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ABSTRACT 

 

 This thesis proposes a neural network based framework to classify online 

Devanagari characters into one of 46 characters in the alphabet set. The uniqueness of 

this work is three-fold: (1) The feature extraction is just the Discrete Cosine Transform of 

the temporal sequence of the character points (utilizing the nature of online data input). 

We show that if it is used right, a simple feature set yielded by the DCT can be very 

reliable for accurate recognition of Devanagari handwriting, (2) The mode of character 

input is through a computer mouse – training the system with which will lead to jitter-

robustness, and (3) We have built the online handwritten database of Devanagari 

characters from scratch, and there are some unique features in the way we have built up 

the database. Lastly, after comprehensive testing of the algorithm on 2760 characters, 

recognition rates of up to 97.2% are achieved.
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CHAPTER I 

INTRODUCTION 

 

Even to this day and age, humanity’s concentrated efforts continue for the perfect 

machine/computer that can emulate the immaculate sensory abilities of the humans that 

have been perfected over centuries of evolutionary trial-and-run mutations. This daunting 

task includes, but is not restricted to, conceiving a machine that is able to sense and 

understand its surrounding like how we humans do and produce some kind of a turnout 

that is useful for us. The most basic of all human communications – writing – happens to 

hold an essential key in bringing about this effect, and any machine, worth its salt, should 

at least be able to recognize basic human writing on a script level, if not its implications 

and nuances. Any undertaking that aims to engender such an intelligent computer that 

recognizes human handwriting comes under the broad purview of what is known as 

handwriting recognition.  

 

1.1 Foundation  

Handwriting recognition comes in two flavors – offline or online – subject to the 

availability of scanned/digitized version of handwriting or handwriting trajectory data, 

respectively. In both cases, the handwriting is analysed, understood, and uniquely 

mapped to a digital representation of the original handwriting – thereby eliminating 

ambiguity and subjectivity for all further machine processing. Online handwriting 

recognition was effectuated by the advent of pen computing devices that consisted of a 

sensor which could track the position as well as the pen-up/pen-down information of a 
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stylus (that mimicked a pen) while it was being used to write on a tablet (that mimicked a 

sheet of paper). The fact that all humans are comfortable and well versed in writing with 

a pen and a paper makes the employment of pen computing devices along with online 

handwriting recognition, a far more justifiable human computer interface, in terms of 

usability and ergonomics alike. This is also proved by the fact that pen based devices 

were conceptualized as early as 1950s and 1960s – around two decades before the mouse 

and other graphical user interfaces came into existence. 

Compared to early 1950s, we now have compact, more powerful and less resource-

consuming tablet PCs and pen-based devices. This has resulted in a renewed interest in 

developing new algorithms that accurately recognize the alphabet set of any given script 

– thus propelling us towards envisioning a future where high performance online 

handwriting recognition is a routine inclusion in the standard feature set of the modern 

day tablet PCs.  

 

1.2 Devanagari, the script 

Devanagari is an ancient Indian script that is used to write languages such as 

Sanskrit, Hindi, Marathi and several others – Hindi being the official language of 1.2 

billion people worldwide. Algorithms that are aimed at providing high recognition rates 

for online Devanagari script recognition will prove beneficial to 17.5% of world’s 

population. Although a lot of work has been reported for online handwriting recognition 

in English and Asian languages such as Japanese and Chinese, there have been very few 

attempts at online Devanagari handwriting recognition. Thus, the need for more efficient 
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online handwriting recognition algorithms and the under-represented status of 

Devanagari script set the premise for the work done under this thesis. 

As part of this partly unprecedented undertaking – the lack of firm precedence thereof 

being set in the details of the methodologies adopted to cater to various steps involved – 

several well-known concepts, formulations, and tools are brought together, keeping 

abreast with the subtle geometrical evolution of the Devanagari script. While the major 

components of the complete development cycle that defines present day online 

handwriting recognition are retained to a large extent, the techniques and tools that go 

into the workings of each of these components are carefully picked to result in the 

minimum resource consumption while not having to compromise on the final character 

classification accuracy. The salient point in this framework pivots around the fact that a 

fairly simple feature set has been effectively put to use in that the essence of the 

geometric distinction between characters (in a 46-alphabet-strong set) is captured 

remarkably well, before being fed to the final classification stage – which itself is laid out 

elegantly along with classifier ranking and fusing techniques, leading to a higher 

recognition rate than seen ever before. 

 

1.3 Outline of the thesis 

The thesis is organised according to a logical structure and flow in such a way as to best 

present the different aspects of the research conducted. Chapter 2 contains certain 

preliminaries that a reader needs to get acquainted with in order to better understand the 

work. Chapter 3 focuses on the history of handwriting recognition and also contains the 
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literature survey conducted as part of this research. Chapter 4 on design and methodology 

provides the reader with a clear picture of how existing tools are intelligently used, 

combined and modified in a sequence of rigorous steps to solve the research problem 

defined in the scope of this master’s thesis. The results of each of the step detailed in 

chapter 4 are then presented in a logical and pictorial form in chapter 5. The conclusions 

that could be drawn based on these results and the possibilities and ideas for future 

research in this area are discussed in chapter 6. 
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CHAPTER II 

PRELIMINARIES 

 

2.1 Devanagari Script 

Devanagari is an Indian, syllabic alphabetic type of  script that is used to write 

several languages like Sanskrit, Hindi, Marathi, Bhojpuri, Nepali, Konkani, Sindhi, 

Marwari, Pali, Maithli and many languages that are spoken in various parts of India. The 

word “Devanagari” is a combination of two words – “deva” which means God and 

“nagari” which means urban establishment. Put together, these words mean “Script of the 

Gods” or “Script of the urban establishment” [1].  

Some salient features of this script [2]: 

1. The script is written from left to right and after the completion of each word; a 

horizontal line is placed on top. 

2. Each letter represents a consonant with an inherent schwa vowel a [əә] which 

can be killed by a diacritic or matra. 

3. Vowels can occur independently or in conjunction with diacritics. 

4. In contemporary Devanagari script, there are 13 vowels and 33 consonants. 

(See Fig. 2.1 and Fig. 2.2) 
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Fig. 2.1: 13 Vowels of the contemporary Devanagari script 

 

 

Fig. 2.2: Consonants of the contemporary Devanagari script 
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2.2 Smoothing and Filtering 

Smoothing is the process that involves removing noise from a data set by 

averaging the data points with their neighbours. Smoothing and filtering are two terms 

that are used interchangeably, since smoothing brings about a filtering effect by reducing 

the high frequencies in the data and strengthening the low frequency content of the data 

set. 

Before we go deeper into the processes and techniques employed in modern 

systems (that process live signals or stored data), it would be appropriate to induce to the 

lay reader some sense of the nature of the very problem dealt to the processing system – 

which in this case for a recognition system is the presence of unwanted randomness in 

data points, which lumped together are termed “noise”. Stemming from the more 

common usage of the word noise in the scenario of auditory perception, one might be 

compelled to draw the analogy (much rightly in this case however) of the hampering 

caused by the unexplained disturbances to the audibility of the more important pieces of 

sounds, which could range anywhere from important conversation, a lecture, all the way 

up to music and just about anything that is generated for a purpose, and not by a flicker of 

randomness. 

Now, the conceptual similarity of noise in the realms of any statistical data is not 

different at all. It is the same random variation caused amongst the data which makes it 

extremely hard to tell the portion of data that was meant to exist in the record – which 

could be a 2D capture (image) or a raster of coordinates – from the randomly added data 

points by a process of variation that can have only a statistical existence and never a 
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rational one. It is this feature that is thoroughly undesirable, leading to all the data 

muffling, and has to be removed before any processing can take place – just to ensure 

that the effort of the processing system works on the right data (that is meant to be 

processed in the first place) and not on the muffled sections. 

A very logical way of dealing with these statistical variations in the data points is 

to get rid of all conspicuous peaks and dents in the smooth flow of the data, by averaging 

each data point with its neighbouring points and replacing the data point with this 

average, where the number of neighbouring points is defined by a term called “span”. 

This definition of the moving average filter ensures that the response of the smoothing is 

equivalent to a low pass filter and it can be described by the difference equation [3] 

X smoothed (i) = (2N+1)
-1

*[x (i+N) + x (i+N-1) + … + x (i) + …... + x (i-N)]   …. 

(2.1) 

Where, X smoothed (i) is the smoothed value that replaces the i
th

 data point x (i) and 

(2N+1) is the length of the span (Lspan). There are rules that need to be followed 

while applying the moving average filter. 

1. The length of span (2N+1) should be an odd number to make sure there are an 

equal number of points (N) on either side of the data point to be smoothed. 

2. The span is adjusted for the points that cannot accommodate the specified 

number of points on either side. These are the few initial and end points of the 

data set and the span for these points is adjusted using the formula, 
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New Lspan = 2 (min (N,a,b)) + 1                                 

…..(2.2) 

Where, a is the number of points on the left side of the data points and b is the 

number of points on the right side of the data points. 

3. The end points are not smoothed as the length of span cannot be defined for 

these points. 

 

2.3 Discrete Cosine Transform (DCT) 

The Discrete Cosine Transform (DCT) is a transform that represents any signal as 

a summation of cosines that oscillate at different frequencies. The algorithm for DCT was 

developed by N. Ahmed et. al [4] and was posed as solutions to the problems of 

dimensionality reduction in pattern recognition and Wiener filtering, the two most 

popular areas that are catered to by a class of orthogonal transforms such as Discrete 

Fourier Transform (DFT), Haar Transform, Karhunen-Loeve transform (KLT) and the 

Slant Transform (ST).  

