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Abstract

In this paper we present our system for online context recognition
of multimodal sequences acquired from multiple sensors. The sys-
tem uses Dynamic lime Warping (D7W) to recognize multimodal
sequences of different lengths, embedded in continuous data streams.
We evaluate the performance of our system on two real world
datasets: 1) accelerometer data acquired from performning two hand
gestures and 2) NOKIA's benchmark dataset for context recogni-
tion. The results from both datasets demonstrate that the system
can perform online context recognition efficiently and achieve high
recognition accuracy.

1. INTRODUCTION
Many computers are embedded in the world around us. These
ubiquitous computers will anticipate our needs and sometimes act
on our behalf. Sensor processing represents this paradigm shift in
computing. By analysing the data acquired from multiple sensors,
we can augment computers with awareness of their environment
and situation. The process for extracting, fusing and converting
relevant data from multiple sensors to a representation for situation
awareness is referred to as context recognition. Context recognition
is a challenging task since the situations are discribed by multimodal
sequences acquired from different sensors over a period of time. In
this paper we present our approach for online context recognition in
multisensor systems.

The core of our system is the Dynamic Time Warping (DTW)
recognizer. The DTW non-linearly warps one time sequence to
match another given start and end points correspondence. First, the
DTW is extended to deal with multimodal sequences acquired from
multiple sensors, usually a mix of binary, discrete, and continuous
variables. The DTW recognizer can recognize multimodal sequences
of different lengths e.g. the same human gestures performed at
different speeds, or the same batch processes of different durations.
Second, we show how our system deals with unknown endpoints of
multimodal sequences that are embedded in continuous data streams,
for which accurate location of the endpoints is critical for reliable
and robust context recognition using DTW. The endpoint detection
problem is nontrivial and has been studied thoroughly in the speech
recognition community, where "silence" between utterances is a
useful clue [1], [2]. However, it is more difficult to develop endpoint
detection algorithms for multimodal sequences, since there is no
"silence" region as can be found before and after a spoken word. At
any point in time, there might be some low level events detected from
some sensors. We demonstrate that our system can perform online
context recognition efficiently, and copes with the sheer magnitude of
multi-sensory information in real-time and achieve high recognition
accuracy.

The rest of the paper is organized as follows: In section 2,
we review dynamic time warping. In section 3, we describe the
architecture of our online context recognition system. In section 4,

we evaluate the recognition accuracy and speed of the system with
two real world datasets. Finally, conclusions and further work are
discussed in section 5.

2. DYNAMIC TIME WARPING
A general time alignment and similarity measure for two temporal
sequences is Dynamic Time Warping (DTW), which was introduced
by Sakoe and Chiba [3]. DTW has been extended to deal with
unknown start and end points of isolated words in speech [4],
[5], and connected word recognition [6], [7], [8]. More recent
research on DTW has focused on applying it to mining patterns
from one-dimensional time series [9], and indexing and clustering
one-dimensional time series [10], [11].

To the best of our knowledge, there has been little work on apply-
ing DTW for context recognition from sensor data. Other techniques
usually used are hidden Markov modelling (HMM) [12], artificial
neural networks [13], and self-organizing maps [14]. However, the
training and recognition procedures in DTW are potentially much
simpler and faster. In fact, it has been demonstrated that DTW
recognition is fast for most of the time series databases available
[15].

The classic DTW algorithm uses a local distance measure to
determine the distance between a class sequence and a test sequence
by calculating a warping path. Suppose we have a class sequence
(C (i))f=1 of length I and a test sequence (T (j))-1 of length J. To
calculate the similarity between these two sequences, a local distance
measure d (C (i),T (j)) between two points of these sequences is
applied to calculate a warping path on an I by J matrix. A warping
path W is a set of matrix elements that defines a mapping between
C and T,

W= {w(i(q),i(q)) m I, Jji<'Q<I+J1 } (2.1)

with i(q) {1,I . ,I} and j(q) C {1,. . .,J}. The warping
path is typically subject to several constraints: Continuity, Endpoint
constraints, and Monotonicity [3].

The overall distance DTW(C, T) between the class sequence and
the test sequence is then calculated by summing the local distances
over the warping path W.

DTW (C, T) = arg min ( d (i (q), j (q)) k) (2.2)

where k is the normalisation factor. The warping path can be found
very efficiently using dynamic programming, more information on
DTW can be found in [3].

