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Abstract

Labeling large datasets has become faster, cheaper, and

easier with the advent of crowdsourcing services like Ama-

zon Mechanical Turk. How can one trust the labels ob-

tained from such services? We propose a model of the la-

beling process which includes label uncertainty, as well a

multi-dimensional measure of the annotators’ ability. From

the model we derive an online algorithm that estimates the

most likely value of the labels and the annotator abilities.

It finds and prioritizes experts when requesting labels, and

actively excludes unreliable annotators. Based on labels

already obtained, it dynamically chooses which images will

be labeled next, and how many labels to request in order

to achieve a desired level of confidence. Our algorithm is

general and can handle binary, multi-valued, and continu-

ous annotations (e.g. bounding boxes). Experiments on a

dataset containing more than 50,000 labels show that our

algorithm reduces the number of labels required, and thus

the total cost of labeling, by a large factor while keeping

error rates low on a variety of datasets.

1. Introduction

Crowdsourcing, the act of outsourcing work to a large

crowd of workers, is rapidly changing the way datasets are

created. Not long ago, labeling large datasets could take

weeks, if not months. It was necessary to train annotators

on custom-built interfaces, often in person, and to ensure

they were motivated enough to do high quality work. Today,

with services such as Amazon Mechanical Turk (MTurk), it

is possible to assign annotation jobs to hundreds, even thou-

sands, of computer-literate workers and get results back in

a matter of hours. This opens the door to labeling huge

datasets with millions of images, which in turn provides

great possibilities for training computer vision algorithms.

The quality of the labels obtained from annotators varies.

Some annotators provide random or bad quality labels in the

hope that they will go unnoticed and still be paid, and yet

others may have good intentions but completely misunder-

stand the task at hand. The standard solution to the problem

of “noisy” labels is to assign the same labeling task to many

2 25 22 26 2 25 22 26 2 25 22 26

2 25 22 26 2 25 22 26 2 25 22 26

Figure 1. Examples of binary labels obtained from Amazon Me-

chanical Turk, (see Figure 2 for an example of continuous labels).

The boxes show the labels provided by four workers (identified by

the number in each box); green indicates that the worker selected

the image, red means that he or she did not. The task for each an-

notator was to select only images that he or she thought contained

a Black-chinned Hummingbird. Figure 5 shows the expertise and

bias of the workers. Worker 25 has a high false positive rate, and

22 has a high false negative rate. Worker 26 provides inconsistent

labels, and 2 is the annotator with the highest accuracy. Photos

in the top row were classified to contain a Black-chinned Hum-

mingbird by our algorithm, while the ones in the bottom row were

not.

different annotators, in the hope that at least a few of them

will provide high quality labels or that a consensus emerges

from a great number of labels. In either case, a large number

of labels is necessary, and although a single label is cheap,

the costs can accumulate quickly.

If one is aiming for a given label quality for the minimum

time and money, it makes more sense to dynamically decide

on the number of labelers needed. If an expert annotator

provides a label, we can probably rely on it being of high

quality, and we may not need more labels for that particular

task. On the other hand, if an unreliable annotator provides

a label, we should probably ask for more labels until we find

an expert or until we have enough labels from non-experts

to let the majority decide the label.

1



We present an online algorithm to estimate the reliability

or expertise of the annotators, and to decide how many la-

bels to request per image based on who has labeled it. The

model is general enough to handle many different types of

annotations, and we show results on binary, multi-valued,

and continuous-valued annotations collected from MTurk.

The general annotator model is presented in Section 3

and the online version in Section 4. Adaptations of the

model to discrete and continuous annotations are discussed

in Section 5. The datasets are described in Section 6, the

experiments in Section 7, and we conclude in Section 8.

2. Related Work

The quality of crowdsourced labels (also called annotations

or tags) has been studied before in different domains. In

computer vision, the quality of annotations provided by

MTurk workers and by volunteers has been explored for a

wide range of annotation types [8, 4]. In natural language

processing, Snow et al. [7] gathered labels from MTurk and

compared the quality to ground truth.

