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Abstract

Deep Neural Networks (DNNs) are typically
trained by backpropagation in a batch setting, re-
quiring the entire training data to be made available
prior to the learning task. This is not scalable for
many real-world scenarios where new data arrives
sequentially in a stream. We aim to address an open
challenge of “Online Deep Learning” (ODL) for
learning DNNs on the fly in an online setting. Un-
like traditional online learning that often optimizes
some convex objective function with respect to a
shallow model (e.g., a linear/kernel-based hypoth-
esis), ODL is more challenging as the optimiza-
tion objective is non-convex, and regular DNN with
standard backpropagation does not work well in
practice for online settings. We present a new ODL
framework that attempts to tackle the challenges
by learning DNN models which dynamically adapt
depth from a sequence of training data in an online
learning setting. Specifically, we propose a novel
Hedge Backpropagation (HBP) method for online
updating the parameters of DNN effectively, and
validate the efficacy on large data sets (both station-
ary and concept drifting scenarios).

1 Introduction

Despite the recent success of Deep Learning [LeCun et al.,
2015], it continues to face several (convergence) challenges,
including (but not limited to) vanishing gradient, diminishing
feature reuse [Srivastava et al., 2015], saddle points (and local
minima) [Dauphin et al., 2014], immense number of param-
eters to be tuned, internal covariate shift [Ioffe and Szegedy,
2015], etc. There have been promising advances [Nair and
Hinton, 2010; Ioffe and Szegedy, 2015; He et al., 2016;
Srivastava et al., 2015], etc. to address many of these issues,
however, most of them assume that the DNNs are trained in a
batch learning setting which requires the entire training data
set to be made available prior to the learning task. This is not
possible for many real world tasks where data arrives sequen-
tially in a stream, or may be too large to be stored in memory,
or may exhibit concept drift [Gama et al., 2014]. Thus, a
more desired option is to learn the models in an online learn-
ing setting.

Unlike batch learning, online learning [Cesa-Bianchi and
Lugosi, 2006] represents a class of learning algorithms that
learn to optimize predictive models over a stream of data
instances in a sequential manner. The nature of on-the-fly
learning makes online learning highly scalable and mem-
ory efficient. However, most existing online learning al-
gorithms are designed to learn shallow models (e.g., lin-
ear or kernel methods [Rosenblatt, 1958; Zinkevich, 2003;
Crammer et al., 2006; Kivinen et al., 2004; Hoi et al., 2013])
with online convex optimization, which cannot learn complex
nonlinear functions in complicated application scenarios.

We attempt to bridge the gap between online and deep
learning by addressing the open problem of “Online Deep
Learning” (ODL) — how to learn DNNs in an online set-
ting. A simple approach is to apply Backpropagation on a
single instance in each online iteration - but this approach
faces many limitations. A key challenge is to choose a proper
model capacity (e.g. network depth) before starting to learn
the model online. If the model is too complex (e.g., very
deep), the learning process will converge too slowly (vanish-
ing gradient, diminishing feature reuse, saddle points), thus
losing the desired property of online learning. On the other
extreme, if the model is too simple, the learning capacity will
be too restricted, and without the power of depth, it would be
difficult to learn complex patterns.

We aim to devise an online learning algorithm that starts
with a shallow network enjoying fast convergence; then grad-
ually switches to a deeper model (meanwhile sharing knowl-
edge with the shallow ones) automatically when more data
has been received to learn more complex hypotheses, com-
bining the merits of both online learning and deep learning.
To achieve this, we need to address the questions: when to
change the network capacity? how to change the capacity?
and how to do both online? We design an elegant solution
to do this in a unified framework in a data-driven manner.
We amend the existing DNN architecture by attaching ev-
ery hidden layer representation to an output classifier. Then,
instead of using a standard Backpropagation, we propose
Hedge Backpropagation, which evaluates the performance of
every output classifier at each online round using Hedge[Fre-
und and Schapire, 1997], and appropriately extends Back-
propagation to train DNNs online. This allows us to dynami-
cally vary the DNN capacity, meanwhile enabling knowledge
sharing between shallow and deep networks.
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2 Related Work

