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Abstract: Considering real-time requests and multiple truck–drone delivery modes, we propose an
online delivery problem using a truck and some drones, which form a hybrid truck–drone delivery
collaboration system comprising independent and truck-carried drones. Considering this problem, we
focus on how to schedule the vehicles to serve real-time requests, with the objective of minimizing the
time of the latest vehicle’s return to the delivery station. First, we proved the lower bound of this problem
to be 1.5. Second, we designed an online re-planning algorithm and proved its competitive ratio to be
2.5. As the online re-planning algorithm invokes an offline algorithm, an offline model was established,
and an offline drone priority algorithm was designed. Then, we verified the effectiveness of the offline
algorithm by comparing it with the CPLEX solution, and the stability of the online re-planning algorithm
with different input parameters was studied through MATLAB simulation. Finally, the minimal latest
time saving was calculated by comparing the hybrid truck–drone collaboration system with a truck-only
delivery system. This research provides theoretical support for addressing the hybrid truck–drone
delivery problem.

Keywords: hybrid truck–drone delivery; online algorithm; competitive analysis; vehicle routing problem

1. Introduction

Drones have recently been used in many fields due to their various capabilities and high
potential, including logistics delivery. In this field, drones are combined with trucks to deliver
goods, especially expensive and emergency goods. For example, during the multi-point
outbreak of the coronavirus disease 2019 (COVID-19), this modality was utilized to ease the
inconvenience of medical emergency delivery caused by regional control. On 29 April 2022,
Jinshan Hospital of Fudan University used a drone and a truck to deliver emergency medical
supplies to the Shanghai High-Tech Zone. First, the supplies were delivered to the lawn in
front of an enterprise using a drone. Later, a volunteer drove to the enterprise without contact.
General freight delivery is also a practical application area for this technology. Siroop has
developed a pilot project for e-commerce delivery by drones using vans. In this project, the
drone uses the roof of the delivery truck as a landing platform [1]. As of 18 November 2021,
Zipline started working on drone delivery with Walmart in Pea Ridge, AR. Not only does this
allow for delivery in one hour, it also reduces carbon emissions [2]. On 13 June 2022, Amazon
announced that it would use Prime drones to deliver goods in the county of California. The
Federal Aviation Administration (FAA) predicted the sales of drones for commercial purposes
to grow from 277,386 in 2018 to 835,211 by 2023 [3]. Therefore, the participation of drones in
last-mile delivery has become a popular trend.

Traffic control can be eased through a hybrid truck–drone collaboration delivery
system, using independent and truck-carried drones. Most scholars have focused on the
study of truck–drone collaboration delivery under the condition that all request information
is known [4]. However, in a real scenario, an online server only knows the request after
it is released, such as is the case for the Zipline or Sircoop delivery services. A real-time
request is a key factor in emergency delivery or instant commerce gratification. Considering
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real-time requests, this problem can be considered an online delivery problem for hybrid
truck–drone delivery systems with independent and truck-carried drones.

In a hybrid truck–drone collaboration delivery system, a truck carries a drone, and
some drones simultaneously and independently fly between the delivery station and the
customer location for delivery, as shown in Figure 1c. Parallel delivery indicates that some
drones and a truck fulfill requests independently and simultaneously, as shown in Figure 1a;
while synergistic delivery denotes that a truck carries a drone for simultaneous delivery, as
shown in Figure 1b.

Figure 1. The truck–drone delivery modes of (a) parallel, (b) synergistic, and (c) hybrid collaboration.

Therefore, the considered problem has the characteristics of both the truck–drone
collaboration delivery problem and the online multi-vehicle delivery problem. Compared
with the truck–drone collaboration delivery problem, the requests are made in real time.
Compared with the online multi-vehicle delivery problem, we need to consider the synergy
between the truck and drone, including factors such as the drone’s limited service scope
and high speed.

In analyzing the actual operation in truck–drone collaboration delivery, there are two
key characteristics: (1) Multiple truck–drone delivery modes are used at the same time
to improve efficiency. Thus, we study the hybrid truck–drone collaboration system in
combination with parallel and synergistic delivery modes; and (2) requests are released in
real-time. Thus, we study the online delivery problem for real-time requests.

To adapt to the characteristics of online requests in real delivery scenes and to comple-
ment the deficiency of current hybrid delivery system research, the online delivery problem
for the hybrid truck–drone collaboration system (HTDCS) is proposed and studied.

This problem can be effectively solved using an online analysis method. First, a review
of the related research is presented in Section 2. The online problem description and basic
definitions are given in Section 3.1. We also study the corresponding offline problem and
formulate an offline model as a supplement to the online algorithm in Section 3.2. Then,
we propose an online re-planning (RP) algorithm and prove the lower bound of the online
problem, in Section 4. We also prove the competitive ratio of the online RP algorithm
in Section 5. Considering that the online RP algorithm invokes an offline algorithm, we
detail the design of an offline drone priority algorithm and verify the effectiveness of the
offline algorithm in comparison with the CPLEX solution results in Section 6. The stability
of the online RP algorithm under various input parameters is studied through MATLAB
simulation in Section 7. Finally, we calculate the minimal latest time saving and compare
the hybrid truck–drone collaboration system with a truck-only delivery system in Section 8.