The most common method for obtaining ground truth an-

notations from crowdsourced labels is by applying a major-

ity consensus heuristic. This has been taken one step further

by looking at the consistency between labelers. For multi-

valued annotations, Dawid and Skene [1] modeled the in-

dividual annotator accuracy by a confusion matrix. Sheng

et al. [5] also modeled annotator quality, and showed how

repeated and selective labeling increased the overall label-

ing quality on synthetic data. Smyth et al. [6] integrated

the opinions of many experts to determine a gold standard,

and Spain and Perona [9] developed a method for combin-

ing prioritized lists obtained from different annotators. Us-

ing annotator consistency to obtain ground truth has also

been used in the context of paired games and CAPTCHAs

[11, 12]. Whitehill et al. [14] consider the difficulty of the

task and the ability of the annotators. Annotator models

have also been used to train classifiers with noisy labels [3].

Vijayanarasimhan and Grauman [10] proposed a system

which actively asks for image labels that are the most infor-

mative and cost effective. To our knowledge, the problem

of online estimation of annotator reliabilities has not been

studied before.

3. Modeling Annotators and Labels

We assume that each image i has an unknown “target value”

which we denote by zi. This may be a continuous or dis-

crete scalar or vector. The set of all N images, indexed

by image number, is I = {1, . . . , N}, and the set of corre-

sponding target values is abbreviated z = {zi}
N
i=1. The reli-

ability or expertise of annotator j is described by a vector of

parameters, aj . For example, it can be scalar, aj = aj , such

as the probability that the annotator provides a correct label;

Figure 2. Examples of bounding boxes (10 per image) obtained

from MTurk workers who were instructed to provide a snug fit.

Per our model, the green boxes are correct and the red boxes in-

correct. Most workers provide consistent labels, but two unreliable

workers stand out: no. 53 and 58 (they provided two of the incor-

rect boxes in each image). As can be seen from Figure 6c, most of

the labels provided by these two workers were of low quality.

specific annotator parameterizations are discussed in Sec-

tion 5. There are M annotators in total, A = {1, . . . ,M},

and the set of their parameter vectors is a = {aj}
M
j=1. Each

annotator j provides labels Lj = {lij}i∈Ij
for all or a sub-

set of the images, Ij ⊆ I. Likewise, each image i has la-

bels Li = {lij}j∈Ai
provided by a subset of the annotators

Ai ⊆ A. The set of all labels is denoted L. For simplicity,

we will assume that the labels lij belong to the same set as

the underlying target values zi; this assumption could, in

principle, be relaxed.

Our causal model of the labeling process is shown

schematically in Figure 3. The image target values and

annotator parameters are assumed to be generated inde-

pendently. To ensure that the estimation process degrades

gracefully with little available label data, we take the

Bayesian point of view with priors on zi and aj parameter-

ized by ζ and α respectively. The priors encode our prior

belief of how skilled the annotators are (e.g. that half will be

experts and the rest unskilled), and what kind of target val-

ues we expect. The joint probability distribution can thus

be factorized as

p(L, z,a) =
N∏

i=1

p(zi | ζ)
M∏

j=1

p(aj | α)
∏

lij∈L

p(lij | zi,aj). (1)

Inference: Given the observed variables, that is, the la-

bels L, we would like to infer the hidden variables, i.e. the

target values z, as well as the annotator parameters a. This
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Figure 3. Plate representation of the general model. The i, j pair

in the middle plate, indicating which images each annotator labels,

is determined by some process that depends on the algorithm (see

Sections 3–4).

can be done using a Bayesian treatment of the Expectation-

Maximization (EM) algorithm [2].

E-step: Assuming that we have a current estimate â of

the annotator parameters, we compute the posterior on the

target values:

p̂(z) = p(z | L, â) ∝ p(z) p(L | z, â) =
N
∏

i=1

p̂(zi), (2)

where

p̂(zi) = p(zi | ζ)
∏

j∈Ai

p(lij | zi, âj). (3)

M-step: To estimate the annotator parameters a, we

maximize the expectation of the logarithm of the posterior

on a with respect to p̂(zi) from the E-step. We call the aux-

iliary function being maximized Q(a, â). Thus the optimal

a
⋆ is found from

a
⋆ = argmax

a

Q(a, â), (4)

where â is the estimate from the previous iteration, and

Q(a, â) = Ez [log p(L | z,a) + log p(a | α)] (5)

=

M
∑

j=1

Qj(aj , âj), (6)

where Ez[·] is the expectation with respect to p̂(z) and
Qj(aj , âj) is defined as

Qj(aj , âj) = log p(aj | α)+
∑

i∈Ij

Ezi
[log p(lij | zi,aj)] . (7)

Hence, the optimization can be carried out separately for

each annotator, and relies only on the labels that the anno-

tator provided. It is clear from the form of (3) and (7) that

any given annotator is not required to label every image.