Online Learning is a family of scalable algorithms that
learn to update models from data streams sequentially [Cesa-
Bianchi and Lugosi, 2006; Hoi et al., 2014; 2018]. Popu-
lar algorithms include Perceptron [Rosenblatt, 1958], Online
Gradient Descent [Zinkevich, 2003], Passive Aggressive (PA)
[Crammer et al., 2006], etc. These are primarily designed to
learn linear models. Online Learning with kernels [Kivinen
et al., 2004] offered a solution for learning nonlinear mod-
els online, and were later extended to higher capacity models
such as Online Multiple Kernel Learning [Hoi et al., 2013;
Sahoo et al., 2014; 2016]. While these models learn nonlin-
earity, they are still shallow. Moreover, deciding the number
and type of kernels is non-trivial; and these methods are not
designed to learn a feature representation.

Online Learning can be directly applied to DNNs (”on-
line backpropagation”) but they suffer from convergence is-
sues(vanishing gradient, diminishing feature reuse, saddle
points). Moreover, the optimal depth to be used for the net-
work is usually unknown, and cannot be validated easily in
the online setting. There have been attempts at making deep
learning compatible with online learning [Zhou et al., 2012;
Lee et al., 2016] and [Lee et al., 2017]. However, they oper-
ate via a sliding window approach with a (mini)batch training
stage, making them unsuitable for a streaming data setting.

Deep Learning Due to the difficulty in training deep net-
works, there has been a large body of emerging works adopt-
ing the principle of (what we term as)“shallow to deep”(used
in our work). This approach exploits the intuition that shal-
low models converge faster than deeper models, and this idea
has been executed in several ways. Some do this explicitly
by Growing of Networks via the function preservation princi-
ple [Chen et al., 2016; Wei et al., 2016], where the (student)
network of higher capacity is at least as good as the shal-
lower (teacher) network. Other approaches perform this more
implicitly by modifying the network architecture and objec-
tive functions to enable the network to allow the input to flow
through the network, and slowly adapt to deep representation
learning, e.g., Highway Nets[Srivastava et al., 2015], Resid-
ual Nets[He et al., 2016], Stochastic Depth Networks [Huang
et al., 2016] and Fractal Nets [Larsson et al., 2017].

However, they are all designed to optimize the loss func-
tion based on the output of the deepest layer. Despite im-
proved batch convergence, they cannot yield good online per-
formance (particularly for early part of the stream), as many
parameters need to be tuned. In online settings, such existing
deep learning techniques could be trivially beaten by a very
shallow network. Deeply Supervised Nets [Lee et al., 2015]

shares a similar architecture as ours - using companion ob-
jectives at intermediate layers with heuristically set weights.
GoogLeNet [Szegedy et al., 2015] also has intermediate clas-
sifiers, but the weights never change keeping the model ca-
pacity fixed, thus suitable only for batch settings. In contrast,
our method dynamically adapts the model capacity. Since
we aim to learn the depth, a related set of efforts is learn-
ing the architecture of neural networks [Zoph and Le, 2017;
Alvarez and Salzmann, 2016] - which are all designed only
for the batch setting.

3 Online Deep Learning

3.1 Problem Setting

Consider an online classification task. The goal of on-
line deep learning is to learn a function F : R

d →
R

C based on a sequence of training examples D =
{(x1, y1), . . . , (xT , yT )}, that arrive sequentially, where
xt ∈ R

d is a d-dimensional instance representing the fea-
tures and yt ∈ {0, 1}C is the class label assigned to xt and
C is the number of classes. The prediction is denoted by ŷt,
and the performance of the learnt function is evaluated based

on the cumulative prediction error: ǫT = 1
T

∑T

t=1 I(ŷt 6=yt),
where I is the indicator function. To minimize the classifica-
tion error over the sequence of T instances, a loss function
(e.g., squared loss, cross-entropy, etc.) is often chosen for
minimization. In every online iteration, an instance xt is ob-
served, the model makes a prediction, the environment then
reveals the true class label, and finally the learner makes an
update to the model (e.g., using online gradient descent).

