis): Let Pt+1

and P̂t+1 denote the sets of indices for CPPs, obtained by

maximizing the ASP for the ideal CP pt+1 and the estimated

CP p̂t+1. Under the reliability assumption for analysis, we

assume that ASP maximization under the estimated CP leads

to the same set of indices as with the ideal ASP. This

is a reasonable assumption as with the sufficient past CP

observations and the respective CPPs, the index sets can be

precisely estimated i.e., to cache f th file in t + 1 on at least

one of the BSs or not. Therefore, we set Pt+1 = P̂t+1 and

Rt+1 = R̂t+1.

Remark (Feasibility of the ASP and MSE based joint

optimization): The combined optimization problem for maxi-

mizing ASP in edge-caching can be cast in the most favorable

form as

max
ck

Ps

(
d∑

k=1

ckpt+1−k

)

s.t.,

∥∥∥∥∥pi −
d∑

k=1

ckpi−k

∥∥∥∥∥

2

≤ ǫ,

∀i = t− τ + d+ 1, . . . , t

where the objective function is not convex and cannot be

reduced to a linear matrix inequality (LMI). Moreover, since

pi ≤ 1, the MSE constraint reduces to the correlation con-

straint
∑d
k=1 ckp

T
i−kpi ≥ ǫ′ = 1− ǫ/2∀i, which is linear and

can be solved trivially if sufficient CP observations (τ > d)

are provided. However, the solution ck, which satisfy the linear

constraint with equality, cannot improve the correlation beyond

ǫ′, or the MSE below the constraint ǫ. Therefore, due to

these reasons, to maximize the ASP, the separate prediction

approaches are proposed.

IV. ONLINE PREDICTION MODELS

In this section, two models are presented. First, a linear

model is fitted on the past CP observations and the problem

of obtaining regression coefficients is modeled as constrained

non-negative least squares (CNNLS) with additional sum

constraint. Further, for GPM model, the regression problem

is formulated as a regularized CNNLS. With these models,

the observed and the expected ASP difference are analyzed.

A. Popularity Prediction Model (PPM)

In this model, we approximate the present content popularity

vector at time t to the linear sum of the content popularities
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of the past up to time t− 1 as

pt ≈
d∑

k=1

ct−1,kpt−k, (21)

where ct,k ∈ R for all k = 1, . . . , d are the prediction

coefficients such that pTt 1 =
∑d
k=1 ct,k = 1, and d is the

order of the prediction. Note that the constraint ct,k ∈ R is

essential for the proper and accurate prediction. If ct,k is set

to a non-negative value (ct,k ≥ 0), the equation (21) will be a

convex sum which means that the variations in the f th content

popularity at time t beyond [mini pf,i,maxi pf,i] cannot be

predicted ∀f ∈ F . Therefore, with ct,k ∈ R and the known

τ popularities pf,(t−τ+1), . . . , pf,t, ∀f observations, the future

content popularity estimate can be obtained as

p̂t+1 =
d∑

k=1

ct,kpt+1−k (22)

where the coefficients can be given by the least squares

problem subject to non-negativity constraint of the future

estimate as

{ct,k, ∀k} = arg min
ck∈R

t∑

i=t−τ+d+1

∥∥∥∥∥pi −
d∑

k=1

ckpi−k

∥∥∥∥∥

2

(23)

subject to

d∑

k=1

ck = 1,
d∑

k=1

ckpf,t+1−k ≥ 0, ∀f.

(24)

The above problem is convex and can be numerically

solved using any convex solver such as CVX [22]. How-

ever, in practice, a more efficient solution can

be obtained by casting the above problem as a

constrained NNLS and the solution is given in

Appendix-C. NNLS without the constraint has been

solved using active set method via fast NNLS

(FNNLS) algorithm in [23], [24]. Therefore, with

the constraint, we modify FNNLS algorithm using

the Karush–Kuhn–Tucker (KKT) conditions. The

complexity of the this method is related to the least

squares solution and the number of observations (τ )

i.e. O(d3Nτ).
The above model tries to minimize the MSE of content pop-

ularity based on previous popularity data. However, it does not

contribute actively in the ASP maximization. Therefore, the

observed difference between the ideal ASP and the achievable

ASP is expressed as

δt+1(p̂t+1) ≤
(
Cη−11Tpt+1,Pt+1

A+ C −B

)[
1T ˆ̄pt+1,Pt+1

minf∈Pt+1
ˆ̄pf,t+1

− |Pt+1|
]

(25)

whose proof is given in Appendix-D. In the best case, this

difference is minimized when the distribution over subset

of library (Pt+1) is uniform, i.e.,
ˆ̄pf,t+1

1T ˆ̄pt+1,Pt+1

= 1
|Pt+1| ,

where
ˆ̄pf,t+1

1T ˆ̄pt+1,Pt+1

represents the distribution function over

f ∈ Pt+1. This results Ps(pt+1) − Ps(pt+1, q̂t+1) ≤ 0.

