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A b s t r a c t  2. 

We study a general online convex optimization problem. 
We have a convex set S and an unknown sequence of cost 
functions ct, c2 , . . . ,  and in each period, we choose a feasible 
point xt in S, and learn the cost  ct(xt). If the fimction ct is 
also revealed after each period then, as Zinkevich shows in 
[25], gradient descent can be used on these functions to get 
regret bounds of O(~/~). That  is, after n rounds, the total  
cost incurred will be O(v/~ ) more than the cost of the best 
single feasible decision chosen with the benefit of hindsight, 
min~ ~ ct (x). 

We extend this to the "bandit" setting, where, in each 
period, only the cost  ct(xt) is revealed, and bound the 
expected regret as O(na/4). 

Our approach uses a simple approximation of the gradi- 
ent that  is computed fl'om evaluating ct at a single (random) 
point. We show that  this biased estimate is sufficient to ap- 3. 
proximate gradient descent on the sequence of flmctions. In 
other words, it is possible to use gradient descent without 
seeing anything more than the value of the functions at a 
single point. The guarantees hold even in the most general 
case: online against an adaptive adversary. 

For the online linear optimization problem [15], algo- 
rithms with low regrets in the bandit  setting have recently 
been given against oblivious [1] and adaptive adversaries 
[19]. In contrast to these algorithms, which distinguish be- 
tween explicit explore and exploit periods, our algorithm can 
be interpreted as doing a small amount of exploration in 
each period. 

1 I n t r o d u c t i o n  

Cons ider  th ree  op t imiza t i on  se t t ings  where  one would 
like to  min imize  a convex funct ion (equivalent ly  nmxi-  
mize a concave f imction) .  In all three  se t t ings ,  g rad ien t  
descent  is one of the  mos t  popu l a r  me thods .  

1. Offline: Minimize  a fixed convex cost  funct ion 
c: ll~ d ~ N. In this  case, g rad ien t  descent  is 
xt+l = z ~  - ~Vc(zt). 
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Stochast ic :  Minimize  a fixed convex cost  funct ion 
c given only  "noisy" access to c. For  example ,  
a t  t ime  T = t, we m a y  only have access to  
ct(x)  = c(x)  + et(x) ,  where  et(x)  is a r a n d o m  
sampl ing  error .  Here,  s tochas t ic  g rad ien t  descent  
is Xt+l = xt  - r lVct(xt) .  (The  in tu i t ion  is t ha t  
the  expec ted  g rad ien t  is correct ;  E[Vct(x)]  = 
VE[c t (x ) ]  = Vc(x) . )  In  non-convex  cases, the  
add i t i ona l  r a ndomne ss  ,nay  ac tua l ly  help  avoid 
local  min i lna  [3], in a manne r  s imi lar  to S imula t ed  
Ammal ing  [13]. 

Online:  Minimize  an  adver sa r i a l ly  genera ted  se- 
quence of convex funct ions,  c l , c 2 , . . . .  This  re- 
quires  t ha t  we choose a sequence x , , x 2 , . . ,  where  
each z t  is se lected based  only on x l , x 2 , . . .  , x t -~  
and  c l , c 2 , . . . , C t _ l .  T h e  goals  is to have low re- 
gret ~ c t (x t )  - m i n x e s  ~ ct(x)  for not  using the  
bes t  single point ,  chosen wi th  the  benefit  of h ind-  
sight.  In  this  se t t ing,  Zinkevich ana lyzes  the  regre t  
of g rad ien t  descent  given by Xt+l = xt  - ~lVCt(Xt). 

We will focus on g rad ien t  descent  in a "bandi t "  
vers ion of the  online se t t ing.  As a mot iva t ing  example ,  
consider  a c o m p a n y  tha t  has  to  decide,  every week, 
how much  to spend  adver t i s ing  on each of d different  
channels ,  r ep resen ted  as a vec tor  xt  E IR d. At the end 
of each week, t hey  ca lcula te  their  t o t a l  prof i t  pt (x t ) .  
In the  offline case, one might  assume t h a t  each week 
the  funct ion P l , P 2 , . . .  a re  ident ical .  In  the  s tochas t ic  
case, one might  a s smne  t h a t  in different weeks the  
profi t  funct ions  pt(x)  will be noisy rea l iza t ions  of some 
under ly ing  "true" prof i t  funct ion,  for example  pt(x)  = 
p(x)  + et(x),  where  et(x) has mean  0. In  the  online 
case, no assumptions are  made  a b o u t  a d i s t r i bu t ion  over 
convex profi t  funct ions  and  ins t ead  they  are  mode led  as 
the  mal ic ious  choices of an  adversary .  This  allows, for 
example ,  for more  compl i ca t ed  t i m e - d e p e n d e n t  r a n d o m  
noise or  the  effects of a bad  economy, or even an 
env i ronment  t ha t  r e sponds  to the  choices we make  (an 
a d a p t i v e  adversa ry ) .  

385 



In the bandit  setting, we only have black-box access 
to the fimction(s) and thus cannot access the gradient 
of ct directly for gradient descent. (In the advertising 
example, the advertisers only find out the total  profit 
of their chosen xt, and not how much they would 
have profited from other values of x.) This type 
of optimization is sometimes referred to as direct or 
gradient-free. 