In the area of machine learning or pattern recognition, the dimensionality of the 

data needs to be reduced. The orthogonal transforms provide a method of transforming 

the data in pattern space to a space with reduced dimensionality which is known as the 

feature space of the transform. These transforms are usually noninvertible since they 

retain the important features of the data in pattern space by discarding the redundant data. 
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The Wiener filter is used to filter out the noise from a signal by comparing the 

signal to an estimated noise-free version of the same signal. Orthogonal transforms are 

used to calculate the filter matrix that needs to be convoluted with the noisy signal in 

order to obtain the filtered output, since the filter matrix calculated using these transforms 

results in a substantial number of elements having values close to zero. Those elements in 

the matrix can be replaced with zeros thus reducing the number of multiplications and 

additions in the convolution process. We will not go further into the application of DCT 

in the field of Wiener filtering and turn our attention to the definition of DCT and how it 

fares compared to other popular orthogonal transforms. 

Given N real numbers x1, x2, ..., xN, the DCT of these numbers are defined in 

different ways with slight modifications, producing the transformed DCT co-efficients  

X1, X2, ……, XN  

DCT – 1  

  

This definition of DCT of N real numbers makes it equivalent to the DFT of 2N-2 real 

numbers with even symmetry. 

DCT – 2 
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This is the most popular definition of DCT. DCT of N real numbers is equal to half of 

DFT calculated on a series of 4N real numbers which is obtained by replacing every even 

indexed element by zero and extending the series to make it even symmetric.  

DCT – 3 

 

This definition of DCT – 3 is the inverse of the DCT defined in DCT – 2. 

DCT – 4 

 

This DCT is also known as Modified Discrete Cosine Transform (MDCT) 

As can be seen from these definitions, DCT of any series of real numbers can be 

calculated based on DFT of the same series with slight modifications. There are 

numerous algorithms that make use of this property of DCT, thus reducing the 

complexity of DCT computation by employing Fast Fourier Transform (FFT) algorithms 

such as Cooley-Tukey algorithm, Prime-factor algorithm or Rader’s FFT algorithm. The 

FFT algorithms, themselves, have a complexity of O (N log N) and the algorithms for 

fast computation of DCT using FFT have an added complexity of O (N) for pre- and post 

- computations. However, there are other fast efficient algorithms that compute DCT 
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directly – without the aid of FFT, which employ the classic method of factorization of N 

for reducing the computational complexity to O (N log N).  

Before we wrap up our section on DCT, we need to look at why DCT acts as a good 

signal compression tool and how good the tool is compared to other tools available out 

there. A thorough mathematical comparison of DCT with other orthogonal transforms 

such as KLT, Haar, Fourier and Walsh–Haddard based on variance and rate distortion has 

been made by N. Ahmed et. Al [4]. If we have a look at the comparison (See Fig. 2.3 and 

Fig. 2.4), it becomes clear that DCT is closer to KLT in terms of its variance distribution 

of transform co-efficients and rate distortion criterion. The definition used by the authors 

is DCT – 2. 

From the definition and performance of DCT with respect to other transforms, we can see 

that DCT not only acts as a good feature extraction method and dimensionality reduction 

technique, it also performs better than most other transforms and is as close to the optimal 

transform KLT as could be possible [6]. However, when the complexity of computations 

is taken into account, DCT fares better than KLT as it is very simple to calculate [5].  
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Fig. 2.3: Transform domain variance; M = 16, ρ = 0.95. [4] 

 

Fig. 2.4: Rate versus distortion for M = 16 and ρ = 0.9 [4] 
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2.4 Artificial Neural Network (ANN) 

An Artificial Neural Network (ANN) is a network of neurons that acts as a 

statistical tool to relate inputs to outputs and recognise patterns in data .It was initially 

designed to emulate the various processes of the biological neural system and a neuron 

model that is an abstraction of the complexity of a real neuron was developed. However, 

over a period of time it has evolved to be employed in a variety of applications such as 

cognitive psychology, regression analysis and pattern recognition. In this section, we 

discuss the role of neurons as building blocks of ANN, the mathematical model of ANN 

and its application in the field of pattern recognition. As a pattern recognition tool ANN 

helps in classifying classes that are not linearly separable as will be explained later. 

An artificial neuron, which is the building block of ANN, consists of inputs, a 

summing junction and an activation function; in its most basic and popular form (Fig. 

2.5).  

 

Fig. 2.5: An abstract model of a biological neuron: An artificial neuron 
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The inputs are x1, x2… xp which get multiplied by their respective synaptic 

weights w1, w2, …. wp. The summing junction has a bias of value b and its input is 

always 1. The summing junction sums all its inputs to give the input (n) to the activation 

function. The activation function is a non-linear function that computes the output (a) of 

the neuron. The output of the neuron can be expressed mathematically as 

 

  

The transfer function can be seen as a limiting function that dictates the output of the 

neuron based on the input to the transfer function (n). The most basic transfer function is 

the threshold function which gives an output of 0 if n is less than a threshold (usually 0) 

and an output of 1 if n is greater than or equal to the threshold. (Fig.  ) 

 

Fig. 2.6: Threshold transfer function (with threshold value = 0) 

There are other different types of transfer functions and the most popular ones are 

linear, log-sigmoid and tan-sigmoid. The activation-output characteristics of these 

transfer functions are as shown in Fig 2.7.  
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Fig. 2.7: Transfer functions: a). Linear transfer function, b). log-sigmoid function, 

c). tan-sigmoid function 

 

The weights and the bias are the adjustable parameters of the neuron, and we can 

obtain a particular output for a specific combination of weights given a specific set of 

inputs. The neuron can be made to behave in some desirable and interesting way by 

varying these parameters. However, the limitation of an artificial neuron is its ability to 

classify only linearly separable classes. The difference between linearly and non-linearly 

separable classes is best shown in Fig. 2.8. 

. 

 

Fig. 2.8: Example of a) Linearly separable classes, b) Non-linearly separable 

classes 
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Ever since the inception of artificial neuron by McCulloch and Pitts [33], various 

simple and complex networks consisting of multiple neurons were developed. A network 

of neurons (ANN) was necessary for the classification of non-linearly separable classes 

and the deployment of these ANNs lead to the development of algorithms that could 

compute the weights and biases of the multiple neurons involved. ANNs were unique 

since they provided the possibility of learning and in order to realize the learning 

functionality in ANNs, special learning algorithms were engineered that could not only 

adjust the weights and biases but also could do so taking into account the relationship 

between desired outputs in response to a set of inputs. 

The ANNs differ in their choice of transfer function, topology and learning 

algorithms. In this section, we will be focussing on one particular kind of ANN called the 

feed-forward network since it is the most common network and other models are based 

on it. This is in contrast with the other type of neural network topology which is the 

recurrent neural network with feedback loop. The learning algorithm discussed is the 

resilient backpropagation algorithm. An ANN may have one or more of layers with layer 

containing multiple neurons. Most neural networks have two layers of neurons with the 

first layer called hidden layer and the second layer called output layer. These two layers 

are preceded by the input layer which consists of just inputs and no neurons (Fig. 2.9). 

The network receives inputs from the input layer and the output of the neural network is 

available at the output layer. 

These feed forward neural networks are also known as multilayer perceptrons 

(MLP). The backpropagation algorithm that was popularised by Paul Werbos and D. E. 



 

 18  

Rumelhart [34] accomplishes the design of a feed forward neural network. Before we dig 

deep into the workings of the back propagation algorithm, it becomes imperative at this 

point that we discuss a little bit more about the concept of learning. The learning process 

is necessary for the network to acquire desired knowledge and apply this process on its 

inputs and provide us with the correct outputs. As mentioned earlier, this necessary 

knowledge is stored in the set of parameters (weights and biases) of all the neurons in the 

network. On a broad level, the learning process has been classified into two types: 

• Supervised learning that involves training the network with a set of 

training samples 

• Unsupervised learning that involves classifying models based on 

unlabelled data. 

 

Fig. 2.9: A feed forward neural network with one hidden layer and one output 

layer 
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Let the set of training samples in supervised learning be denoted by P, which is a set of N 

pairs of samples.  

T = {(x1, y1), (x2, y2)… (xN, yN)}     ….(2.9) 

Where, 

x1, x2  .…,  xN  are all input vectors and belong to input vector space X 

y1, y2 … yN are all desired output vectors for the respective input vectors and 

belong to output vector space Y 

N is the number of such samples 

As part of supervised learning, the neural network is trained with these sample 

pairs either on a one-by-one basis or in a batch and after each input-output pair pass (xi, 

yi), the parameters of neurons in hidden and output layer are computed so that the actual 

output (ai, where i = 1,…, N)of the neural network is close to the desired output (yi, 

where i = 1,…, N) based on a performance measure such as the mean square error 

defined as   

𝐸 =   
!

!
   (𝑦! −   𝑎!)

!!

!!!       …(2.10) 

The mean square error is the designated cost index that needs to be minimized 

over the complete set of training samples and the resulting neural network represents the 

function f : X -> Y, which could be described as the optimised classifier function. For 

minimizing the mean square error (E), weight of each neuron in a neural network needs 
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to be moved through all possible values in proportion to the gradient of the error (E). The 

gradient descent algorithm that finds out the local minimum of any function is used for 

this very purpose. The delta rule employs the gradient descent algorithm for obtaining the 

weights of neurons in a single layer perceptron. If, however, the network involved is a 

multilayer perceptron then the generalised version of the delta rule – backpropagation 

algorithm is employed. Thus, we can note that by being an algorithm that is used by 

multilayer perceptron training, backpropagation algorithm needs to have the capability to 

handle adjustments in a large number of neurons in very complicated network topologies. 