However, Ps(pt+1) ≥ Ps(pt+1, q̂t+1) by definition. Thus,

Ps(pt+1) = Ps(pt+1, q̂t+1), i.e., the estimation of partial

uniform CP (f ∈ Pt+1) achieves the best ASP. In the worst

case, the observed ASP upper bound is large when ˆ̄pf,t+1 → 0
reaches to a small non-zero value.

Let p̂t = pt + et, where et is a random error vector and

pt is defined by (21). Thus, we approximate

ˆ̄pf,t = (pf,t + ef,t)
1/2

= p̄f,t

(
1 +

ef,t
pf,t

)1/2

≈ p̄f,t
(
1 +

ef,t
2pf,t

)
= p̄f,t + ẽf,t,

where ẽf,t =
ef,t
2p̄f,t

. Similarly, the expected difference between

the ideal ASP and the estimated ASP can be defined from (19)

as

∆t+1(p̂t+1) = Ps(pt+1)− Ps(p̂t+1) = −eTt+1a (Rt+1,Pt+1)

+
Cη−1

A+ C −B

[(
ˆ̄pTt+1,Pt+1

1
)2
−
(
p̄Tt+1,Pt+1

1
)2]

≈ −eTt+1a (Rt+1,Pt+1) (26)

+
Cη−1ẽTt+1,Pt+1

1

A+ C −B 1T
[
ˆ̄pTt+1,Pt+1

+ p̄t+1,Pt+1

]
.

From the observed and the expected difference above, it can

be observed that the ASP difference for PPM is composed of

the first order prediction error term and the squared difference

term. The first error term which is a random vector with zero

mean, can be minimized by using the sufficient observations

(τ). The second term corresponds to the difference between

squared sum of squared root popularities, which cannot be

reduced to zero with the current model, as PPM is not

tailored to minimize the prediction error between squared

roots. Therefore, we investigate the prediction model which

considers the square root of popularities in the following.

B. Grassmannian Prediction Model (GPM)

From the optimization problem in (18), it can be observed

that the positive square root of the caching probabilities maxi-

mizes ASP. The positive square root of the content popularity

vector (p̄) represents a line in the Grassmannian manifold

GN,1 [25], [26]. Similar to PPM, here, we model the current

SCP vector as a linear sum of the previous d SCP vectors as

p̄t ≈
d∑

k=1

zkp̄t−k, (27)

where zk ∈ R∀k are the coefficients, used to predict the future

estimate of SCP as follows

ˆ̄pt+1 =

d∑

k=1

zkp̄n+1−k. (28)

These coefficients can be obtained using the least squares

minimization subject to regularization constraint ‖p̄t‖ ≤ 1
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as

{zk∀k} = arg min
zk∈R

t∑

i=t−τ+d+1

∥∥∥∥∥p̄i −
d∑

k=1

zkp̄i−k

∥∥∥∥∥

2

2

(29)

s.t.

∥∥∥∥∥

d∑

k=1

zkp̄t+1−k

∥∥∥∥∥
2

≤ 1, 0 ≤
d∑

k=1

zkp̄f,t+1−k ≤ 1, ∀f,

which is a convex optimization problem and can be solved

using CVX tool. However, for an efficient solution, the above

problem can be formulated as constrained NNLS as in the

previous subsection and can be solved similarly like in the

Appendix-C. To avoid redundancy of the content, we omit the

details.

In the above, the SCP prediction is intended to maximize the

ASP. It can be seen from the observed ASP difference in (25)

that as the estimation error is improved in the SCP vectors, the

ASP difference decreases, i.e., the achievable ASP of GPM is

better than that of PPM. Towards this, let ˆ̄pt = p̄t+ ēt where

ēt is a random error vector, and approximate

p̂f,t = (p̄f,t + ēf,t)
2

≈ pf,t + 2ēf,tp̄f,t = pf,t + e
˜
f,t

with e
˜f,t

= 2pf,tēf,t. For GPM described by (28), the

expected difference using (26) can be similarly written as

∆t+1(p̂t+1) = Ps(pt+1)− Ps(p̂t+1) ≈ −e
˜
T
t+1a (Rt+1,Pt+1)

+
Cη−1ēTt+1,Pt+1

1

A+ C −B 1T
[
ˆ̄pTt+1,Pt+1

+ p̄t+1,Pt+1

]
(30)

which consists of two errors terms. Comparing the above

equation with (26) for PPM, it can be observed that in the

first term, e
˜f,t

is much larger than ef,t, while for the second

term ēf,t is lower than ẽf,t. Together, it concludes that the

GPM improves the ASP over PPM.