3.2 Online Backpropagation: Limitations

For typical online learning algorithms, the prediction func-
tion F is either a linear or kernel-based model. In the case
of Deep Neural Networks (DNN), it is a set of stacked lin-
ear transformations, each followed by a nonlinear activation.
Given an input x ∈ R

d, the prediction function of DNN with

L hidden layers (h(1), . . . ,h(L)) is recursively given by:

F(x) = softmax(W (L+1)
h
(L)) where

h
(l) = σ(W (l)

h
(l−1)) ∀l = 1, . . . , L; h

(0) = x

where σ is an activation function, e.g., sigmoid, tanh,
ReLU, etc. This represents a feedforward step. The hidden

layers h
(l) are feature representations learnt during training.

To train a model with such a configuration, we use the cross-
entropy loss function denoted by L(F(x), y). We aim to esti-
mate the optimal model parameters Wi for i = 1, . . . (L+ 1)
by applying Online Gradient Descent (OGD) on this loss
function. Following the online learning setting, the update
of the model in each iteration by OGD is given by:

W
(l)
t+1 ←W

(l)
t − η∇

W
(l)
t

L(F(xt), yt) ∀l = 1, . . . , L+ 1

where η is the learning rate. Using backpropagation, the gra-

dient of the loss with respect to W (l) for l ≤ L is computed.
Unfortunately, using such a model for online learning (i.e.

Online Backpropagation) faces several issues with conver-
gence. Most notably: (i) Model Selection: Depth of the net-
work has to be fixed a priori, and cannot change. This is prob-
lematic as depth selection is a difficult task (especially for
online settings). In particular for small number of instances,
shallow networks would be preferred for fast convergence,
and for large number of instances, deep networks could give
the best overall performance; (ii) Convergence Challenges:
These include vanishing gradient, saddle point problems and
diminishing feature reuse (useful shallow features are lost in
deep feedforward steps). These problems are more serious
in the online setting (especially for the initial online perfor-
mance), as we do not have the liberty to scan the data multiple
times to overcome these issues (like we can in batch settings).
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To address these issues, we design a training scheme for
Online Deep Learning through a Hedging strategy: Hedge
Backpropagation (HBP). Specifically, HBP uses an over-
complete network, and automatically decides how and when
to adapt the depth of the network in an online manner.

𝒉𝟎 𝒉𝟏 𝒉𝟐 𝒉𝑳

𝑭𝒕
𝒇𝟏 𝒇𝟐 𝒇𝑳

𝒚𝑡

𝒇𝟎
hedge

𝜶(𝟎) 𝜶(𝟏) 𝜶(𝟐) 𝜶(𝑳)
𝒚𝑡𝒚𝑡𝒚𝑡

𝒙𝒕

hedge hedgehedge

Figure 1: Online Deep Learning framework using Hedge Backprop-
agation (HBP). Blue lines represent feedforward flow for computing
hidden layer features. Orange lines indicate softmax output followed
by the hedging combination at prediction time. Green lines indicate
the online updating flows with the hedge backpropagation approach.