In direct offiine and stochastic optimization, a nat- 
ural approach is to is to est imate the gradient at a 
point by evaluating the tunction at several nearby points 
point. (this is called Finite Difference Stochastic Ap- 
prvximation, see, for example, Chapter  6 of [23]). In 
the online setting, the functions change adversarially 
over t ime and we only can evaluate each flmction once. 
We use a one-point est imate of the gradient to circum- 
vent this difficulty. Earlier one-point estimates of the 
gradient are due to by Granichin and Spall [8, 22]. 

Independently, R. Kleinberg has recently shown 
surprisingly similar guarantees for the same problem we 
consider, using a slightly different technique: O(n 3/4) 
regret. We discuss the differences in the related work 
section. 

1.1 A o n e - p o i n t  g r a d i e n t  e s t i m a t e .  Our one- 
point est imate of the gradient of a function f : N d -~ IR, 
in d dimensions, is the following, for a random unit vec- 
tor u and small 5 > O: 

(1.1) V f(x) ~ E [df(x  + SU) u] 

We first present the intuition and then the theoretical 
justification. It  would seem that  in d dimensions one 
would require d + 1 evaluations to est imate the gradient 
of a function. However, if one is satisfied with a random 
variable whose expected value is the gradient, one can 
in fact get by with a single evaluation. 

For one dimensional f :  IR --~ N, the approximation 
is the following: since u = ::El with equal probability, 

E [  f ( x + S u )  u = f(x+5)-f(x-5)25 

f '(x) 

So, in expectation, f (x+Su)u/5 is close to the derivative 
of f for u = :_t= 1. 

Since the gradient of a d-dimensional function 
f : ]1~ d ~ ~ can be expressed as d one-dimensional deriv- 
atives, 

df (x), elf (x) 
V f ( x )  = dXl " ' "  dx---~ ' 

it is natural  to approximate  the gradient by choosing a 
random (signed) unit coordinate vector u, i.e. random 

from (:t:1, 0, 0 , . . . ) ,  (0, ±1, 0 , . . . ) , . . . ,  and then using the 
approximation (1.1). The extra factor of d enters due 
to the fact that  one only estimate a single coordinate 
axis. 

However, the gradient in general does not depend on 
which orthonornml basis one chooses, and thus we use 
(1.1) with a uniformly random unit vector u. Moreover, 
this is an approximation has a very natural  precise 
interpretation, as we show in Section 2. In particular, 
(d/5)f(x + 5'a)u is all unbiased est imator the gradient 
of a smoothed version of f ,  where the value of f at x 
is replaced by the average value of f in a ball of radius 
5 centered at x. For a vector v selected uniformly at 
random from the unit ball Ilvll _< 1, let 

](x) = E [ f ( x  + 5v)]. 

Then 
V ] ( x )  = E [ f ( x  + 5u)u]d/5. 

Interestingly, this does not require that  f be differen- 
tiable. 

Our method of obtaining a one-point est imate of 
the gradient is similar to a one-point estimates pro- 
posed independently by Granichin [8] and Spall [22]. 1 
Spall's est imate uses a per turbat ion vector p, in which 
each entry is a zero-mean independent random vari- 
able, to produce an estimate of the gradient .0(x) = 
f(~+~p) [ 1 1 1] T 

~7~, ~ , "  " ' ,  ~ . This est imate is more of a di- 

rect a t t empt  to est imate the gradient coordinatewise 
and is not rotationally invariant. Spall 's analysis focuses 
on the stochastic setting and requires that  the function 
is three-times differentiable. In [9[, Granichin shows 
that  a similar approximation is sufficient to perform gra- 
dient descent in a very general stochastic model. 

Unlike [8, 9, 22], we work in an adversarial  model, 
where instead of trying to make the restrictions on 
the randonmess of nature as weak as possible, we 
pessimistically assume that  nature is conspiring against 
us. In the online setting where the flmctions are not 
necessarily related, or even in tile adversarial  setting, a 
one-point estimate of the gradient is sufficient to make 
gradient descent work. 

1.2 G u a r a n t e e s  a n d  o u t l i n e  of  a n a l y s i s .  We use 
the following online bandit  version of Zinkevich's model. 
There is a fixed unknown sequence of convex func- 
tions Cl,C2,. . . ,Cn: S --~ [-C,C], where C > 0 and 
S c N d is a convex feasible set. The decision-maker 
sequentially chooses points Xl,X2, . . . ,xn  E S. Af- 
ter xt is chosen, the value ct(xt) is revealed, and 

~ W e  are  grateful  to Rakesh  Vohra  for po in t ing  ou t  t hese  earlier 
works on one-poin t  g rad ien t  es t imates .  
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xt+l must be chosen only based on x l , x 2 , . . . , x t  and 
cl (x 1), c2 (x2 ) , . . . ,  ct (xt) (and private randomness). 

Zinkevich shows that,  when the gradient Vct(xt)  is 
given to the decision-maker after each period, an online 
gradient descent algorithm guarantees, 

(1.2) regret -~ ct(xt) - minxes ~ ~ ct ()x < DGx/~. 
t = l  t = l  

Here D is the diameter of the feasible set, and G is an 
upper bound on the magnitudes of the gradients. 