Remark: In OP models, each round requires to solve an

independent optimization problem given τ previous observa-

tions, i.e., there is no-learning. Therefore, in each round, the

resultant MSE is approximately similar, i.e., the regret measure

is not essential in this case.

V. ONLINE LEARNING MODELS

In the above OP methods, the least squares optimization

is required to be solved per online round, which can be

computational intensive for large content library. Therefore,

to reduce the cost further, we present OL methods using the

weighted follow-the-leader (FTL) and weighted follow-the-

regularized-leader approaches.

A. Weighted FTL

In the FTL approach, the CP estimate for time t + 1 is

obtained by minimizing the weighted sum of l2-losses up time

t as

p̂t+1 = argmin
p

t∑

i=1

wi‖p− pi‖2, (31)

where wi ≥ 0 for i = 1, . . . , t are the weights such that∑t
i=1 wi = 1, ensuring the sum of the predicted CPs to be

one. If all the past CPs are equally important in the learning,

a trivial value can be selected wi = 1
t , 1 ≤ i ≤ t for tth

online round. However, in general, if the recent CPs dominate

the prediction, one can choose wi = κta
t−i, 1 ≤ i ≤ t such

that κt is set to satisfy the sum constraint, κt =
1−a
1−at . This

yields weights at tth round to be wt = 1−a
1−at . With a = 1,

the trivial selection is obtained. The value of 0 < a ≤ 1 can

be set according to the preferences for the recent or the past

observations. The solution of the above optimization leads to

the following prediction

p̂t+1 =
t∑

i=1

wipi (32)

= wtpt +

(
t−1∑

i=1

wi

)
t−1∑

i=1

wi∑t−1
i=1 wi

pi (33)

= wtpt + (1− wt) p̂t, (34)

which is a weighted sum of the previously observed CPs. This

prediction at time t consists of a balance between the observed

CP and the predicted CP at time t, i.e, it forms the convex sum.

This is in contrast to OP, where a linear sum is considered. It

means that FTL can only predict what has been observed in

the past.

The step-wise procedure for the CP prediction is listed in

Algorithm 2. In tth round, the prediction is obtained and the

CP is observed.

Algorithm 2 Weighted FTL algorithm.

Input: the value of 0 < a ≤ 1
1: for for t = 1, 2, . . . do

2: set wt =
1−a
1−at

3: predict p̂t+1 = wtpt + (1− wt) p̂t
4: observe pt+1

5: end for

Lemma 4. For the weighted FTL approach with 0 < a < 1,

O(T ) regret bound is obtained, and O(log T ) for a = 1.

Proof: Equation (34) can be rewritten as

p̂t+1 − pt = (1− wt) (p̂t − pt) . (35)

Therefore, the difference with respect to the CP (p) can be

given as

‖p̂t − pt‖2 − ‖p− pt‖2
(a)

≤ ‖p̂t − pt‖2 − ‖p̂t+1 − pt‖2 (36)

(b)
= ‖p̂t − pt‖2

[
1− (1− wt)2

]
(37)

(c)

≤ 2wt‖p̂t − pt‖2 ≤ 4wt,

where (a) is from [27, Lem. 2.1]; (b) comes by (35); (c) is

obtained by ignoring −w2
t as wt is small; and considering

‖p̂t‖ = ‖pt‖ ≤ 1, the last inequality arises from the triangle
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inequality, ‖p̂t − pt‖ ≤ 2. We therefore, obtain the upper

bound on the total regret as

RT (p) =
T∑

t=1

[
‖p̂t − pt‖2 − ‖p− pt‖2

]

≤4
T∑

t=1

wt = 4(1− a)
T∑

t=1

(
1− at

)−1

<4(1− a)
T∑

t=1

(
1 + at

)

=4(1− a)
(
T + a

1− aT
1− a

)

where wt = 1−a
1−at is used. When a < 1, the O(T ) regret

bound is obtained. For a = 1 i.e. wt = t−1, we obtain the

regret within O(log T ) as
∑T
t=1 t

−1 ≤ log T + 1.

Similarly, for a given CP p, the regret in terms of ASP can

be defined as

RASPT (p) =
T∑

t=1

∆t(p̂t)−∆t(p),

which is O(T ) and can be seen as follows. The expected ASP

difference ∆t can be approximated with the observed ASP

difference in (25), which can be seen to be independent of t,
i.e. ∆t(p) is O(1). Therefore, RASPT (p) is O(T ).

