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ABSTRACT

The Web contains a significant volume of structured data in various
domains, but a lot of data are dirty and erroneous, and they can be
propagated through copying. While data integration techniques al-
low querying structured data on the Web, they take the union of the
answers retrieved from different sources and can thus return con-
flicting information. Data fusion techniques, on the other hand, aim
to find the true values, but are designed for offline data aggregation
and can take a long time.

This paper proposes SOLARIS, the first online data fusion sys-
tem. It starts with returning answers from the first probed source,
and refreshes the answers as it probes more sources and applies fu-
sion techniques on the retrieved data. For each returned answer, it
shows the likelihood that the answer is correct, and stops retrieving
data for it after gaining enough confidence that data from the unpro-
cessed sources are unlikely to change the answer. We address key
problems in building such a system and show empirically that the
system can start returning correct answers quickly and terminate
fast without sacrificing the quality of the answers.

1. INTRODUCTION
The Web contains a significant volume of structured data in vari-

ous domains such as finance, technology, entertainment, and travel;
such data exist in deep web databases, HTML tables, HTML lists,
and so on. Advances in data integration technologies have made it
possible to query such data [4]; for example, a vertical search en-
gine accepts queries on the schema it provides (often through a Web
form), retrieves answers from the deep-web sources, and returns the
union of the answers. Very often different Web sources provide in-
formation for the same data item; however, there is a fair amount of
dirty and erroneous information on the Web, so data from different
sources can often conflict with each other: from different websites
we may find different addresses for the same restaurant, different
business hours for the same supermarket at the same location, dif-
ferent closing quotes for the same stock on the same day, and so on.
In addition, the Web has made it convenient to copy data between
sources, so inaccurate data can be quickly propagated. Integration
systems that merely take the union of the answers from various
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Figure 1: Sources for the motivating example. For each source

we show the answer it provides for query “Where is AT&T

Shannon Labs” in parenthesis and its accuracy in a circle. An

arrow from S to S′ means that S copies some data from S′.

Table 1: Output at each time point in the motivating example.

The time is made up for the purpose of illustration.

Output ProbedTime
Answer Probability Probability range source

Sec 1 TX .4 (0,1) S9

Sec 2 TX .22 (0,1) S5

Sec 3 NJ .94 (0,1) S3

Sec 4 NJ .84 (0,1) S4

Sec 5 NJ .92 (0,1) S6

Sec 6 NJ .97 (.001,1) S2

Sec 7 NJ .97 (.014,1) S1

Sec 8 NJ .98 (.45,1) S7

sources can thus return conflicting answers, leaving the difficult
decision of which answers are correct to end users.

Recently, a variety of data fusion techniques [7] have been pro-
posed to resolve conflicts from different sources and create a con-
sistent and clean set of data. Advanced fusion techniques [2, 6, 8,
14, 16] aim to discover the true values that reflect the real world. To
achieve this goal, they not only consider the number of providers
for each value, but also reward values from trustworthy sources and
discount votes from copiers. Such techniques are designed for of-
fline data aggregation; however, aggregating all information on the
Web and applying fusion offline is infeasible because of both the
sheer volume and the frequent update of Web data. On the other
hand, the whole process can be quite time-consuming and inappro-
priate for query answering at runtime.

This paper describes SOLARIS, the first online data fusion sys-
tem. Instead of waiting for data fusion to complete and returning
all answers in a batch, SOLARIS starts with returning the answers
from the first probed source, then refreshes the answers as it probes
more sources. For each returned answer, it shows the likelihood
that the answer is correct based on the retrieved data and knowl-
edge of the source quality. When the system gains enough confi-
dence that data from the unprocessed sources are unlikely to change
the returned answers, it terminates without necessarily probing all
sources. Thus, SOLARIS can significantly reduce the latency in
query answering, as the next example illustrates.
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EXAMPLE 1.1. Consider answering “Where is AT&T Shan-
non Labs?” on 9 data sources shown in Figure 1. These sources

provide three different answers, among which NJ is correct. Tradi-

tional data integration systems will return all of them to the user.

SOLARIS starts with probing S9, returning TX with probability

.4 (see Table 1; we describe how we order the sources and com-

pute the probability later). It then probes S5, observing a different

answer NJ; as a result, it lowers the probability for answer TX (or

switches to NJ). Next, it probes S3 and observes NJ again, so it

refreshes the answer to NJ with a probability .94. Probing sources

S4, S6, S2, S1 and S7 does not change the answer, and the proba-

bility first decreases a little bit but then gradually increases to .98.

At this point, the system is confident enough that data from S8 are

unlikely to change the answer and terminates. Thus, the user starts

to see the correct answer after 3 sources are probed rather than

waiting till the system completes probing all 9 sources. ✷

There are three challenges in building SOLARIS. First, as we
probe new sources and return answers to the users, we wish to
quantify our confidence for the answers and show that to users. The
confidence we return for each answer should consider not only the
data we have observed, but also the data we expect to see from the
unseen sources considering their accuracy and the copying relation-
ships they may have with the probed sources. Second, online fusion
requires both fast response and quick answer refreshing, so we need
to find the answers that are likely to be correct and compute their
probabilities quickly. Third, we wish to probe the sources in an or-
der such that we can return high-quality answers early and termi-

nate fast. A good source-ordering strategy is essential for quickly
converging to the correct answers, computing high probabilities for
them, and terminating fast.

This paper takes a first step towards building an online data fu-
sion system and makes the following contributions.

• We propose a framework for online data fusion.

• We define for each returned answer its expected, maximum,
and minimum probability based on our observation of the re-
trieved data and our knowledge of source quality. We de-
scribe efficient algorithms for computing these probabilities.

• We propose source ordering algorithms that can lead to early
returning of correct answers and quick convergence.

• We empirically show that our methods can often return cor-
rect answers very quickly, terminate fast without sacrificing
the quality of the final answers, and are scalable.

While the system we propose assumes a model that probes the
sources sequentially, our techniques are still useful if answer re-
trieval from different sources is allowed to be conducted in par-
allel. First, even in such a system, data fusion in itself can be
time-consuming on a large number of sources and we can apply our
techniques on the retrieved answers. Second, querying all sources
in parallel can require a lot of resources (e.g., bandwidth); our tech-
niques can help choose the set of sources we wish to probe first.

Our approach requires knowledge of accuracy of the sources and
copying between the sources. We can estimate source accuracy by
checking correctness of sampled data, and derive copying proba-
bilities by applying techniques in [5] on sampled data. Details are
outside the scope of this paper.

Related work: SOLARIS is inspired by online aggregation [9],
which also refreshes answers as more data are processed and out-
puts confidence of the answers. Our work is different in that (1) we
probe data from multiple sources and we describe source ordering
techniques that enable early return of the correct answers and quick

termination; (2) fusion techniques are very different from computa-
tion of aggregates, leading to different ways of computing expected
probabilities and probability ranges; and (3) we consider copying
between sources, which raises new challenges such as vote count-
ing when a copier is probed before the copied source.

Our work is built upon advanced data-fusion techniques that aim
at resolving conflicts and finding true values [2, 6, 8, 14, 16]; how-
ever, these techniques all assume the context of offline data fusion.
None of our contributions, including source ordering, incremental
vote counting when copiers are probed before the copied sources,
and computation of expected, maximum, and minimum probabili-
ties, is addressed in the prior work. We point out that although we
base our techniques on the methods proposed in [6], the key idea
in our solution can be applied for other fusion techniques; for ex-
ample, results in Section 3 can be applied when we consider only
trustworthiness of sources [14, 16].

Finally, there are works on quality-aware query answering (sur-
veyed in [1]). But either they do not fuse relational data [13], or
they focus on other quality measures like coverage of sources [12,
10, 11, 15]. To the best of our knowledge, our paper is the first one
that considers source accuracy and copying in an online fashion.

Outline: In the rest of the paper, Section 2 reviews fusion tech-
niques and Section 3 proposes the framework of online data fusion.
Section 4 considers the copying relationships in online fusion. Sec-
tion 5 reports experimental results and Section 6 concludes.

2. BACKGROUND FOR DATA FUSION
We start with reviewing existing fusion techniques, based on

which we describe our SOLARIS system.

Data sources: Consider integrating data from a set S of sources,
each providing tuples that describe objects in a particular domain
(e.g., book, movie, publication). We call an attribute of a particu-
lar object instance (i.e., a cell in a table) a data item (e.g., title of
a book, actor of a movie). We assume that schema mapping tech-
niques have been applied to resolve attribute-label heterogeneity.
We also assume that each tuple contains a key attribute that can
uniquely identify the object the tuple refers to.1 We consider the
case that each non-key data item has a single true value reflecting
the real world but the sources may provide wrong values.