3. METHODS
A. System architecture
Fig. I shows the architecture of the proposed system for online
context recognition of multimodal sequences. The input to the system
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Fig. 1: The architecture of online context recognition system.

is the raw data (raw multimodal sequences acquired from sensors)
that is currently buffered in the sliding window. First, the data pre-
processing module converts the raw data buffered in the sliding
window into the test template (data-reduced version of the raw mul-
timodal sequences). This conversion process may include: filtering,
normalising variables, and feature extraction. We have studied the
influence of these data pre-processing techniques for recognition
accuracy in our previous work [16]. Second, the DTW recognizer
calculates the DTW distances between the class templates and the
converted test template, and passes the results to the decision making
procedure. Finally, the output of the system is the decision made
by decision making procedure on which class template is the most
similar one to the input.

B. The training of the DTW recognizer
In the training stage, the most important task is the creation of
reliable class templates for each class of multimodal sequences to
be recognised. Although the template can be selected randomly
(i.e. random selection), the accuracy of the DTW-based recognition
system greatly relies on the quality of the created class templates.
Some better methods than random selection are:

1) Normal selection: The normal procedure for selecting the class
templates is to use each example as a template and determine
its recognition rate when classifying the other examples of that
class. The example with the best recognition rate is chosen as
the template.

2) Minimum selection: Select the class template using the intra-
class DTIW distance, that is the sum of DTW distances between
the example that is the template to all other examples within the
same class. The one with minimum intra-class DTW distance
is selected as the class template. In terms of clustering , the
template selected by this method is the centre of the cluster.

3) Average selection: Generate the class template from a set of
the best templates, e.g. extract the five templates that have
the best minimum inter-class DTW distances, then take the
average of these to produce the final class template. Averaging
a collection of time series that are not perfect-ly time-aligned
is non-trivial [15], [17]. It has been demonstrated [17] that the
speaker-dependent recognition rate is improved from 85.3%,
using the normal selection, to 99%, using the average selection.

4) Multiple selections: Use several class templates for each class,
determine the classification for each template and then combine
the results. This method usually achieves better classification
rates than the aforementioned methods. However, this method
is computationally inefficient because it increases the number
of class templates to be compared.

We will compare random selection, minimum selection and mul-
tiple selections in our experiments to demonstrate the importance of
selecting good class templates. After the creation of class templates,
there are two other parameters required by the DTW recognizer. For

each class C' (1 < n < N, N=total number of classes), these
parameters will be derived from the training templates of C' (denote
as TC'). They are:

End region (El and E2 of Eq. 3.3): for each class Cn, E2 is
defined as the maximum length found in TC' and El is defined
as the minimum length found in TC'. E2 and the length of
class templates of CO are used to determine the number of rows
and columns of DTW distance tables of C' respectively. El
and E2 together define the all possible lengths of multimodal
sequences of class Cn.

* Rejection threshold: for each Cn, we derive the rejection
threshold by calculating the intra-class DTW distances between
the selected class template of C' and all TC'. The threshold is
defined as the mean of these distances plus standard deviations.
During the sliding window operation, if the minimum DTW
distance derived between the test template and the class template
of Cn exceeds the threshold, this class template is given an
infinite distance and this indicates the test template did not
belong to class Cn.

C. Dynamic Time Warping recognizer
After the class templates have been created, the next step is to
measure the similarity between online data and class templates. Since
the length of multimodal sequences of the same class can vary greatly
and the endpoints are unknown, the proposed system uses a variant of
DTW to achieve both time alignment and similarity measure. In the
remainder of this section, we will develop dynamic time warping for
online recognition of multimodal sequences generated from multiple
sensors.

I) Multi-dimensional local distance measure for DTW:
The class templates 0(I x V) and test template T(J x V) represent
multimodal sequences where V is the number of variables. To
calculated the DTW distance between the test and class templates,
The system uses the extended Euclidian distance (Eq. 3.1) and Cosine
correlation coefficient (Eq. 3.2) as the local distance measures to
calculate the difference between the two vectors: Cr and T. Their
recognition performances have been evaluated in [16], and they are
defined as:

dE (CY,iT)
v

X WV (V) (Ci(v) _Tj(t))2
\ v=l

v

E WV (v) Ci(v)Tj(v)
dc (CV,Tjv =

1_ v=11/
AEZ(v) ET(v
v=l v=l

(3.1)

(3.2)

where WV is a positive definite weight vector. The weight vector
WV can be used in the DTW algorithm to give more weight to
certain variables to improve the performance of online recognition. If
every element of WV is equal to 1, we obtain the normal Euclidian
distance and Cosine correlation coefficient. If prior knowledge of
the importance of the sensors to the multimodal sequences under
recognition are given, we can assign the elements of WV according
to the importance of the sensors.