B. Weighted FoReL

Analogous to GPM in OP methods where the difference

between SCPs is minimized, in FoReL approach, we consider

the chordal distance as a loss measure of the prediction error,

since SCP lies on the Grassmannian manifold. The chordal dis-

tance is defined as the principle angle between two unit norm

vectors p̄1 and p̄2, i.e., d2c(p̄1, p̄2) = sin2 θ12 = 1−
∣∣∣p̄†

1p̄2

∣∣∣
2

.

Minimizing the chordal distance is equivalent to maximizing

the correlation, i.e., cross product cos θ12 = p̄
†
1p̄2 > 0. There-

fore, the prediction problem with respect to the SCP norm

constraint (regularization measure in FoReL terminology) can

be expressed as

ˆ̄pt+1 = arg max
‖p̄‖≤1

t∑

i=1

wip̄
†p̄i, (38)

=
t∑

i=1

wip̄i∥∥∥
∑t
i=1 wip̄i

∥∥∥
, (39)

where we choose wi = κta
t−i with a ∈ (0, 1] similar to FTL,

and it leads to the following simplification as

ˆ̄pt+1 =
t∑

i=1

w̄i,tp̄i (40)

= w̄t,tp̄t +
w̄t,t
w̄t,t−1

t−1∑

i=1

w̄i,t−1p̄i (41)

= w̄t,tp̄t +
w̄t,t
w̄t,t−1

ˆ̄pt, (42)

≥ w̄t,tp̄t + (1− w̄t,t) ˆ̄pt, (43)

with w̄i,t =
wi

‖∑t
i=1

wip̄i‖ ,
w̄t,t−1

w̄t,t
=
‖∑t

i=1
wip̄i‖

‖∑t−1

i=1
wip̄i‖ ≤ 1+ w̄t,t−1

using the triangle inequality, and yielding
w̄t,t

w̄t,t−1
≥ 1 −

w̄t,t. To see that the above bound is a convex sum, the

weight w̄t,t should be less than 1. Thus, we write w̄t,t =∥∥∥
∑t
i=1 a

t−ip̄i
∥∥∥
−1

, which is the inverse of a norm of the

converging sum. In the worst case, the norm has the lowest

value, when p̄i is uniform2, i.e., for p̄f,t =
1√
N
∀f , we have

lim
t→∞

w̄t,t ≤ lim
t→∞

(
t∑

i=1

at−i
∥∥∥∥

1√
N

∥∥∥∥

)−1

= lim
t→∞

1− a
1− at = 1− a < 1.

Thus, w̄t,t ≤ 1, where the equality is obtained for t = 1.

The corresponding online learning procedure is presented in

Algorithm 3. In this procedure, two intermediate variables (kt
and p̄′

t+1) are introduced to simplify the computations. The

rest of the process is same as weighted FTL algorithm. The

respective regret is analyzed in the following result.

Algorithm 3 Weighted FoReL algorithm

Input: the value of 0 < a ≤ 1, κ0 = 0.

1: for t = 1, 2, . . . do

2: set wt =
1−a
1−at

3: predict p̄′
t+1 = wtp̄t + kt−1 ˆ̄pt

4: set kt = ‖p̄′
t+1‖ and obtain ˆ̄pt+1 =

p̄
′

t+1

kt
5: observe p̄t+1

6: end for

Lemma 5. For the weighted FoReL approach with 0 < a < 1,

O (T ) regret bound is obtained, and O (log T ) for a = 1.

Proof: The CP estimate can be simplified as

ˆ̄pt+1 − p̄t ≥ (1− w̄t,t)
[
ˆ̄pt − p̄t

]
.

It is used to get the difference with respect to the CP (p) as

‖p̂t − pt‖2 − ‖p− pt‖2
(a)≈ ‖ˆ̄pt − p̄t‖2 − ‖p̄− p̄t‖2 (44)

(b)

≤ ‖ˆ̄pt − p̄t‖2 − ‖ˆ̄pt+1 − p̄t‖2 (45)

(c)

≤ 2w̄t,t‖ˆ̄pt − p̄t‖2 (46)

(d)