We assume knowledge of the following two properties of the data
sources, which we rely on in data fusion.

1. Accuracy: Different sources may differ in the correctness of
their data and we capture this by source accuracy. Given a
source S ∈ S, its accuracy, denoted by α(S), is the proba-
bility that a value provided by S is correct.

2. Copying: A source may copy from others and we capture
this by copying relationship. A copier can copy all or a part
of data from one or multiple sources, and can additionally
provide its own data. Given sources S, S′ ∈ S, S 6= S′, the
copying probability, denoted by ρ(S → S′), is the probabil-
ity for each common value that S copies this value from S′.
As in [6], we assume there is no mutual copying between a
pair of sources; so if ρ(S → S′) > 0, ρ(S′ → S) = 0.2

Data fusion: We adopt the fusion techniques proposed in [6], which
considers the accuracy of the sources and the copying relationship
between the sources in truth finding. In particular, we decide the
true value on data item D according to S in three steps.

1
In case that such key attributes do not exist, we can apply record linkage

techniques to link the records that refer to the same real-world entity.
2
In case that the copying direction is uncertain, we can choose one direction

as described in [6].
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Table 2: Vote count of each source in the motivating example.
Source Independent vote count Dependent vote count

S1 ln 49∗.3
1−.3

= 3 3 ∗ 1 = 3

S2 ln 49∗.5
1−.5

= 4 4 ∗ (1− .8) = .8

S3 ln 49∗.75
1−.75

= 5 5 ∗ 1 = 5

S4 ln 49∗.3
1−.3

= 3 3 ∗ 1 = 3

S5 ln 49∗.75
1−.75

= 5 5 ∗ 1 = 5

S6 ln 49∗.5
1−.5

= 4 4 ∗ (1− .8) = .8

S7 ln 49∗.3
1−.3

= 3 3 ∗ 1 = 3

S8 ln 49∗.5
1−.5

= 4 4 ∗ (1− .8) = .8

S9 ln 49∗.75
1−.75

= 5 5 ∗ (1− .8) = 1

1. For each source S ∈ S that provides data on a data item
D, we compute its independent vote count as C⊥(S) =

ln nα(S)
1−α(S)

, where n is the number of wrong values in the

domain for D; thus, a source with a higher accuracy has a
higher independent vote count. Assuming copying relation-
ships between different pairs of sources are independent, we
compute the dependent vote count of S on D as C→(S) =
C⊥(S)ΠS′∈S̄D(S)(1− ρ(S → S′)), where S̄D(S) denotes
the set of sources that provide the same value as S on D.
Thus, C→(S) is a fraction of the independent vote count ac-
cording to the copying probability and C→(S) ≤ C⊥(S)
(equal when S independently provides the value).

2. For each value v in the domain of D, denoted by D(D),
we compute its vote count as the sum of the dependent vote
counts of its providers, denoted by C(v). The value with the
highest vote count is considered as the true value.

3. In case we need to compute the probability of a value v be-

ing true, we apply equation Pr(v|S) = eC(v)
∑

v0∈D(D) eC(v0) .

This equation is derived from Bayesian analysis, where eC(v)

is proportional to the probability of our observed data con-
ditioned on v being true, and we assume the same a-priori
probability for each value being true.

EXAMPLE 2.1. Consider the sources in the motivating exam-

ple. Assume for each copying relationship from S to S′, ρ(S →
S′) = .8. To fuse answers from all sources, we first compute the

vote count for each source and obtain the results in Table 2 (there

are 50 values in the domain). Note that although S3 is a copier of

S2, it provides a different answer so cannot copy this value from

S2; thus, its dependent vote count is the same as its independent

one. Similarly, S6 cannot copy its value from S4, so its vote count

is 4 ∗ .2 = .8 rather than 4 ∗ .22 = .16.

Thus, the vote count of NJ is 5 + 5 + .8 = 10.8; that of TX is

3 + 3 + .8 + 1 = 7.8; that of NY is 3 + .8 = 3.8; and that of the

other 47 values is 0. So NJ is the correct answer with probability
e10.8

e10.8+e7.8+e3.8+e0∗47
= .95. Note that if we apply naive voting or

consider only source accuracy, we will return TX instead. ✷

3. FRAMEWORK OF ONLINE FUSION
We consider select-project queries where the select predicates

are posed on the key attribute and the key attribute is in the project
list. Such queries are popular in many applications such as vertical
search and we discuss other queries (e.g., queries with joins or se-
lect predicates on non-key attributes) in Appendix C. For simplicity
of understanding, we explain our techniques for the case where all
sources have full coverage. We describe extensions for consider-
ing coverage in Appendix C. We leave a full-fledged combination
of our techniques and those that consider coverage and overlap in
integration [3, 12] for future work.

Algorithm 1: FUSIONWACCU(S , D̄)

Input : S sources in decreasing order of their accuracy;
D̄ queried data items

Output : True values for D̄; for each returned value, return in
addition expPr(v),minPr(v) and maxPr(v).

// Initialization

stop[D ∈ D̄]←false; vote[D ∈ D̄][v ∈ D(d)]← 0;1

remain←
∑

S∈S α(S);2

while ∃D ∈ D̄ s.t. stop[D] =false do3

// Probe the next source in the list
S ← the next source in the list;4

remain← remain− α(S);5

foreach D ∈ D̄ do6

if !stop[D] then7

// 1. Truth finding

vote[D][S(d)]← vote[D][S(d)] + C⊥(S); // S(d) is8

the value provided by S on D
find the value v1 with the maximum vote count and v29

with the top-2 vote count;
// 2. Probability computation
compute expPr(v1),maxPr(v1),minPr(v1)10

according to vote[D] and remain;
// 3. Termination justification
compute Pr(v2) according to vote[D];11

if minPr(v1) > Pr(v2) then12

stop[D]← true;13

Refresh answers in the output;14

SOLARIS returns answers as it incrementally probes the sources,
and terminates when it believes that data from the rest of the sources
are unlikely to change the answers. There are four major compo-
nents for such a system: truth finding, probability computation,
termination justification, and (offline) source ordering. Algorithm
FUSIONWACCU illustrates how we instantiate these components in
case that all sources are independent and we only consider accuracy
of the sources in fusion.

Truth finding: As we probe a new source, we find the truth based
on the already probed sources, denoted by S̄ (Lines 8-9). The key
question to ask is “how to incrementally count the votes such that

we can efficiently decide the correct values as we probe each new

source?” In case all sources are independent, incremental vote
counting is straightforward: when we probe a new source S, we
add C⊥(S) to the vote count of the value it provides.

Probability computation: For each value v that we have deter-
mined to be correct, we return the expected probability and the
probability range of this value being true (Line 10). To compute
these probabilities, we consider all possible worlds that describe
the possible values provided by the unseen sources S \ S̄, denoted
by W(S \ S̄). For each possible world W ∈ W(S \ S̄), we
denote by Pr(W ) its probability and by Pr(v|S̄,W ) the proba-
bility that v is true based on data provided in the possible world.
Then, the maximum probability of v is the maximum probability
computed among all possible worlds (similarly for minimum prob-
ability), and the expected probability of v is the sum of these prob-
abilities weighted by the probabilities of the possible worlds. We
formally define them as follows.

DEFINITION 3.1 (EXPECTED/MAX/MIN PROBABILITY). Let

S be a set of data sources and S̄ ⊆ S be the probed sources. Let v
be a value for a particular data item. The expected probability of

v, denoted by expPr(v|S̄), is defined as

expPr(v|S̄) =
∑

W∈W(S\S̄)

Pr(W )Pr(v|S̄,W ). (1)
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The maximum probability of v, denoted by maxPr(v|S̄), is de-

fined as (similarly for minimum probability)

maxPr(v|S̄) = max
W∈W(S\S̄)

Pr(v|S̄,W ). ✷ (2)

The key question to ask is “how to efficiently compute the ex-

pected, maximum, and minimum probabilities based on the counted

votes?” We describe our solution for the independence case shortly.

Termination justification: As we probe the sources, the results
often converge before we finish probing all sources. In such sit-
uations, we wish to terminate early. We thus check for each data
item a termination condition and stop retrieving data for it if the
condition is satisfied (Lines 11-13).