2. Related Literature

In this section, we summarize the related research on hybrid truck–drone collaboration
systems, scheduling problems, and online delivery problems.

In terms of theoretical research, Sung et al. [4] have examined either truck-carried
drones or parallel drones collaborating with a truck delivery system. The related research
has gradually increased in recent years, but most of the research has focused on a single
delivery mode. However, in real scenes, multiple delivery modes can be used at the same
time to improve efficiency, which needs to be further studied.
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Regarding research on the HTDCS, Wang et al. [5] first proposed a collaborative de-
livery system combining two delivery modes, in which trucks and truck-carried drones
were used to serve long-distance requests, while some trucks separately served the remain-
ing requests. Wang and Lan [6] have proposed a hybrid truck–drone delivery (HTDD)
model and studied a combination of the synergistic and parallel delivery modes for a
truck and drone. On the basis of the HTDD model, Schermer et al. [7] have proposed the
drone-assisted traveling salesman problem with a robot station (TSP-D-RS) model, which
added a robot station. Yu et al. [8] have presented a van-based robot hybrid pickup and
delivery problem considering the HTDCS case. Rave et al. [9] have added a micro-depot in
HTDCS, in which drones are delivered between the request locations and the micro-depot.
Kloster et al. [10] have proposed a multiple traveling salesman problem with drone stations
and made general contributions to this problem. However, all of them were established for
the case in which the information was complete. In addition, Sung et al. [4] have indicated
that uncertainty is a meaningful factor to consider. Troudi et al. [11] have discussed some
realistic factors in the drone delivery problem, such as the size of the drone fleet and battery
charging. In the real scene, the server only knows the request information released at the
current time but not future request information. Therefore, it is of practical significance to
study the corresponding online problem and algorithm.

Regarding the research on scheduling problems, Tang et al. [12] have studied the
continuous berth allocation and quay crane assignment problem. Fanjul-Peyro et al. [13]
have proposed a mixed-integer linear program and a mathematical programming-based
algorithm for an unrelated parallel machine scheduling problem. VRPD (vehicle routing
problem with drones) can also be regarded as a scheduling problem. Wang and Sheu [14]
have constructed a mixed-integer programming model, and proposed a branch-and-price
algorithm to solve the VRPD. They made outstanding contributions to this field but, again,
did not take into account the hybrid truck–drone collaboration system.

Regarding research on the online delivery problem, Ausiello et al. [15] have used
online analysis to study the traveling salesman problem. Yu et al. [16] have studied the
online nomadic traveling salesman problem, and proved its lower bound. Wen et al. [17]
have studied the online traveling salesman problem with service selection and time window
and proved the competitive ratio of their designed online algorithm. Jaillet and Wagner [18]
have shown that the use of more predictive information could improve the competitive
ratio. Ascheuer et al. [19] have proved that the competitive ratio of the plan-at-home
algorithm for online dial-a-ride problem was 2.5. Dai et al. [20] have shown that the
competitive ratio for online nomadic multi-vehicle scheduling problem was 3.5. Different
from the normal online multi-truck delivery problem, the problem researched here also
requires consideration of the synergy between drones and trucks, as well as coordination
between the parallel and synergistic delivery modes.

In the following section, we formulate the problem and provide an example.

3. Problem Statement
3.1. Assumptions and Notations for the Online and Offline Delivery Problem of HTDCS

Suppose there is an emergency delivery station to serve the requests released in the
area under its jurisdiction using the HTDCS. Requests involve the same goods, are released
in real-time (sequentially), and cannot be rejected or split. Each request’s demand is one
unit. The related parameters of the used vehicles are given in Table 1, and the relevant
notation and variables used in this paper are defined in Table 2.

Table 1. Parameters of delivery vehicles.

Vehicle Number Payload Speed Service Radius

Truck 1 infinite 1 infinite
Drone Ndrone(Ndrone ≥ 2) 1 k(k > 1) s
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Table 2. Related notation and variables.

Set Definition

R Set of all requests released

R′ Set of the sequence numbers in R and origin,
R′ = {0, 1, 2, . . . , n}

I Set of the sequence numbers of finite request points or truck stops, i ∈I

U Service time set of the unserved requests for online server at time tn,
U = {u1, u2, . . . , un}

W Service time set of the unserved requests for offline server,
W = {w1, w2, . . . , wn}

H The number of used drones, H = {1, 2, . . . , Ndrone}

σ
Request sequence of truck carrying drone B according to

the online RP algorithm, σ ∈ R

ϑ Service sequence of drone A for online server, ϑ ∈ R
Parameter Description

s Drone service radius

k Ratio of drone speed to truck speed

Ndrone Total number of drones (an integer greater than 2)