3.3 Hedge Backpropagation (HBP)

Figure 1 illustrates the ODL framework using HBP.
Consider a DNN with L hidden layers (i.e., maximum ca-

pacity is L hidden layers). The prediction function for the
proposed Hedged Deep Neural Network is given by:

F(x) =
L
∑

l=0

α(l)
f
(l) where (1)

f
(l) = softmax(h(l)Θ(l)), ∀l = 0, . . . , L

h
(l) = σ(W (l)

h
(l−1)), ∀l = 1, . . . , L

h
(0) = x

Here we have designed a new architecture, and introduced

two sets of new parameters Θ(l) (parameters for f (l)) and α,
that have to be learnt. Unlike the original network, in which
the final prediction is given by a classifier using the feature

representation h
(L), here the prediction is a weighted com-

bination of classifiers learnt using the feature representations

from h
(0), . . . ,h(L). Each classifier f (l) is parameterized by

Θ(l). Note that there are a total of L+ 1 classifiers. The final
prediction of this model is a weighted combination of the pre-
dictions of all classifiers, where the weight of each classifier

is denoted by α(l) > 0, and the loss suffered by the model

is L(F(x), y) =
∑L

l=0 α
(l)L(f (l)(x), y). During the online

learning procedure, we need to learn α(l), Θ(l) and W (l).

We propose to learn α(l) using the Hedge Algorithm [Fre-
und and Schapire, 1997]. At the first iteration, all weights

α are uniformly distributed, i.e., α(l) = 1
L+1 , l = 0, . . . , L.

At every iteration, the classifier f (l) makes a prediction ŷt
(l).

When the ground truth is revealed, the classifier’s weight is
updated based on the loss suffered by the classifier as:

α
(l)
t+1 ← α

(l)
t βL(f (l)(x),y)

where β ∈ (0, 1) is the discount rate parameter, and

L(f (l)(x), y) ∈ (0, 1) [Freund and Schapire, 1997]. Thus,

a classifier’s weight is discounted by a factor of βL(f (l)(x),y)

in every iteration. At the end of every round, the weights α

are normalized such that
∑

l α
(l)
t = 1.

Learning the parameters Θ(l) for all the classifiers can be
done via online gradient descent [Zinkevich, 2003], where the

input to the lth classifier is h(l). This is similar to the update
of the weights of the output layer in the original feedforward
networks. This update is given by:

Θ
(l)
t+1 ← Θ

(l)
t − η∇

Θ
(l)
t

L(F(xt, yt)) (2)

= Θ
(l)
t − ηα(l)∇

Θ
(l)
t

L(f (l), yt)

Updating the feature representation parameters W (l) is
more tricky. Unlike the original backpropagation scheme,
where the error derivatives are backpropagated from the out-
put layer, here, the error derivatives are backpropagated from

every classifier f
(l). Thus, using the dynamic objective

function L(F(x), y) = ∑L

l=0 α
(l)L(f (l)(x), y) and applying

OGD rule, the update rule for W (l) is given by:

W
(l)
t+1 ←W

(l)
t − η

L
∑

j=l

α(j)∇W (l)L(f (j), yt) (3)

where ∇W (l)L(f (j), yt) is computed via backpropagation

from error derivatives of f (j). Note that the summation (in
the gradient term) starts at j = l because the shallower clas-

sifiers do not depend on W (l) for making predictions. In ef-
fect, we are computing the gradient of the final prediction
with respect to the backpropagated derivatives of a predic-

tor at every depth weighted by α(l) (which is an indicator of
the performance of the classifier). Hedge enjoys a regret of

RT ≤
√
T lnN , where N is the number of experts [Freund

and Schapire, 1999], which in our case is the network depth.
This gives an effective model selection approach to adapt to
the optimal network depth automatically online.