To guarantee that probing more sources will not change the re-
turned value v for data item D, we should terminate only if for each
v′ ∈ D(D), v′ 6= v, we have minPr(v) > maxPr(v′). How-
ever, satisfying this condition for each returned value is often hard.
We can loosen it in two ways: (1) for the value v′ with the top-2
vote count, minPr(v) > Pr(v′) (or expPr(v′)); (2) for such v′,
Pr(v)(or expPr(v))> maxPr(v′). Our experiments show that
these loose conditions lead to much faster termination, while sacri-
ficing the quality of the results only a little, if at all.

Source ordering: The algorithm assumes an ordered list of sources
as input and probes the sources in the given order. We wish to or-
der the sources such that 1) we can return the correct answers as
early as possible, and 2) we can terminate as soon as possible. To
reduce the overhead at runtime, we conduct source ordering offline.
The key question to ask is “how to order the sources such that we

can quickly obtain the correct answers and terminate early?” In-
tuitively, when the sources are independent, we should order the
sources in decreasing order of their accuracy.

3.1 Probability computation for independent
sources

Consider a value v and a set S̄ ⊆ S of probed sources. We can
compute Pr(v|S̄) according to Section 2. In fact, we can prove
that the expected probability for v is exactly the same as Pr(v|S̄)
(proofs of all results in the Appendix). The intuition is that the
probability of an unseen source providing v or any other value fully
depends on the probability of v being true, which is computed from
data in S̄; thus, the unseen source does not introduce any new in-
formation and so cannot change the expected probability.

THEOREM 3.2. Let S be a set of independent sources, S̄ ⊆ S
be the sources that we have probed, and v be a value for a partic-

ular data item. Then, expPr(v|S̄) = Pr(v|S̄). ✷

For the maximum probability of value v, it is obvious that we
obtain it when all unseen sources provide v.

THEOREM 3.3. Let S be a set of independent sources, S̄ ⊆ S
be the sources that we have probed, and v be a value for a data

item D. Let W be a possible world in which all sources in S \ S̄
provide value v on D. Then, maxPr(v|S̄) = Pr(v|S̄,W ). ✷

Obtaining the minimum probability of value v certainly requires
that none of the unseen sources provides v. Among the rest of
the values, we can prove that if all unseen sources provide the same
value, and the value has the highest probability to be true according
to the probed sources, we obtain the minimum probability for v.

THEOREM 3.4. Let S be a set of independent sources, S̄ ⊆ S
be the sources that we have probed, v be a value for a data item D,

and vmax = argmaxv′∈D(D)−{v}Pr(v′|S̄). Let W be a possible

world in which all sources in S\S̄ provide value vmax on D. Then,

minPr(v|S̄) = Pr(v|S̄,W ). ✷

4. CONSIDERING COPYING IN ONLINE

FUSION
Algorithm FUSIONWACCU falls short in the presence of copy-

ing. First, vote counting is non-trivial: if we probe a copier before
the copied source, we do not know if they provide the same value
on a data item and hence, whether we should use the independent or
dependent vote count for the copier. Second, ordering the sources

by accuracy may not lead to fast convergence: if the top-accuracy
sources have copying relationships between them, the vote counts
can increase slowly as we discount copied values.

This section proposes two solutions for vote counting when a
copier is probed earlier than the copied source: the conservative

approach and the pragmatic approach. Each approach can lead to
a different source-ordering strategy. Our experiments show that the
pragmatic approach always outperforms the conservative one. In
our description we call S a child of S′ and S′ a parent of S if S
copies from S′. We denote by Pa(S, S′) the parent of S on the
copying path from S to S′.3

4.1 Vote counting
We propose two vote-counting approaches, both observing the

following no-over-counting principle: for each value, among its

providers that could have copying relationships on it, at any time

we apply the independent vote count for at most one source. This
principle avoids bias from copied values at any time. We next de-
scribe incremental vote counting for each approach.

Conservative approach: The conservative approach assumes that
for each data item the copier provides the same value as the copied
source, so applies its dependent vote count at the beginning, and
increases the vote count if it observes a different value from the
copied source. Thus, when we probe a new source S, we shall
consider its own vote count and the vote counts of its copiers.

1. Suppose S provides value v. Among its parents, S may copy
from any one that has not been probed or is observed to also
provide v. We denote the set of such parents by P̄ (S). Thus,
the vote count of S for v is

C⊥(S)ΠSp∈P̄ (S)(1− ρ(S → Sp)).

2. Suppose S provides a different value from its child Sc. Then,
Sc cannot copy from S and we should increase its vote count.
Let v′ 6= v be the value provided by Sc and C(Sc) be Sc’s
current vote count. We shall increase the vote count of v′ by

C(Sc)

1− ρ(Sc → S)
− C(Sc) =

C(Sc)ρ(Sc → S)

1− ρ(Sc → S)
.

Obviously, this approach guarantees that the vote count of each

value increases monotonically. However, it may under-estimate the
vote count of a value if all the probed providers are copiers.

Pragmatic approach: The pragmatic approach assumes that for
each data item the copier provides a different value from the copied
source, so applies its independent vote count at the beginning, and
decreases the vote count when observing the same value from the
copied source. We consider both directly and transitively copied
sources to avoid violation of the no-over-counting principle. Ac-
cordingly, when we probe S, we shall update its own vote count
and the vote count of its closest probed descendant (as we will show
in Section 4.3, our ordering guarantees that there can be only one
such descendant).

3
We assume a single such parent and can easily extend our techniques when

there are multiple such parents.
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Table 3: Example 4.1. Vote count of NY and NJ as we probe

S1 − S3 in the order of S3, S2, S1.

Source NY NJ

S3 0 1
S2 .8 5
S1 3.8 5

(a) Conservative approach.

Source NY NJ

S3 0 5
S2 4 5
S1 3.8 5

(b) Pragmatic approach.

1. Suppose S provides value v. Among its closest probed an-
cestors, S can copy only from those that also provide v; we
denote this set by Ā. We compute S’s vote count as

C⊥(S)ΠSa∈Ā(1− ρ(S → Pa(S, Sa))).

2. Consider the closest probed descendant of S, denoted by Sd.
There are two cases. First, if Sd provides the same value
as S and none of S’s closest probed ancestors is observed
to also provide v (i.e., Ā = ∅), we must have applied the
independent vote count of Sd (with respect to S) and need to
decrease it. Let C(Sd) be the current vote count of Sd and
Sp = Pa(Sd, S). We shall decrease the vote count of v by

C(Sd)− C(Sd)(1− ρ(Sd → Sp)) = C(Sd)ρ(Sd → Sp).

Second, if Sd provides a different value from S but the same
value as one of S’s closest probed ancestors, we must have
applied the dependent vote count of Sd and need to increase
it to the independent vote count. Let v′ 6= v be the value
provided by Sd, C(Sd) be the current vote count of Sd, and
Sp = Pa(Sd, S). We shall increase the vote count of v′ by

C(Sd)

1− ρ(Sd → Sp)
− C(Sd) =

C(Sd)ρ(Sd → Sp)

1− ρ(Sd → Sp)
.

This approach does not guarantee monotonicity, but applies the
independent vote count to exactly one source among those that have
copying relationships, so avoids over-counting and under-counting.

EXAMPLE 4.1. Continue with the motivating example and con-

sider probing sources S1 − S3 in the order of S3, S2, S1. Table 3

shows the vote counts of NY and NJ as we probe each source. In the

conservative approach, we first add the dependent vote count (1) of

S3 for NJ, as its parent (S2) has not been probed. We next add the

dependent vote count (.8) of S2 for NY; as it provides a different

value from S3, we increase the vote count of NJ by 1
.2

− 1 = 4.

Finally, we probe S1 and add its independent vote count 3 for NY.

In the pragmatic approach, we first probe S3 and add 5 to the

vote count of NJ. We next probe S2 and add 4 to the vote count of

NY; since S2 provides a different value from S3, we do not change

S3’s vote. Last, we probe S1, adding 3 to the vote count of NY and

reducing the vote count of S2 by 4 − 4 ∗ .2 = 3.2. The final vote

count for each value is the same in both approaches. ✷

4.2 Probability computation
Computing the expected, maximum and minimum probability

for a value is much more tricky when we consider copying. The
reason, again, is that for a source S, the observation of whether
S’s parents provide the same value may change its vote count. We
describe how we approximate these probabilities efficiently. Note
that the estimated maximum and minimum probabilities are looser
bounds so still “correct” to show the users, and the estimated ex-
pected probability is close to the real one; finally, these estimates
will also be used in termination justification and our experiments
show that they do not sacrifice the quality of results.