ω Truck delivery distance for online server

δ An arbitrarily small positive number

ui
Service time of the ith unserved request assigned to drone A

for the online server at time tn, i ∈ R′/0

wi
Service time of the ith unserved request assigned to drone A

for the offline server, i ∈ R′/0

ri = (ti, xi, yi)
the ith request, ri ∈ R; ti denotes release time,

xi denotes X coordinate, yi denotes Y coordinate

Pv(ti) Position of the truck at time ti

L∗(0, o, R) Time taken for the offline server to serve all the requests in R
starting from the origin at time 0

d{o, Pv(ti)}
Euclidean distance between the position of the truck

at time ti and the origin

T(o, rn) Return time from the coordinate of rn

f ′i Time when drone B is at point i

dij Euclidean distance between points i and j, i, j ∈ R′

varrive
i Time when the truck arrives at point i

vdepart
i Time when the truck departs from point i

Td Latest time when drone A returns to the origin

Tf s Latest time when the truck or drone B returns to the origin

T
Latest time when either truck or drone returns to

the origin, T = max
{

Td, Tf s

}
COPT(R) Optimal completion time

Conline(R) Completion time needed by the online algorithm

Decision Variable Description

hi
If drone A serves request i, then hi = 1;

otherwise, hi = 0, i∈R

zij
If the truck moves from point i to point j, then zij = 1;

otherwise, zij = 0, i, j∈R′

xij
If drone B takes off from point i to serve point j, then xij = 1;

otherwise, xij = 0, i, j∈R′

yjp
If drone B lands at point p after serving point j, then yjp = 1;

otherwise, yjp = 0, j, p∈R′
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All related parameters used in the pseudocode in this paper are detailed in Table 3.

Table 3. Parameters used in the pseudocode.

Parameter Definition

R Set of requests
| R | Total number of elements in R

rv The vth request in R
coordinate(v) The vth request’s coordinate

s Service radius of the drone
newcenter Set of cluster center coordinates after k-means clustering

a Cell set of newcenter
ci The ith element in the set newcenter

Mu Coordinate according to the mean value of the uth element in a
DF Set of the squares of differences between rv and Mu

Ssemeanx Set of sequence numbers according to | R |
Ssemeany Set of mean values according to DF

SY Set of requests served by synergistic delivery mode
DA Set of requests served by drone A
DB Set of requests served by drone B
DT Set of requests served by truck
Tf The latest time when the truck or drone B returns to the origin
Td The latest time when drone A returns to the origin

T The latest time when either the truck or drone returns to the origin,
T = max

{
Td, Tf

}

It is assumed that some of the drones, such as the parallel drones (drone A), provide
services between the delivery station and the request locations and that the truck carries
another drone (drone B) to serve the requests. The truck can only carry one drone. All the
drone parameters are the same. We assume that the drones can be charged at the delivery
station and truck and that the drones are fully charged when they start to deliver. The
truck can still serve along the path after the drone takes off. Drone B can land at the request
and truck location when it takes off. Once the truck and drone B start to deliver, they do
not need to return to the delivery station to pick up goods and only need to return to the
delivery station after serving all the requests. We study how to arrange the vehicles to
optimally serve real-time requests, with the objective of minimizing the time of the latest
vehicle returning to the delivery station.

In the example shown in Figure 2, there are some drones and one truck that serve
existing requests. When two new requests are released at the same time, the original
request allocation and vehicle routing should be re-planned, as shown in Figure 2b. In
Figure 2b, request R6 will be delivered by drone B, and the delivery path of the truck is
changed. Through optimization, the efficiency and reasonableness of the delivery system
can be improved.

Figure 2. Example of the online delivery problem for HTDCS of the (a) before new requests are
released and (b) after new requests are released.



Sustainability 2023, 15, 1584 6 of 15

Competitive analysis, considering the worst-case scenario, is a popular way to measure
the performance of an online algorithm; it involves a game process between an online
server and an offline server. During the game, the offline server releases requests, which
will benefit the offline server as much as possible and not the online server. Thus, the
offline server knows all the requests at time 0, while the online server does not; meanwhile,
the offline server can take actions at time 0, while the online server cannot. For the same
input sequence θ, the online server adopts the β algorithm to serve θ, and the solution is
Conline(θ). The offline server adopts the optimal algorithm to serve the same input sequence
θ, and the solution is COPT(θ). For every input sequence θ, there are constants ρ and γ such
that Conline(θ) ≤ ρ ∗ COPT(θ) + γ holds; thus, the competitive ratio of the online algorithm
β is ρ. For any online algorithm, if it is not possible to get less than the competitive ratio, ρ0,
this ratio is called the lower bound of the problem. The closer the value of ρ to 1, the better
the performance of the algorithm.