By elaborating on his technique, we present an 
update  rule for computing a sequence of xt+l in the 
absence of Vct(xt),  that  gives the following guarantee 
on expected regret. If we assume that  the fnnctions 
satisfy an L-Lipschitz condition (which is slightly less 
restrictive than a bounded gradient assumption), then, 

E c t ( x t ) - l n in  ct(x) _<6n3/4d x / ~ + C  . 
_ x E S  t = l  

Interestingly, the analysis can be performed with no 
Lipschitz or gradient assumption, yielding slightly worse 
bounds in the general case: 

E ct(xt) - rain ct(x) _< 6nS/6dC. 
t = l  x E S  t = l  

As expected, our guarantees in the bandit  setting 
are worse than those of the full-information setting: 
O(n 3/4) or O(n 5/6) instead of 0(nl/2).  Also notice that  
we require a bound C on the value of the functions, 
but our second guarantee has no dependence on the 
diameter D. 

To prove these bounds, we have several pieces to 
put together. First, we show that  Zinkevich's guarantee 
(1.2) holds umnodified for vectors that  are unbiased 
estimates of the gradients. Here G becomes an upper 
bound on the magnitude of the estimates. 

Now, the updates should roughly be of the form 
xt+l = xt - ~(d/~) E[ct(xt + ~ut)ut]. Since we can only 
evaluate each function at one point, that  point should 
be xt + ~ut. However, our analysis applies to bound 

ct(xt) and not ~ c t ( x t  + ~ut). Fortunately, these 
points are close together and thus these values should 
not be too different. 

Another problem that  arises is that  the per turba-  
tions may move points outside the feasible set. To deal 
with these issues, we stay on a subset of the set such 
that  the ball of radius ~ around each point in the subset 
is contained in S. In order to do this, it is helpful to 
have bounds on the radii r, R of balls that  are contained 
in S and that  contain S, respectively. Then guarantees 

can be given in terms of R/r .  Finally, we can use exist- 
ing algorithms [18] to reshape the body so R / r  < d to 
get the final results. 

We first present our results against an oblivious 
adversary and then extend them to an adaptive one 
in Section 3.3. Though the adaptive setting requires a 
more delicate definition, the adaptive analysis follows 
naturally from the fact that  we use a single-point 
estimate of the gradient and fresh randomness. 

1.3 R e l a t e d  work .  For direct otttine optimization, 
i.e. h 'om an oracle that  evaluates the function, in the- 
ory one can use the ellipsoid [11] or more recent random- 
walk based approaches [4]. In black-box optimization, 
practitioners often use Simulated Amlealing [13] or fi- 
nite ditt~rence/simulated perturbat ion stochastic ap- 
proximation methods (see, for example, [23]). In the 
case that  the flmctions may change dramatical ly over 
time, a single-point approximation to the gradient may 
be necessary. Granichin and Spall propose other single- 
point estimates of the gradient in [8, 22]. 

In addition to the appeal of an online model of con- 
vex optimization, Zinkevich's gradient descent analy- 
sis can be applied to several other online problems for 
which gradient descent and other speciM-purpose algo- 
ri thms have been carefully analyzed, such as Universal 
Portfolios [6, 10, 14], online linear regression [16], and 
online shortest paths [24] (one convexities to get an on- 
line shortest ow problem). 

Independently, recently (less than a month apart) ,  
and single-handedly, R. Kleinberg [12] has given strik- 
ingly similar O(n a/4) bounds for the same problem us- 
ing an extremely similar approach. The main differ- 
ence is that  his algorithm, more like the finite difference 
methods, breaks time into phases of length d + 1, and 
evaluates d + 1 successive fimctions, each at a single 
nearby point (careflflly incorporating randomness), and 
uses these values to construct an estimate of the gra- 
dient. In light of our analysis, one can interpret his 
algorithm as performing d + 1 random one-point gradi- 
ent estinmtes, i.e., even if he only used a random one 
of the periods per phase, his algorithm should work. 
The analysis is more delicate since his randomness is 
not fresh each period, and the bounds are proven only 
against an oblivious adversary (which must choose the 
entire sequence of functions in advance, and may not 
adapting to the choices made by the algorithm). Un- 
der reasonable conditions (bounds on the function val- 
ues, gradients, and Hessians) he proves regret bounds 
O(d3n3/4). Otherwise, he faces similar issues and uses 
similar techniques such as rounding the body by putt ing 
it in isotropic position. 

A similar line of research has developed for the 
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problem of online linear optimization [15, 1, 19]. Here, 
one wants to solve the related but incomparable problem 
of optimizing a sequence of linear functions, over a 
possibly non-convex feasible set, modeling problems 
such as online shortest paths and online binary search 
trees (which are difficult to convexify). Kalai and 
Vempala [15] show that,  for such linear optimization 
problems in general, if the offfine optimization problem 
is solvable efficiently, then regret can be bounded by 
O(v/n) also by an efficient online algorithm, in the 
full-information model. Awerbuch and Kleinberg [1] 
generalize this to the bandit setting against an oblivious 
adversary. Blum and McMahan [19] give a simpler 
algorithm that  applies to adaptive adversaries, that  may 
choose their functions ct depending on the previous 
points. 

A few comparisons are interesting to make with the 
online linear optimization problem. First of all, for the 
bandit versions of the linear problems, there was a dis- 
tinction between exploration periods and exploitation 
periods. During exploration, one action fi'om a barycen- 
tric spanner [1] basis of d actions was chosen, for the sole 
purpose of estimating the linear objective function. In 
contrast, our algorithm does a little bit of exploration 
in each phase. Secondly, Blum and McMahan's algo- 
r i thm [19], like ours, uses single-period exploration to 
compete against an adaptive adversary, with a careful 
Martingale analysis. 