Expected probability: First, we show that when none of the un-
seen sources is a parent of a probed source, the expected probability
of a value is the same as the probability computed according to the
probed sources. The intuition is that among unseen data provided

for the data item, those that are independently provided will not
change the expected probability, for the same reason as discussed
in Section 3.1; those that are copied will not be considered in vote
counting and so will not affect the expected probability either.

THEOREM 4.2. Let S be a set of sources, S̄ ⊆ S be the probed

sources, and v be a value. If ρ(S → S′) = 0 holds for each S ∈ S̄
and S′ ∈ S \ S̄, then, expPr(v|S̄) = Pr(v|S̄). ✷

However, as the following example shows, if a probed source
copies from an unseen source, the theorem does not hold any more.

EXAMPLE 4.3. Consider a data item D, where D(D) = {0, 1}.

Consider three sources. Sources S1 and S2 are independent and

both have accuracy .6; thus, C⊥(S1) = C⊥(S2) = ln 1∗.6
1−.6

= .4.

Source S3 is a copier of S1 with ρ(S3 → S1) = .8; it has accu-

racy .9, so C⊥(S3) = ln 1∗.9
1−.9

= 2.2. Suppose we have probed S2,

observing value 0, and probed S3, observing 1. We next compute

the expected probability for value 1.

The conservative approach uses the dependent vote count of S3

(2.2∗.2 = .44). The probability for 1 is then e.44

e.44+e.4
= .51, so S1

has probability .51 ∗ .6+ .49 ∗ .4 = .5 to provide 1. If S1 provides

1, the probability for 1 becomes e.4+.44

e.4+.44+e.4
= .61. Otherwise, S3

cannot copy from S1 so we shall use the independent vote count of

S3; the probability then becomes e2.2

e2.2+e.4+.4 = .8. The expected

probability for 1 is thus .61 ∗ .5 + .8 ∗ .5 = .71 > .51.

The pragmatic approach uses the independent vote count of S3.

The probability for 1 is then e2.2

e2.2+e.4
= .86, so S1 has probability

.86 ∗ .6 + .14 ∗ .4 = .57 to provide 1. Similarly, the expected

probability for 1 is .61 ∗ .57 + .8 ∗ .43 = .69 < .86. ✷

The discrepancy in this example is because the observation of
data from unseen sources will change our belief of whether the
copier copies on a particular data item. We next show results that
lead to an approximation of the expected probability.

THEOREM 4.4. Let S̄ ⊆ S be a set of probed sources such

that for one and only one S ∈ S̄, there exists S′ ∈ S \ S̄ where

ρ(S → S′) > 0. Let v be a value of a particular data item.

Let Prcon(v|S̄) (resp. Prpra(v|S̄)) denote the probability of v
computed in the conservative (resp. pragmatic) approach, and

expPrcon(v|S̄) denote the expected probability in the conserva-

tive approach. Then, (similar for the pragmatic approach)

1. Prcon(v|S̄) < expPrcon(v|S̄) < Prpra(v|S̄);

2. |Prcon(v|S̄)+Prpra(v|S̄)
2

− expPrcon(v|S̄)| < 1
4

. ✷

We estimate the expected probability by
Prcon(v|S̄)+Prpra(v|S̄)

2
.

In Example 4.3, the approximation leads to .51+.86
2

= .685, close
to the two expected probabilities that we have computed. Complex-
ity of computing the expected probability remains an open problem.

Maximum or minimum probability: We first show that comput-
ing maximum or minimum probability of a value is tractable.

THEOREM 4.5. Given S̄ ⊆ S and value v, computing

maxPr(v|S̄) and minPr(v|S̄) is in PTIME. ✷

Although we can compute a tight bound of value probability in
polynomial time, the algorithm is still quite costly and not suitable
for an online process. We next describe how we compute a loose
(but still fairly tight) bound for minimum probability and we can
compute the maximum probability similarly.

To minimize the probability of value v, we shall minimize C(v)
and maximize C(v′) for each v′ 6= v. Our algorithm, MINPR

(details in Appendix B) does so in four steps.
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1. To minimize C(v), for each of v’s probed provider S ∈ S̄
that 1) has an unseen parent Sp, and 2) satisfies C⊥(S) >
C⊥(Sa)+C→(S) for the ancestor Sa that leads to the min-
imum C⊥(Sa) + C→(S), we use C⊥(Sa) + C→(S) as its
vote count.

2. To maximize C(v′), v′ 6= v, from the probed sources, for
each S ∈ S̄ that does not provide v and has an unseen parent,
we use its independent vote count C⊥(S).

3. Let vmax be the value with the highest vote count among all
values other than v after Step 2. To maximize C(vmax) from
unseen sources, we assume they all provide vmax indepen-
dently and use their independent vote count.

4. Compute the probability of v accordingly.

THEOREM 4.6. Let S be a set of sources, S̄ ⊆ S be the probed

ones, v be a value, and fa be the maximum number of ancestors

a source has. Algorithm MINPR finishes in time O(fa|S̄|) and its

result M satisfies M ≤ minPr(v|S̄). ✷

EXAMPLE 4.7. Consider sources in Figure 1 and assume we

have probed all sources except S8. Consider the minimum prob-

ability of NJ. Step 1 and Step 2 will not change vote count of any

probed source. Step 3 assumes S8 also provides TX and uses its

independent vote count 4. Thus, minPr(NJ|S/{S8}) =
e10.8

e10.8+e7+4+e3.8+e0∗47
= .45. At this time we compute a probabil-

ity of .02 for the top-2 value TX. If we use the termination condition

minPr(NJ) > Pr(TX), we can terminate then. ✷

The full online algorithm, FUSIONWCOPY (Appendix B), sum-
marizes the techniques in Section 4.1-4.2. Each round takes time
O(fa|S̄||D̄|). Note however that in early rounds we have not probed
many sources and |S̄| is small, and in late rounds the number of re-
maining data items is often much less than |D̄|.

4.3 Source ordering
Finally, we discuss ordering of sources according to the two

vote-counting approaches. A source can have different vote counts
for different values under consideration of copying. We order the
sources by their minimum vote counts, which can be obtained in
the extreme case where all sources provide the same value. (The
maximum vote count is the independent vote count.)

Conservative approach: When all sources provide the same value,
in the conservative approach the vote count of a source is fixed as its
dependent vote count. Let S be a source and Pa(S) be its parents.
Then, this fixed vote count of S is computed by

C(S) = C⊥(S)Π
Sp∈Pa(S)(1− ρ(S → Sp)). (3)

We order the sources in decreasing order of their fixed vote count.
As a result, we often order an independent source before its copier,
even if the copier has a higher accuracy.

Pragmatic approach: When all sources provide the same value,
as we probe a new source in the pragmatic approach, we may need
to decrease the vote count of its probed descendants. We thus order
the sources iteratively, each time choosing the one that increases
the total vote count most. In particular, given a source S and a set
of probed sources S̄, we compute the conditional vote count of S
as

C(S|S̄) = C(S̄ ∪ {S})− C(S̄), (4)

where C(S̄) denotes the total vote count of S̄ if all sources in S̄
provide the same value. In other words, C(S̄ ∪ {S}) serves as an
invariant for deciding C(S|S̄). We compute C(S̄) as follows: for
each S ∈ S̄, if S has an ancestor in S̄, we consider S may (directly
or transitively) copy from its ancestor and take its dependent vote

Table 4: Example 4.10: Vote counts computed in source order-

ing. The maximum vote count in each round of the pragmatic

approach is in bold font.

Method Rnd S1 S2 S3 S4 S5 S6 S7 S8 S9

Fixed 3 .8 1 3 5 .16 3 .8 1
1 3 4 5 3 5 4 3 4 5

4 -1 0 - 3 - .8 -1 4 -
5 -1 0 - - - .16 -1 4 -Cond
6 -1 0 - - - - -1 4 -
7 -.2 - - - - - -1 4 -
8 - - - - - - -1 4 -

count; otherwise, we consider S provides the value independently
and take its independent vote count.