3.2. Offline Model Formulation

We also study the corresponding offline problem as a supplement to the online algo-
rithm. We built a model based on a symmetric network assuming that 0 is the delivery
station sequence number. The related notations are given in Table 2.

minT = max
{

Td, Tf s,
}

(1)

St.Td ≥ ti + ∑
j≥i

hj ∗ 2d0j/k, ∀i ∈ R′, (2)

Tf s ≥ vdepart
i + d0i, ∀i ∈ R′, (3)

H ≤ Ndrone, (4)

∑
j∈R′

xji + ∑
j∈R′

zij + hi = 1, ∀i ∈ R′, (5)

∑
j∈R′

z0j = ∑
i∈R′

zi0 = 1, (6)

ui − uj + nzij ≤ n− 1, 1 ≤ i 6= j ≤ n, (7)

∑
i∈R′ ,i 6=j

zij = ∑
p∈R′ ,p 6=j

zjp, ∀j ∈ R′, (8)

∑
j∈R′ ,j 6=i

xij ≤ ∑
h∈R′ ,h 6=i

zhi, ∀i ∈ R′, (9)

∑
j∈R′ ,j 6=p

yjp ≤ ∑
l∈R′ ,p 6=l

zlp, ∀p ∈ R′, (10)

∑
i∈R′ ,i 6=j

xij = ∑
p∈R′ ,p 6=j

yjp, ∀j ∈ R′, (11)

varrive
i ≤ f ′j + M

(
1− xij

)
− dij/k, ∀i, j ∈ R′, (12)

vdepart
i ≥ f ′j + M

(
1− yji

)
+ dji/k, ∀i, j ∈ R′, (13)

yjp ≤ M ∗max
{

0, s− djp
}

, ∀j, p ∈ R′, p 6= j, (14)

xij ≤ M ∗max
{

0, s− dij
}

, ∀i, j ∈ R′, j 6= i, (15)

vdepart
i ≥ ti, ∀i ∈ R′, (16)

xij, yjp, zij, hi ∈ {0, 1}, ∀i, j, p ∈ R′. (17)

The objective function (1) seeks to obtain the minimum latest time T when the vehicle
returns to the origin. Constraint (2) expresses the minimum latest time when drone A
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returns to the origin. Constraint (3) indicates the minimum latest time when the truck or
drone B returns to the origin. Constraint (4) ensures that the number of used drones is less
than or equal to the total number of drones. Constraint (5) ensures that each request can
only be served once. Constraint (6) describes that the truck must return to the origin after
departing from it. Constraint (7) is used to eliminate sub-tours for each truck. Constraint (8)
ensures the flow conservation of delivery trucks. Constraints (9) and (10) ensure that, if
drone B takes off from point i and lands at point p, then the truck must pass through points
i, p. Constraint (11) indicates that drone B takes off from point i, serves point j, and lands at
point p. Constraint (12) specifies that the truck must have arrived at point i if drone B takes
off from the point i. Constraint (13) ensures that the truck is at point i when drone B lands at
point i. Constraints (14) and (15) ensure that the flying distance of drone B shall not exceed
its service scope. Constraint (16) guarantees that requests are served after release. Finally,
Constraint (17) specifies related decision variable definitions.

4. Algorithm and the Lower Bound of the Online Problem

In this section, we detail the design of an online RP algorithm based on the plan-at-
home idea for the problem. We also prove the lower bound of the problem for any online
algorithm. The related notation is given in Tables 2 and 3. Compared with the classical
plan-at-home algorithm [15], the online RP algorithm does not include the origin into the
former truck request set when a new request is released, which can decrease the minimum
latest time for the truck carrying drone B. Suppose that there exists a corresponding offline
algorithm that can obtain an optimal solution for any input.

Online RP algorithm: The online server allocates all current requests according to the
offline algorithm when a new request is released in order to form the new service sequences
for the vehicles. If drone A is not at the delivery station, the nearest drone A to the delivery
station will fly back to prepare for serving, even if it is on the way to serve other requests.
If there are unserved requests in the new sequence of the truck and/or drone B, the truck
and drone B will continue or start to serve from the current position. The pseudocode for
the online RP algorithm is given in Algorithm 1:

Algorithm 1 Pseudocode for the online RP algorithm.
Input: R, | R |
Output: T

1: for | R |= 1 : n do
2: Identify all current requests and related information, according to R and | R |
3: Invoke the offline algorithm to allocate all current requests and obtain SY and DA
4: for each request in DA and SY do
5: if the request is served then
6: remove it from the set of DA or SY
7: end if
8: end for
9: if there is any unserved request in DA then

10: if there is a drone A located at the delivery station then
11: This drone A starts to serve the unserved request
12: else
13: Drone A which is closest to the delivery station will return to the delivery station and start to serve

unserved requests
14: end if
15: end if
16: if there is any unserved request in SY then
17: Truck and drone B will start to serve unserved requests from their current position
18: end if
19: Record the latest time when drone A returns to the delivery station as Td
20: Record the latest time when truck or drone B returns to the delivery station as Tf s

21: end for
22: Calculate the latest time T when either truck or drone returns to the delivery station, according to

T = max
{

Td, Tf s
}
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Next, we prove the lower bound of the problem for any online algorithm (related
notation are provided in Table 2).

Theorem 1. The lower bound for the online delivery problem of a hybrid truck–drone collaboration
system with independent and truck-carried drones is 1.5.