≤ 4w̄t,t,

where in (a), we approximate the regret of CP by the regret

of SCP; in (b), the result from [27, Lem. 2.1] is used; in (c),

2The norm minimization problem can be written as

min
p̄i

∥

∥

∥

∥

∥

t
∑

i=1

at−i
p̄i

∥

∥

∥

∥

∥

2

= min∑
f p̄2

f,t
=1∀t

∑

f

∣

∣

∣

∣

∣

t
∑

i=1

aip̄f,i

∣

∣

∣

∣

∣

2

,

which has more unknowns than the known. Relaxing the norm con-
straint (since the final vector can be normalized), the problem reduces to

minp̄f,t∀t
∣

∣

∑t
i=1

aip̄f,i
∣

∣

2
∀f , which shows that p̄f,i ∝ a−i∀f minimizes

it. This result after normalizing gives uniform distribution p̄f,t =
1√
N
∀f .
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−w̄2
t,t is ignored as w̄t,t ≤ 1; in (d), triangle inequality has

been used with ‖ˆ̄pt‖ = ‖p̄t‖ = 1. The total regret up to time

T can be obtained as

T∑

t=1

[
‖ˆ̄pt − p̄t‖2 − ‖p̄∗ − p̄t‖2

]
(47)

≤ 4
T∑

t=1

w̄t,t = 4
T∑

t=1

∥∥∥∥∥

t∑

i=1

at−ip̄i

∥∥∥∥∥

−1

(48)

(a)

≤ 4
T∑

t=1

(
1− at
1− a

)−1

(49)

(b)≈ 4(1− a)
(
T + a

1− aT
1− a

)
, (50)

which (a) is obtained for p̄f,t =
1√
N
∀f ; in (b), (1− at)−1 ≈

1 + at. Thus, it yields O (T ) regret. When a = 1, wt = t−1

and w̄t,t =
∥∥∥
∑t
i=1 p̄i

∥∥∥
−1

≤ 1
t where the equality of the upper

bound on w̄t,t holds for p̄f,t =
1√
N
∀f . This gives O (log T )

regret.

Remark (OP vs OL): The OP methods work via linear

prediction for given τ observations, while OL methods im-

proves the estimation by the experience. In OP methods,

the predictor coefficients are assumed unconstrained, while

the same assumptions cannot be set for OL methods due

to the objective of weighted MSE minimization. With these

observations, the OP yields a linear sum of the recent past

CPs, while OL provides the convex sum of all the past CPs.

These differentiations suggest that OP can estimate any wide

changes in content popularity, while OL can track the changes

in the CPs within a convex set of past observations.

VI. SIMULATION RESULTS

To evaluate the performance of the proposed prediction

methods with the optimized edge caching policy, we use

MovieLens dataset [20]. In this dataset, we choose the user

ratings of N = 100 movies with IDs 1-100. Using the times-

tamps provided, the whole duration is divided into time slots

to simulate the content request process. A movie rating from

users is assumed to be the number of requests of that movie,

while the popularity profile for each time slot is obtained by

normalizing the ratings across the movies. Moreover, for OP

methods, d = 4 and τ = 10 are selected, while for OL,

a = 1 is chosen. PPP parameters for computing ASP are

as follows: noise power σ2 = 0, BS density λBS = 200,

bandwidth W = 24kHz, path loss exponent α = 3.5, rate

threshold R0 = 1, BS cache size L = N
2 = 50. Besides, the

performance of OP and OL methods are compared with the

request prediction method (OP-AR) [10], and mean guessing

[15], [21]. In OP-AR, after modeling the logarithm of the

number of requests using auto-regressive model, we use least

squares to find the coefficients of prediction. In mean guessing,

a mean of previous τ observations is selected as the prediction.

The above methods accurately predict the CPs in the order

of 10−2. For comparison, Figure 2 depicts the averaged

prediction MSE and the averaged expected ASP difference

(dASP) for the methods. It can be observed that for both

MSE dASP
10

-4

10
-3

10
-2

10
-1

10
0

OP-AR

OP-GPM

OP-PPM

MeanGuess

OL-FTL

OL-FoReL

Figure 2. Figure illustrates the average prediction MSE (Et {Et (p̂t)}) and
the expected ASP difference (Et {∆t(p̂t)}).

MSE and ASP, OP-GPM and OP-PPM yield better results than

OP-AR, mean guessing and OL methods. This is because in

each online round of OP-PPM and OP-GPM, the MSE of CP

estimate is minimized to get prediction, while in others, it is

not. Among the OL methods, OL-FTL provides better MSE

while OL-FoReL has better dASP, as OL-FTL considers CP in

the formulation, while OL-FoReL is SCP based. Also, the plots

of mean guessing lie in between OP and OL methods, which

is because mean guess considered here has similarities to both

OP and OL, i.e., in other words, mean guessing is equivalent

to a trivial OP or a sub-optimal OL-FTL. Note that OP

predicts with past τ observations, while OL utilizes the whole

past. Therefore, OP performs well when the instantaneous

MSE is considered, while OL provides improvements for the

cumulative MSE, i.e., regret, which is shown in the Figure

3. OP-AR for MSE and dASP can be seen to provide an

approximation to OL-GPM.