1.4 N o t a t i o n .  Let ]~ and S be the unit ball and 
sphere centered around the origin in d dimensions, 
respectively, 

= {x  c I Ixl _< 1} 
={x  dllxl = 1} 

The ball and sphere of radius a are a~  and aS, corre- 
spondingly. 

Until Section 3.3, we fix the sequence of functions 
c l , c 2 , . . . c n :  S ~ ]R is in advance (meaning we are 
considering an oblivious adversary, not an adaptive 
one). The sequence of points we pick is denoted by 
xl ,x2 , . . . ,Xn.  For the bandit setting, we need to use 
randomness, so we consider our expected regret: 

E - 

- -  t = l  

Zinkevich assumes the existence of a projection 
oracle Ps (x ) ,  projecting the point x onto the nearest 
point in the convex set S, 

P s ( x )  = argnfin Ix - ~1. 
zGS 

Projecting onto the set is an elegant way to handle the 
situation that  a step along the gradient goes outside of 
the set, and is a commou technique in the optimization 
literature. Note that  computing P s  is "only" an offfine 
convex optimization problem. While, for arbi trary 
feasible sets, this may be difficult in practice, for 
standard shapes, such as cube, ball, and simplex, the 
calculation is quite straightforward. 

A function f is L-Lipschitz if 

If( x ) - I(Y)I -< L I x -  YJ, 

for all x, y in the domain of f .  
We assume S contains the ball of radius r centered 

at the origin and is contained in the ball of radius R, 
i.e., 

r]~ c S c RIB. 

Technically, we must also assume that  S is a closed set, 
so that  the projection operation is well defined. 

2 A p p r o x i m a t i n g  t h e  g r a d i e n t  w i t h  a s ingle  
s a m p l e  

The main observation of this section is that  we can 
estimate the gradient of a function f by taking a random 
unit vector u and scaling it by f ( x  + 5u), i.e..~ = 
f ( x  + 5u)u. The approximation is correct in the sense 
that  El0 ] is proportional to the gradient of a smoothed 
version of f .  For any fimction f ,  for v selected uniformly 
at random from the unit ball, define 

(2.3) f (x)  = E~c.a[f(x + 5'0)]. 

LEMMA 2.1. Fix 5 > O, over random unit vectors u, 

Eucs [ f (x  + 5,u)u] = ~-V](x). 

P',vof. If d = 1, then the fundamental theorem of 
calculus implies, 

f ( x  + v)dv = f ( x  + ~) - f ( x -  5). a7 

The d-dimensional generalization, which follows from 
Stoke's theorem, is, 

(2.4) V fa~ f ( x  + v)dv= ~ f ( x  + u) u~7~du. 

By definition, 

( 2 . 5 )  

Similarly, 

(2.6) 

f (x)  = E [ f ( x  + &v)] = fS~ f ( x  + v)dv 
vold(5]~) 

J~s f ( x  + u)" ~ d u  
E [ f ( x  + 5u)'a] = vold-:(65) 
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Combining Eq. 's (2.4), (2.5), and (2.6), and the fact 
that  ratio of volume to surface area of a d-dimensional 
ball of radius ~ is g /d  gives the lemma. 

Notice that  the function ] is differentiable even 
when f is not. 

3 Expec ted  Gradient  Descent  

For direct optimization of a single function, it is fairly 
well-known that  using vectors that  have expectation 
equal to the gradient suffices to reach the minimum of 
a function, in the limit (see, for example, Chapter  10 of 
[5]). Here we present an analysis of expected gradient 
descent in the online setting. 

For lack of a bet ter  choice, we use the start ing point 
xl = 0, the center of a containing ball of radius R < D. 
First we state Zinkevich's theorem, which we prove in 
the appendix for completeness. 

T H E O R E M  3 . 1 .  [25] Let C1, C 2 , . . .  , C n : S ~ ~ be an a r -  

b i t r a r y  sequence of convex, differentiable functions. Let 
X l , X 2 , X 3 , . . . , x n  c S be defined by Xl = 0 and xt+l = 
P s ( x t  - qVc t (x t ) ) .  Then, for G = maxt  UVct(xt)ll, 

n n R2 ~la2 

ct(xt)  - minxes ~ ~-" ct ( <_ --71 + n--2 
t = l  t = l  

R Plugging in 7~ = ~ gives a regret bound of RGv/n .  

Now we are ready to give the randomized analysis, hi 
this section, we show it only for any fixed sequence of 
functions. In Section 3.3, we prove it for an adaptive 
adversary that  may choose ct+j with knowledge of xt 
and the previous points. 

In the randomized version, each period t we get a 
random vector 9t with expectation equal to the gradient. 

LEMMA 3.1. Let c l , c 2 , . . . , C n :  S ~ N be a fixed 
sequence of convex, differentiablc functions.  Let 
z l , z 2 , . . . , z n  C S be defined by zl = 0 and zt+l = 
P s ( z t  -- ~lgt),  where ~l > 0 and g l , . . .  ,9n are vector- 
valued random variables with (a) E[gt [zt] = Vct ( z t ) ,  
(b) ]lgt[] -< G, for some G > 0 (this also implies 
[[Vct(x)l I < G), and (c) S C R~ .  Then, f o r T -  R -- -- G vq? ' 

E [ ~ c t ( z t ) ]  - m i n ~ c t ( x )  < RGx /n .  
x E S  

t = l  t = l  

Pro@ Let x ,  be a point ill S minimizing ~; '~1 ct(x).  
Define the functions ht : S ~ IR by, 

ht(x)  = ct(x) + x . ~t, where ~t = gt - Vct (z t ) .  