Proof of Theorem 1. Take a straight line as an example without loss of generality. We
assume that there is a farthest request (ti, | y |, 0), where | y |>| s |. The request r1 =
(s/k− δ, s, 0) is released at time s/k− δ, where δ is an arbitrarily small positive number.
As r1 is located within the service scope of the drone, the online server can use either a
drone or a truck for service. Let t denote the time when the online server starts serving
request r1. Consider the following two cases:

Case 1 (t < s/k). If the online truck is located at −ε at time y (ε ≥ 0, | y |≥| ε |), the
offline server releases request r2 = (y, y, 0) (y > s/k). For the same reason, if the online
truck is located at ε at time y, the offline server will release request r2 = (y,−y, 0). As
| y |>| s |, the request is beyond the service scope of the drone. Therefore, the online server
must use a truck or a truck carrying a drone to serve request r2. For the offline server, if
the request is r2 = (y, y, 0), drones cannot serve the request, and the truck moves along
the positive half-axis from time 0. If the request is r2 = (y,−y, 0), the truck starts to serve
along the negative half-axis, and a drone moves along the positive half-axis from time 0.
We have Conline ≥ max{3y + ε, (3s)/k− δ} = 3y + ε and COPT = 2y; therefore, we obtain
ρ = Conline/COPT ≥ (3y + ε)/(2y) ≥ (3y)/(2y). Thus, in case 1, ρ ≥ 1.5.

Case 2 (t ≥ s/k). No new requests are released. The offline drone moves along the
positive half-axis from time 0. The online drone has to move after it is released. Thus,
COPT = 2s/k and Conline ≥ 3s/k− δ, and we obtain ρ = Conline/COPT ≥ (3s/k− δ)/(2s/k).
Thus, in case 2, when δ→ 0, ρ ≥ 1.5.

Therefore, the lower bound of the competitive ratio for the problem on the line is 1.5,
and the proof is completed.

Theorem 1 shows that the lower bound for the competitive ratio of the time needed by
any online algorithm to the optimal time needed by an offline algorithm is no less than 1.5
for the considered problem.

5. Competitive Analysis

In this section, we measure the performance of the online RP algorithm and prove the
upper bound of the algorithm to be 2.5. We study the characteristics of the problem and the
online RP algorithm (see Lemmas 1 and 2) in order to obtain the competitive ratio for the
online RP algorithm (see Theorem 2).

Lemma 1. For any rn ∈ R, the inequality L∗(tn, Pv(tn), σ) ≤ L∗(0, o, σ) + max
i∈σ
{d{o, Pv(ti)}}

holds.

Proof of Lemma 1. When the new request rn = (tn, xn, yn) is released, the service time
for the truck carrying drone B is L∗(tn, Pv(tn), σ). d{o, Pv(ti)} denotes the Euclidean dis-
tance between the truck’s position and the origin at time ti. The truck’s farthest position
is the farthest request position, from which it is easy to determine that d{o, Pv(tn)} ≤
max
i∈σ
{d{o, Pv(ti)}}. The total time when the truck carrying drone B serves the request

sequence from its current position is no greater than the total time when it returns to
the origin and then goes to serve the same request sequence. Thus, L∗(tn, Pv(tn), σ) ≤
L∗(tn + d{o, Pv(tn)}, o, σ) + d{o, Pv(tn)}. According to d{o, Pv(tn)} ≤ max

i∈σ
{d{o, Pv(ti)}},

we have L∗(tn, Pv(tn), σ) ≤ L∗
(

tn + max
i∈σ
{d{o, Pv(ti)}}, o, σ

)
+ max

i∈σ
{d{o, Pv(ti)}}. The

later the online server gives the order to leave, the more request information the on-
line server possesses, improving the allocation result obtained by the online server. As
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such, L∗
(

tn + max
i∈σ
{d{o, Pv(ti)}}, o, σ

)
≤ L∗(0, o, σ). Thus, we have L∗(tn, Pv(tn), σ) ≤

L∗(0, o, σ) + max
i∈σ
{d{o, Pv(ti)}}. The proof is completed.

Lemma 2. For any rn ∈ R satisfying d0n≤ S, the inequality COPT ≥ max{L∗(0, o, R), tn + d0n/k}
holds.

Proof of Lemma 2. When d0n≤ S, the new request is added to the request sequence of
drone A, the truck, or drone B. The request cannot be served until it is released and so, for
the last service request rn = (tn, xn, yn), the inequality COPT ≥ tn + T(o, rn) holds. For any
rn ∈ R, we suppose that the truck delivery distance is ω. When the truck carries a drone
to serve, the delivery distance of drone B is d0n−ω, and the speed of the drone is k(k > 1).
Therefore, the inequality T(o, rn) = ω + {d0n −ω}/k ≥ d0n/k holds. Due to the possibility
that all requests may be delivered by drone A only, ω = 0 and COPT ≥ tn + d0n/k. Thus,
we have COPT ≥ max{L∗(0, o, R), tn + d0n/k}. The proof is completed.

In the following analysis, we focus on the worst case, as the competitive ratio is the
upper bound of the online RP algorithm. Furthermore, we consider the metric space to be
the real line.

Theorem 2. For the online delivery problem, the competitive ratio of the proposed online RP
algorithm is 2.5.