Backpropagation algorithm has 2 broad steps – 

1. Forward phase: In this step, parameters (weights) of the neurons in the 

network are fixed and inputs are applied at the input layer and the 

corresponding outputs are calculated. This step also includes calculation of the 

error 

ei = yi – ai     ….(2.11)  

where, yi is the desired output vector and ai is the actual observed output 

vector for a given input vector xi. 

2. Backward phase: The error calculated in the forward phase is propagated in 

the backward direction through all the neurons in both output and hidden 

layers. It is in this stage that the weights of the neurons are adjusted by using a 

generalised version of the delta rule, so as to minimize the error ei.  
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In sequential mode, the forward phase is implemented on each input-output pair 

individually and in batch mode, the forward phase is carried out on a sizeable batch of 

input-output pairs. In both cases, the error function E is determined using Eq. (2.10) and 

is treated as the cost function to be minimized.  

Let us consider the j
th

 neuron in the hidden layer of Fig.  . The input to this neuron 

is the actual input vector to the neural network xi (i = 1, …, N) and let the weight matrix 

of the synapses connecting the inputs to this neuron be wij. The error function E needs to 

be minimized with respect to each of the weights in the weight matrix and in order to 

accomplish that, we need to consider the partial derivative of the error function with 

respect to each weight in the weight matrix. A simpler figure (Fig. 2.10) is provided for 

the convenience of the reader. 

 

Fig. 2.10: A magnified view of the j
th 

neuron 

Let us consider the partial derivative of E with respect to the weight that connects the k
th

 

element in the input vector to the j
th 

neuron (wjk). Applying the chain rule, we obtain the 

gradient 
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Where, zj is the weighted sum of inputs for the j
th 

neuron and xk is the k
th 

element of the 

input vector. Employing the general rules of differentiation, it can be shown that  

 

Where, tj = desired output for j
th 

neuron  

 oj = actual output obtained for j
th 

neuron 

Substituting Eq. (2.13) and Eq. (2.14) in Eq. (2.12), we obtain 

 

Deriving the delta adjustment to weight wjk from Eq. (2.15), we obtain 

 

The term η is called the learning rate of the backpropagation algorithm. Thus, the weight 

wjk needs to be updated according to the equation 
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As we can see, the weights are updated in the opposite direction to the sign of the 

gradient, making sure the error decreases in steps of η with every weight update. The 

choice of learning rate η determines how fast the local minimum is reached and also 

affects the quality of learning. The forward and backward steps are repeated for all 

training samples or till the network has met satisfactory performance standards.  

Many algorithms have been proposed for adapting weights in neural networks that 

are based on backpropagation algorithm. The resilient backpropagation (Rprop) is one of 

the best methods that could be used for achieving batch learning in MLPs. The Rprop 

considers only the sign of the partial derivative of the error function and not on its exact 

value, thus making it an appropriate, fast and easy algorithm for implementing in the case 

of noisy error function.   

In Rprop algorithm, the weight adjustment equation is given by 

 

Thus the direction of the weight update is dependent only on sign of the partial derivative 

and not on its absolute value. Also, the weight is updated in steps of Δjk, which is based 

on changes in the sign of the partial derivative. Depending on whether there is change in 

the sign of the partial derivative, Δjk is multiplied by a value of η
+ 

(η
+
 > 1) or a value of η

- 

(0 < η
-
 <1). Thus, Rprop ensures that the local minimum is reached in a more elegant way 

with as few numbers of iterations as possible.  
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Fig. 2.11: An easy-to-follow algorithm of Rprop method is provided for enhanced 

readability. 

 

This chapter on preliminaries touched upon all necessary concepts required to understand 

the premise of the thesis. This section was aimed at familiarizing the novice reader with 

relevant mathematical background to appreciate the forthcoming sections. 
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CHAPTER III 

REVIEW OF LITERATURE 

 

3.1 Basics 

Handwriting recognition (HWR) is the process of obtaining handwritten material, 

either in the form of scanned images of handwritten documents or in the form of spatial 

co-ordinates of the hand movement of users, and developing it into a form that can be 

recognized by a computer or any text based application. Early developments in the area 

of handwriting recognition were mainly aimed at aiding the blind and also improving 

interface between human and the computer, thus bringing about increased functionality 

and user-friendliness in computers. 

 

3.2 Offline Vs Online Handwriting Recognition 

As discussed, handwriting recognition can be either offline or online depending 

on whether the input is scanned and digitized copy of handwritten documents or x-y co-

ordinates of the hand movement - for example through a motion based sensory screen of 

a computer, respectively. Offline handwriting recognition is a specific case of “Optical 

Character Recognition” (OCR). There are positive and negative points associated with 

both methods of recognition. OCR is well suited in situations where the handwritten 

material is already available in document form or when the range of characters is already 

known. 



 

 26  

Online handwriting recognition, on the other hand, proves to be a better choice 

when the handwriting needs to be recognized as the character is being written. A deeply 

descriptive, objective and comprehensive comparison of offline and online handwriting 

recognition methods on Latin alphabet has been done by Rejean Plamondon and Sargur 

N. Srihari [7]. In their landmark survey, they have clearly elucidated the various 

differences, pros and cons of online and offline HWR. Besides having lesser data storage 

requirements than offline recognition, online recognition provides better recognition rates 

as well. The memory requirement for online recognition of an average English word is 

about few 100 bytes, at a sampling rate of 100 samples per word, whereas for offline 

recognition, it is about few 100 kilo-bytes, sampled at a rate of about 300 dots per inch. A 

recognition rate of 78 percent has been reported for offline word recognition with 1000 

word lexicon [8], in comparison to a recognition rate of 80 percent for online word 

recognition with 21000 word lexicon [9]. Though better recognition rates have been 

reported in both offline and online HWR, online recognition algorithms outperform 

offline handwriting recognition methods in terms of data memory requirements and 

recognition rates, given the same lexicon size. 

 

3.3 Pen Computing and Tablet PCs  

An important precursor for online HWR is the availability of tablet PC or 

digitizer, which is collectively known as pen computing. A tablet PC or digitizer serves 

as the interface to collect the time ordered 2-Dimensional co-ordinates of the user's hand 

movement and employs a pen (stylus), and a touch sensitive screen, that collects and also 

stores the required co-ordinates. The extensive history of development of pen computing 
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technology spans over a century and a detailed discussion of it by Andre Meyer [10] and 

by Jayashree Subrahmonia and Thomas Zimmerman [11] present a complete and detailed 

picture of the then state-of-the-art. In 1888, Elisha Gray was awarded a patent for 

inventing a device that could capture handwriting and thus began the exploration that 

spewed many devices that could accurately acquire and store handwriting. All major 

corporations have produced their own versions of tablet PC and most commercially 

available ones make use of top choice handwriting recognition algorithms. A pen 

computing device basically consists of a tracking technology (magnetic, electric, 

ultrasonic or optical tracking) that determines the position of the stylus on the screen. 

Most modern tablet PCs use one or a combination of these tracking technologies. 

This thesis tries to highlight the salient patches of the survey of pen computing in 

[12], such that the entire spectrum of pre-1990 research is shone light upon – without 

entering into the specifics of surveyed ideas that are obsolete or are close to being so. The 

authors point to the inception of pen-trajectory tracking in the 1950s, immediate interest, 

and a dip in attention in the 1970s, and revival a decade later. It is to be noted that this 

fluctuation in interest and attention can be attributed to the technological differences, by 

which I mean the 1960s and '70s definitely lacked the power of computers, tablet PCs, 

touch-screen hand-held devices, and efficient algorithms for quick processing. Online 

handwriting recognition has survived the test of time for the simple reason that a whole 

lot more data is available for recognition systems than an offline snapshot of handwriting 

can ever provide. It is needed to expand upon the ideas of pen computing and trajectory 

digitization introduced above. 
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Dimond's “Stylator” [13] has been the earliest documented tablet digitizer, the 

most popular one being the RAND table [14]. These spurred the initial thrust towards 

online handwriting recognition research. Before I move on to the actual research 

surveyed in [12], it is imperative to introduce the two popular technologies used to build 

digitizers. This will serve as a background with which to better understand the conditions 

prevalent for the researchers of the past. As of 1990, electromagnetic/electrostatic and 

pressure sensitive were the two dominant technologies. 

The former category of tablets (electromagnetic/electrostatic) had regularly 

spaced x and y grids of conductors. The stylus tips had a loop of wire. When the grid (or 

the loop) was excited with an electromagnetic pulse, the loop (or the grid) would detect 

the induced voltage or current as a sine wave. The tablet conductors were searched to 

point to the pair closest to the loop, and the precise position between these two 

conductors was determined by interpolation. As one can expect, the recognition gets 

more accurate with higher density of the regularly spaced on-tablet conductors. 

Pressure-sensitive tablets were a little different, in that the tablet makes use of two 

types of layers – one conductive, and one resistive. The spacing between any conductive 

layer and the corresponding resistive layer is the key for operation, and it is where the 

concept of vertical pressure comes in. In a pre-specified direction (usually along either 

the x- or the y-axis), some electric potential is applied across one of the resistive layers. 

By applying pressure on the stylus, the user would enable the conductive layer to make 

contact with the resistive layer, picking the voltage from the latter, thus picking the 

coordinate of the point in which pressure had been applied. As we can see, the only thing 
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required of the stylus is the pressure. This eliminated the need to find a special type of 

stylus for the tablet, and it has been a huge advantage since. 

The authors also discuss briefly other sensing techniques, like the acoustic and 

optical sensing methods – and these will be skipped from the survey in this thesis. 