Based on the intuition that shallower models tend to con-
verge faster than deeper models [Chen et al., 2016; Larsson
et al., 2017; Gulcehre et al., 2016], using a hedging strat-
egy would lower α weights of deeper classifiers to a very
small value (due to poor initial performance as compared
to shallower classifiers), which would affect the update in
Eq. (3), and result in deeper classifiers having slow learn-
ing. To alleviate this, we introduce a smoothing parameter
s ∈ (0, 1) which sets a minimum weight for each classi-
fier. After the weight update of the classifiers in each iter-

ation, the weights are set as: α(l) ← max
(

α(l), s
L

)

This

helps us achieve a tradeoff between exploration and exploita-
tion. s encourages all classifiers at every depth to affect the
backprop update (exploring high capacity deep classifiers,
and enabling deep classifiers to perform as good as shallow
ones), while hedging the model exploits the best perform-
ing classifier. Similar strategies have been used in Multi-
arm bandit setting, and online learning with expert advice
to trade off exploration and exploitation [Auer et al., 2002;
Hoi et al., 2013]. Algorithm 1 outlines ODL using HBP.
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Algorithm 1 Online Deep Learning (ODL) using HBP

Inputs: Hedge: β ∈ (0, 1); Learning Rate: η; Smoothing: s
Initialize: F(x) = DNN with L hidden layers and L + 1
classifiers f (l), ∀l = 0, . . . , L; α(l) = 1

L+1 , ∀l = 0, . . . , L

for t = 1,. . . ,T do
Receive instance: xt

Predict ŷt = Ft(xt) =
∑L

l=0 α
(l)
t f

(l)
t as per Eq. (1)

Reveal yt ; Set L(l)
t = L(f (l)t (xt), yt), ∀l, . . . , L;

Update Θ
(l)
t+1 & W

(l)
t+1∀l = 0, ..., L as per Eq. (2) & (3);

Update α
(l)
t+1 = α

(l)
t βL

(l)
t , ∀l = 0, . . . , L;

Smoothing α
(l)
t+1 = max(α

(l)
t+1,

s
L
), ∀l = 0, . . . , L ;

Normalize α
(l)
t+1 =

α
(l)
t+1

Zt

where Zt =
L
∑

l=0

α
(l)
t+1

end for

3.4 Discussions

There are several ideas and perspectives our proposed ap-
proach to Online Deep learning can be related to. We discuss
some of these ideas below: (i) Dynamic Objective: Having a
dynamically adaptive objective function mitigates the impact
of vanishing gradient and helps escape saddle points and lo-
cal minima (by changing the objective function without loss
of performance). The multi-depth architecture also allows di-
rect usage of intermediate features for prediction, mitigating
diminishing feature reuse. In addition to being a solution for
addressing Online Deep Learning, this idea can be applied
to many other problem settings, where it may be difficult to
design an appropriate objective function. In such settings,
HBP can be applied to learn the objective function in a data-
driven manner. A related concept is ResNet with Stochas-
tic Depth [Huang et al., 2016], where layers are arbitrar-
ily dropped, and the effective network of the depth changes
during the training procedure; (ii) Online Learning with Ex-
pert Advice,[Cesa-Bianchi and Lugosi, 2006]: In the pro-
posed Online Deep Learning solution, the experts are DNNs
of varying depth, and the HBP adaptation chooses the ap-
propriate depth expert, making the DNN robust to depth of
the network; (iii) Student-teacher learning[Chen et al., 2016;
Wei et al., 2016]: Deep Networks would typically struggle
to converge quickly, but as they are supported by the shal-
lower networks when using HBP, they inherit a good initial-
ization of shallow teacher networks; (iv) Ensemble: Multiple
DNNs of varying depths compete (by Hedging) and collabo-
rate (parameter sharing) for improved performance; (v) Con-
cept drifting[Gama et al., 2014]: HBP enables quick adap-
tation to new patterns due to hedging, and thus enables us-
age of DNNs for scenarios with concept drifts; and (vi) Con-
volutional Networks: While HBP could be trivially adapted
to CNNs, computer vision tasks typically have many classes
with few instances per class, which makes it hard to obtain
robust results in just one-pass through the data (online setting
— where train and test data is the same). These are inher-
ently batch learning tasks. Our focus is on pure online set-
tings where a large number of instances arrive in a stream
and exhibit complex nonlinear patterns.