Proof of Theorem 2. Suppose that a new request rn = (tn, xn, yn) is released. The worst
case is that drone A, the truck, and drone B all have unserved requests at time tn. For
the online server, we suppose that U = {u1, u2, . . . , un} is the service duration set of
unserved requests for drone A at time tn − δ, where δ is an arbitrarily small positive
number. For the offline server, we assume that W = {w1, w2, . . . , wn} is a service du-
ration set of unserved requests for drone A. As the offline algorithm is invoked, for
the same input, the offline and online servers have the same arrangement at time tn,
such that U ⊆ W. At this time, we have Td ≤ tn + ∑ri∈ϑ ui + {2d0n}/k, ui ∈ U. Ac-
cording to Lemma 2, we know that tn + d0n/k ≤ COPT(R). As COPT(R) ≥ ∑n

i=1 wi ≥
∑ri∈ϑ ui, d0n/k ≤ 1

2 COPT(R), there exists Td ≤ 2.5COPT(R). At this time, we know that
Tf s ≤ tn + L∗(tn, Pv(tn), σ). According to Lemma 1, we know that Tf s ≤ tn + L∗(0, o, σ) +

max
i∈σ
{d{o, Pv(ti)}}. As max

i∈σ
{d{o, Pv(ti)}} ≤ 1

2 COPT(R), we can obtain Tf s ≤ 2.5COPT(R).

Thus, we have Conline(R) ≤ 2.5COPT(R).

In summary, the upper bound of the online RP algorithm for the problem is 2.5, and
the proof is completed.

We also compared our research with the existing literature, as detailed in Table 4. We
obtained a smaller gap between the lower bound and competitive ratio compared with
Dai et al. [20]. Due to the different assumptions, our results can be seen as complementary
to the studies of Dai et al. [20] and Ausiello et al. [15].
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Table 4. Comparison of competitive ratio results.

Research Difference Lower Bound Competitive Ratio

Ausiello et al. [15]

Homing
Single vehicle

No time window 2− ε, ∀ε ≥ 0 2
Traveling salesman problem

Ascheuer et al. [19]

Homing
Single vehicle

No time window 2 2.5
Dial-a-ride problem

Dai et al. [20]

Nomadic
Multiple vehicles

Time window 2 3.5
Vehicle routing problem

This work

Homing
Truck and drones
No time window 1.5 2.5

Vehicle routing problem

6. Offline Algorithm and Simulation Study

Notice that the online RP algorithm invokes an offline algorithm, while the corresponding
offline problem is NP-hard. Therefore, we designed an offline drone priority algorithm for
the offline model described in Section 3.2, and analyzed its time complexity and verified
its effectiveness.

6.1. Offline Algorithm

In this section, we describe a heuristic algorithm to solve the corresponding offline problem.
Offline drone priority algorithm: Drone A serves all requests within the service scope.

For requests beyond the service scope, through the elbow method, we obtain the optimal
number of clustering centers and clusters through the k-means clustering method. Drone B is
preferentially assigned to serve, compared with the truck. The remaining requests beyond
the service scope of drone B and clustering centers are assigned to the truck. The truck serves
these requests according to the request release time sequence.

We provide the pseudocode of the whole offline drone priority algorithm, in three
parts, in Appendix A. The related parameters involved in the pseudocode are described in
Table 3.

First, we give pseudocode for calculating the optimal clustering center number by the
elbow method in order to prepare for the k-means clustering method, the pseudocode of
which is shown in Algorithm A1. Then, we cluster these requests using the k-means clustering
method and arrange requests, the pseudocode of which is shown in Algorithm A2. Finally, we
provide the pseudocode of the main procedure based on the above two algorithms, as shown in
Algorithm A3.

6.2. Performance Analysis for Offline Drone Priority Algorithm

Furthermore, we analyzed the performance of the offline drone priority algorithm
in terms of time complexity and compared it with the CPLEX solver through small-scale
examples.

Time complexity analysis: The time complexity of the offline drone priority algorithm
is O

(
n3). Assuming the number of requests is n, the time complexity of this algorithm

is mainly determined according to Algorithms A1 and A2. In Algorithm A1, the time
complexity of the k-means algorithm is O

(
n2 + n

)
, the time complexity of calculating

the SSE is O
(
n2), and the time complexity of other codes is constant, such that the time

complexity of this part is O
(
n3). In Algorithm A2, the time complexity is O(k · n + 2n),
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where k ≤ n. Therefore, according to the analyses of Algorithms A1 and A2, the time
complexity of the drone priority algorithm is O

(
n3).

Aiming at the same input, the effectiveness of the offline drone priority algorithm was
analyzed by comparison with the CPLEX solution results. The initial settings were 1 for
the number of trucks, 2 for the number of drones, 5 for the drone service radius, and 50 for
the upper bound of the release time. We generated new instances randomly, considering
these initial settings. In every instance, half of the requests were outside the service scope
of drone A. The comparison results are given in Table 5.

We found that the offline algorithm took a shorter time, and the maximal gap was
3.56%, which is within an acceptable range. When the number of requests reached 100, the
CPLEX duration exceeded the default time limit. In contrast, we verified that the offline
drone priority algorithm still worked when the number of requests increased to 200.