2) DTW variant for unknown start and end points: One of
the major drawbacks in the original DTW algorithm is the endpoint
constraints that requires the warping path to start and finish in
diagonally opposite comer cells of the distance table as shown by the
solid line in Fig. 2. When reasonably accurate determination of the
start and end points of the multimodal sequence has been made, this
constraint is acceptable and does not harm overall performance of the
recognizer. However in the case of online recognition of multimodal
sequences where the accurate endpoints are unknown, the original
DTW algorithm is inadequate. As such, we use a variant of the
original DTW algorithm that replaces the endpoint constraints to
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Fig. 2: DTW variant to solve the problem of unknown start or end points.

allow the start point to fall in a defined start region (i.e. between
SI and S2) and the end point to fall in a defined end region (i.e.
between El and E2) as shown by the bold dashed lines in Fig. 2.
Hence the optimal warping path starts at the first vector of the class
template and within the start region of the test template, and ends at
the last vector of the class template and within the end region of the
test template. Given a start and end region, the purpose of the DTW
algorithm is to determine (in an optimal and efficient manner) the
warping path, which provides the best time alignment between the
class and the test template and has the minimum cumulative distance.
The searching of the optimal warping path for this variant of the DTW
algorithm can be expressed as an extension of (Eq. 2.2):

( / ~Q
DTW (C,T) = sminms2\Eime.Eii2k1 / ))

(3.3)
where s and e represent the start and end points of a warping path
respectively.

3) Online DTW: The proposed system uses a sliding win-
dow based approach to achieve online recognition of multimodal
sequences as depicted in Fig. 1. For each class template, the DTW
recogniser maintains a distance table (see Fig. 2). The online recog-
nition proceeds by constructing the distance table while the data
is acquired. When a new vector of the test template is produced
by the data pre-processing module, the distance table expands by
one row and only the local distances for the corresponding cells in
the distance table are calculated, i.e. when jth vector of the test
template is produced, d(Ci, Tj) is calculated for all i(1 < i < I).
Once the distance table reaches the maximum buffer size defined
during the training stage, then it becomes a sliding window. At each
new time instance, the first vector of the test template and the first
row of the distance table is deleted and a new vector is added into
the jth vector of the test template. The local distances of the jth
row of the distance table are re-calculated accordingly. In this way,
the algorithm is efficient since it uses previous calculated values.
At each new time instance, the online DTW recogniser calculates
a new warping path in the updated DTW distance table by fixing
the start point (i.e. S2=S1=1 in Eq. 3.3) and relaxing the end point
(i.e. E1 < e < E2 in Eq. 3.3). For each class to be recognised,
the DTW distance is obtained by calculating the cumulative distance
along the new warping path. If the lengths of class templates (between
classes or within the class) are quite different, we need to normalize
the returned DTW distance. We would expect longer class templates
to have higher DTW distances than short class templates, since they
have longer warping paths on which to accumulate errors. The system
uses the following normalization policies:

. N=l, no normalization on the distance.

. N=2, normalised by the length of the optimal warping path.

. N=3, normalised by the length of the longer template between
class and test templates.

* N=4, normalised by the length of the shorter template between
class and test templates.

. N=5, normalised by the sum of the lengths of both class and
test templates.

At each new time instance, the normalised DTW distances are
calculated for each class template and passed to the decision making
procedure to perform classification.

D. Decision making procedure
The last major step in the proposed system (see Fig. 1) is the decision
making procedure which chooses the class template that most closely
matches the unknown test template. There are two decision rules used
in the system depending on which method is used to create the class
template.

For Nornal, Minimum, and Average selections where a single class
template is used for each class, the nearest neighbour decision rule
(NN rule) is used. Assume we have N classes , C', 1 < n < N,
and for each test template we obtain the DTW distance D' using
our online algorithm. Then the decision rule is simply:

n* = arg min [Dn]
n

(3.4)

and the class template Cn* is chosen as the winning class template.
For Multiple selections in which each class is represented by two

or more class templates, the K-nearest neighbour (KNN) decision
rule can be used. Thus if we assume there are M\ class templates for
all N classes, and we denote the mth class template of C' as C',
where 1 < n < N. 1 < m < M, then the DTW distance for the
mth class template of Cn is Dn'm. If we select K (1 < k < AM)
nearest neighbours out ofM class templates of Cn that have the least
DTW distances to the unknown test template (centre K samples in
the cluster), and let it denotes the DTW distance of the kth neighbour
to the unknown test template as Dn k, then for each test template,
we obtain the DTW distance for Dn as:

K

Dn = EDn,k
k=1

(3.5)

and we choose the index of the recognized class using Eq. 3.4. It
should be noted that for K = 1, the K-nearest neighbour decision
rule becomes the nearest neighbour rule.