Input: Set of images U to be labeled

1: Initialize I,L, E,B = {∅}
2: while |I| < |U| do

3: Add n images {i : i ∈ (U \ I)} to I
4: for i ∈ I do

5: Compute p̂(zi) from Li and a

6: while maxzi p̂(zi) < τ and |Li| < m do

7: Ask expert annotators j ∈ E to provide a label lij
8: if no label lij is provided within time T then

9: Obtain label lij from some annotator j ∈ (A′ \ B)
10: Li ← {Li ∪ lij},A ← {A ∪ {j}}
11: Recompute p̂(zi) from updated Li and a

12: Set E,B = {∅}
13: for j ∈ A do

14: Estimate aj from p̂(zi) by maxaj
Qj(aj , âj)

15: if var(aj) < θv then

16: if aj satisfies an expert criterion then

17: E ← {E ∪ {j}}
18: else

19: B ← {B ∪ {j}}
20: Output p̂(z) and a

Figure 4. Online algorithm for estimating annotator parameters

and actively choosing which images to label. The label collec-

tion step is outlined on lines 3–11, and the annotator evaluation

step on lines 12–19. See Section 4 for details.

4. Online Estimation

The factorized form of the general model in (1) allows for

an online implementation of the EM-algorithm. Instead of

asking for a fixed number of labels per image, the online

algorithm actively asks for labels only for images where the

target value is still uncertain. Furthermore, it finds and pri-

oritizes expert annotators and blocks sloppy annotators on-

line. The algorithm is outlined in Figure 4 and discussed in

detail in the following paragraphs.

Initially, we are faced with a set of images U with un-

known target values z. The set I ⊆ U denotes the set of im-

ages for which at least one label has been collected and L is

the set of all labels provided so far. Initially I and the set of

all labels L are empty. We assume that there is a large pool

of annotators A′, of different and unknown ability, available

to provide labels. The set of annotators that have provided

labels so far is denoted A ⊆ A′ and is initially empty. We

keep two lists of annotators: the expert-list, E ⊆ A, is a

set of annotators who we trust to provide good labels, and

the bot-list, B ⊆ A, are annotators that we know provide

low quality labels and would like to exclude from further

labeling. We call the latter list “bot”-list because the labels

could as well have been provided by a robot choosing la-

bels at random. The algorithm proceeds by iterating two

steps until all the images have been labeled: (1) the label

collection step, and (2) the annotator evaluation step.

Label collection step: I is expanded with n new images

from U . Next, the algorithm asks annotators to label the

images in I. First annotators in E are asked. If no annotator

from E is willing to provide a label within a fixed amount



of time T , the label is instead collected from an annotator in

(A′ \B). For each image i ∈ I, new labels lij are requested

until either the posterior on the target value zi is above a

confidence threshold τ ,

max
zi

p̂(zi) > τ, (8)

or the number of labels |Li| has reached a maximum cutoff

m. It is also possible to set different thresholds for different

zi’s, in which case we can trade off the costs of different

kinds of target value misclassifications. The algorithm pro-

ceeds to the annotator evaluation step.

Annotator evaluation step: Since posteriors on the im-

age target values p̂(zi) are computed in the label collection

step, the annotator parameters can be estimated in the same

manner as in the M-step in the EM-algorithm, by maximiz-

ing Qj(aj , âj) in (7). Annotator j is put in either E or B if

a measure of the variance of aj is below a threshold,

var(aj) < θv, (9)

where θv is the threshold on the variance. If the variance is

above the threshold we do not have enough evidence to con-

sider the annotator to be an expert or a bot (unreliable anno-

tator). If the variance is below the threshold, we place the

annotator in E if aj satisfies some expert criterion based on

the annotation type, otherwise the annotator will be placed

in B and excluded labeling in the next iteration.