Figure 3 (a) and (b) show the MSE and dASP regret

respectively. Unlike Figure 2, OL-FTL yields better MSE

regret than OP methods and mean guessing, while OL-FoReL

provides better dASP regret as per construction. The MSE

regret can be seen to be O(log T ), while dASP regret is O(T )
as presented in the previous sections. Mean guessing provides

an approximation between OP and OL methods for both MSE

and dASP, as it is a sub-optimal FTL as well as a trivial OP.

OP-AR approximates OP-GPM as seen in Figure 2.

Figure 4 shows variations of the expected dASP with the

cache size constraint. Here, the MSE remains constant as it is

independent of caching scheme. It can be observed that with

the increase in the cache size, dASP decreases, i.e., the achiev-

able ASP increases. The trend of different methods is similar to

Figure 2, i.e., OP-GPM yields the minimum dASP and so on.

For larger cache size, the dASP gap between different methods

can be seen to be closing i.e., dASP converges to zero as

L→ N . The expected dASP in (25) is inversely proportional

to L (in η) i.e., dASP ∝ L−1 =⇒ log (dASP) ∝ − logL,

which is a negative proportionality as can be seen in Fig. 4.
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Figure 3. Figure depicts (a) MSE regret (Rt(pt)) versus t and (b) expected
ASP regret

(

RASP
t (pt)

)

versus t for different methods.

Figure 5 (a) and (b) depicts variations of the MSE and

expected dASP as the content library size (N) increases,

while the cache size is set proportional to the library size

i.e. L = N/2. It can be observed that both the MSE and

dASP decrease with the size N for all methods, except OP-

AR, which increases because the prediction is done without

normalization by N . The trend of the performance curves for

different methods is similar as in Figure 2, where OP-GPM

performs the best in both MSE and ASP measure.

VII. CONCLUSION

In this paper, online prediction (PPM and GPM) and on-

line learning (weighted-FTL and weighted-FoReL) methods

have been investigated. First, for the given popularity profile,

caching probabilities have been optimized to maximize ASP

of the PPP based network. In PPM, a linear model is used

to predict the popularities to minimize the MSE and ASP

difference has been analyzed. In GPM, we predict the future
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Figure 4. Figure shows the expected ASP difference Et {∆t(p̂t)} with
respect to the cache size constraint (L) keeping N = 100 fixed.

CP via the linear combination of SCP, which has shown to

maximize the ASP. For online learning models, weighted-FTL

and weighted-FoRel are presented to minimize the MSE and

ASP regrets, which are analyzed to be O(log T ) and O(T )
respectively. Simulations for MovieLens dataset verify the

analysis that PPM and GPM achieves the better MSE and

ASP, while FTL and FoReL results into better MSE regret

and ASP regret respectively. ASP difference can be seen to be

inversely proportional to cache constraint.
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APPENDIX

A. ASP Derivation

The CCDF of sum rate can be obtained as

g(pl) = Pr (W log2(1 + Γil) ≥ R0) = Pr


Γil ≥ 2

R0
W − 1︸ ︷︷ ︸
s0




= Ehi,ri,Ii Pr




|hi|2P
rα
i

Ii + σ2
≥ s0


 (51)

= EriIi

[
Ehi

Pr

(
|hi|2 ≥ s0rαi

(
Ii
P

+
σ2

P

))]
(52)

= Eri

{
EIi exp

[
−s0rαi

(
Ii
P

+
σ2

P

)]}
(53)

= Eri exp

[
−s0rαi

(
σ2

P

)]
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Figure 5. Figure shows (a) MSE (Et {Et (p̂t)}) and (b) the expected ASP
difference Et {∆t(p̂t)} with respect to the content library size (N) with the
cache constraint L = N/2.

× Ehj ,rj exp


−s0

∑

j∈Φbs\{i}
|hj |2

(
ri
rj

)α

 (54)

= Eri exp

[
−s0rαi

(
σ2

P

)]
(55)

× Erj




∏

j∈Φbs(l)\{i}

∏

j∈Φc
bs

(l)\{i}

1

1 + s0

(
ri
rj

)α


 (56)

Now, the expectation on distance will be taken [28]

Erj

∏

j∈Φbs(l)\{i}

(
1 + s0r

α
i r

−α
j

)−1

= exp


−

∫ ∞

ri


1− 1

1 + s0

(
ri
rj

)α


 2πλbsplrj (drj)




= exp

(
−2πλbspl

∫ ∞

ri

(
s0r

α
i r

−α
j

1 + s0rαi r
−α
j

)
rj (drj)