4. CASE STUDIES AND RESULTS
A. Experimental setup and evaluation
We use two real world datasets to explore the performance of the
proposed online context recognition system. First, we demonstrate the
accuracy and speed of the system for performing online recognition
of shorter test templates. The templates are converted by data pre-
processing module from the raw data acquired from homogenous
sensors, and consist of continuous variables with significant variabil-
ity. Second, we show that the system can achieve good results from
longer test templates that are converted from the raw data acquired
from heterogeneous sensors, and have larger dimensions with a mix
of discrete and continuous variables. All the experiments in this paper
were conducted on a Pentium-4 3.2 GHz with 1 GB of RAM running
Windows XP professional. Most software components in our system
are currently implemented in MATLAB, except the DTW recognizer
which is implemented in C++ for computational efficiency.
We evaluate the performance of the online recognition system

with accuracy rate (AR) and local minimum deviation (LMD) as
illustrated in Fig. 3. Fig. 3a shows examples of multimodal sequences
to be recognised, embedded in a continuous data stream. Fig. 3b
shows the normalised DTW distance of all the classes for all the
sliding windows starting at every time instance. The ground truth
defines the start and end times of all the multimodal sequences to be
recognised (depicted as ST and ET in Fig. 3a). The winning class
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Fig. 3: (a) The multimodal sequences to be recognized, embedded in the six channels of continuous data. (b) The DTW distances of all classes calculated
at every time instance.

for the multimodal sequence buffered in the current sliding window
is defined as the one with the lowest DTW distance that is also lesser
than the rejection threshold (the red dashed line at the right bottom
of Fig. 3b). Hence, the AR is the ratio of the number of multimodal
sequences, of which the winning class at time ST matches the ground
truth, to the total number of multimodal sequences to be recognised
in the data. When the winning class matches the ground truth, we
define: the LMD A IST-LMTI . LMT is defined as the time instance- ET-ST
near ST where the local minimum of the DTW distances occurs, and
indicates the time instance where the best match occurs. As depicted
at the right bottom of Fig. 3b, all the time instances near ST of the
first multimodal sequence that have the DTW distances lesser than
the rejection threshold (the red dashed line) are correctly classified
as class-l (the blue line), and LMT is the time instance where the
local minimum of these DTW distances occurs. A reliable online
recognition system will have high AR and low LMD.

B. Actor-independent online recognition of two hand gestures

Six channels of continuous data are acquired from two sensors
(consisting of accelerometers: Analog Devices ADXL202 [18]) that
can each measure acceleration of up to ±2g at 150 samples/second
in 3-D space. They are housed in small wristwatch sized enclosures
worn in the form of a wristband on both wrists. The dataset provided
[19] consists of four people mimicking the 12 gestures of a cricket
umpire: Cancel Call, Dead Ball, Four, Last Hour Leg Bye, No Ball,
One Short, Out, Penalty Runs, Six, TV Replay, and Wide [20]. Fig.
3a shows the raw data form of the 12 gestures in the same order.
Gestures were captured over different days with four different actors
to introduce variability between the movements. The sequences of
the same gesture are also different in length, because the same
movements can be performed at different speeds.

The training data consists of 65 sequences for each of the 12
gestures, and segmented from continuous data streams. The raw data
form of each gesture is a six dimensional sequence which has about
450-1200 vectors long (3-8 seconds). From the training data, we
selected four different sets of class templates to represent each of the
12 gestures, and we also derived the End region (El and E2) and
the Rejection threshold respectively for each gesture as described in
section 3-B. The test data is another set of four continuous sequences
that are captured by four actors respectively, performing each of
the 12 gestures once (48 gestures in total which are embedded in

TABLE 1: THE ARS ACHIEVED BY USING FOUR SETS OF CLASS TEM-
PLATES: Min-4, RDI4, Min 1, AND RD-1.

_ Mi._4 R.. Mi_I- lW
K IN = I 97.92 93.75 89.58 83.33

K =1 N = 2 93.77 91.67 77.08
K 1, N = 3 100.00 97.92 91.67 83
K =1 N = 4 100.00 97.92 93.75
K =1, N = 5 100.00 9792 75
K Z N fI 95.8399783 82.81
K = Z, N = 2 937 79

K= , N -5 97:92 77S2
K= 3 N I 93:7S 91.67
K =Z,N 93.7Sr 93.75

K=--3,N . 93
KI= 3 97.92 95.
K =4, N =I 93.75- 95.83
K =4,N 2 Z =7

K - S8 95.83
A,1. ti0 (see) 44 44 17 1 17

four continuous data streams). Unlike the segmented sequences, the
test data is a continuous data stream that consists of both gesture
sequences and "no-activity" sequences. Fig. 3a shows one of the test
sequences. Although we have demonstrated that the DTW recognizer
can classify the gestures in raw data without feature extraction and
yielded good results, the high computation required is the trade-off
[16]. To speed up online gesture recognition, our data pre-processing
module extracts features (i.e. Extracting Mean and Standard deviation
within sliding windows of size 50 samples and overlap 30) from
the data buffered in the current sliding window as well as the class
templates. Therefore, the online DTW recognizer ends up dealing
with shorter test and class templates, and is more efficient.