EXAMPLE 4.8. Consider the sources in Figure 1. First con-

sider S2 and S̄ = {S3}. We have C(S̄) = 5, C(S̄ ∪ {S2}) =
4 + 5 ∗ .2 = 5, so C(S2|S̄) = 5 − 5 = 0. Now consider S1

and S̄′ = {S2, S3} (transitive copying). We have C(S̄′) = 5,

C(S̄′ ∪ {S1}) = 3 + 4 ∗ .2 + 5 ∗ .2 = 4.8, so C(S1|S̄
′) =

4.8−5 = −.2. Next consider S4 and S̄′′ = {S5, S6} (multi-source

copying). We have C(S̄′′) = 5 + 4 ∗ .2 = 5.8, C(S̄′′ ∪ {S4}) =
3 + 5+ 4 ∗ .2 ∗ .2 = 8.16, so C(S4|S̄

′′) = 8.16− 5.8 = 2.36. ✷

As shown in Example 4.8, when S is a parent of a probed copier
Sc and has lower accuracy than Sc, C(S|S̄) can be negative. This
is due to the assumption that the accuracy of the copied data is the
same as that of the copied source [6], which can be much lower
than that of the copier. This negative vote count can put S to the
end of the ordered list, which may be actually desired because of
its low accuracy and its dependence with Sc.

Note however that such a vote counting strategy can fall short
in the presence of co-copying. In Figure 1, if we probe S8 and
S9 before S7, their total vote count is 4 + 5 = 9, violating the
no-over-counting principle. We should apply the independent vote
count only for S8 or S9, but different choices can lead to different
results. Our solution is to guarantee that we never probe two co-
copiers if none of their common ancestors is probed. We formalize
the condition as follows.

DEFINITION 4.9 (CO-COPIER CONDITION). Let S and S′ be

two sources where neither one is the ancestor of the other. For

each of their closest ancestor Sa, we shall probe Sa or one of its

ancestors before we probe both S and S′. ✷

Accordingly, our source ordering algorithm proceeds in four steps.

1. Initialize S̄ = ∅ and set C(S|S̄) = C⊥(S) for each S.

2. Among the sources that satisfy the co-copier condition, se-
lect the one with the highest vote count and add it to S̄.

3. Adjust the conditional vote count for unselected sources.

4. Go to Step 2, until all sources are selected (i.e., S̄ = S).

The full algorithm, shown in Appendix B, takes time O(f2|S|2),
where f is the maximum number of ancestors and descendants a
source has. This is reasonable given that source ordering is offline,
and the number of sources for a particular domain is rarely huge.

Pragmatic ordering has the advantage of often ordering high-
accuracy sources early and meanwhile taking copying into consid-
eration. We next illustrate its benefit using an example.

EXAMPLE 4.10. Consider ordering the sources in Figure 1. Ta-

ble 4 shows the fixed vote counts and the conditional vote counts

we compute in each round, and we order the sources accordingly

(pragmatic ordering randomly chooses S5 first among the sources

that have a tie). Note that in the pragmatic approach, although
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S8 has a higher conditional vote count than S7, it is ranked later

because otherwise the co-copier condition would be violated.

The pragmatic order is better as it ranks the most accurate sources

earlier even if some of them are copiers. Indeed, if we follow the

conservative order, the result will not converge to NJ until we have

probed 6 sources (3 for the pragmatic order). ✷

5. EXPERIMENTAL RESULTS
This section presents an experimental study of our online fusion

system on a real-world data set. We show that (1) our system can
quickly return the correct values for most of the queried items; (2)
our system scales well; and (3) in presence of copying, the prag-
matic approach is the most effective among various approaches.

5.1 Experiment setup
Data: We experimented on the AbeBooks data set, which were ex-
tracted in 2007 from AbeBooks.com by searching computer-science
books.4 In the data set there are 894 bookstores (data sources),
1263 books, and 24364 listings, each provided by a bookstore and
containing attributes ISBN, name, and authors. We normalized
the author lists to a standard format.

We applied techniques in [5, 6] for computing source accuracy
and detecting copying; we found copying between 1758 pairs of
sources. Note that the computed quality measures may not be ex-
actly the same as the real ones. Most experiments are conducted
over 100 sources with the largest coverage on a set of 100 books
that we describe shortly. Their coverage ranges from 0.02 to 0.87;
their accuracy ranges from 0.005 to 0.74; and we found copying be-
tween 774 pairs of sources for this subset of sources (see Figure 11
in the appendix for distribution of coverage vs. accuracy). If S
copies from S′ through a source outside the subset, we treat S and
S′ as independent because we seldom observe big overlap of data
in case of transitive copying (same for co-copying). On this sub-
set of data, each book on average has 18.6 listings and the number
ranges from 2 to 49.

Query and measure: We used a golden standard that contains 100
randomly selected books and the list of authors found on the cover
of each book. We considered queries that ask for authors of a
subset of these books. We measured precision of the results by the
percentage of correctly returned author lists.

Implementation: We implemented four online algorithms: NAIVE

probes all sources in a random order and repeatedly applies prior
fusion techniques (Section 2) on probed sources; ACCU applies
FUSIONWACCU; CONSERVATIVE applies FUSIONWCOPY with
conservative ordering and vote counting; and PRAGMATIC applies
FUSIONWCOPY with pragmatic ordering and vote counting. The
latter three methods apply termination condition minPr(v1) >
Pr(v2), where v1 and v2 are the top-1 and top-2 values. As NAIVE

uses random order, we ran it 5 times and reported the average.
We used Java and experimented on a Windows7 machine with

2.33GHz Intel CPU and 4GB of RAM.

5.2 Experimental results
Query answering behavior: We first considered the query that
asks for authors of all 100 books and reported our observation on
query answering by PRAGMATIC. Figure 2-3 plot as we probe each
source, (1) the total number of returned books, (2) the number of
correctly returned values, (3) the number of books on which the
returned values do not change any more, (4) the number of books
on which we stopped retrieving data, and (5) the average expected,
minimum, and maximum probabilities for the returned answers.

4
We thank the authors of [16] for providing us the data.

We have several observations. First, a large fraction of answers
quickly get stable: after probing 14 sources, the answers on 73
books get stable; then, this number increases gradually as we probe
more sources and reaches 100 at the 97th source. Second, the num-
ber of terminated books climbs much more slowly, showing that we
typically require more evidence before we decide to stop. Third, the
number of correctly returned answers also quickly increases at the
beginning and then flattens out, but decreases as we probe the last
32 sources. These sources have very low accuracy (as low as 0.005)
and provide a lot of wrong values; even though each of them has
a low vote count, accumulatively they can still bias the decision.
Fourth, the average expected probability increases gradually as we
probe more sources, while the average maximum probability re-
mains 1 till the 96th source, and the average minimum probability
remains less than .001 till the 91st source. Finally, we observe big
jumps for all numbers at several sources (source 14, 20, etc.), as
these sources have high coverage and are independent.

Result precision: We next compared precision of the results by
various methods. Figure 4 plots for each method the number of
answers that have stabilized at the correct value as we probe each
source. PRAGMATIC has the best performance. (1) Compared with
ACCU, PRAGMATIC at the beginning returns more correct values
(on average 12 more from source 14 to 32), then returns fewer cor-
rect values (on average 2 fewer from source 33 to 46) as it considers
the copying relationship and discounts votes from the copied cor-
rect values, and eventually returns more correct answers (starting
from the 50th source). (2) PRAGMATIC dominates CONSERVA-
TIVE: starting from the 13th source it on average returns 15.2 more
correct values. (3) PRAGMATIC at the beginning returns fewer cor-
rect values than NAIVE as it first probes sources with high accuracy
but maybe low coverage; starting from source 14, PRAGMATIC sig-
nificantly outperforms NAIVE and on average returns 25 more cor-
rect values, as it probes the sources in a better order.

Figure 5 plots the precision of the results as we increase the num-
ber of queried books, where we start from more popular books.
As we probe more unpopular books, the precision obtained by all
methods decreases because of less abundance of information. We
observe that PRAGMATIC always obtains the highest accuracy, as it
starts from more accurate sources and ignores copied data; in most
cases it even beats NAIVE, which probes all data from all sources
so can be more affected by the inaccurate sources that are ranked
later. ACCU also often beats NAIVE, but it does not perform as
well as PRAGMATIC since it ignores copying and can be biased by
copied data. Finally, although CONSERVATIVE considers copying,
it has the lowest precision because it can terminate on a value after
probing a few less accurate sources.

In addition, we reported comparison of various ordering, vote
counting, and termination strategies in Appendix D.