)
(57)

= exp


−2πλbspl

∫ ∞

ri


 1

1 +
rα
j

s0rαi


 rj (drj)


 (58)

= exp



− 2πλbspls

2
α

0 r
2
i

1

α

∫ ∞

1
s0

(
u

2
α
−1

1 + u

)
du

︸ ︷︷ ︸
=Aplr2i




(59)

Erj

∏

j∈Φc
bs

(l)\{i}

(
1 + s0r

α
i r

−α
j

)−1
(60)

= exp


−

∫ ∞

0


1− 1

1 + s0

(
ri
rj

)α


πλbs(1− pl)

(
dr2j
)



= exp



− 2πλbs(1− pl)s

2
α

0 r
2
i

1

α

∫ ∞

0

(
u

2
α
−1

1 + u

)
du

︸ ︷︷ ︸
=B(1−pl)r2i




(61)

where we let u =
rαj
s0rαi

, rj = (us0)
1/α

ri, du =

α
rα−1

j

s0rαi
(drj) = uα 1

rj
(drj), rj (drj) = dur2j

1
uα =

(us0)
2/α

r2i
1
uα = u

2
α
−1s

2
α

0 r
2
i
1
α . Therefore, the resultant ex-

pression from (55) can be written as

g(pl) = Eri exp

[
−s0rαi

(
σ2

P

)
− (plA+ (1− pl)B) r2i

]

=

∫ ∞

0

exp

[
−s0rαi

(
σ2

P

)
− (plA+ (1− pl)B) r2i

]

× exp(−πplλbsr2i )2πplλbsri(dri) (62)

= plC

∫ ∞

0

exp

[
−s0rαi

(
σ2

P

)]
(63)

× exp
[
− (plA+ (1− pl)B + plC) r

2
i

]
(dr2i ) (64)

where C = πλbs.

B. Proof of ASP maximization

Proof: The ASP optimization problem can be recast as

min
q1,...qN

−
∑

f

g0(qf )pf (65)

subject to
∑

f

qf ≤ L, qf ≤ 1, qf ≥ 0, ∀f. (66)

The corresponding Karush–Kuhn–Tucker (KKT) conditions

can be obtained as

0 = −g′o(qf )pf + λ+ νf − wf = 0, ∀f (67)

0 = λ(
∑

f

qf − L), (68)

0 = νf (qf − 1), ∀f (69)

0 = wfqf , ∀f, (70)
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where λ ≥ 0, vf ≥ 0, wf ≤ 0, ∀f are the dual variables

and g′(q) = BC
[B+q(A+C−B)]2

. Simplifying above yields

qf =
(

B
A+C−B

)[√
C
B
pf
λ′

f

− 1

]
, where λ′f = λ + νf − wf .

Let F = Z ∪ P ∪ R with Z = {f |vf = 0, wf < 0, qf = 0}
P = {f |vf = wf = 0, 0 < qf < 1}, and R =
{f |vf > 0, wf = 0, qf = 1} being the sets of indices of

qf with zero, positive and one values respectively, i.e., for

each set, we have

λ− wf = g′(0)pf =
C

B
pf , ∀f ∈ Z (71)

λ = g′(qf )pf =
C

B

(
p̄TP1

)2

η2
, ∀f ∈ P (72)

λ+ vf = g′(1)pf =
C

B

(
B

A+ C

)2

pf , ∀f ∈ R. (73)

Further, the objective function is simplified as

∑

f

g0(qf )pf =
∑

f

λ′fqf
B + qf (A+ C −B)

B
(74)

=
∑

f∈P
λqf

√
C

B

pf
λ

+
∑

f∈R
λ′f
A+ C

B
(75)

=

(
Bλ

A+ C −B

)∑

f∈P

[
C

B

pf
λ
−
√
C

B

pf
λ

]
+

C

A+ C

∑

f∈R
pf

=

(
C

A+ C −B

)

∑

f∈P
pf −

p̄TP1

η

√
pf


+

C

A+ C
p̄TRp̄R

=

(
C

A+ C −B

)
p̄TPZP p̄P +

C

A+ C
p̄TRp̄R (76)

= pTa−
(

C

A+ C −B

) (
p̄TP1

)2

η
. (77)