The ARs are shown in Table 1. The ARs were obtained for
different sets of class templates, different values of K (in the K-
nearest neighbour decision rule r.f. section 3-D) from K=l to K=4,
and different normalisation methods from N=l to 5 (r.f. section 3-
C.3). First, we compare the random, minimum, and multiple selection
methods (r.f. section 3-B) by using the four different sets of class
templates. They are selected from training data by: using minimum
selection to select four class templates per gesture that have least
intra-class DTW distances (Min-4), selecting four class templates
per gesture randomly (RD-4), using minimum selection to select one
class template per gesture (Min-1), and selecting one class template
per gesture randomly (RD-I). Both ARs obtained by using one
template per gesture (Min-I and RD-1) are worse than ARs using
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four templates per gesture (Min-4 and RD-4). This shows that the
AR of DTW recognizer can be improved by increasing the number of
class templates per class, but the trade-off is that the computational
time is raised from an average of 17 seconds to 44 seconds. Second,
the method used to select the class template is also critical. Using
minimum selection outperformed random selection in both cases as
the average ARs of Min-I and Min-4 are about 10% and 1% higher
than RD-I's and RD-4's respectively. The ARs achieved by using
both normal and average selection methods are not shown, because
they produced similar ARs as minimum selection method. Third,
the value for K should be carefully chosen as the number of class
templates increases per class. For four class templates per class, the
K=l and K=2 rules yield higher ARs than K=3 or K=4 rules.
For K=l, both Min-4 and RD-4 yield best ARs of 100% and 98%
respectively. On the other hand, the best ARs of Min-4 and RD-4
for K=4 declined to 95.8%. Finally, applying different normalisation
methods also affects the AR (r.f. section 3-C.3). For K=1, Min-4,
RD-4 and Min-I yield higher ARs by applying N=3, 4 or 5 than
N=1 (no normalisation), increasing about 2% to 4% in AR. For K=2,
3, and 4 of Min-4, RD-4, applying N=3, 4 or 5 always yields better
AR than N=1. In this experiment, applying normalisation did not
improve the AR dramatically (compare to N=1); this is because the
12 gesture sequences have similar lengths in the test data.

TABLE 2: THE LMDs CALCULATED FOR ALL 12 GESTURES BY USING
Min4, RD4, Mn-1, AND RD-1.

.Min- Ri)4 Mini RD1
K=1 K=l K=1 K=1
N=5 N=S N=5 N=5

Gesturel I 0.83 0.83 1 0.83 4-39
Geslure2 I 3.03 2.02 1 4.01 I1.94
Gesture3 2.86 3.81 3.81 3.81
Gesture4 4.25 3.33 - 00 3.33
Gesture5 9.50 13.17 1200 8.67
Gestwre6 3.96 3.96 5.28 1 .92
Gesture7 4.46 4.63 4.46 7.83
Gesture8 5.63 7.49 5.63 7.51
Gesture9 4.32 2.27 4.32 5.16
GesturelO .50 2.63 3S42.224
Gesturell 3.36 4.22 3.36 2.26
Gesturel2 6.34 2.50 2.50 7.91)

The local minimum deviations (LMDs) of all 12 gestures from
Min-4, RD-4, Min-l, and RD-1 are shown in Table 2. Most of the
LMDs are less than 7%, except two special cases. First, it should
be noted that RD-1 has several large LMDs that are greater than
7%. This is because one class template is selected randomly for each
gesture, and the selected one might have large DTW distance to the
test sequences and result in higher LMDs. Second, the LMDs for the
5th gesture are greater than 8% for all four sets of class templates.
This is because the 5th gesture sequence performed by the third actor
is quite different from the training data, and it has LMD greater than
30% for all four sets of class templates. From the LMDs between
the selected class templates and test data, we can determine if the
selected class templates are good representatives.

The total length of the test data is about 56000 samples (around
14000 samples for each), corresponding to approximately 400 sec-
onds duration. Using Min-I or RD-1, the online recognition of
the test data took about 17 seconds and achieved highest AR of
93.75% and 87.5% respectively. The highest ARs of 100% and
97.92% were achieved in about 44 seconds using Min-4 and RD-
4 respectively, which only took about 0.016 second (performing 48
DTW comparisons) to classify the test templates starting at every
time instance. The results demonstrate that the DTW recognizer is
both fast and accurate for online recognition of gesture sequences
acquired from the accelerometers.