However, it will be mentioned that the authors wrap up the section on digitizers by 

alluding to the dawn of transparent tablets (the earliest of which dates back to 1968 [15]) 

– enabling the user to use the same tablet for input as well as output, at the same time. 

With the different tablet digitizer technologies behind us, it is time to move on to have a 

look at the pre-1990 perception of handwriting properties and mechanisms of recognition 

based on these properties. It is at this point that the fact that we are dealing with online 

handwriting becomes more important and useful. Handwriting when recorded as written 

(which is of course the essence of online capture) can be viewed as a series of strokes, 

tagged with their time-stamps – in order to properly stack the coordinates of each stroke 

in a timely manner so as to preserve handwriting causality intact. 

 

3.4 General Online Handwriting Recognition  

The work done under online HWR is vastly focused on Latin alphabet and 

numeral set. Interest in online HWR commenced in early 1950s, largely due to the advent 

and advancement in pen computing. Important contributions to the field of online HWR 

were made in 1960s and 1970s which were a result of availability of better tablets PCs, 

feature extraction and classification methods. The different handwriting recognition 
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algorithms differed in the way the researchers chose to solve various issues that act as 

obstacles to the achievement of perfection in handwriting recognition. 

We can easily note that all online HWR algorithms work on the basic assumption 

that different handwritten characters in any given script have a high degree of 

decorrelation. While this is a useful property, another characteristic of handwriting that is 

at least as useful if not more is that the handwriting samples of the same given character 

in any particular script are highly correlated. A deep understanding of the variability in 

handwriting is essential if we intend to build better and efficient HWR systems and 

readers are referred to [16] for a thorough discussion of the variability effects in English 

handwritten script. As part of the literature survey on online HWR, I would like to 

include significant work in all steps of HWR – starting from pre-processing all the way 

up to final classification. To that end, let us begin an overview of important past work 

pertaining to the pre-processing steps. 

Though this thesis work does not require segmentation between characters as well 

as segmentation within each character, it is still required to showcase all crucial scholarly 

work on segmentation so that the continuity, discussion flow, and completeness are all 

kept intact. Earliest efforts in segmentation were in the form of obtaining the horizontal 

distance between the characters [17] or by providing a certain amount of time for the user 

to complete writing the character. Most of the times, users were asked to write characters 

in certain boxes meant for each character which is akin to character recognition. Many of 

the recent published works talk of two dimensional separation of characters [18] or use of 

both spatial and temporal information for character segmentation [19].  
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Smoothing and filtering of the handwriting samples are vital pre-processing steps 

that have been implemented in various ways. The most commonly used method for 

smoothing is averaging of the sample points with its neighbours [20]. As part of filtering, 

most researchers resample the data points so that consecutive points are all equally 

spaced [20]. To bring about various types of normalizations, different algorithms have 

been suggested. Some of the examples are: deskewing algorithms that are carried out to 

de-slant the characters, size normalization algorithms in order to reduce or expand 

characters from different users which tend to be of different sizes to the same size as the 

case may be, stroke length normalization equalises the number of sample points in each 

stroke so that all strokes have uniform length [21]. 

After obtaining the handwriting samples and applying all necessary pre-

processing algorithms in order to obtain smoothed, filtered and normalized data points, 

the samples need to be reduced to a set of non-redundant, yet sufficiently informative 

data samples. All methodologies that are aimed at achieving dimensionality reduction are 

basically different forms of feature extraction methods. Anyone, who sets out to actualize 

handwriting recognition, has a varied collection of feature extraction approaches to 

choose, ranging from static features and dynamic features, a combination of both static 

and dynamic to those features that are representation of the data samples in some other 

domain. The choice that one makes is usually influenced by factors such as the language 

and script in question, the choice of classification method and the ease with which certain 

features can be extracted from the samples. Binary features are mainly used as part of a 

decision tree so that each branch of the tree corresponds to a particular combination of 

0’s and 1’s, which in turn represents a character. Non-binary features are used in 
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conjunction with some classification method such as clustering analysis that clusters 

those features into a set of groups. 

With each character being represented by extremely efficient feature arrays, we 

are faced with the challenge of developing a classification method that sorts these feature 

vectors into one character class among all character classes in the script. In simplest of 

terms, classification is a sub-problem in pattern recognition, in which, given an input 

vector the process involves matching this input vector with an output label. These 

classifiers are statistical in nature, which means these classifiers are able to detect certain 

characteristics, attributes or properties of classification based on a large number of 

observations with known output label for each input vector. This type of classification is 

also known as supervised learning. Linear classifiers such as Fischer Linear 

Discriminant, perceptron and others such as Artificial Neural Networks (ANN) [22], 

Support Vector Machines (SVM) [23] and k-nearest neighbour are some of the classifiers 

that have been used extensively by various researchers.  

 

3.5 Devanagari Online Handwriting 

After a detailed perusal of the state-of-the-art techniques in online HWR in 

English language, let’s turn our attention to the core of this thesis topic – Devanagari 

script online HWR. Though a huge amount of work has been done on offline handwriting 

recognition for Devanagari characters, publications focused on online Devanagari 

handwritten character recognition are few in number.  
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Scott D. Connell et. al. [24] were the first few ones to work on this area and their 

seminal work on “Recognition of unconstrained online Devanagari characters” in 2000 

brings to light the various issues involved in online Devanagari HWR.  They have 

implemented a method which uses 5 classifiers with both online and offline features. 

Offline features refer to those features extracted after considering the character as whole 

rather than calculating the features based on the sample points that are collected from the 

handwriting. Their resultant accuracy rate of the five classifiers combined is reported to 

be 86.5 %, with the individual classifiers themselves providing much lesser accuracy 

rates.  

In chronological order, the next work that could be mentioned as part of a survey 

of the developments in online Devanagari HWR is by A. M. Namboodiri et. al. [25]. The 

authors propose a method to classify a given online script into one out of 6 scripts, one of 

which is Devanagari. The method used 11 spatial and temporal features extracted from 

the strokes of the words and attained an accuracy of 87.1 percent on a database of 13,379 

words. Although, this piece of work on classifying words into scripts has no implications 

and results that could be used as a reference for the work on online Devanagari HWR, it 

throws ample light on the various features that could be used for classifying Devanagari 

characters.  

Niranjan Joshi et. al [26] specify a system that uses structural features such as 

mean (x, y) values, positional cues and directional codes at the stroke level and a test 

vector is developed based on these features. The system uses subspace method for 

classification in which each character class is represented by a basis vector which is a set 
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of N eigenvectors. The test vector is assigned to that class whose basis vector has the 

smallest orthogonal distance from the test vector. The most notable result reported is an 

average accuracy of 93.05% on a set of 100 frequently occurring characters.  

A stroke-based recognition system using Hidden Markov Model (HMM) has been 

proposed by Abhimanyu Kumar and Samit Bhattacharya [27]. Their work on recognition 

of isolated Devanagari characters has been carried out to be implemented on the iPhone. 

The authors have created 42 stroke classes, and one HMM is constructed for each stroke 

class. The first round of stroke classification results are fed into a second round of 

classifiers, along with look-up tables. Six scalar features indicate the size and shape of 

each sub-stroke. However, the authors sign off with an end-of-paper discussion, and no 

actual results are presented to the reader. This makes the assessment of their approach 

very ambiguous and speculative in terms of accuracy and recognition rate, as the number 

of samples and degree of variety keep mounting. 

The recognition rate, time required to train the system and number of samples 

used per character for testing are some of the criteria that can be utilized to compare the 

performances of these above mentioned scholarly work. The recognition rate which is the 

ratio of number of correct classifications to the total number of training samples, gives a 

measure of how well the system is performing in general. The next performance criterion 

is the training time which is the total time required to train the network to correctly 

classify all the training samples. The number of samples per character class used for 

training the system is also an essential performance criterion since it provides an insight 

into how well the system performs for varied handwriting samples. Apart from these 
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performance measures, there are parameters that take into account details such as run 

time and memory requirements. Any scholarly work survey on HWR is not complete 

without a comparison of the published algorithms based on these criteria. However, we 

can notice that the authors that figure in the technical survey show no form of 

conformance to the afore discussed performance criteria, but rather stick to exposition of 

the bare minimum information that is open to further inference and investigation – such 

as the overall recognition rate and the number of samples per character used for testing 

their algorithms.  

This concludes our fairly extensive survey on the state-of-the-art, and the work 

that has led us up to it. We are now at a stage where we can fully appreciate the problem I 

have been working on, the complications involved, how it differs in approach and 

solution to the scholarly work we have just finished surveying, and finally how I solve 

the problem I started out with, along with the recognition rate achieved.  
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CHAPTER IV 

DESIGN AND METHODOLOGY 

 

4.1 Overview of the Proposed Methodology 

We have seen quite a few times that handwriting recognition is a capability 

linked, in this context, to any programmed module that resides in a processing unit. This 

is the core of the system to which the recognition capability is attributed. However, much 

like the role the CPU has come to play in the whole computing experience, the program 

module is part of a bigger system. It is, more often than not; wrong to focus on the core 

unit sidelining the peripheral units. In fact, it is not uncommon at all for the performance 

and design of the peripheral units of a typical recognition system to bear a rather direct 

impact on the overall ability to recognize handwriting correctly and efficiently. 

It is with this background that we need to look at the overall development of our system, 

going sequential – as if we are tailgating the data to be processed (or more specifically in 

this case, the handwriting sample to be recognized). This way, it is easy for the reader – 

and more importantly for the designer – to expect and be prepared for the alteration that 

awaits the data next.  