Efficiency and scalability: We did two sets of experiments for
scalability study. First, we started with the 10 sources with the
largest coverage, and gradually added sources until reaching 100
sources. Figure 6 plots the CPU time for fusion for all 100 books
on each data set. Among different methods, NAIVE took the longest
time (2 orders of magnitude more than PRAGMATIC) and the CPU
time increases quadratically, as it retrieved data for all 100 books
on all sources and counted votes from scratch as it probes each new
source; note that linear increase of CPU time for fusion would re-
quire applying incremental vote counting strategies as we described
in Section 4.1. The CPU time for the rest of the methods increases
linearly. ACCU took the shortest time as its vote-counting process
is very simple. PRAGMATIC and CONSERVATIVE are in the mid-
dle. Note that although PRAGMATIC spent longer time than ACCU,
it obtains a higher precision and outputs correct values faster.
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Second, we started with the 100 sources and added more sources
in three ways: I. Independent replica replicates each source 9 times
and assumes independence between the replicas and the original
sources; II. Dependent replica replicates each source 9 times but
assumes each replica copies from the original source with proba-
bility .99; III. Full AbeBooks data adds the rest of the 794 sources
in the AbeBooks data set in decreasing order of source coverage.
We query the 100 books on data I and II and the 500 most popular
books on data III. Figure 7 reports the total time (including con-
nection and data transmission) for 80% of the answers to be stable
(time for other percentages reported in Appendix D); here we tried
10 bookstore websites and used the mean of connection setup time
(758 ms) and transmission time for one record (.3 ms). We com-
pared PRAGMATIC, NAIVE, and offline fusion. (1) PRAGMATIC is
the fastest and spent at most a few minutes on each data set; NAIVE

is 2-3 orders of magnitude slower than PRAGMATIC and the offline
method, which has to probe all sources before returning any an-
swer, is 3-4 orders of magnitude slower. (2) Typically connection
setup is the bottle-neck; the more sources required to converge, the
longer the execution time. However, NAIVE also took a long CPU
time for fusion on data III; although 80% values got stable after
probing 382 sources, much fewer than for offline fusion (all 894
sources), it spent even longer time overall because the CPU time
was high. (3) PRAGMATIC spent the longest time on data III, as
most sources in this data set have very low coverage so conver-
gence is slow; it spent the shortest time on data II, as the duplicates
are considered as copiers and ranked later than the original sources,
so most values get stable before probing the duplicates.

Finally, we observed quadratic growth of source-ordering time
in the number of sources. PRAGMATICSOURCEORDERING took
.2 second for 100 sources and 20.7 minutes for 894 sources; this is
acceptable given that source ordering is a one-time offline process.

6. CONCLUSIONS
This paper describes SOLARIS, the first online data fusion sys-

tem. It addresses several challenges in building such a system, in-
cluding incrementally maintaining vote counts for each value, com-
puting expected, maximum, and minimum probabilities of a value
being true, deciding when to terminate fusion on particular data
items, and ordering sources for early termination and early out-

put of the correct answers. Future work includes combining our
techniques with those that consider coverage of sources and over-
lap between sources for online fusion, and exploring other quality
measures such as freshness of data.
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APPENDIX

A. PROOFS FOR SECTION 3
PROOF THEOREM 3.2 We compute the probability of each possible
world according to the probabilities of the values being true, which
are in turn computed based on observations on S̄. Thus, we have

Pr(W ) =
∑

v∈D(D)

Pr(W |v)Pr(v|S̄) = Pr(W |S̄).

Obviously, W and v are independent conditioned on S̄.
According to the definition of expected probability, we have

expPr(v|S̄) =
∑

W∈W(S−S̄)

Pr(W )Pr(v|S̄,W )

=
∑

W∈W(S−S̄)

Pr(W |S̄) ·
Pr(v, S̄,W )

Pr(S̄,W )

=
∑

W∈W(S−S̄)

Pr(W |S̄) ·
Pr(S̄)Pr(v|S̄)Pr(W |S̄)

Pr(S̄)Pr(W |S̄)

=
∑

W∈W(S−S̄)

Pr(W |S̄)Pr(v|S̄) = Pr(v|S̄) ✷

PROOF THEOREM 3.3 Consider another possible world W0 where
some unseen sources do not provide v. We denote by W0(S) the
value provided by S in W0. We can transform W to W0 step by
step, where in each step for a source that does not provide v in W0,
we change its value from v to W0(S). Assuming the transforma-
tion steps are W,Wn, . . . ,W1,W0, we can prove easily

Pr(v|S̄,W ) > Pr(v|S̄,Wn) > · · · > Pr(v|S̄,W1) > Pr(v|S̄,W0).✷

PROOF THEOREM 3.4 Consider another possible world W0 where
some unseen sources do not provide vmax. We denote by W0(S)
the value provided by S in W0. We can transform W to W0

step by step, where in each step for a value v0 6= vmax and the
set of unseen providers of v0, denoted by S̄(v0), we change their
value from vmax to v0. Assuming the transformation steps are
W,Wn, . . . ,W1,W0, we can prove easily

Pr(v|S̄,W ) < Pr(v|S̄,Wn) < · · · < Pr(v|S̄,W1) < Pr(v|S̄,W0).✷

B. DETAILS FOR SECTION 4
Algorithms 2-6 give pseudo-code of key algorithms in Section 4.

We next prove the theorems.
PROOF THEOREM 4.2 For each possible world W , we consider all
its sub-worlds, each corresponding to a possible combination of the
unseen copiers copy or do not copy. For each sub-world, we denote
it by W ′ and only need to consider the sources that independently
provide the values in probability computation. Then, for each W ′,
it still holds that Pr(v|W ′, S̄) = Pr(v|S̄). Thus,

expPr(v|S̄) =
∑

W∈W(S−S̄)

Pr(v|W, S̄)Pr(W )

=
∑

W∈W(S−S̄)

Pr(v|S̄)Pr(W ) = Pr(v|S̄).✷

PROOF THEOREM 4.4 We consider single-source copying and can
prove for multi-source copying similarly. Assume S ∈ S̄ copies
from Sp 6∈ S̄. Consider probing S next. We denote by Pr→(v|S̄, S)
the probability of v based on the observation from S̄ and S, where
we use the dependent vote count of S no matter whether S provides
the same value as Sp. We denote by Prcon(S, v) the probability

that S provides v, ω = α(S)− 1−α(S)
n

, and ξ = 1−α(S)
n

.

Prcon(S, v) = α(S)Prcon(v|S̄) +
1− α(S)

n
(1− Prcon(v|S̄))

= ωPrcon(v|S̄) + ξ.

Algorithm 2: FUSIONWCOPY(S , D̄)

Input : S ordered sources; D̄ queried data items.
Output : True values for D̄; for each returned value, return in

addition expPr(v),minPr(v) and maxPr(v).
stop[D ∈ D̄]←false;1

cV ote[D ∈ D̄][v ∈ D(D)]← 0;2

sV ote[D ∈ D̄][v ∈ D(D)]← 0;3

sV [S ∈ S][D ∈ D̄]← C⊥(S);4

remain←
∑

S∈S α(S);5

while ∃D ∈ D̄ s.t. stop[D] =false do6

remain← remain− α(S);7

C̄ ← probed children of S;8

P̄ ← probed parents of S;9

Ā← closest probed ancestors of S;10

Sd ← closest probed descendant of S;// There is only one such11

descendant according to the co-copier condition.

cV [S][D]← C⊥(S) ·ΠSp is unseen parent of S(1− ρ(S →12

Sp));
foreach D ∈ D̄ do13

if !stop[D] then14

// 1. Truth finding
CONSERVATIVEVOTECOUNT(S,D, cV, cV ote);15

PRAGMATICVOTECOUNT(S,D, sV, sV ote);16

find the value v1 with the maximum vote count and v217

with the top-2 vote count; // Either conservative or
pragmatic

// 2. Probability computation
expPr(v1)←18

Avg( ecV [D][v1]
∑

v∈D(D) ecV [D][v] ,
esV [D][v1]

∑
v∈D(D) esV [D][v] );

Pr(v2)←
esV [D][v2]

∑
v∈D(D) esV [D][v] ;

minPr(v1)← MINPR(v1, d, S̄,S, sV, remain);19

maxPr(v1)← MAXPR(v1, d, S̄,S, sV, remain);20

// 3. Termination justification
if minPr(v1) > expPr(v2) then21

stop[D]← true;22

Refresh answers in the output;23

According to Theorem 3.2,

Prcon(v|S̄) =
∑

v0∈D(D)

Prcon(S, v0)Pr→(v0|S̄, S). (5)

Similarly, we denote by Pr⊥(v|S̄, S) the probability of v based
on the observation from S̄ and S, where we use the independent
vote count of S no matter whether S provides the same value as
Sp. We denote by Prpra(S, v) similarly and have

Prpra(v|S̄) =
∑

v0∈D(D)