The first thing to note is that ,  

Vht(zt)  = Vct(zt) + ~t = gt. 

Therefore doing deterministic gradient descent on the 
random flmctions ht is equivalent to doing expected 
gradient descent on the fixed functions ct. Thus, by 
Theorem 3.1, 

(3.7) 

RG,~/n > ~ ht(z t )  - min  ~ ht(x)  
x E S  

t = l  t = l  
± n 

>_ - 

t = l  $=1 

Secondly, note that ,  

E[ht(zt)] = E[ct(zt)] + E[~t" z t ]  = E[ct(zt)]. 

This follows from (a), because E[~t[zt] = 0 for any zt, 
thus E[~t.  zt[zt] = 0 and thus E[~t-zt]  = 0. Similarly, 
for any fixed x ¢ S, E[ht(x)] = ct(x). In particular, 
E[ht(x,)] = c t (x , ) .  Thus, taking expectations of Eq. 
(3.7), 

.n  n 

RC,/  > - c , ( x . )  

t = l  t = l  

Using ~ c t ( x , )  = m i n x e s ~ c t ( x ) ,  and plugging in 
~1 = R / G x / n  gives the lemma. 

3.1 A l g o r i t h m  a n d  ana lys i s .  Ill this section, we 
analyze the algorithm given in Figure 1. 

BGD(o~, ~, u) 

• Yl = 0  

• At each period t: 

- select unit vector ut uniformly at random 

- x t : = Y t + g u t  

- play xt,  and observe cost incurred ct(xt)  

- Yt+l : =  P(1-a)s (Y t  - uc t (x t )u t )  

Figure 1: Bandit  gradient descent algorithm 

We begin with a few observations. 

OBSERVATION 3.1. The opt imum in (1 - (x)S is near 
the opt imum in S,  

n n 

min ~-~ ct(x) < 2c~Cn + min ~ - ' c t ( x ) .  
x E ( 1 - c O s  ~ - x E s  ~t=l 

Proof. For any x C S, we have (1 - c~)x C (1 - ct)S and, 

ct((l - ct)x) _< (i - (x)ct(x) + ctct(0) 

_< c,(x) + 2aC 
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We have used the fact that  Ict(x)l,lct(O)l ~ C. Sum- 
ming over n periods, 

n 

C t ( ( 1  - -  a ) x )  <_ 2 a C E  -l- E a t ( x ) .  
t = l  t = l  

In particular, this holds for x ,  = argminxes  ~ ct(x).  

OBSERVATION 3.2. For any x contained in ( 1 - a ) S  the 
ball of radius a r  centered at x is contained in S .  

Proof. Since r~  _C S and S is convex, we have 

(1-a)STar~C (1-a)STaS--S.  

The next observation establishes a bound on the 
maximum the function can change in (1 - a ) S ,  an 
effective Lipschitz condition. 

OBSERVATION 3.3. For any x contained in ( 1 - a ) S  and 
any y contained in S we have 

Ic , ( x )  - c (y)l _< ? i f - Ix  - yl .  
olr 

Proof. Let y = x + A. If IAI > ar ,  the observation 
follows fi'om Ictl < C. Otherwise, let z = x + a r ~ T ,  

the point at distance a r  from x in the direction ,5,. 
By the previous observation, we know z E S. Also, 
Y =  t~lz + ( 1 - 1 ~ )  x, 

rAI IzXl c,(W _< ' - ' c , ( z ) +  1 c,(x) 
a r  a r  

ct(z) -- Ct(X) 
= c , ( z )  + tzxt 

oLr 

2 C  
_< c t ( x )  + ~ : t A I .  

Now we are ready to select the parameters. 

THEOREM 3.2. For any n >_ (.~fi)2 and for  . - -  C~/~ '  

5 = V - ' ~ - '  a n d a  = V ~ '  the expected regret of 

BGD(u, 5, a) is upper bounded by 

I k  n 
E ct(xt)] - m i n T - l e t ( x )  < 3 C n 5 / 6 ~ / ~ / r .  

xcS  ~ 
t = l  t = l  

Pro@ We begin by showing that  the points xt  E S. 
Since Yt C ( 1  - -  a ) S ,  Observation 3.2 implies this fact as 
long as 75 _< a < 1, which is the case for n _> (3Rd /2r )  2. 

Now, we show that Lemma 3.1 applies to the 
feasible set (1 - a ) S  with cost vectors ct and points 
Y l , . . . ,  Yn C (1 - a ) S .  This bounds the performance of 
the yt's against the costs ct relative to the optimum 

in (1 - a ) S .  It is then sufficient to show that our 
actual cost ~ et(xt)  is close to ~ ct(yt),  and the actual 
minimum (of ~ ct in S) is close to the minimum of ~ dt 
in ( t  - a ) S .  