4 Experiments

4.1 Datasets

We consider several large scale datasets. Higgs and Susy are
Physics datasets from UCI repository. For Higgs, we sam-
pled 5 million instances. We used 5 million instances from
Infinite MNIST [Loosli et al., 2007]. We also evaluated on 3
synthetic datasets. Syn8 is generated from a randomly initial-
ized DNN comprising 8-hidden layers (of width 100 each).
The others are concept drift datasets CD1 and CD2. In CD1,
2 concepts (C1 and C2), appear in the form C1-C2-C1, with
each segment comprising a third of the data stream. Both C1
and C2 were generated from a 8-hidden layer network. CD2
has 3 concepts with C1-C2-C3, where C1 and C3 are gener-
ated from a 8-hidden layer network, and C2 from a shallower
6-hidden layer network. Other details are in Table 1.

Data #Features #Instances Type

Higgs 28 5m Stationary
Susy 18 5m Stationary

i-mnist 784 5m Stationary
Syn8 50 5m Stationary
CD1 50 4.5m Concept Drift
CD2 50 4.5m Concept Drift

Table 1: Datasets

4.2 Online BP Limitations: Depth Selection

We compare the online performance of DNNs of varying
depth. Specifically, we compare their error rate in different
windows (or stages) of the learning process. See Table 3.
In the first 0.5% of data, the shallowest network obtains the
best performance indicating faster convergence (suggesting
we should use the shallow network for the task). In the seg-
ment [10-15]%, a 4-layer DNN seems to have the best perfor-
mance in most cases. And in the segment from [60-80]% of
data, an 8-layer network gives a better performance. This sug-
gests that deeper networks took a longer time to converge, but
at a later stage gave a better performance. Looking at the final
error, it does not give us conclusive evidence of what depth
of network would be the most suitable. Furthermore, if the
datastream had more instances, an even deeper network may
have given an overall better performance. This demonstrates
the difficulty in model selection for learning DNNs online,
where typical validation techniques are ineffective. Ideally
we want to exploit fast convergence of shallow DNNs in the
beginning and the power of deeper representations later.

4.3 Baselines

We aim to learn a 20 layer DNN in the online setting, with
100 units in each hidden layer. As baselines, we learn the 20
layer network online using OGD (Online Backpropagation),
OGD Momentum, OGD Nesterov, and Highway Networks.
We also compared with Online BP on DNNs with fewer lay-
ers (2,3,4,8,16) to get an idea of comparison with the oracle
depth — as the best depth choice is task dependent and can
be known only in hindsight. Configuration across all meth-
ods: ReLU activation, fixed learning rate of 0.01 (finetuned
on the baselines). For momentum, a fixed learning rate of
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0.001 was used, and momentum parameters were finetuned
to give the best performance on the baselines. For HBP, we
set β = 0.99 and the smoothing parameter s = 0.2. Imple-
mentation was in Keras [Chollet, 2015] 1. We also compared
with representative state of the art linear online algorithms
(OGD, Adaptive Regularization of Weights (AROW), Soft-
Confidence Weighted Learning (SCW) [Hoi et al., 2014]) and
kernel online algorithms (Fourier OGD (FOGD) and Nyström
OGD (NOGD)[Lu et al., 2016]).