On MTurk the expert- and bot-lists can be implemented

by using “qualifications”. A qualification is simply a pair of

two numbers, a unique qualification id number and a scalar

qualification score, that can be applied to any worker. The

qualifications can then be used to restrict (by inclusion or

exclusion) which workers are allowed to work on a particu-

lar task.

5. Annotation Types

Binary annotations are often used for classification, such

as “Does the image contain an object from the visual class

X or not?”. In this case, both the target value zi and the la-

bel lij are binary (dichotomous) scalars that can take values

zi, lij ∈ {0, 1}. A natural parameterization of the annota-

tors is in terms of true negative and true positive rates. That

is, let aj = (a0j , a
1
j )

T be the vector of annotator parameters,

where

p(lij = 1 | zi = 1,aj) = a1j ,

p(lij = 0 | zi = 0,aj) = a0j . (10)

As a prior for aj we chose a mixture of beta distributions,

p(a0

j , a
1

j ) =

K∑

k=1

π
a
k Beta(α0

k,0, α
1

k,0)Beta(α0

k,1, α
1

k,1). (11)

Our prior belief of the number of different types of anno-

tators is encoded in the number of components K. For ex-

ample, we can assume K = 2 kinds of annotators: hon-

est annotators of different grades (unreliable to experts) are

modeled by Beta densities that are increasingly peaked to-

wards one, and adversarial annotators who provide labels

that are opposite of the target value are modeled by Beta

distributions that are peaked towards zero (we have actually

observed such annotators). The prior also acts as a regu-

larizer in the EM-algorithm to ensure we do not classify an

annotator as an expert until we have enough evidence.

The parameterization of true positive and true negative

rates allows us to cast the model in a signal detection the-

oretic framework [15], which provides a more natural sep-

aration of annotator bias and accuracy. Assume a signal xi

is generated in the head of the annotator as a result of some

neural processing when the annotator is looking at image i.
If the signal xi is above a threshold tj , the annotator chooses

lij = 1, otherwise picking lij = 0. If we assume that the

signal xi is a random variable generated from one of two

distributions, p(xi | zi = k) ∼ N (µk
j , σ

2), we can com-

pute the annotator’s sensitivity index d′j , defined as [15],

d′j =
|µ1

j − µ0
j |

σ
. (12)

Notice that d′j is a quantity representing the annotator’s

ability to discriminate images belonging to the two classes,

while tj is a quantity representing the annotator’s propen-

sity towards label 1 (low tj) or label 0 (high tj). By varying

tj and recording the false positive and false negative rates,

we get the receiver operating characteristic (ROC curve) of

the annotator. When tj = 0 then the annotator is unbiased

and will produce equal false positive and negative error rates

of 50%, 31%, 15% and 6% for d′j = {0, 1, 2, 3} respec-

tively. It is possible go between the two parameterizations

if we assume that σ is the same for all annotators. For ex-

ample, by assuming σ = 1, µ0
j = −d′j/2 and µ1

j = d′j/2,

we can convert between the two representations using,

[

1 1
2

1 − 1
2

] [

tj
d′j

]

=

[

Φ−1(a0j )
Φ−1(1− a1j )

]

, (13)

where Φ−1(·) is the inverse of the standard normal cumula-

tive probability density function.
For binary labels, the stopping criterion in (8) has a very

simple form. Consider the logarithm of the ratio of the pos-
teriors,

Ri = log
p(zi = 1 | Li,a)

p(zi = 0 | Li,a)
= log

p(zi = 1)

p(zi = 0)
+

∑

lij∈Li

Rij , (14)

where Rij = log
p(lij |zi=1,aj)
p(lij |zi=0,aj)

. Thus, every label lij pro-

vided for image i by some annotator j adds another positive

or negative term Rij to the sum in (14). The magnitude



|Rij | increases with d′j , so that the opinions of expert anno-

tators are valued more than unreliable ones. The criterion in

(8) is equivalent to a criterion on the magnitude on the log

ratio,

|Ri| > τ ′ where τ ′ = log
τ

1− τ
. (15)

Observe that τ ′ could be different for positive and negative

Ri. One would wish to have different thresholds if one had

different costs for false alarm and false reject errors. In this

case, the stopping criterion is equivalent to Wald’s stopping

rule for accepting or rejecting the null hypothesis in the Se-

quential Probability Ratio Test (SPRT) [13].