Prpra(S, v0)Pr⊥(v0|S̄, S). (6)

Obviously, for any v0 ∈ D(D), Pr→(v|S̄, S) < Pr⊥(v|S̄, S).
We denote the difference by ∆(v). In addition, Prcon(S, v) <
Prpra(S, v) and Prcon(S, v′) > Prpra(S, v′) for any v′ 6= v;
we denote the difference by ∆′(v). Finally,

expPrcon(v|S̄) = Prcon(S, v)Pr→(v|S̄, S)

+
∑

v0∈D(D),v0 6=v

Prcon(S, v0)Pr⊥(v0|S̄, S). (7)

(1) According to Eq.(5) and (7), expPrcon(v|S̄) > Prcon(v|S̄).
We now prove expPrcon(v|S̄) < Prpra(v|S̄). Without losing
generality, assume v0 has the highest vote count among values ex-
cluding v.
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Algorithm 3: CONSERVATIVEVOTECOUNT(S,D, cV, cV ote)

cV [S][D]← cV [S][D] ∗ΠSp∈P̄ ,Sp(D)=S(D)1

(1-ρ(S → Sp)); // S(D) is the value provided by S on D.2

cV ote[D][S(D)]← cV ote[D][S(D)] + cV [S][D];3

foreach Sc ∈ C̄ do4

if Sc(D) 6= S(D) then5

∆← cV [Sc][D]ρ(Sd→S)
1−ρ(Sd→S)

;6

cV [Sc][D]← cV [Sc][D] + ∆;7

cV ote[D][Sc(D)]← cV ote[D][Sc(D)] + ∆;8

Algorithm 4: PRAGMATICVOTECOUNT(S,D, sV, sV ote)

sV [S][D]← Vi(S)ΠSa∈Ā,Sa(D)=S(D)1

(1-ρ(S → Pa(S, Sa))); // Pa(S, Sa) is the parent of S on the2

copying path to Sa

sV ote[D][S(D)]← sV ote[Sd][S(D)] + sV [S][D];3

if ∀Sa ∈ Ā, Sd(D) 6= Sa(D)&&Sd(D) = S(D) then4

∆← sV [Sd][D]ρ(Sd → Pa(Sd, S));5

sV [Sd][D]← sV [Sd][D]−∆;6

sV ote[D][Sd(D)]← sV ote[D][Sd(D)]−∆;7

else if ∃Sa ∈ Ā, Sd(D) = Sa(D)&&Sd(D) 6= S(D) then8

∆← sV [Sd][D]ρ(Sd→Pa(Sd,S))
1−ρ(Sd→Pa(Sd,S))

;9

sV [Sd][D]← sV [Sd][D] + ∆;10

sV ote[D][Sd(D)]← sV ote[D][Sd(D)] + ∆;11

Prpra(v|S̄)− expPrcon(v|S̄)

= (Prpra(S, v)Pr⊥(v|S̄, S)− Prcon(S, v)Pr→(v|S̄, S))

+
∑

v0∈D(D),v0 6=v

Pr⊥(v|S̄, S)(Prpra(S, v)− Prcon(S, v))

> Pr⊥(v|S̄, S)(ωPrpra(v|S̄) + ξ)

−Pr→(v|S̄, S)(ωPrcon(v|S̄) + ξ)− Pr⊥(v0|S̄, S)ω∆(v)

= ω(Pr⊥(v|S̄, S)Prpra(v|S̄)− Pr→(v|S̄, S)Prcon(v|S̄))

−ωPr⊥(v1|S̄, S)∆
′(v) + ξ∆(v)

> ω(∆′(v)− Pr⊥(v1|S̄, S)∆
′(v)) + ξ∆(v) > 0

(2) We prove as follows.

1

2

(

Prcon(v|S̄) + Prpra(v|S̄)
)

− expPrcon(v|S̄)

=
1

2

(

Prpra(S, v)Pr⊥(v|S̄, S)− Prcon(S, v)Pr→(v|S̄, S)
)

+
1

2

∑

v0∈D(D),v0 6=v

(Prpra(S, v0)Pr⊥(v0|S̄, S)

+Prcon(S, v)Pr→(v0|S̄, S))

−
1

2

∑

v0∈D(D),v0 6=v

(2Prpra(S, v)Pr→(v0|S̄, S))

<
1

2

(

Prpra(S, v)Pr⊥(v|S̄, S)− Prcon(S, v)Pr→(v|S̄, S)
)

+
1

2

∑

v0∈D(D),v0 6=v

(Prpra(S, v0)Pr⊥(v0|S̄, S)

−Prpra(S, v)Pr→(v0|S̄, S))

=
1

2
(ω(Pr⊥(v|S̄, S)Prpra(v|S̄)− Pr→(v|S̄, S)Prcon(v|S̄))

+ξ∆′(v))

≤
ω∆′(v) + ξ∆′(v)

2
≤

α(S)

2
·
1

2
=

1

4
✷

Algorithm 5: MINPR(v,D, S̄,S, sV, remain)

Input : v the value; D the data item;
S̄ probed sources; S all sources;
sV pragmatic vote counts of each source,
remain sum of vote counts of the unseen sources.

Output : minPr(v).
vote[v ∈ D(D)]← 0;1

foreach S ∈ S̄ do2

if S’s parents are all probed then3

vote[S(D)]← vote[S(D)] + sV [S][D];4

else if S(D) = v then5

temp = minSa is an ancestor of S Vi(Sa) +6

sV [S][D](1− ρ(S → Pa(S, Sa)));
if temp > sV [S][D] then7

vote[v]← vote[v] + sV [S][D];8

else9

vote[v]← vote[v] + temp;10

else11

vote[S(D)]← vote[S(D)]+12

C⊥(S)ΠSp(D)=S(D)(1− ρ(S → Sp));13

find the value vmax 6= v with the maximum vote count;14

vote[vmax]← vote[vmax] + remain;15

return ecV [D][v]
∑

v0∈D(D) ecV [D][v0] ;
16

Algorithm 6: PRAGMATICSOURCEORDERING(S)

Input : S set of sources.
Output : Ordering of the sources.
S̄ ← ∅;1

vote[S ∈ S]← C⊥(S);2

while S̄ 6= S do3

max← −∞; S0 ← null;4

foreach S ∈ S do5

if vote[S] > max && S satisfies the co-copier condition6

then

max← vote[S]; S0 ← S;7

Add S0 to the end of S̄;8

foreach S ∈ S − S̄ && S is an ancestor or descendant of S0 do9

V ote[S]← C(S̄ ∪ {S})− C(S̄);10

return S̄;11

PROOF THEOREM 4.5 Because the vote count of a source de-
pends only on the values its direct parents provide, we can compute
the minimum probability using a dynamic programming algorithm.
The algorithm proceeds as follows.

1. Sort the sources such that for each S, S′ where ρ(S → S′) >
0, S′ is ranked earlier than S. Assume the order of the unseen
sources is S0, S1, . . . , Sm.

2. For the first source S0 (it cannot be a copier of any other un-
seen source), compute its dependent vote count for each value
v0 ∈ D(D), and denote the corresponding probability for v0
by minPr(v|S, v0).

3. For each latter source Si, assume P̄ is the set of its unseen
parents. Then, for each v0 ∈ D(D), for different value com-
bination from P̄ , compute the probability of v based on the
recorded vote counts from P̄ . Choose the minimum one, set
minPr(v|Si, v0) accordingly, and record the vote counts.

4. The minimum value for v is minv0∈D(D) minPr(v|Sm, v0).

Let constant fp be the maximum number of parents of a source.
Then, the algorithm takes time O(|S||D(D)|fp). ✷

PROOF THEOREM 4.6. For each provider S of value v, in case
S is a copier, the lowest vote count for v is S’s dependent vote

941



0.7

0.75

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100

P
re

ci
si

o
n

#(Queried books)

Precision for Different Orderings

RandomOrder

CovOrder

AccuOrder

ConsOrder

PragOrder

0

5

10

15

20

25

30

35

0 20 40 60 80 100#
(P

ro
b

e
d

 s
o

u
rc

e
s)

 o
n

 a
v

e
ra

g
e

#(Queried books)

Probed Sources for Different Orderings

RandomOrder

CovOrder

AccuOrder

ConsOrder

PragOrder

0

20

40

60

80

100

120

0 20 40 60 80 100

To
ta

l 
fu

si
o

n
 t

im
e

 (
m

s)

#(Queried books)

Fusion Time for Different Orderings

RandomOrder

CovOrder

AccuOrder

ConsOrder

PragOrder

Figure 8: Comparison of different source ordering strategies.
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Figure 9: Comparison of different vote counting strategies.

count plus the minimum vote count of its unprobed ancestors. For
each provider S′ of another value, S′’s independent (with respect
to unprobed parents) vote count is the highest vote count S′ can
contribute. Finally, according to the proof of Theorem 3.4, we ob-
tain the lowest vote count when unseen sources provide the value
other than v with the highest vote count. Thus, Algorithm MINPR

obtains the lowest probability for v.
For each source in S, the algorithm takes linear time O(fa) to

set vote count, where fa is the maximum number of ancestors of a
source. The complexity of the algorithm is O(fa|S|).