4.4 Evaluation of ODL Algorithms

The final cumulative error obtained by all the baselines and
the proposed HBP can be seen in Table 4. First, traditional
online learning algorithms (linear and kernel) have relatively
poor performance on complex datasets. Next, in learning
with a 20-layer network, the convergence is slow, resulting
in poor overall performance. While second order methods
utilizing momentum and highway networks are able to offer
some advantage over simple Online Gradient Descent, they
can be easily beaten by a relatively shallower networks in the
online setting. We observed before that relatively shallower
networks could give a competitive performance in the online
setting, but lacked the ability to exploit the power of depth at a
later stage. In contrast, HBP enjoyed the best of both worlds,
by allowing for faster convergence initially, and making use
of the power of depth at a later stage. This way HBP was
able to do automatic model selection online, enjoying merits
of both shallow and deep networks, and this resulted in HBP
outperforming all the DNNs of different depths, in terms of
online performance. It should be noted that the optimal depth
for DNN is not known before the learning process, and even
then HBP outperforms all DNNs at any depth. Figure 3 shows
convergence behavior of all the algorithms on the stationary
as well as concept drift datasets. In the stationary datasets,
HBP shows consistent outperformance over all the baselines.
The only exception is in the very initial stages of the online
learning phase, where shallower baselines are able to outper-
form HBP. This is not surprising, as HBP has many more
parameters to learn. However, HBP is able to quickly out-
perform the shallow networks. The performance of HBP in
concept drifting scenarios demonstrates its ability to adapt to
change quickly, enabling usage of DNNs in the concept drift-
ing scenarios. Looking at the performance of simple 20-layer
(and 16-layer) networks on concept drifting data, we can see
difficulty in utilizing deep representation for such scenarios.

4.5 Adapting the Effective Depth of the DNN

We observe the evolution of weight distribution learnt by
HBP over time in Figure 4. Initially (first 0.5%), the maxi-
mum weight has gone to the shallowest classifier (with just
one hidden layer). In the second phase (10-15%), slightly
deeper classifiers (classifiers with 4-5 layers) have picked
up some weight, and in the third segment (60-80%), even
deeper classifiers have gotten more weight (classifiers with 5-
7 layers). The shallow and very deep classifiers receive little
weight in the last segment showing HBPs ability to perform
model selection.

1Source code available at https://github.com/LIBOL/ODL

4.6 Performance in Different Learning Stages

We compare the performance of HBP with DNNs of differ-
ent depth in different stages of learning. Figure 2 shows that
HBP matches (and even beats) the performance of the best
depth network in both the beginning and at a later stage of the
training phase. This shows its ability to exploit faster con-
vergence of shallow networks in the beginning, and power of
deep representation later. Not only is it able to do automatic
model selection, but also it is able to offer a good initialization
for the deeper representation, so that the depth of the network
can be exploited sooner, thus beating a DNN of every depth.

2 3 4 8 16 20 HBP
0.25

0.26

0.27

0.28

0.29

0.3

(a) Error in 10-15% of data

2 3 4 8 16 20 HBP
0.22

0.23

0.24

0.25

0.26

0.27

(b) Error in 60-80% of data

Figure 2: Error Rate in different segments of the Data. Red rep-
resents HBP using a 20-layer network. Blue are OGD using DNN
with layers = 2,3,4,8, 16 and 20.

4.7 Robustness to Depth of Base-Network

We evaluate HBP with varying depth of the base network.
We consider 12, 16, 20, and a 30-layer DNNs trained using
HBP and Online BP on Higgs. See Table 2 for the results,
where the performance variation with depth does not signifi-
cantly alter HBP’s performance, while for simple Online BP,
increase in depth significantly hurts the learning process. This
shows that, despite an arbitrary depth base-DNN, HBP miti-
gates several shortcomings of traditional DNN’s, and consis-
tently gives a good performance.

Depth 12 16 20 30

OnlineBP 26.96±0.07 27.31±0.13 29.27±0.65 47.67±0.01

HBP 26.21±0.03 26.18 ±0.04 26.18±0.03 26.23±0.04

Table 2: Robustness of HBP to depth of the base network

5 Conclusion

This paper addressed the critical drawbacks of existing DNNs
when being used to learn from streaming data in an online
setting. These issues arose from difficulty in model selec-
tion (appropriate depth), and convergence difficulties (vanish-
ing gradient, saddle points & diminishing feature reuse). We
used the ”shallow to deep” principle, and devised the Hedge
Backpropagation method, which enabled on-the-fly training
of Deep Neural Networks in an online setting. HBP used a
hedging strategy to make predictions with multiple outputs
from different hidden layers of the network, and the back-
propagation algorithm was modified to allow for knowledge
sharing among the deeper and shallower networks. This ap-
proach automatically identified how and when to modify the
effective network capacity in a data-drive manner, based on
the observed data complexity. We validated the proposed
method through extensive experiments on large datasets.
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Final Cumulative Error Segment [0-0.5]% Error Segment [10-15]% Error Segment [60-80]% Error