Once the nature of the system is decided upon, one of the first things to be acted 

upon is the nature of the data. In this case, the system that is being built is a recognition 

system for online handwriting characters belonging to the ancient Indo-European heritage 

script, Devanagari. This immediately dictates the input mechanism, and the policies to be 

employed thereof. While mechanism entails the procedure and process of taking in the 

handwriting samples, policies refer to certain discretionary measures to be adopted to aid 
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in the process of data acquisition – in order to bring about numerous features to the 

system being built. These features can range from ethnic invariance, robustness, speed 

invariance, angular invariance, and immunity to distortion, all leading the system toward 

one ultimately desirable state of user-independence. In more explicit terms, what this 

means is that the data has to be tuned in a way that the system would have no difficulty in 

recognizing characters from a secondary data set (usually termed the “test set”) which has 

no intersection with the primary data set (commonly referred to as the “training set”) – 

regardless of the variation that finds expression as a function of several attributes of the 

database contributors – leaving the legibility of the written script as the only concern for 

successful recognition. 

The process of thus preparing the data in a way such that the system functioning 

is rendered insensitive to user-dependent variances, environment-dependent fluctuations, 

and randomness (whose capture happens only in posteriori measurements, leading to 

well-developed statistical quantifications) is an art – that goes by the name pre-

processing. 

The various stages of readying a potential handwriting recognition system goes 

far beyond the core module, often starting at data acquisition (either afresh or via an 

accredited database), routing through storage and pre-processing, right to the 

identification of feature cruxes and their extraction, all the way up to the design of the 

classification unit at the core – which, akin to a two year-old kid, learns to tell one class 

of data from another, based on the featured identified in the previous step. 

This cycle of developing a new recognition system is summarized below: 
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Fig. 4.1: The developmental stages of the handwriting recognition system – adopted in 

the work. 

 

The various stages in the HWR systems are  

1. Data Acquisition 

2. Data storage 

3. Normalization 

4. Feature extraction 

5. Classification and Recognition 
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4.2 Nature of Data, Acquisition and Storage 

The above steps are common to any recognition system. Specifically, in our case, 

steps 1 and 2 are merged into one block. It is only natural to do this since the data 

acquired has to be taken care of, either in terms of processing or storage. Immediate 

processing of the acquired data forces the system to turn into a real-time entity, which is 

not what this work of mine is intended for. In handwriting recognition systems, there are 

steps that typically need to be followed before the actual processing can take place. The 

data accumulation can be overwhelming for any real-time system (with minimum 

memory) while the system readies one batch of data for actual processing. It is due to this 

simple reason that handwriting recognition (and many other pattern recognition and 

image analysis) systems are seldom made real-time. 

Once we come to the decision that the system is not real-time, then we need to 

take care of the data accumulation, such that the integrity and content of the data – in its 

entirety – is not lost. This calls for a proper storage arrangement. Therefore, it is vivid as 

to why any handwriting recognition system designer would naturally want to merge the 

steps of data acquisition with the imminent and inevitable step of data storage. 

Before discussing data acquisition at any length, it is a good idea to understand 

the type of recognition system – as the nature of the system has a direct impact on the 

nature of the data being fed. Most of the work, as we have seen during the literature 

survey chapter, focuses on the recognition of script which is printed or handwritten some 

time ago, on a non-electronic medium. Now, what that means is that the there is no 

information available about the way in which the data was written. This type of data is 



 

 40  

usually termed “offline” data. The most widely found examples of offline data are 

images/pictures of written/typed script. Often in the world, offline data is what we have 

easier access to – be it pages from a book, an old handwritten document, an unsigned 

letter, or an ancient manuscript. We don’t have control over the type of data. But in the 

modern age, the electronic presence is growing, allowing one to think about having more 

control over the data being acquired. 

Offline data samples have their share of disadvantages. Perhaps the best way to 

drive home the major disadvantage of offline data is through the following example: 

Consider two persons – Ronald and Donald. Ronald is an influential man, with the real 

authority to sign an important document of a reasonably high impact. Due to 

discretionary reasons, Ronald wouldn’t sign a particular document. In Ronald’s absence, 

Donald, who is a fraudster, carefully signs the document (which Ronald had declined to 

sign). After Donald finishes signing the document, it looks exactly identical to Ronald’s 

signature. Now suppose this signature of Donald’s signature is captured offline, then it is 

nearly impossible to bring Donald to justice. However, had Donald’s forgery been 

captured electronically, one could have access to the temporal features of Donald’s 

signature. The pressure of the strokes, the timing, and the speed of sub-strokes are all 

collected in an electronic acquisition of data. This type of data is termed online. 

The above example illustrates the advantage of dealing with online data as 

opposed to offline data, due to the availability of temporal characteristics in the former 

type of data sets. 
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The example of Ronald and Donald has been made up for the sake of illustration. 

However, the problem described herein is real. It has been a recurrent problem through 

the course of history, as we shall see with one real example below. 

The forgery shown in Fig. 4.2 below is not the best forgery one could imagine, 

but it comes pretty close to the original. The concern grows in cases where the visual 

distinction between two writings (signatures and regular writing alike) is harder to make 

than the example below.  

 

Fig. 4.2: A real signature, and its forged version: offline recording. 

 

Tom Davis (of the University of Birmingham) has an interesting analysis of this 

forgery [28]. Tom opines, “The forgery is quite good, both in line quality and letter 

formation, and at first sight looks very convincing. But look at it closely. Firstly, the 

laudable concentration on line quality has led to a gross error, in that an extra minim has 

been inserted. Then close examinations reveals that the line quality also lets it down. The 

capital /E/ of the surname is slightly less assured, with a tendency for curves to turn into 
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straight lines and corners, which is very characteristic of forgery. And, in the case of the 

lower loop of the final /y/, the reverse has occurred: a curve in place of an angle and 

straight line. Then look at the end of that stroke: in the genuine signature the pressure of 

the pen reduces gradually, while in [the forged version] the line ends abruptly, no doubt 

with relief; a failure of concentration at the end of the job.” 

The case has been made, intuitively at the least, for the choice of using online data 

for training and testing the HWR system. The logical continuation of the choice (of the 

nature of data) is the specification of the acquisition module of the system. 

4.2.1 Need for building a database 

It may seem to the reader that the obvious choice for acquiring data is to use a 

database of handwriting samples – along with the knowledge of the relevant methodology 

behind the build-up of the database being considered. What adds an extra level of 

challenge to this work is that there is no readily available database for Devanagari 

characters, unlike the Yale B/Extended Yale B/CMU-PIE databases that exist for human 

faces, or unlike the USPS/MNIST digit databases. The direct, unavoidable, implication is 

that it becomes a responsibility to populate a decent sized database for isolated 

Devanagari characters, from scratch. 

4.2.2 Building the database: considerations and methodology 

Recognizing the importance of this step, we worked out a comprehensive way of 

creating this database, in a way that a variety of writing styles – in the right number – are 

incorporated in a layered fashion. We will revisit the idea of layering in a while. 
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A quick detour is essential to set the premise for the strategic development of our 

unique comprehensive database. The protagonist, resorting to personification for lack of a 

better inanimate qualifier, of this thesis is the script, Devanagari. Devanagari, as 

explained earlier, is a rich script of the Indo-European belt, now finding residence mainly 

in the Indian languages. The language-script relationship evolves over time, causing the 

language to get control over how the script changes to suit the needs of the development 

of the language itself. In other words, what sets off as a common script for say, five 

languages, is sculptured by time and the respective language into five similar scripts of 

common ancestry.  

 

Fig. 4.3: Relative evolution of the common Devanagari script – based on individual 

languages. 

 



 

 44  

The original Devanagari script is known to most closely resemble the four scripts 

in the right big box in Fig. 3.3. Within this big box, the four scripts are enormously 

similar, with just very minor variations. However, the other boxes carry scripts (Punjabi, 

Gujarathi, and Bangla) that have drifted farther off from the parent Devanagari script. 

The unique thing incorporated in the database is that we have ensured that the influence 

of all these script-drifts is taken into account. The people from whom handwriting 

samples are obtained for building the database have varied backgrounds. Their linguistic 

origins include Hindi, Gujarathi, Marathi, Punjabi, and Bangla. The scripts of these 

languages, as we saw above, are off-shoots of Devanagari. We have also taken 

Devanagari samples from people whose native script has no connection with Devanagari 

at all (like Kannada, Tamil, Telugu, and Malayalam). 

The variety that has been created in the database makes sure that the handwriting 

recognition system is immune to the influence of the native script (of the handwriting 

sample contributor). 

Let us quickly touch upon the concept of layering, which gains relevance in this 

context. How entries are arranged in the database is that the samples are spread from 

contributors of various linguistic origins, in recurring layers, so to say. 

Let us pictorially see what layering means. 
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Fig. 4.4: Layering of handwriting samples from contributors of various linguistic 

backgrounds, making the database uniform and randomly interspersed. 

 

The rationale behind adopting such a scheme as layering is to make sure that even 

a small section of the database is not biased towards any particular script-influence on the 

writing style of the Devanagari characters. This way, the results of testing is uniform and 

largely independent of the section of the database upon which the testing is carried out. 

This layering is a novel contribution of mine to make the system robust. 
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A subtle point to be made here is that we have internally divided the database into 

two big sections – one for training the system, and the other for testing. The contributors 

for each section are different, meaning that the contributors from whom we have obtained 

the handwriting samples to populate the training section have not contributed their 

samples to the testing section, and vice-versa. However, within the training and testing 

section, the samples are layered (as described above). Therefore, we have managed to 

make the system writer-independent too. 