Table 5. Comparison of offline drone priority algorithm and CPLEX solution results.

Request Number Algorithm Result Time (s) CPLEX Result Time (s) Gap

30 60.6301 3.241 60.6301 88.799 0.00%
32 55.0623 3.757 54.6569 108.515 0.74%
34 62.8062 4.402 60.8310 120.073 3.24%
36 62.0416 5.062 62.0416 135.207 0.00%
38 57.6711 5.750 57.6023 142.103 0.11%
40 60.8489 6.601 60.4403 156.527 0.67%
42 58.5440 7.445 58.5440 201.089 0.00%
44 61.8062 8.375 61.8062 238.308 0.00%
46 58.8102 9.501 58.2195 334.681 1.01%
48 58.2195 11.033 56.4721 397.740 3.09%
50 58.0554 12.252 56.0554 428.395 3.56%

100 58.5440 25.375 − 7201.442 −
200 54.4721 142.546 − − −

7. Online Algorithm Simulation Analysis

The coordinates and release times of requests were randomly generated, and the ratio
of online RP algorithm results divided by offline drone priority algorithm results was
calculated in order to measure the stability of the online RP algorithm. All computational
work was conducted on a Macbook Air desktop with an Apple M1 processor and 8 GB
RAM, using MATLAB 2018a software.

Based on a symmetric network, we used the Euclidean distance as a calculation
standard. The initial settings were as follows: Number of requests, 20; drone to truck speed
ratio, 2; ratio of network radius to drone service radius, 2; and upper bound of release time,
50. For the same input, the online RP algorithm and offline drone priority algorithm were
independently tested 50 times, and the results were averaged, as shown in Table 6. As the
online RP algorithm competitive ratio obtained in Section 5 was based on the worst case,
and the input parameters do not necessarily reflect the worst case, it is reasonable that the
actual ratio obtained was less than the competitive ratio.

The higher the ratio, the worse the result. According to the simulation, we came to the
following conclusions:

(1) With changes in all kinds of parameters, the ratios were far below the competitive
ratio of the online RP algorithm. We concluded that the online algorithm is effective
and steady in realistic scenarios.

(2) We observed some correlations between the parameters and the performance of the
online RP algorithm. In particular, the performance of the online RP algorithm was
negatively correlated with the number of requests and positively correlated with the
upper bound of the release time.

(3) In real scenarios, we advise not to select the drone type with flight radius close to half
of the network radius; instead, it is better to select a drone with a larger flight radius.
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In addition, better performance can be obtained in scenarios with fewer request points
and more concentrated request generation time.

Table 6. Simulation results.

Parameter Value MRPAR 1 MDPAR 2 Ratio

Request number

20 84.951446 62.117312 1.377449153
40 161.918002 107.029284 1.532552400
60 238.211708 156.728344 1.563810532
80 319.624538 206.740620 1.565059287

100 389.227470 237.722238 1.652084789

Drone to truck 1.25 86.614150 64.196994 1.356576443
1.5 86.075648 62.864068 1.376177388

speed ratio 2 87.834754 64.728844 1.371517126
2.25 85.221996 62.725790 1.364440938

Upper bound of the 50 86.396640 60.639298 1.426099299
100 106.519612 103.960546 1.025561585

release time 150 151.800832 149.332184 1.016672049

Ratio of network radius 1 57.757144 52.006772 1.112815111
2 88.207810 62.945100 1.407709065

to drone service radius 3 118.065572 91.626774 1.296150275
4 154.846792 127.343768 1.227915656

1 Mean of online RP algorithm results; 2 Mean of offline drone priority algorithm results.

8. Comparative Study of HTDCS and Traditional Truck-Only Delivery System

In this section, we compare the minimum latest time between the HTDCS and a
traditional truck-only delivery system using an offline server.

Regarding the input information, we used partial actual data. Workhouse has used a
Horsefly drone collaborating with a Workhorse electric truck to deliver packages in January
2021 [21]. Each drone’s capacity was 10 pounds, their maximum speed was 46 miles per
hour, and the maximum flight time was 25 min. The slow speed of drones is due to FAA
regulations. In fact, Wingcopter has designed a delivery drone that can reach speeds of
150 miles per hour [22]. The FAA rules for commercial drones are expected to tend to
loosen up gradually [23]. In this paper, we assume that the FAA regulations will be relaxed
in the future, so the speed of each drone was set to 100 miles per hour. Each electric truck’s
capacity is 5000 pounds, and speed is 68 miles per hour, and the travel range is 150 miles.
Based on the actual data, we assumed the network radius to be 24 miles (2πr = 150) and
the flight radius to be 9.6 miles ((25/60) × 46/2). Then, we set the ratio of the network
radius to the drone service radius as 2.5 and the drone to truck speed ratio as 1.5 (100/68).

Some input information was generated randomly. We assumed that each request’s
demand was 10 pounds while the release times and locations were randomly generated.
We assume that the number of trucks was 1 and the number of drones was 2. The upper
bound of the release time was 100. In every instance, half of the requests were outside the
service scope of drone A. The minimum latest time was calculated by the offline drone
priority algorithm. For the same input, we compared the minimum latest time with or
without drones, as detailed in Table 7.