To decide when we are confident in an estimate of aj , in

the online algorithm, we estimate the variance var(aj) by

fitting a multivariate Gaussian to the peak of p(aj | L, z).
As a criterion for expertise, i.e. whether to add annotator j
to E , we use d′j > 2 corresponding to a 15% error rate.

Multi-valued annotations where zi, lij ∈ {1, . . . , D},

can be modeled in almost the same way as binary anno-

tations. A general method is presented in [1] for a full con-

fusion matrix. However, we used a simpler model where a

single aj parameterizes the ability of the annotator,

p(lij = zi | aj) = aj , (16)

p(lij 6= zi | aj) =
1− aj
D − 1

.

Thus, the annotator is assumed to provide the correct value

with probability aj and an incorrect value with probabil-

ity (1 − aj). Using this parameterization, the methods de-

scribed above can be applied to the multi-valued (polychto-

mous) case.

Continuous-valued annotations are also possible. To

make this section concrete, and for simplicity of notation,

we will use bounding boxes, see Figure 2. However, the

techniques used here can be extended to other types of an-

notations, such as object locations, segmentations, ratings,

etc.

The image labels and target values are the locations of

the upper left (x1, y1) and lower right (x2, y2) corners of

the bounding box, and thus zi and lij are 4-dimensional

vectors of continuous variables (x1, y1, x2, y2)
T. The anno-

tator behavior is assumed to be governed by a single param-

eter aj ∈ [0, 1], which is the probability that the annotator

attempts to provide an honest label. The annotator provides

a “random” bounding box with probability (1 − aj). An

honest label is assumed to be normally distributed from the

target value

p(lij | zi) = N (lij | zi,Σ), (17)

where Σ = σ2
I is assumed to be a diagonal. One can take

the Bayesian approach and have a prior on σ, and let it vary

for different images. However, for simplicity we choose

to keep σ fixed at 4 pixels (in screen coordinates). If the

annotator decides not to provide an honest label, the label is

assumed to be drawn from a uniform distribution,

p(lij | zi) = λ−2
i , (18)

where λi is the area of image i (other variants, such as a

very broad Gaussian, are also possible). The posterior on

the label, used in the E-step in (2), can thus be written as a

mixture,

p(lij | zi, aj) = ajN (lij | zi,Σ) + (1− aj)
1

λ2
. (19)

The prior on zi is modeled by a uniform distribution over

the image area, p(zi) = λ−2
i , implying that we expect

bounding boxes anywhere in the image. Similarly to the

binary case, the prior on aj is modeled as a Beta mixture,

p(aj) =

K
∑

k=1

πa
kBeta(α0

k, α
1
k), (20)

to account for at different groups of annotators of different

skills. We used two components, one for experts (peaked at

high aj) and another for unreliable annotators (broader, and

peaked at a lower aj).

In the EM-algorithm we approximate the posterior on zi

by a delta function,

p̂(zi) = p(zi | Li, âj) = δ(ẑi), (21)

where ẑi is the best estimate of zi, to avoid slow sampling to

compute the expectation in the E-step. This approach works

well in practice since p̂(zi) is usually very peaked around a

single value of zi.

6. Datasets

Object Presence: To test the general model applied to bi-

nary annotations, we asked workers on MTurk to select im-

ages if they thought the image contained a bird of a certain

species, see Figure 1. The workers were shown a few ex-

ample illustrations of birds of the species in different poses.

We collected labels for two different bird species, Presence-

1 (Black-chinned Hummingbird) and Presence-2 (Reddish

Egret), summarized in Table 1.

Attributes: As an example of a multi-valued annotation,

we asked workers to pick one out of D mutually exclu-

sive choices for the shape of a bird shown in a photograph

(Attributes-1, D = 14) and for the color pattern of its tail

(Attributes-2, D = 4). We obtained 5 labels per image for

a total of 6,033 images, see Table 1.