 

4.2.3 Acquiring the handwriting samples 

Next up, we need to look at how we have actually acquired the handwriting samples from 

these varied contributors. The choice that has been rather popular in recent times is the 

use of tablet PCs (more so with the advent of Apple iPad, HP tablets, BlackBerry 

PlayBook, and the like) or digitizers. 

At this point, there is something about the technology that has an influence on the 

robustness of the system under construction. Let us start with an analogy. Let us suppose 

the job at hand is to teach a bunch of college students how to crack an entrance 

examination. The better way to train the students is to get them to solve a variety of 

problems – tricky, straightforward, trap, and tough – in class, in order to have them 

prepared for any kind of situation they might have to face on the entrance examination. 

The training cold be made easier by using just good-to-be-with or easy-to-solve 

problems, but it will do little good on the examination itself. Going by the same logic, we 

chose to present this handwriting recognition system with not-so-nice handwriting for the 
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training routine. It would have been way easier, as a designer and trainer, to have 

handwriting contributors come into the office and write neatly on a sophisticated tablet 

PC. It was the easier and simpler option for everyone – but just for the duration of the 

training. However, we have been far-sighted to recognize the problem with the easier 

approach in the long run: lack of rigorous training for the real-world testing. 

The solution for this problem has been both far-sighted and economically 

cooperative. I wrote a program (in C++) to capture the movement of the mouse. The 

program successfully tracks the abscissa (x-coordinates) and the ordinate (y-coordinates) 

of the mouse position on the screen, along with the time stamps. This special and 

temporal recording of the mouse movement has to be sampled, without which the data 

acquired per recording session may be enormous, beyond handling capacity. To take care 

of that, I introduced a sampling factor into the program – by way of polling the status of 

the left-click button on the mouse, as a pre-requisite for recording the x, y, and time 

coordinates. By controlling the frequency of polling, one can control the amount of 

sample points per stroke of the character. 

Recording the handwriting through mouse movements is a jittery procedure, 

introducing a lot of imperfections into the writing (and uneasiness into the writer). It is 

this jitter that goes into the training process, making the handwriting recognition system 

less prone to wrong classifications later on. 
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The C++ program takes in all the data from the contributor, and exports the data 

in the form of a simple text file, and saves it automatically in the resident folder of 

MATLAB. MATLAB in turn opens this file, reads in each triple-valued coordinate entry 

(x, y, t) for the purposes of computing the Discrete Cosine Transform (specifically DCT – 

Type II, the choice of which will be elaborated upon in the section on feature extraction). 

The DCT of the data samples would be a compressed set of 20 values (excluding the DC 

component), and it is this compressed DCT set which is eventually stored. The original 

coordinate data set (which occupies a much larger space) is of lesser significance – now 

that we have derived the DCT from it – and is consequently not stored, thereby setting up 

a novel circumstance to cut down on memory requirements of the system as a whole. 

 

Fig. 4.5: Initial storage of the (x, y, t) coordinates of the mouse movement data for a 

particular handwriting sample – temporarily saved as a text document in the MATLAB 

folder. 
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The text file on the left is opened from within MATLAB, which is why the 

numbering of the coordinates is seen in the left margin. This image portrays the very 

essence of online data – the ordering of the coordinates. Therefore, unlike in offline 

images, online data presented here tells the reader the exact chronological order in which 

the coordinates were recorded. With this data, one can re-trace the trajectory of the mouse 

almost exactly (subject to a fairly decent polling frequency applied within the C++ 

program). 

The first two values in each row are the x and y coordinates respectively, 

expressed in terms of the on-screen pixel values. The last item in each row is the time-

stamp, expressed in seconds. 

 

 

4.3 Pre-processing 

4.3.1 Establishing the need 

While every effort is being made to make the recognition system as flexible and 

robust (to variations) as possible, machine capability is still a far cry away from human 

sensory versatility and efficiency. To put it in perspective would be to compare the 

machine (which is our recognition system) to a two year old kid – and this too could be 

demeaning to the kid. What the computer is good at is tireless computation, and any 

display of real intelligence is a lofty, if not unfair, expectation of the computer from our 

side. A specific, exaggerated example is not hard to describe. Let us assume that the 

computer is trained to recognize the character “A” of font size 12 (Times New Roman). 

The main question framed in the example is: Will the system correctly recognize “A” for 
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the following three configurations: (1) Font size: 14 (Algerian’s equivalent of Times New 

Roman’s size 12), Font face: Algerian (or basically any font face except Times New 

Roman – which it is trained for), (2) Font size: 20 (again, any font size not close to 12), 

Font face: Times New Roman, and (3) Font size: 30, Font face: Algerian? See Fig. 3.6. 

 

 

Fig. 4.6: Character A in various configurations. Top to bottom: Times New Roman, 12; 

Algerian, 14; Times New Roman, 20; Algerian, 30. 

 

The figure above illustrates this thought experiment. 

To even a child, recognition of all these characters as “A” is not of any challenge at all. 

But can we say the same of the computer system? It borders on several AI and cognition 

topics, digression into which we shall avoid here. For the purposes of the thesis, it 

suffices to state that the learning mechanisms of a computer are quite rigid, and thus it 

becomes the responsibility of the designer to ensure that the data upon which the 
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computer trains, and upon which the testing happens, are to be of some uniform nature. 

The expectation is not identity (which diminishes the role of the system to pattern 

matching at best). All that I am striving to accomplish is to have some regulation on the 

data, before using it for training or testing. 

These regulations are essential for the successful performance of the system, but 

the sample contributors cannot be subjected to regulations while they write the character 

samples for the database. The last thing we want is impose constraints on the writing. 

Since the sample contributors enjoy unconstrained writing, the onus of regularizing the 

samples shifts to the design of the system itself. The steps that take care of this very 

problem are collectively termed “data normalization”. 

Before we get into the specifics of the normalization procedures adopted in this 

work, a mention should be made about another equally crucial step that has to take place 

before normalization can be enforced. 

 

 

4.3.2 Smoothing and De-noising 

In the sub-section where we discussed the way the data is entered and stored, we 

have observed that there is jitter, to say the least, in the data. Now we need to look at 

what has to be done to cut this jitter and noise out, restoring data integrity in the process. 

First, let us look at smoothing out the jitter, by making use of any one among an 

array of filters just waiting to smooth our data. The entire setup of the data acquisition as 

explained here in the thesis is not known to introduce much noise (the sort that creeps 



 

 52  

into the system without notice or welcome – thermal, shot, and Gaussian are examples of 

which). This does not necessitate the use of the toughest or the most convoluted or the 

best filter out there. Any filter that does not consume too much of the available resources, 

and does not take forever, and does a considerably good job of smoothing and de-noising 

the data, will perfectly fit the bill. 

With that view, we have used the Moving Average filter, whose endorsement is 

chosen from [29]: “The moving average is the most common filter in DSP, mainly 

because it is the easiest digital filter to understand and use. In spite of its simplicity, the 

moving average filter is optimal for a common task: reducing random noise while 

retaining a sharp step response. This makes it the premier filter for time domain encoded 

signals. However, the moving average is the worst filter for frequency domain encoded 

signals, with little ability to separate one band of frequencies from another. Relatives of 

the moving average filter include the Gaussian, Blackman, and multiple-pass moving 

average. These have slightly better performance in the frequency domain, at the expense 

of increased computation time.” 

Since the Moving Average filter is an optimal filter (neither the most convoluted 

nor characterized by exemplary performance), there needs to be one more just-in-case 

step, to take care of any noise that may be left behind in the data. The back-up de-noising 

mechanism that we have put in place is a simple block of MATLAB code. The purpose 

of this block of code is to make L2-spacial distance measurements between consecutive 

data points, within each stroke. If we consider one single stroke (comprising the data 

points between pen-down and pen-up, or specifically in this case, between mouse-click-
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hold and click-release), it does not make sense if there is an outlier – especially beyond a 

certain pre-specified threshold distance. The points beyond the threshold distance (from 

its neighbour) are removed from the data coordinate set by this block of code. It is very 

reasonable to treat the outlier beyond the threshold to be noise. The value of the threshold 

controls how accurately we remove these noise points from our data. If the threshold is 

set to a very low value (like 2-3 pixel distance), we run the risk of removing several to 

many points which are genuine data points (which could have resulted from fast writing, 

among other reasons). Hence, a low value of the threshold eats away many genuine data 

points along with noise. At the other extreme, a high value of the threshold (like 15-20 

pixel distance) may leave most of the outlier (noise) points in the data. We do not desire 

either consequence. Based on some trial-and-error runs, we could see that the perfect 

threshold for the system would be an L2-space separation of 5-7 pixels. Specifically, for 

the code block, we have used a 7-pixel threshold. The net effect of the moving average 

filter, coupled with the outlier removal code is very impressive smoothing and de-

noising. 

 

4.3.3 Normalization 

The data is now smooth and jitter free. De-noising is complete. But it still is not 

ready to be recognized. The reason for the data still not being ready is the lack of any 

particular format. To understand the meaning of lack of format, see Fig. 4.7. 
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The job at hand is to bring all the data samples to one format. To achieve this simple-yet-

essential goal, three types of normalization routines were used, whose explanations will 

follow. 

a. Translation Normalization 

To understand the need for this type of normalization, first we need to 

illustrate the manner in which the database contributors wrote on the screen (with 

the mouse). They wrote ten samples (of the same character) at one go, on various 

positions on a portion of the screen. Though the C++ program was programmed 

to read the mouse coordinates just based on the state of the mouse buttons 

(clicked or un-clicked), for the purposes of visual feedback for the writer, they 

were made to write their samples on the portion of the screen having the MS 

Paintbrush window open. 