C. EXTENSIONS
We discuss two extensions of our techniques, one is in the direc-

tion of considering sources that do not have full coverage, and one
is in the direction of considering more complex queries.

Coverage in online fusion: We assume the sources have fairly
large but not necessarily full coverages, and extend our techniques
in two ways. First, when we order the sources in the pragmatic
approach, we take into consideration the overlap between sources.
Consider source S0, . . . , Sl, where Si copies from Si+1, i ∈ [0, l−
1]. Even when we have decided to probe Sl, it may not be ap-
propriate to use the dependent vote count for S0 in ordering, be-
cause S0 and Sl can actually overlap in only a few data items. If
we denote by ι(Si, Si+1) the overlap between Si and Si+1 (i.e.,

ι(Si, Si+1) =
|Si∩Si+1|

|Si+1|
) and assume independence of copying

between each pair of sources, the probability that S0 transitively
copies from Sl on a particular item is ρ(S0 → S1)Π

l−1
i=0ι(Si, Si+1).

In our experiments, we simplified and considered only direct copy-
ing (between a child and a parent) in source ordering.

Second, when we compute the minimum probability of a value
(similar for maximum probability), we need to consider the possi-
bility that an unseen source does not provide data on a particular
data item at all. Thus, instead of using its independent vote count,
we down-weight it by its coverage; in other words, we assume an
unseen source S contributes vote count C⊥(S)γ(S) to value vmax,
where γ(S) denotes the coverage of S.

More complex queries: We next briefly discuss how we apply our
techniques for queries that contain predicates on non-key attributes
and queries that contain joins. For the former, the values on the
predicates may be wrong as well and from a source we may miss

some results or retrieve some additional results. As we probe new
sources, we apply fusion techniques also on the predicate attribute
of the returned tuples and decide if the value satisfies the predicate.
If we decide the value actually does not satisfy the predicate, we
remove it from the answer. For join queries, we assume the join-
column values are accurate and apply fusion only on the projected
attributes.

D. DETAILED EXPERIMENTAL RESULTS
We compared variants of PRAGMATIC in terms of source order-

ing, vote counting, and termination condition. The experimental re-
sults show that PRAGMATIC with termination condition minPr(v1)
> Pr(v2) obtains the best results.

Comparing different orderings: We ordered the sources in 5 ways:

• RANDOMORDER probes the sources in a random order;
• COVORDER orders the sources by coverage;
• ACCUORDER orders the sources by accuracy;
• CONSORDER orders the sources in decreasing order of their

(fixed) dependent vote count (the conservative approach);
• PRAGORDER orders the sources by applying algorithm PRAG-

MATICSOURCEORDERING.

We applied pragmatic vote counting for each ordering. Figure 8
shows the precision of the results, the average number of probed
sources for each book, and the CPU time for fusion as we in-
crease the number of queried books. We make the following ob-
servations. (1) PRAGORDER allows fast convergence and high
precision of the results: it probes the least number of sources for
each book (on average 4.5 sources) and obtains the highest preci-
sion. (2) ACCUORDER probes slightly more sources for each book
than PRAGORDER (on average 5.7 sources), but obtains slightly
lower precision. Although it starts with probing accurate sources,
it ignores the copying relationship and can probe at an early time
copiers whose vote counts are discounted. (3) CONSORDER probes
similar number of sources for each book as PRAGORDER, but ob-
tains a much lower precision. This is because it favors independent
sources more than accurate sources, and can thus be biased by data
from those independent but inaccurate sources. (4) COVORDER

spent longest time (even 96% longer than RANDOMORDER on av-
erage) while obtaining nearly the lowest precision (the average is
similar to that of RANDOMORDER). This is because in this data
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Figure 10: Comparison of different termination conditions.
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Figure 13: Fusion time.

set, we observe that many high-coverage sources have only mod-
erate accuracy (see Figure 11). Finally, we note that as the num-
ber of books increases, (1) the average number of probed sources
for a book can decrease, since the unpopular books have fewer
providers; and (2) the fusion time increases, as different books are
provided by different sets of sources and we need to probe more
sources for convergence on all books.

Comparing different vote counting strategies: We next examine
various vote counting strategies:

• ACCUVOTE computes the vote count as the sum of the inde-
pendent vote counts of its providers;

• CONSVOTE applies the conservative voting approach;
• PRAGVOTE applies the pragmatic voting approach.

We applied the pragmatic order for each vote-counting strategy.
Figure 9 shows the precision of the results, the average number of
probed sources for each book, and the CPU time for fusion as we
increase the number of queried books. We observe that PRAGVOTE

obtains the highest precision. In comparison, ACCUVOTE probes
similar number of sources on average, spent much less time as vote
counting in ACCUVOTE is very simple, and obtains comparable
precision. This is because although ACCUVOTE ignores copying
in vote counting, it is less likely to make mistakes as the pragmatic
order typically puts upfront only one source among the correlated
sources. Even so, PRAGVOTE is more stable than ACCUVOTE; for
example, its precision is 3.4% higher with 100 books. Its longer
fusion time is acceptable because (1) query answering time is often
dominated by data retrieval time, which is proportional to the num-
ber of probed sources, in which PRAGVOTE is similar to ACCU-
VOTE, and (2) our online fusion techniques actually return answers
long before finishing fusion. Finally, CONSVOTE always has lower
precision than PRAGVOTE (on average 15% lower) even though it
probes slightly more sources, as it can often under-estimate vote
counts when copiers are ranked earlier.

Comparing different termination conditions: Finally, we tried
many different termination conditions, namely, (1) minPr(v1) >
maxPr(v2), (2) expPr(v1) > maxPr(v2), (3) minPr(v1) >
expPr(v2), (4) Pr(v1) > maxPr(v2), and (5) minPr(v1) >
Pr(v2) (the default) on PRAGMATIC, where v1 is the top-1 value

and v2 is the top-2 value. Figure 10 shows the precision of the re-
sults, the average number of probed sources for each book, and the
CPU time for fusion as we increase the number of queried books.

We have 3 observations. First, as expected, Condition (1) re-
quires the longest time to converge as it is the strictest condition;
however, it obtains a better result than Condition (5) only when
there are 100 books (the precision is only 1% higher), as it can be
biased by the additionally probed low-accuracy sources. Second,
using the expected probability in the termination condition (Con-
dition (2)(3)) can lead to long execution time and low precision.
This is because the expected probability of the top-1 value is often
lower than the probability computed in the pragmatic approach, so
Condition (2) is harder to satisfy than Condition (4), and the ex-
pected probability of an unseen value is higher than the computed
probability, so Condition (3) is harder to satisfy than Condition (5).
Third, using the maximum probability in the termination condition
(Condition (2)(4)) can lead to long execution time and low preci-
sion. This is because when there are a lot of unseen sources, the
maximum probability of a value can easily reach as high as 1 and
so the condition is hard to satisfy. Accordingly, Condition (5) leads
to fastest termination. It also obtains the highest precision in most
cases because it probes the least number of sources and so is least
affected by low-accuracy data.

Details of experiments for scalability: Finally, we give more de-
tails for experiments on scalability. Figure 12-13 shows the query-
answering time and the fusion time for a particular percentage of
answers to be stable. In addition to the observations as we dis-
cussed for Figure 7, we also observe that (1) in general PRAG-
MATIC spent much less time than NAIVE both in query answering
and in fusion; (2) it can take much longer time to get all stable an-
swers than to get 80% stable answers (1.78 times longer for PRAG-
MATIC and 35.15 times longer for NAIVE); (3) typically the trends
for query-answering time and for fusion time are comparable, ex-
cept that first, the CPU time increased significantly for getting sta-
ble on the last 30% answers for PRAGMATIC on Dependent replica

because of the complex copying relationships to handle in fusion,
and the CPU time increased only slightly for NAIVE on Full Abe-

Books data because most of the sources have very low coverage.
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