Bounding Boxes: The workers were asked to draw a

tightly fitting bounding box around the bird in each image

(details in Table 1). Although it is possible to extend the

model to multiple boxes per image, we ensured that there

was exactly one bird in each image to keep things simple.

See Figure 2 for some examples.
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different symbols and colors for easier visual separation. The bar chart to the right of each scatter plot is a histogram of the number of

workers with a particular accuracy. (a) Object Presence: Shows results for Presence-1, Presence-2 is very similar. The minimum number

of images a worker can label is 36, which explains the group of workers near the left edge. The adversarial annotator, no. 47, provided 36

labels and is not shown. (b) Attributes: results on Attributes-1. The corresponding plot for Attributes-2 is very similar. (c) Bounding box:

Note that only two annotators, 53 and 58, labeled all 911 images. They also provided consistently worse labels than the other annotators.

Figure 2 shows examples of the bounding boxes they provided.

7. Experiments and Discussion

To establish the skills of annotators on MTurk, we applied

the general annotator model to the datasets described in Sec-

tion 6 and Table 1. We first estimated aj on the full datasets

(which we call batch). We then estimated both the aj and

zi using the online algorithm, as described in the last part

of this section.

Annotator bias: The results of the batch algorithm ap-

plied to the Presence-1 dataset is shown in Figure 5. Dif-

ferent annotators fall on different ROC curves, with a bias

towards either more false positives or false negatives. This

is even more explicit in Figure 5b, where d′j is a measure of

expertise and tj of the bias. What is clear from these figures

is that most annotators, no matter their expertise, have some

bias. Examples of bias for a few representative annotators

and images are shown in Figure 1. Bias is something to keep

in mind when designing annotation tasks, as the wording of

a question presumably influences workers. In our experi-

ments most the annotators seemed to prefer false negatives

to false positives.

Annotator accuracy: Figure 6 shows how the accu-

racy of MTurk annotators varies with the number of images

they label for different annotation types. For the Presence-1

dataset, the few annotators that labeled most of the avail-

able images had very different d′j . For Attributes-1, on the

other hand, the annotators that labeled most images have

very similar aj . In the case of the bounding box annota-



Dataset Images Assignments Workers

Presence-1 1,514 15 47

Presence-2 2,401 15 54

Attributes-1 6,033 5 507

Attributes-2 6,033 5 460

Bounding Boxes 911 10 85

Table 1. Summary of the datasets collected from Amazon Mechan-

ical Turk showing the number of images per dataset, the number of

labels per image (assignments), and total number of workers that

provided labels. Presence-1/2 are binary labels, and Attributes-1/2

are multi-valued labels.
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Figure 7. Comparison between the majority rule, GLAD [14], and

our algorithm on synthetic data as the number of assignments per

image is increased. The synthetic data is generated by the model

in Section 5 from the worker parameters estimated in Figure 5a.

tions, most annotators provided good labels, except for no.

53 and 58. These two annotators were also the only ones to

label all available images. In all three subplots of Figure 6,

most workers provide only a few labels, and only some very

active annotators label more than 100 images. Our findings

in this figure are very similar to the results presented in Fig-

ure 6 of [7].

Importance of discrimination: The results in Figure 6

point out the importance of online estimation of aj and the

use of expert- and bot-lists for obtaining labels on MTurk.

The expert-list is needed to reduce the number of labels per

image, as we can be more sure of the quality of the labels re-

ceived from experts. Furthermore, without the expert-list to

prioritize which annotators to ask first, the image will likely

be labeled by a new worker, and thus the estimate of aj for

that worker will be very uncertain. The bot-list is needed to

discriminate against sloppy annotators that will otherwise

annotate most of the dataset in hope to make easy money,

as shown by the outliers (no. 53 and 58) in Figure 6c.

Performance of binary model: We compared the per-

formance of the annotator model applied to binary data, de-

scribed in Section 5, to two other models of binary data, as

the number of available labels per image, m, varied. The

first method was a simple majority decision rule and the

second method was the GLAD-algorithm presented in [14].