As seen in Fig. 4.7, the writers were given full freedom, and were not 

constrained to write into one particular box. The pixel values of each of the ten 

samples are dependent on where the writer writes the samples. To take care of this 

variable positional offset, I have applied translation normalization.  

Let the minimum value among all x-coordinates (for each sample) be 

denoted by Xmin, and the minimum y-coordinate by Ymin. Translation 

normalization is achieved by simply subtracting Xmin from each x-coordinate, and 

Ymin from each y-coordinate. The effect of this operation is that the whole sample 

is pushed (without skewing/stretching/compressing) leftward such that the 
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leftmost pixel of the sample touches the x=0 line, and the sample is then pushed 

downward (again, without deforming) such that the bottommost pixel touches the 

y=0 line. 

 

Fig. 4.7: A cropped screen-shot of a typical handwriting sample recording (with feedback 

provided on MS Paint).  

 

The whole concept behind this type of normalization is that the system gets to 

have an origin-vertexed box within which to contain the samples. At the end of 
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this step, though we would have achieved positional uniformity, the size of the 

dotted box (tightly wrapping the character sample) is a variable. Let us look at 

how we bring uniformity to that parameter – under size normalization. 

    b.    Size Normalization 

Like other forms of freedom the writers have had, there was absolutely no 

constraint on how big they could write the character samples. This discussion too 

borders on the rhetorical questions introduced in the explanatory passage of Fig. 

4.6. 

Without making assumptions on the capability of the system’s robustness 

to variation in size, it is far easier and safer to re-size the samples to some 

standard measure. It is to be noted that relationship (or proportion) between the 

vertical and horizontal components of the character samples, is one of the 

fundamental characteristics of the character. It may even be treated as part of the 

character feature, known to bear an influence over the quantification of the 

feature-set (more about which will be discussed later, in the section on feature 

extraction). This is the main reason why it is a bad idea to skew/stretch the 

samples in an attempt to re-size them. 

The direct implication of this non-skew/stretch condition is that the dotted 

box (see Fig. 4.8) cannot be of pre-set dimensions. The exception to this rule 

comes into play only when the formation of the dotted box does not involve tight 
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wrapping of the sample. But, in our considerations, the dotted box is always the 

tightest possible wrap. 

 

Fig. 4.8: Representation of the general idea of translation normalization. 

 

A well accepted solution to this problem is to put a cap on either the 

height or the width of the dotted box, but not both. The procedure followed to 

bring down (or in very few cases where the written sample is too small, to bring 

up) the size of the samples is represented by the following algorithm: 

Step 0: Get the maximum y-coordinate (Ymax). 

Step 1: The new value of Ymax is forced to go to 50. Call this Y’max. 
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(Discussion: In the Devanagari script, all members of the 46-strong in-use 

alphabet have nearly the same height, while the width of each character varies 

from a proper fraction of the height to almost twice the height. It is this 

observation that places sense in forcing the height of the samples to a constant – 

which, in our case, is 50 pixels.) 

Step 2: Define vertical scaling factor, S = 50/Ymax 

Step 3: Ynew = Yold*S 

  Xnew = Xold*S 

(Discussion: The vertical scaling factor, S, although derived primarily to scale the 

sample height-wise, is not limited to the y-axis scaling. The same factor, S, is 

employed to scale the sample width-wise as well. The reason for this is that the x-

coordinates are scaled by exactly the same factor as the y-coordinates are scaled 

with, lest there be any skewing/stretching effect on the samples.) 

The net effect of implementing this algorithm is that the sample is now brought 

down to a tightly wrapped box of height 50, with a variable width. 
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Fig. 4.9: Two sets of re-sizing transformations. The one to the left of the original sample 

is the one applied in this work. 

 

c. Time Normalization 

The last step, before the data samples are fully ready to go on to feature 

extraction and finally to classification, is time normalization. This is achieved in 

more than one way. We have used re-sampling, due to its effectiveness and low 

computational effort. 

The main need for having to resort to re-sampling is that different database 

contributors write at different speeds. The way the C++ program works is that the 

number of data points acquired per character sample is inversely proportional to 

the writing speed. Since the program polls to check the state of the mouse click, 

and then the coordinates, a slower writer will gather more data points for 

essentially the same stroke than will a faster writer. To make the data independent 

of the writing speed, we have re-sampled the data points in a novel manner. 
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One common way to time normalize data is via the usage of interpolation. 

This needs the computation/fitting of the curve – in a dynamic sequence – and is 

pretty complex. It is not just about the complexity we need to think about. The 

critical question is: Is it required? Well, the method we have employed works just 

as good, but with far less computational complexity and cost. 

Consider a case where a particular writer gathers 1204 data points on one 

of her samples. The aim is to reduce it to 500 points, which are then compressed 

again by the application of the Discrete Cosine Transform. Reducing 1204 points 

to 500 points can be done with interpolation. We do not want that. Fortunately, 

we could derive an innovative alternative that could circumvent interpolation. The 

thought process ran somewhat like this: 

• Ignoring the last 204 points will result in1000 points. 

• Picking every second point will result in 500 points. 

The method works, but at the cost of a non-negligible truncation loss at the 

end of the sample. But since the idea was right in principle, I improvised on it by 

varying it a bit. What I realized was that if the number of data points that I ignore 

(at the end of the character sample) is too small compared to the number of data 

points that remain, the truncation loss should be quite negligible and innocuous. 

In the example that is introduced above, let us suppose we had 10,204 points to 

start with. In that case, leaving out 204 points (to arrive at a multiple of 500) 

would still leave us with 10,000 points. The truncation loss would be much lower. 

For a given handwriting speed, the number of data points we start with directly 
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depends upon the polling frequency set in the program. Therefore, in order to 

minimize the truncation loss, we can simply increase the program polling 

frequency. 

There is no way to have a prior knowledge of the number of data points a 

particular writer will accumulate for a particular character sample. Therefore, a 

simple algorithm to carry out the time normalization has been adopted: 

Step 1: Count the number of data points in the character sample. Call it N. 

Step 2: Compute T = N mod 500. T would be the number of data points (at the 

end) to be left  out. 

Step 3: Compute P = . Every P
th

 data point is to be picked from the data 

point set    remaining after the completion of Step 2. 

Completion of Step 3 would leave us with 500 data points, regardless of the 

character sample size, shape, or the writer’s speed. The data is said to be time 

normalized. 

 

4.4 Feature Extraction 

After smoothing, de-noising, and three types of normalizations, the raw data 

(resulting from unconstrained, occasionally haphazard, writing) is made to fit some 

format. Now that all the character samples are in a position to be compared with each 

other, in a similar structure, let us see how we have recognized the best feature for the 
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sample set. The selection and extraction of the feature form the core step before the final 

classification routine can be put in place. 

In order to better appreciate the role of feature extraction, it may be a good idea to 

go one step backward – by starting at dimensionality reduction (which is a higher level 

topic). Dimensionality reduction is a concept that frequently appears in the broad area of 

pattern recognition. Simply put, it deals with the reduction in the number of independent 

random variables in the system. Two cases of dimensionality reduction are feature 

selection and feature extraction.  

Martin Sewell captures the essence of feature selection as follows [30]: “Feature 

selection (also known as subset selection) is a process commonly used in machine 

learning, wherein a subset of the features available from the data are selected for 

application of a learning algorithm. The best subset contains the least number of 

dimensions that most contribute to accuracy; we discard the remaining, unimportant 

dimensions.” 

In the case of supervised learning (which is what has been employed in the work), 

feature selection is known to require a complete listing of all possible subsets of features. 

Thus, feature selection is rendered impractical as the number of features gets large. To 

retain practicality, the listing is limited to a satisfactory set of features instead of an 

optimal/ideal set of features. 

A further look into feature selection reveals the two big categories that make up 

the technique – feature ranking and subset selection. Feature ranking, as the name 
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indicates, is merely a ranking of the features by a performance measure. The features that 

don’t perform to a pre-set standard are crossed out. Subset selection searches for the 

optimal/ideal set from within the (narrowed down) set of possible features. However, in 

this work, we have not made use of feature selection. 

Moving on to the technique that is actually used, let us understand what feature 

extraction is all about. Feature extraction involves transforming the input data into a 

feature vector. A feature vector is just a reduced representation of the data, which is 

sufficient to recognize the data. The reason for the sufficiency claim is that most forms of 

data have a large chunk of redundancy. This redundancy carries no extra information that 

helps recognize the character sample. So the main idea is to eliminate as much 

redundancy as we can, and use the skeleton left for the classification purposes. 

Feature extraction involves a fairly accurate description of the data with just a few 

points. The Discrete Cosine Transform (Type II), which has had a sufficient introduction 

in the chapter on preliminaries, is used for creating the feature vector for each character 

sample. The DCT produces a DC component, which is not much helpful in differentiating 

samples (which is essentially what is done in the classification step). Apart from the DC 

component, the DCT compresses the x- and y-coordinates of the data. Specifically in this 

case, what this means is that a sample which is originally represented by 500 data points, 

is now squished to a 10 data-point plot. The plot is converted to a 20x1 vector of the 10 x-

coordinates followed by the corresponding y-coordinates. Each character sample gets to 

have its own 20x1 feature vector, which it can hang on to during the process of 

differentiation and identification, better known with the domain jargon, as classification. 



 

 64  

Apart from the DCT, online handwriting recognition offers a choice of several 

temporal features too (which is where the bulk of the advantage of resorting to online 

recognition comes from). The speed of writing (and variations thereof), angular velocity, 

and the order of strokes – just to name a few – are excellent features that can complement 

the DCT, should the situation demand extra feature-extraction (usually as a feedback 

from the classification step). A similar supporting role can also be played by spatial 

features such as shape contexts [31], and results from Principal Component Analysis. 