L Higgs Susy Syn8 Higgs Susy Syn8 Higgs Susy Syn8 Higgs Susy Syn8

3 27.24 20.16 39.36 35.84 21.52 42.69 27.97 20.29 40.02 26.68 20.04 39.01
4 26.88 20.14 39.20 37.21 21.97 43.39 27.75 20.30 39.89 26.17 20.04 38.76
8 26.82 20.16 39.36 38.08 22.18 45.22 27.94 20.36 40.18 26.13 19.97 38.88
16 27.31 20.37 40.25 45.50 23.12 47.21 28.31 20.50 41.21 26.42 20.27 39.23

Table 3: Online error rate (%) of DNNs of varying Depth in different stages of learning. L is the number of layers in the DNN.

Model Method L Higgs Susy i-mnist Syn8 CD1 CD2

Linear
OGD 1 36.20±0.200 21.70±0.200 12.30±0.200 40.70±0.200 43.60±0.200 42.70±0.100

AROW 1 36.30±0.100 21.60±0.200 12.40±0.200 40.50±0.100 43.40±0.100 42.50±0.200

SCW 1 35.30±0.100 21.50±0.200 12.30±0.100 40.50±0.100 43.40±0.100 42.50±0.100

Kernel
FOGD 2 29.74±0.003 20.21±0.002 4.96±0.004 39.62±0.003 43.29±0.001 41.91±0.004

NOGD 2 34.87±0.003 20.45±0.001 10.45±0.001 41.47±0.002 44.55±0.004 43.57±0.003

DNNs

OGD (Online BP) 2 29.38±0.039 20.29±0.004 1.98±0.018 39.73±0.030 41.51±0.047 37.23±0.021

OGD (Online BP) 3 27.25±0.017 20.15±0.010 1.93±0.017 39.30±0.019 41.12±0.022 37.09±0.037

OGD (Online BP) 4 26.88±0.044 20.14±0.016 1.93±0.047 39.19±0.043 41.13±0.036 37.05±0.033

OGD (Online BP) 8 26.79±0.046 20.17±0.004 3.19±1.997 39.41±0.018 41.42±0.025 37.33±0.074

OGD (Online BP) 16 27.43±0.169 20.39±0.029 2.22±0.064 40.90±1.499 43.14±1.353 38.38±0.223

OGD (Online BP) 20 29.27±0.655 20.61±0.063 2.62±0.074 46.37±2.529 48.37±1.823 48.69±0.000

OGD+Momentum 20 27.13±0.086 20.09±0.008 2.80±0.139 39.69±0.186 42.83±0.719 38.39±1.002

OGD+Nesterov 20 26.94±0.058 20.08±0.018 2.75±0.147 39.94±0.185 43.23±0.648 39.43±4.297

Highway 20 27.94±0.544 20.76±0.520 2.79±0.263 46.92±0.877 49.28±0.000 46.03±2.926

HBP (proposed) 20 26.18±0.030 20.03±0.005 1.56±0.020 38.96±0.047 40.82±0.033 36.72±0.047

Table 4: Final Online Cumulative Error Rate (%) obtained by the algorithms (± indicates standard deviation). Best performance is in bold.
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(c) Inf-MNIST (i-mnist)
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(e) Concept Drift 1 (CD1)
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(f) Concept Drift 2 (CD2)

Figure 3: Convergence behavior of DNNs in Online Setting on stationary and concept drifting data.
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Figure 4: Evolution of weight distribution of the classifiers over time using HBP on HIGGS dataset.
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