C. Solution of constrained NNLS problem

The equation (24) can be written as constrained NNLS

problem as

p̂t+1 =argmin
p≥0

∥∥∥−→p t −
−→
P tp

∥∥∥
2

2
(78)

subject to 1Tp = 1, (79)

where −→p t =
[
pTt−τ+d+1, . . . ,p

T
t

]T
, p =

∑d
k=1 ckpt+1−k,

P′
t =

[−→p t−d, . . .
−→p t−1

]
,
−→
P t = P′

t [pt, . . . ,pt+1−d]
+

; A+

stands for the pseudo inverse of A. Further, we modify

FNNLS algorithm to handle constraints using the following

Karush–Kuhn–Tucker (KKT) conditions as

0 =
−→
PT
t

−→
P tp−

−→
PT
t
−→p t + λ1+ v, (80)

0 = λ(1Tp− 1), (81)

0 = vfpf , ∀f, (82)

where λ 6= 0 and v = [v1, . . . , vN ] ≤ 0 are the dual vari-

ables corresponding to sum and the non-negativity constraints

Algorithm 4 Constrained NNLS algorithm

Output: x∗ = argminx≥0 ‖y −Hx‖22 such that 1Tx = 1
Input: Initialize P = ∅, R = {1, . . . , n}, p = 0, v =

HT (y −Hx) and tolerance ǫ
1: while R 6= ∅ and maxi vi > ǫ do

2: set j = argmaxi vi, add j in P and remove from R
3: set sR = 0 and sP = xP(v),
4: if min sP ≤ 0 then

5: α = −min
[

xP

xP−sP

]

6: if α = 0 then

7: I = {i|xi 6= 0} andα = −min
[

xI

xI−sI

]

8: end if

9: x = x+ α(s− x)
10: updateP = {i|xi > 0} andR = {i|xi ≤ 0}
11: set sR = 0 and sP = xP(v)
12: end if

13: x = s and v = HT (y −Hx)− λP(v)1
14: end while

respectively. Solving these equations gives

p(
−→
P t,v) =

(−→
PT
t

−→
P t

)−1 (−→
PT
t
−→p t − λ(

−→
P t,v)1− v

)
,

(83)

λ(
−→
P t,v) =

1T
(−→
PT
t

−→
P t

)−1 (−→
PT
t
−→p t − v

)
− 1

1T
(−→
PT
t

−→
P t

)−1

1

. (84)

However, for faster updation in an online round especially

for a large content library, the following modified equations

are used (inspired from FNNLS scheme [23], [24])

pP(v) =
(−→
PT
t

−→
P t

)−1

P

[(−→
PT
t
−→p t

)

P
− λP(

−→
P t,v)1− v

]
,

λP(v) =
1T
(−→
PT
t

−→
P t

)−1

P

[(−→
PT
t
−→p t

)

P
− v

]
− 1

1T
(−→
PT
t

−→
P t

)−1

P
1

, (85)

where AP denotes the sub-matrix of A with the rows-columns

indices defined by P . These equations depends on the dual

variable v, which is acquired by active set method as pre-

sented in the modified NNLS procedure in Algorithm 4. After

initializing v, this method works by computing the positive set

of entries and updating the corresponding v iteratively. The

number of “while” iterations is equal to the number of non-

zero entries in the solution. The difference between Algorithm

4 from FNNLS algorithm [23], [24] is the presence of dual

variable λ which handles the additional constraint other than

non-negativity.

D. Simplification of ASP Difference

The simplification is given in the equation on the top of the

page.
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δt+1(p̂t+1) = Ps(pt+1)− Ps(pt+1, q̂t+1) =
∑

f

pf,t+1 [g0(qf (pf,t+1))− g0(qf (p̂f,t+1))] (86)

=
C

A+ C −B
∑

f∈Pt+1

pf,t+1

η

[
1T ˆ̄pt+1,Pt+1

ˆ̄pf,t+1
− 1T p̄t+1,Pt+1

p̄f,t+1

]
(87)

=

(
Cη−1

A+ C −B

)
p̄Tt+1,Pt+1

[
1T ˆ̄pt+1,Pt+1

D−1
(
ˆ̄pt+1,Pt+1

)
− 11T

]
p̄t+1,Pt+1

(88)

≤
(

Cη−1

A+ C −B

)
λmax

[
1T ˆ̄pt+1,Pt+1

D−1
(
ˆ̄pt+1,Pt+1

)
− 11T

]
‖p̄t+1,Pt+1

‖2 (89)

=

(
Cη−1‖p̄t+1,Pt+1

‖2
A+ C −B

)
λmax

[
1T ˆ̄pt+1,Pt+1

D−1
(
ˆ̄pt+1,Pt+1

)
− |Pt+1|

]
(90)

=

(
Cη−11Tpt+1,Pt+1

A+ C −B

)[
1T ˆ̄pt+1,Pt+1

minf∈Pt+1
ˆ̄pf,t+1

− |Pt+1|
]

(91)
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