C. Online context recognition of mobile devices
The data used here have been presented at the workshop for "Bench-
marks and a database for context recognition" [21], and proposed as
a suitable benchmark for evaluating context recognition algorithms.
The data is obtained from sensors placed in a small sensor box which
is then attached to a mobile handheld device. The sensors used to

capture this data include accelerometers with 3 axes, an illumination
sensor, a thermometer, a humidity sensor, a skin conductivity sensor,
and a microphone. The data is collected by two users carrying the
mobile device and repeating each of the five predefined user scenarios
for less than 25 times (r.f. Table 2 of [21] for details). The duration
of each scenario varies from I to 5 minutes and the sensor data
is sampled at every second. The data set is provided in an ASCII
flat file, and there are a total of 32 columns and 46045 rows which
corresponds to approximately 12.8 hours of data. The first three
columns include: the ID number of the scenario (SID), the ID number
of the repetition of the scenario (RID) and time from the beginning of
repetition in seconds. The rest of the 29 columns are context atoms.
They have pre-processed the raw sensor signals into context atoms,
i.e. extracting features from the raw signals and then quantising the
dynamic range of feature value into the range [0, 1] with fuzzy sets.
More details on the processing of sensor data into context atoms
is available in [22]. Hence, each user scenario is described by a
multimodal sequence with 29 dimensions of feature values per second
over a duration of 1 to 5 minutes. From both SID and RID, we know
the start and end time for each repeated user scenario so that we can
define the ground truth. More detailed information on this dataset is
available in [21], [22].

Since the raw data form of the benchmark data is not released for
public use, we cannot apply our own data pre-processing module.
The online DTW recognizer has to deal with longer test templates
that have about 80-300 feature vectors (1-5 minutes) and larger
dimensions (29 dimensions). To train the DTW recognizer, we
selected four different sets of class templates from the benchmark
data to represent each of the 5 user scenarios, and we also derived
the End region (El and E2) and the Rejection threshold respectively
for each user scenario as described in section 3-B. In the first test
case, we use the benchmark data as it is in the ASCII flat file to test
our online recognition system. There are a total of 240 repetitions
of the five user scenarios and each repetition is followed by another
repetition without any other data in between. Since the feature vectors
in the ASCII file are annotated with picture sequences [21], we can
identify the feature vectors while the mobile device is on the table and
doing nothing. To make the online recognition task more complicated
and closer to real situations, we created the second test data by
rearranging the order of the 240 repetitions of five user scenarios
randomly and also inserting 1,3 minutes of "on the table" feature
vectors in between each repetition. The total length of the second test
data becomes 75687 rows, corresponding to approximately 21 hours
of data.
TABLE 3: THE ARS FOR BOTH Ti AND T2 ACHIEVED BY USING DIFFER-
ENT SETS OF CLASS TEMPLATES, K VALUES, AND N VALUES.

r £| TI-Mm-iS | TI-Mm-in T2-Min-5 | T2RD-5 |T2-Min-1 T2-RI)I
K = 1, N = 1 71.25 67.92 70.83 69.58 67.92 71.67
K = 1, N = 2 93.75 91.25 80.83 80.0( 77.5072.92
Ki = 1, N = 3 98.33 96.67 94.58 92.50 93.3388.75
K = 1, N = 4 98.33 98.33 92.50 94.58 92.0890.42
IC =1, N = 5 98.33 97.92 94.17 93.33 92.5088.75
K = 2, N = t1 7()0.83 70.42 66.25
K = 3, IN ='2 9!.50) 77 S507-6
h = , N = 3 97.92 94.58 91.67
K = 3, 98.33 92.9296.92
K = .4, N=5 98.3-3 94.17 92.92
K=5-N = 168.33 __67.0 60.83
K = 5, N = 2 92.92 77.92 69.$8
K = 5, N=3 97.9 13-i4.SS18 92.50
K = 5, N=4 97.92 -_ 94.17- 93.33