Suppose we wanted to run the gradient descent 
algorithm on the functions fit defined by (2.3), and the 
set ( 1 - a ) S .  If we let 

d 
gt = ~ct(Yt -4- 5Ut)Ut 

then (since ut is selected uniformly at random from ~) 
Lemnla 2.1 says E[g t l y t  ] = Vct (y t ) .  So Lemma 3.1 
applies with the update nile: 

Yt+l = P(1-~)s(Yt - ~gt) 
d 

= P ( 1 - , ) s ( Y t  - ~l~ct(Yt + 5ut)ut) ,  

which is exactly the update rule we are using to obtain 
yt (called zt in Lemma 2.1) in BGD, with ~ = ua/d.  
Since 

d (~ut),at IIg l[ = + _< de~O-. 

we Call apply Lemma 3.1 with G = dC/5 .  By our choice 
of u, we have ~ = R / G v / n ,  and so the expected regret 
is upper bounded by 

E ct (Y, )  - ra in  ~ - ' f t ( x )  < 
x E ( 1 - c ~ ) S  ~ " - -  

- -  " " t = l  

Let L = 2___c_c which will act as an "effective Lipschitz 
o L r  ' 

constant". Notice that for x E (1 - a ) S ,  since ct is 
an average over inputs within 5 of x, Observation 3.3 
shows that l e t (x )  - c t ( x ) l  _< 5 L  . Since IlYt - x t ] l  = 5, 
Observation 3.3 also shows that 

l e , ( y , ) - ¢ , ( x , ) l  _< _< 25L. 

These with the above imply, 

E ct(xt)  - 25L - rain (ct(x) + ~L) 
_ x C ( 1 - - a ) S  t = l  

R d C  v/~ < - -  

so rearranging terms and using Observation 3.1 gives 

(3.8) E - ra in  c , ( x )  
xCS 

t = l  t = l  

< R d C v / n  + 35Ln + 2aCn.  
- 
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Plugging in L = ~r' gives, 

E et(xt  - -  min ct(x) 
_ x6S t=l 

RdCv/i~ t~ 6Cn 
< - -  + - - - -  + c~2Cn. 

This expression is of the form ~- + b °2 + ca.  Setting 
c~ 

~ / ~  gives a value of 3 ~ / ~ .  The  5 = ~ a2 and oz = V c~ 3 a ~  

l emma is achieved for a = RdCx/~ , b = 6Cn/r and 
c = 2Cn. 

THEOREM 3.3. If each ct is L-Lipschitz, then for n 
R su eiently large and u - Cv~' o~ = 7, and ~ = 

n-.25 ? R d C r  
3( L r  +C)  ' 

E [ ~ ct(xt)] - min ~ ct(x) 
t=i x E S  t=S 

< 2n 3/4 v/3RdC(L + C/r). 

Proof. The proof  is quite similar to the proof  of Theo- 
rem 3.2. Again we check tha t  the points xt E S, which 
it is for n is sufficiently large. We now have a direct Lip- 
schitz constant ,  so we can use it directly in Eq. (3.8). 
Plugging this in with chosen values of a and ~ gives the 
lemlna. 

3 .2 R e s h a p i n g .  The above regret bound  depends 
on R/r,  which can be very large. To remove this 
dependence (or at  least the dependence on 1/r), we can 
reshape the body  to make it snore "round." 

The set S, with rN C_ S c RN can be put  in 
isotropie position [21]. Essentially, this amounts  to 
est imating the covariance of r a n d o m  samples f rom the 
body  and applying an affine t ransformat ion  T so tha t  
the new covariance mat r ix  is the identi ty matrix.  

A body  T(S) C Nd in isotropic posit ion has several 
nice properties,  including B C T(S) C dB. So, we first 
apply the preprocessing step to find T which puts the 
body  in isotropic position. This gives us a new R '  = d 
and r ~ = 1. The  following observation shows tha t  we 
can use L ~ = LR. 

OBSERVATION 3.4. Let c~(u) = c t ( T - l ( u ) ) .  Then c~ is 
LR-Lipschitz. 

Proof. Let X s , X  2 E S and ul  = T(xs), u2 = T(x2). 
Observe that ,  

IC"t('as) -- cIt('a2)[ = [ct(xs) -- c t ( x 2 ) [  ~ L H X l  - x211. 

To make this a LR-Lipschi tz  condit ion on ct, it suffices 
to show tha t  Hxs - x2[[ _< Rllus - u~ll. Suppose not,  

721 - - U 2  i .e.  I lX l  - x~l l  > RI I 'as - 'a~ll- D e f i n e  vs = I lu , -~= l l  
and v2 : - v l .  Observe tha t  II'v2 - vs II = 2, and since 
T(S) contains the ball of radius 1, Vl, v2 E T(S). Thus,  
Yl = T - l ( v s )  and Y2 = T-S(v2)  are in S. Then,  since 
T is affIine, 

1 
I lys - y211 - I l u s  - u2[I  I lT- l (us  - u2) - T - l ( u 2  - uL)[[ 

2 
-[lul - u2l[  I l T - l ( U l )  - T - S ( u 2 ) ] ]  

2 
- I l U l  - u2H Ilxl - x211 > 2R,  

where the last line uses the assumpt ion Hxl - x211 > 
RlIus -u21[.  The inequali ty ]]ys -Y2H > 2R contradicts  
the assulnption tha t  S is contained in a sphere of radius 
R. 