Since we did not have access to the ground truth labels of
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Figure 8. Error rates vs. the number of labels used per image on

the Presence datasets for the online algorithm and the batch ver-

sion. The ground truth was the estimates when running the batch

algorithm with all 15 labels per image available (thus batch will

have zero error at 15 labels per image).

the datasets, we generated synthetic data, where we knew

the ground truth, as follows: (1) We used our model to es-

timate aj for all 47 annotators in the Presence-1 dataset.

(2) For each of 2000 target values (half with zi = 1), we

sampled labels from m randomly chosen workers, where

the labels were generated according to the estimated aj and

Equation 10. As can be seen from Figure 7, our model

achieves a consistently lower error rate on synthetic data.

Online algorithm: We simulated running the online al-

gorithm on the Presence datasets obtained using MTurk and

used the result from the batch algorithm as ground truth.

When the algorithm requested labels for an image, it was

given labels from the dataset (along with an identifier for

the worker that provided it) randomly sampled without re-

placement. If it requested labels from the expert-list for a

particular image, it only received such a label if a worker

in the expert-list had provided a label for that image, other-

wise it was randomly sampled from non bot-listed workers.

A typical run of the algorithm on the Presence-1 dataset is

shown in Figure 9. In the first few iterations, the algorithm

is pessimistic about the quality of the annotators, and re-

quests up to m = 15 labels per image. As the evidence

accumulates, more workers are put in the expert- and bot-

lists, and the number of labels requested by the algorithm

decreases. Notice in the figure that towards the final itera-

tions, the algorithm samples only 2–3 labels for some im-

ages.

To get an idea of the performance of the online algo-

rithm, we compared it to running the batch version from

Section 3 with limited number of labels per image. For the

Presence-1 dataset, the error rate of the online algorithm is

almost three times lower than the general algorithm when

using the same number of labels per image, see Figure 8.

For the Presence-2 dataset, twice as many labels per image

are needed for the batch algorithm to achieve the same per-

formance as the online version.
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Figure 9. Progress of the online algorithm on a random permuta-

tion of the Presence-1 dataset. See Section 7 for details.

It is worth noting that most of the errors made by the on-

line algorithm are on images where the intrinsic uncertainty

of the ground truth label is high, i.e. |Ri| as estimated by

the full model using all 15 labels per image is large. In-

deed, counting errors only for images where |Ri| > 2 (us-

ing log base 10), which includes 92% of the dataset, makes

the error of the online algorithm drop to 0.75%± 0.04% on

Presence-1. Thus, the performance clearly depends on the

task at hand. If the task is easy, and most annotators agree,

it will require few labels per image. If the task is difficult,

such that even experts disagree, it will request many labels.

The tradeoff between the number of labels requested and

the error rate depends on the parameters used. Through-

out our experiments, we used m = 15, n = 20, τ ′ = 2,

θv = 8× 10−3.

8. Conclusions

We have proposed an online algorithm to determine the

“ground truth value” of some property in an image from

multiple noisy annotations. As a by-product it produces an

estimate of annotator expertise and reliability. It actively se-

lects which images to label based on the uncertainty of their

estimated ground truth values, and the desired level of confi-

dence. We have shown how the algorithm can be applied to

different types of annotations commonly used in computer

vision: binary yes/no annotations, multi-valued attributes,

and continuous-valued annotations (e.g. bounding boxes).

Our experiments on MTurk show that the quality of an-

notators varies widely in a continuum from highly skilled to

almost random. We also find that equally skilled annotators

differ in the relative cost they attribute to false alarm errors

and to false reject errors. Our algorithm can estimate this

quantity as well.

Our algorithm minimizes the labeling cost by assigning

the labeling tasks preferentially to the best annotators. By

combining just the right number of (possibly noisy) labels

it defines an optimal ‘virtual annotator’ that integrates the

real annotators without wasting resources. Thresholds in

this virtual annotator may be designed optimally to trade

off the cost of obtaining one more annotation with the cost

of false alarms and the cost of false rejects. Future work

includes dynamic adjustment of the price paid per annota-

tion to reward high quality annotations and to influence the

internal thresholds of the annotators.
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