K=5, N = 5 98.33 94.17 92.50
Avg. time (sec.) 13334 2564 23312 23241 5.5455844

In Table 3, the 2nd and 3rd columns are the ARs for the first
test data (TI), and from the 4th to 7th columns are the ARs for
the second test data (T2). The ARs were obtained for four different
sets of class templates: Min-5 (use five class templates to represent
each scenario), RD-5, Min-1, and RD-1, different values of K, and
different normalisation methods from N=l to 5. The best AR on
Tl is 98.33%, on the other hand, the best AR on T2 is 94.58%.
Comparing the same settings of class templates, K and N, most
ARs obtained on Tl are better then T2. This is because the scenarios
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in Ti are not preceded and followed by any noise, whereas the
scenarios in T2 are separated by 1-3 minutes of "on the table"
feaure vectors. In the real situation, the multimodal sequences under
recognition will always be preceded and followed by noise, and
the AR obtained will also be affected by the noise. Second, we
can see that applying normalisation on DTW distances improves
the AR dramatically (e.g. comparing the ARs from N=3, 4, or 5
to N=1). This is because the average length of all repetitions of
the 4th user scenario is only 100 seconds compared to the average
length of the other user scenarios (238, 206, 217, and 205 seconds for
scenarios 1, 2, 3 and 5 respectively), for which the differences are
high. From the observation on the confusion matrices of all ARs,
most mis-classifications occurred when the 4th user scenario are
misclassified as the 5th user scenario. Therefore, normalisation on
the DTW distance is required if the lengths of multimodal sequences
are very different between the classes. Normalisation methods, N=3,
4, and 5 always have similar ARs and are much higher than N=l and
2. We found that normalising the DTW distances by the length of
the optimal warping path (N=2) gave low ARs as no normalisation
has applied (N=1) in both case studies.

TABLE 4: SOME LMDS FOR THE FIVE SCENARIOS.
Scenariol Scenario2 Scenario3 Sceiari4 ScenarioS

Tl-Min-& K=l, N=3 0.77 0.35 0.30 1.07 0.78
TI-M-i,. K=1, N=4 2.80 0.43 0.41 2.640.79
T2-Min--K,Kol.N=3 3.60 0.49 0.35 0.832.63
T2-RD-5, K=1, N=4 2.63 0.46 0.36 0.82 3.50
T2-Min-1, K=1, N=3 0.60 0.58 1.70 1.11.110
T2-RD-I, K=l, N=5 5.83 0.70 5.08 3.40 2.66

Table 4 shows some of the local minimum deviations (LMDs)
of all five user scenarios. Most of the LMDs are less than 3%,
except T2-RD-1 has several LMDs that are greater than 3%, which
again shows that the randomly selected class templates are not good
representatives. The LMDs calculated from these two test data (TI
and T2) are low, corresponding to the high ARs obtained.

For TI, the online context recognition took about 13334 seconds
and achieved the highest AR of 98.33%. When the DTW recog-
nizer receives each new feature vector, it only takes 0.29 seconds
(13334/46045=0.29) to calculate new warping paths and classify
the data currently buffered in the sliding window. For T2, the
recognition process took about 23241 23312 seconds to achieve
the best AR of 94.58%. To classify each updated sliding window,
it only takes 0.31 seconds (less than one second). Compared to the
0.016 seconds required in the last case study, the online recognition
of this benchmark takes 19 times longer (0.31/0.016=19), which is
expected as the multimodal sequences to be recognised have more
feature vectors and larger dimensions. The results again demonstrate
that the DTW recognizer is both fast and accurate for online context
recognition of multimodal sequences.

This benchmark dataset has also been analysed using the Symbol
Clustering Map (SCM) technique [23], [24], [25]. This method is
similar to Self-Organizing Maps [26]. Two levels of SCM are used
to classify the five scenarios. The first level clusters the instantaneous
pattems and then the second level finds the temporal relationships.
From the confusion matrix of [25], we know that using two levels
of SCM can only identify four clusters from the five classes of user
scenarios, and the method can not distinguish well between scenarios
one and two. However, SCM has the advantage of performing
unsupervised clustering of the user scenarios. Although we have to
train and find the best class template for each of the five user scenarios
for the DTW recognizer, the classification results are better.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an online context recognition system
using DTW. Our system is able to recognise multimodal sequences of
different lengths generated from multiple sensors with both discrete
and continuous outputs. We have demonstrated the accuracy and
speed of the system for online context recognition on two real word
datasets. These datasets generally consist of sub-events that show

significant variation in their durations and sensor outputs. Importantly
the DTW complexity is linear with the number of dimensions in the
data and hence can deal with high dimensional time varying data.
In future work, we would like to extend dynamic time warping for
recognising more complex multimodal sequences such as: interleaved
sequences, sequences with gaps, and missing sub-sequences.

REFERENCES
[1] R. E. Crochiere, J. M. Tribolet, and L. R. Rabiner, "An improved end-

point detector for isolated word recognition," IEEE Trans. on Acoustics,
Speech, and Signal Processing, vol. COM-29, no. 5, pp. 621-659, 1981.

[2] J. G. Wilpon and L. R. Rabiner, "Application of hidden markov
models to automatic speech endpoint detection," Computer Speech and
Language, vol. 2, no. 3/4, pp. 947-954, 1987.