Many  common  shapes such as balls, cubes, etc., 
are already nicely shaped, but  there exist M C M C  algo- 
r i thms for put t ing  any body  into isotropic posit ion from 
a membership  oracle [17, 18]. (Note tha t  the project ion 
oracle we assume is a s tronger oracle than  a membership  
oracle.) The  latest (and greatest)  a lgor i thm for put t ing  
a body  into isotropic position, due to Lovasz and Vem- 
pala [18], runs in t ime O(d4)poly-log(d, n 7 ) '  This al- 
gor i thm puts the body  into nearly isotropic position, 
which means tha t  B C T(S) C_ 1.01dlB. After such pre- 
processing we would have r '  = 1, R '  = 1.01d, L ' = LR, 
and C ' = C. This gives, 

C O R O L L A R Y  3.1. For a set S of diameter D, and ct L- 
Lipschitz, after putting S into near- isotropic position, 
the BGD algorithm has expected regret, 

E ct (xt - rain ~-" ct (x) 
x E S  

- -  t = l  

Without the L-Lipschitz condition, 

E Ct(X t -- rain ct(x) < 6nS/6dC 
_ x C S  t=l 

PTvof. Using r '  = 1, R '  = 1.01d, L '  = LR, and C '  = C, 
In the first case, we get an expected regret  of at  most  
2na/4V/6(1.Old)dC(LR + C). In the second case, we get 

an expected regret  of at  most  3CnS/6v/2(1.Old)d. 

3.3  A d a p t i v e  a d v e r s a r y .  Until now, we have ana- 
lyzed the a lgor i thm in the case tha t  there is a fixed 
but  unknown sequence of functions cl, c2 , . . . .  In other  
words, an oblivious adversary must  fix the entire se- 
quence of functions in advance,  with knowledge of our 
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algorithm but without knowledge of any of its random 
decisions. 

However, in many situations the function ct may 
actually depend on the sequence of previous observed 
choices of the algorithm, x l ,  x 2 , . . . , x t - ] .  Tha t  is, we 
can think of it as a game between the decision maker and 
the adversary. Each period, the decision maker  chooses 
a n  xt with knowledge of only X a, e l  ( X l ) ,  X2, c2 (X2),  . . . ,  

Xt-l, e t - l ( : r , t - 1 ) ,  while the adversary chooses ct with 
knowledge of xl ,  el ,  x2, c2, . . . ,  x t -1 ,  ct-1. 

In this section, we sketch why the theorems we 
have shown all hold against an adaptive adversary, 
up to changes in the multiplicative constants of at 
most a factor of 3. Now each function ct is itself a 
random variable which may depend on our choices of 
x l , x 2 , . . .  , x t -1 .  The bounds relating the cos t s  ct(xt), 
ct(yt) ,  and ct(Yt) were  all worst-case bounds, i.e., they 
hold for arbi t rary  ct, regardless of whether the ct are 
adaptively chosen or not. Thus it suffices to bound 

yes  

So we may as well pretend that  the adversary 's  
only goal is to maximize the above regret. In this 
case, from the adversary 's  knowledge of our sequence 
X l , X 2 , . . . , x t - x  and our algorithm, it can deduce our 
values Yi, Y 2 , . . . ,  Yr. Thus, it remains to show that  ex- 
pected gradient descent works in the adversarial setting. 
(In other words, we will show that  the adversary 's  ex- 
t ra  knowledge of the sequence of xt ' s  cannot help for 
the purpose of maximizing the above regret.) 

To do this, we generalize Lemnm 3.1 to the adaptive 
setting. By analogy to our use of Lemma 3.1 in the 
proof of Theorem 3.2, the result for adaptive adversaries 
follows fi'om applying Lemma 3.2 to the ~t's and points 
Yt in feasible set (1 - cr)S from BGD. 

LEMMA 3.2. Let ca ,c2 , . . .  , Cn : S ~ N be a sequence of  
convex, differentiable funct ions (ct+l possibly depending 
on z l , z 2 , . . . , z t )  and Zl ,ZU, . . . , zn  c S be defined by 
Zl = 0 and Zt+l = P s ( z t  - ~gt), where 71 > 0 and 
gl . . . .  ,9n are vector-valued random variables with (a) 

E[gt t Z i , C l , Z 2 , C 2 , . . .  ,Zt,Ct] = VCt(Zt) ,  (b) IIg'll <- c ,  
for  some G > 0 (this also implies IlVc,(x)ll <_ c ) ,  and 

R (c) S C R1~. Then, for  77 - c,,/~' 

E ct(zt)  - rain ct(x) < 3 n a v 4 Z .  
_ x e S  t = l  

Pro@ Again, we define the functions ht: S --~ IR by, 

ht(x)  = ct(x)  + x . i t ,where  ~t = gt - Vc t ( z t ) .  

We no longer use x ,  = arg minxes  ~ ct(x) ,  because x ,  
is not fixed. Instead, the properties we will use are 

that, I1~,11 _< 2 c  (following from IIg~ll, IIW,(zt)ll _< c) ,  
that ,  as before, E[Stlzd = 0, and that  E[~t.  ~s] = 0 for 
1 < s < t < n. The latter two follow from condition (a) 
of Lemma 3.2. 

Following the proof of Lemma 3.1, we note that  
V h t ( z t )  = V c t ( z t )  + ~t = gt. So,  in hindsight, it is 
exactly as if we have done deternfinistic gradient descent 
on the sequence of t~t's. Thus, by Theorem 3.1, 

n 

(3.9) Rav in  > ht(zt) - rain ~ ht(x) 
- -  x e S  

t = l  t = l  

We still have that  E[ht(zt)] = E[ct(zt)] + E[~t-  zt] = 
E[ct(zt)]. So, after taking expectations of Eq. (3.9), it 
suffices to show that,  

)1 E m i n ~ - ~ h t ( x  <_ E 
I x E S  ~ I 
L t = l  J 

To see this, observe that,  

- 

rain + 2Roe 
x e S  

<_ Ilxll ~ ,  

The above is an absolute s ta tement  for any realiza- 
tion of ht's and ct's and any x E S. Therefore, it 
is a bound on the difference between the minima of 
E ht(x) and E ct(x).  I t  now suffices to show that  
E[[[ ~{t [ I ]  -< 2Gx/~7, because then the expected differ- 
ence in minima between ~ ht(x) and ~ ct(x)  would be 
at  most 2RGx/77, as required. 