From the table, we can see that the gap was zero when the request number was 20.
Then, the gap widens until the request number reaches 60. When the request number is
greater than 60, the gap fluctuates between −30% and −40%. It is obvious that the truck–
drone collaboration delivery system can greatly lower the latest time saving compared
with the truck-only delivery system. For emergency and instant deliveries, improving the
minimum latest time saving can improve customer satisfaction and attract more customers.
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Table 7. Comparison of minimum latest time.

Request Number HTDCS Truck-Only Delivery System Gap (%)

20 101.1598 101.1598 0
40 103.3815 143.5081 −27.96
60 183.2385 264.1488 −30.63
80 186.0301 285.4602 −34.83

100 258.0078 392.4112 −34.25
120 333.8981 502.4427 −33.55
140 362.0530 517.5884 −30.05
160 357.7037 577.5909 −38.07
180 442.0229 694.5653 −36.36
200 489.0484 780.1884 −37.32

9. Conclusions

To meet emergency delivery or commerce instant gratification needs, real-time delivery
is a key factor. In a real scenario, an online server only knows a request after it is released.
Considering the real-time request, in this paper, we propose an online delivery problem for a
hybrid truck–drone collaboration system, including independent and truck-carried drones.
Considering real-time requests to the hybrid truck–drone collaboration delivery system,
the lower bound for this problem was proven to be 1.5 by competitive analysis, while the
worst-case ratio of the online RP algorithm was shown to be 2.5. We also compared our
proposed design with existing approaches in the literature, and we obtained a smaller gap
between the lower bound and competitive ratio. As the online algorithm is based on the
plan-at-home idea, an offline drone priority algorithm was also designed. We constructed
a corresponding offline model and designed a heuristic algorithm. Through comparison
with CPLEX solution results, we found that the proposed offline drone priority algorithm
was faster, and the gap was within a reasonable range. By adjusting input parameters, we
verified the stability of the online RP algorithm and provided some pertinent conclusions.
Finally, we used partial actual data to verify the minimum latest time saving obtained by
the HTDCS, compared with a truck-only delivery system.

This research provides theoretical support for online delivery using an HTDCS. This
better corresponds to realistic scenarios compared with existing approaches. Furthermore,
our results can be seen as providing a complementary view to online delivery problems,
which is necessary for the development of better online algorithms with lower competitive
ratios. In future work, we intend to design a new online algorithm and compare the
associated competitive ratios. Furthermore, the pickup and delivery problem under the
HTDCS is still interesting, which should make full use of the vehicle capacity.
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Appendix A. Pseudocode of Algorithm

Algorithm A1 Pseudocode for calculating the optimal clustering center number.
Input: | R |, Ssemeanx
Output: k

1: for i = 1 : n do
2: Generate request coordinates, according to | R |, then generate a distance matrix D′, according to these

coordinates
3: Calculate newcenter according to the value of i and D′ by k-means clustering method
4: a = cell(size(newcenter, 1), 1)
5: for u = 1 : size(newcenter, 1) do
6: for v = 1 : n do
7: if rv ∈ cu then a{u} = [a{u}; coordinate(v)]
8: endif
9: endfor

10: endfor
11: for u = 1 : size(newcenter, 1) do
12: Calculate the mean value of the uth element in the set a, record it as Mu
13: for v = 1 : n do
14: if rv ∈ a{u} then
15: Calculate corresponding coordinate difference between rv and Mu, record its square as the uth

element in DF
16: endif
17: Sum over all the values in the set DF
18: endfor
19: endfor
20: Ssemeany(i) = mean(DF)
21: endfor
22: Generate discrete points, according to Ssemeany as the Y coordinate and Ssemeanx as the X coordinate
23: Obtain the derivative of these discrete points by Taylor formula, set a threshold, and record the inflection

point as k

Algorithm A2 Pseudocode for clustering and arranging requests.
Input: D, k, s
Output: DA , DB , DT

1: for i = 1 : n do
2: if D(1, i) ≥ s then SY ← ri
3: elseDA ← ri

4: endif
5: endfor
6: Calculate newcenter according to the value of k and D by k-means clustering method
7: Find the request nearest to the center as the truck parking node
8: for i = 1 : n do
9: for j = 1 : k do

10: if ri ∈ cj then
11: Calculate the distance between each request and the parking node
12: if distance > s then DT ← ri
13: elseDB ← ri

14: endif
15: endif
16: endfor
17: endfor
18: for i = 1 : n do
19: if ri /∈ DA ∪ DB then DT ← ri

20: endif
21: endfor

Algorithm A3 Pseudocode for offline drone priority algorithm.
Input: R, s, | R |
Output: DA , DB , DT , Tf , Td , T

1: Generate distance matrix D according to the set R
2: Generate Ssemeanx according to | R |
3: Invoke Algorithm A1
4: Invoke Algorithm A2
5: Calculate Tf , Td , T according to DA , DB , DT
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