[3] H. Sakoe and S. Chiba, "Dynamic programming algorithm optimization
for spoken word recognition," IEEE Trans. Acoustics,Speech, and Signal
Proc., vol. 26, pp. 43-49, 1978.

[4] C. S. Myers, L. R. Rabiner, and A. E. Rosenberg, "Performance tradeoffs
in dynamic time warping algorithms for isolated word recognition,,"
IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-28,
no. 6, pp. 623-635, 1980.

[5] L. R. Rabiner, A. E. Rosenberg, and S. E. Levinson, "Considerations in
dynamic time warping algorithms for discrete word recognition," IEEE
Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-26, no. 4,
pp. 575-582, 1978.

[6] C. S. Myers and L. R. Rabiner, "A level building dynamic time warping
algorithm for connected word recognition," IEEE Trans. on Acoustics,
Speech, and Signal Processing, vol. ASSP-29, no. 2, pp. 284-297, 1981.

[7] L. R. Rabiner and C. S. Myers, "Connected digit recognition using a
level building dtw algorithm," IEEE Trans. on Acoustics, Speech, and
Signal Processing, vol. ASSP-29, no. 3, pp. 351-363, 1981.

[8] C. S. Myers, L. R. Rabiner, and A. E. Rosenberg, "An investigation
of the use of dynamic time warping for word spotting and connected
speech recognition," in IEEE ICASSP, 1980, pp. 173-177.

[9] E. Keogh, "A fast and robust method for pattern matching in time series
databases," in IEEE ICTAI, Newport Beach, CA, 1997, pp. 578-584.

[10] E. Keogh and C. A. Ratanamahatana, "Exact indexing of dynamic
time warping," Knowledge and Information Systems: An International
Jourmal (KAIS), pp. 358-386, 2004.

[1 1] J. Lin, M. Vlachos, E. Keogh, and D. Gunopulos, "Iterative incremental
clustering of time series," in EDBT, Crete, Greece, 2004.

[12] R. DeVaul, M. Sung, J. Gips, and A. Pentland, "Mithril 2003: applica-
tions and architecture," in IEEE ISWC, New York, 2003.

[13] M. C. Mozer, "The neural network house: An environment that adapts
to its inhabitants," in Proc. of the AAAI Spring Symposium on Intelligent
Environments, Menlo, Park, CA, 1998, pp. 110-114.

[14] A. Krause, D. Siewiorek, A. Smailagic, and J. Farringdon, "Unsuper-
vised, dynamic identification of physiological and activity context in
wearable computing," in IEEE ISWC, New York, 2003.

[15] C. A. Ratanamahatana and E. Keogh, "Three myths about dynamic time
warping." in SIAM 2005 Data Mining Conference, CA, 2005.

[16] M. H. Ko, G. West, S. Venkatesh, and M. Kumar, "Temporal data fusion
in multisensor systems using dynamic time warping," in SENSORFU-
SION 2005 co-located with WICON 2005, Budapest, Hungary, 2005.

[17] W. H. Abdulla, D. Chow, and G. Sin, "Cross-words reference template
for dtw based speech recognition systems," in IEEE TENCON, 2003.

[18] "Analog devices inc., adxl2O2 dual axis accelerometer," 2005.
[19] G. Chambers, S. Venkatesh, G. West, and H. Bui, "Segmentation of

intentional gestures for sports video annotation," in IEEE MMM, 2004.
[20] D. Shepherd, "BBC sport academy cricket umpire signals," 2005.
[211 J. Mntyjrvi, J. Himberg, P. Kangas, U. Tuomela, and P. Huuskonen,

"Sensor signal data set for exploring context recognition of mobile
devices," in PERVASIVE, LinzNVienna, Austria, 2004.

[22] J. Mntyjrvi, "Sensor-based context recognition for mobile applications,"
Ph.D. Thesis, Ph.D. Thesis, VTT Publications, 2003.

[23] J. Flanagan, J. Himberg, and J. Mntyjrvi, "A hierarchical approach to
learning context and facilitating user interaction in mobile devices," in
AIMS in conjunction with Ubicomp, 2003.

[241 J. A. Flanagan, J. Mntyjrvi, and J. Himberg, "Unsupervised clustering
of symbol strings and context recognition," in IEEE ICDM, 2002.

[25] J. Himberg, J. A. Flanagan, and J. Mntyjrvi, "Towards context awareness
using symbol clustering map,"in WSOM, Kitakyushu, Japan, 2003.

[26] T. Kohonen, Self-Organizating Maps, 2nd ed. Springer-Veriag, 2000.

288