= ~ E[llS, II u]+2 ~ E[,~,.5,] 
l<t<n l<s<t<n 

= ~ Eill,~tll ~] 
l<t<n 

< 4nG 2 

In the above we have used E [ { , .  {t] = 0 and that  
I1~,11 -< 2 c  as mentioned. 

4 C o n c l u s i o n s  

We have given algorithms for bandit  online optimization 
of convex functions. Our approach is to extend Zinke- 
vich's gradient descent analysis to a situation where we 
do not have access to the gradient. We give a simple 
trick for approximating the gradient of a function by a 
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single sample, and we give a simple unders tanding of 
this approximat ion  as being the gradient  of a smoothed  
flmction. This is similar to an approximat ion  proposed 
in [22]. The  simplicity of our approximat ion  make it 
s t ra ightforward to analyze this a lgor i thm in an online 
setting, with few assumptions.  

Interestingly, the earlier bandi t  analysis of online 
linear opt imizat ion of McMahan  and Blum [19] sim- 
ilarly uses single samples whose expecta t ion correctly 
reconstruct  the linear function. 

It  is also worth  not ing tha t  the online shortest  paths  
problem [24] can be convexified, where one chooses ows 
ra ther  than  paths.  Given a ow, it is possible to choose 
a r a n d o m  pa th  whose expected t ime is equal to the time 
of the ow. Using this approach,  one can apply our 
a lgor i thm to the bandi t  online shortest  pa ths  problem 
[1, 19] to get guarantees  against  an adapt ive  adversary. 

Zinkevich presents a few nice variations on the 
model  and algorithms. He shows tha t  an adapt ive  step 
size 7 h = O(1/~/ t )  can be used with similar guarantees.  
I t  is likely tha t  a similar adapt ive step size could be used 
here. 

He also proves tha t  gradient  descent can be com- 
pared, to an extent,  with a non-s ta t ionary  adversary. 
He shows tha t  relative to any sequence zl,  z 2 , . . . ,  Zn, it 
achieves, 

n 

E c,(x,)- rain 
Zl~Z2~. . .~zn~S 

_< 0 CD~/n(1  + E I]zt - Zt-lll) 

Thus,  compared  to an adversary tha t  moves a total  
distance o(n), he has regret  o(n). These types of 
guarantees  may  be extended to the bandi t  setting. 

The a lgor i thm has potential ly wide applicat ion as it 
can be applied to minimizing any flmction(s) over a con- 
vex set. If the range of function values were unknown, 
or for other  practical  reasons, it would make sense to 
use the upda te  Yt+l := Yt - l/(ct(xt) - Ct_l(Xt_l))U t. 
This has the same expected value as the upda te  we sug- 
gested, but  its magni tude  m a y  be smaller. 
A c k n o w l e d g e m e n t s .  We would like to thank  David 
McAllester and Rakesh Vohra for helpful discussions 
and especially Mart in Zinkevich for advice on the adap- 
tive proof. 
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A P r o o f  o f  Z i n k e v i e h ' s  t h e o r e m  

For completeness,  we give a proof  of Theorem 3.1. 

n 
Proof. Let x ,  be a point  in S minimizing ~ t = l  ct (x) .  

Following Zinkevich's analysis, we use I l x t - x ,  112/27 
as a potent ia l  function. We will show, 
(1.10) 

I l x t  - x ,  II = - [ I x t + l  - x.I I  ~ ~ c  2 
c~(x~) - c , (x . )  < 27 + - -5 - -  

Summing  over t periods telescopes to give the theorem, 

a n y x E N  d. So, 

I I X ~ ÷ l  - x ,  II 2 = II P s ( x t  - 71gt) - x.l l  2 

<_ I Ix~ - ~lg~ - x . I I  2 

= I I ' ,  - x . I I  ~ ÷ ~?l lg ,  II ~ - 2 ~ ( x ,  - x . ) . g ,  

_< IIx~ - x . l l  ~ + ~ 1 2 c  ~ - 2 , ~ ( x ,  - x . ) . g , .  

After rearranging terms, we have 

I Ix~ - x . I I  = - I I x , + ~  - x . [ I  2 + w2c2 
g~. (x~ - z . )  _< 

2~/ 

Combining this with Eq. (1.11) gives Eq. (1.10) as 
required. 

//2G 2 
c , ( x , )  - c ~ ( x . )  < I I x ,  - x . l l  ~ + n - -  

- 2 7  2 
t = l  

R 2 . ?I2G 2 
< - - - l - n  
- -  271 2 

The  last step follows because we chose Xl = 0 and 
SC_ RB. 

Since ct is convex and differentiable, we can bound  
the difference between c t ( x t )  and c t ( x , )  in terms of the 
gradient.  For the rest of  this proof, define gt = V c t ( x t ) .  

(1.11) c t (x t )  - c t ( x . )  < V g t "  (xt  - x . )  

Since S is convex, we have II P s ( x ) - x . I I  ~ I I x - x . I I  f o r  
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