 

4.5 Classification 

The next logical step after feature extraction is the classification of the feature 

vector that represents an input character into one of the 46 character classes as outlined in 

chapter 2. For most practical purposes, this is the final step and although the choice of 

feature/(s) has a larger bearing on the overall accuracy and feasibility of the HWR 

algorithm, the selection of an appropriate classifier ensures low misclassification and 

rejection rates.  

In this thesis on online Devanagari handwriting recognition, we are dealing with isolated 

characters, each of which is represented by the feature vector –  

F = {Xd1, Xd2,…., Xd10, Yd1, Yd2, …, Yd10}           …. 

This feature vector with its 20 elements acts as the input to the classifier. The 

classification rule can be summarised as follows – given a set of input-output pairs S = 

{(x1, y1), (x2, y2), …, (xN, yN)}, the classifier should compute a function (f), based on 
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these input-output pairs, which when applied to an unknown input x should give an 

output y’ = f(x), where y’ is as close to the actual output y as possible. The idea is that the 

input-output pairs in S portray a behaviour that can be captured statistically and therefore 

such classifiers are called statistical classifiers. 

These statistical classifiers can be broadly classified into types – those that are 

based on supervised learning paradigm and those that are based on unsupervised learning 

(see section on ANN for more on these learning paradigms). It is very clear that 

supervised learning is the one we need to be looking at, for solving our very particular 

case of pattern recognition with well- defined character classes as labelled outputs. 

Unsupervised learning based algorithms are made of use in the cases where either the 

target outputs are unknown or where only a few numbers of inputs have been labelled 

with their target outputs.  

A representative (but not exhaustive) list of  the popular approaches for contriving 

supervised learning as a pattern recognition tool are neural networks, Support Vector 

Machine (SVM), Hidden Markov Model (HMM), nearest neighbour algorithm and 

decision tree learning. There is no particular study that documents the effectiveness of 

these algorithms to specific problem areas. Considering a straight forward case as ours, 

we can safely assume that any of the above mentioned classifiers would do a good job of 

classifying a given input character based on DCT coefficients. 

Even after narrowing down to the usage of Artificial Neural Networks as the sole 

classifier, there is still scope for a lot of freedom and experimentation. One of the primary 

decisions to be taken is the number of neurons to be used in each layer – input, hidden, 
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and output. In keeping with the output of the Discrete Cosine Transform, which is the 

feature extractor used in our work, the number of neurons used in the input layer has to 

be fixed to 20. Each element of the feature vector (F) is an input to the neural network. 

This leaves us with the hidden and output layers. First, let us look at the output 

layer. There are 46 characters in the Devanagari alphabet set. This means that any neural 

network output must have at least 46 different combinations, one for each unique 

character. Every output neuron can have a value between -1 and +1 (for the tan-sigmoid), 

but is trained to go to either 0 or 1 depending upon the character being trained for, and 

the character whose result is being displayed by the neuron. The net effect is that each 

output neuron is trained to behave like a binary digit (bit). With this background, we can 

notice that the minimum number of neurons required to represent 46 combinations is 

 = 6. A network with just 6 output neurons showed a mediocre-to-

dissatisfactory performance during testing. 

The next thing that was tried was an output layer with six groups of three neurons 

each. It can be seen that a group of three neurons can represent up to 8 combinations. Six 

such groups would represent 48 combinations (which is two more than what we need). 

Totally, this approach would cost us 6*3 = 18 neurons. The performance of the network 

improved with this configuration, but not by a great extent. Along the same lines, three 

groups of four neurons each – again capable of 48 combinations were used. This 

approach cost 4*3 = 12 neurons, but the performance level did not even match the 6x3 

configuration. 
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Finally, one neuron was set aside for each combination, thus using 46 neurons in the 

output layer. It is this output layer configuration that yielded the least classification 

errors, showing promise for all configurations of the hidden layer. 

The main engine responsible for classification is the hidden layer, making it 

extremely crucial that we design the hidden layer with great care and responsibility. We 

started with the general idea (based on several empirical tests) that the performance of the 

system increases monotonically with increase in the number of neurons in the hidden 

layer of our neural network. With this assumption, we set out with 20 neurons in the 

hidden layer. The performance (by performance, we mean accuracy of classification) of 

the neural network was not much impressive. The test process was repeated with 30 

neurons, and the performance did not improve significantly. However, with 40 hidden 

layer neurons, the accuracy rate climbed over 90%. 50 hidden layer neurons (with 46 

output neurons) gave an accuracy rate of more than 94.5%. So far, the monotonic 

behaviour of performance (versus number of hidden layer neurons) was confirmed. 

However, this pattern was broken when we further stepped up the number of hidden layer 

neurons to 60. 

To further better the performance of the network, we created one more neural 

network with identical input and output layer configurations. The only thing I changed 

was the number of hidden layer neurons, from 50 to 55. I, then, used the sum of the 

outputs of the two networks to classify the data. The keen reader can observe that this is 

not a ranking scheme or an explicit voting methodology. Though the outputs of both 

networks are considered to make the final classification, since there is no decision being 
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taken at each network, this is different from standard voting schemes. It turns out that this 

performs better than elementary forms of voting. The performance with this setup crossed 

96%. 

Just to experiment a bit more, one more neural network was created with 45 

hidden layer neurons. The outputs of all three neural networks were summed, and the 

summed output vector was used for classification. This three-network configuration 

performed best, yielding an accuracy rate of more than 97%. More on the results (with 

specific comparisons) will be presented in the chapter on results. 
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CHAPTER V 

ANALYSIS OF RESULTS 

It is only logical to have a numerical, quantitative, visual backing for the method 

proposed in the previous chapter, without which it would all be dry theory. A whole lot of 

character samples have been rigorously trained and tested(whose details would follow in 

this chapter), but it would be impossible to capture all the individual results here. 

Therefore, what we will attempt to do here is to show how each step in the proposed 

method actually works (with relevant data and visual aid), along with some consolidated 

numbers that indicate the impact these steps jointly have over the recognition rate of the 

system built. 

Thus, this chapter is organized to go over two broad items in a mostly serial fashion:  

1. The working of individual steps in this method, to evince the correctness/effectiveness 

of the sub-methods employed,  

2. The overall effectiveness brought about by these procedures, measured in terms of the 

accuracy of recognition of the test-set samples. 

 

5.1 Pre-processing 

If you recall from the previous chapter, the first operation to be done on the input 

data is smoothing and de-noising. As mentioned earlier, noise is normally introduced in 

mechanical and physical processes more than just software data transfers and processing. 

It is due to this reason that in the several examples that have been reviewed to include in 

the current part of the thesis, not in a single one could we spot a random entry of noise. 



 

 70  

As a consequence, in Fig. 5.1, below, the reader can see that the first operation, though 

titled “smoothing and de-noising”, shows only smoothing, since there wasn’t any noise to 

be removed – though the perfectly crafted de-noising routine was there in place. 

 

Fig. 5.1: Top: Input character sample; Bottom: The smoothed version of the 

character sample. 

It is clear that the smoothed version of the data sample has a lot more data points than the 

original sample, which is not entirely desirable. However, the sample in bottom portion 

of the above figure is not the final data sample that goes into the recognition engine later 

on. 
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Next up, let us see how the smoothed data sample is re-positioned to push it the 

tiny corner vertexed at the origin. The same character example as introduced above, when 

translation-normalized is in Fig. 5.2. 

 

Fig. 5.2: Effect of translation normalization on the smoothed character sample. 

 

Next in line, waiting impatiently to squeeze or stretch the character samples, is the 

routine for size normalization. Statistically speaking, almost all of the samples written in 

the database are taller (allowing for some degree of personification) than the stipulated 50 

pixels. So, most of the samples have been squeezed rather than stretched. 

In the following example figure, as the reader can see, the character which 

originally measured more than 120 pixels in height, is squeezed down (not cropped 
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down) to exactly 50 pixels in height. As mentioned in the previous chapter, the width of 

image, though, is not bound by limits. 

The result of size normalization on the smoothed and translated character sample 

is captured in the following figure. In order to preserve the clarity of the image, 

especially when we are sizing it down by a factor up to 3-4, images have not been plotted 

in standardized axes. 

 

 

Fig. 5.3: The character sample – after smoothing, translation-normalized, and 

size-normalized. 
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Now comes the part which could leave the reader a little perplexed regarding the 

whole philosophy and rationale behind initially smoothing followed later on by re-

sampling. The figure, that is about to follow, might not be of any help either – just going 

by visual reasoning. However, what should make thorough sense is that mechanism of 

reconstructing (smoothing) and tearing down the reconstruction by sampling it again 

proves to be a very simple way of ensuring the character samples have exactly a pre-set 

number of data points – which, in our case, is 500. 

 

 

Fig. 5.4: The smoothed, translation-normalized, size-normalized, and re-sampled 

version of the original character sample. 
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The data is now ready to proceed to the penultimate step: feature extraction. Let us see 

what the DCT of the pre-processed data looks like. 

 

Fig. 5.5: Consolidated view of the original character sample, its pre-processed 

version, and the Discrete Cosine Transform (first ten x-coordinates appended by 

their respective y-coordinates – excluding the DC component) of the pre-

processed sample. 

 

The DCT is what is finally stored in the database, thereby reducing the memory 

consumption from 500 points per sample to just 20. 

 

5.2 Performance Measurement 

We have seen how each step in the pre-processing routine set affects the 

appearance of the character sample, all the way to the dimensionality reduction afforded 

by the computation of the DCT. Now, let us see how well the system has been built and 

trained in terms of the accuracy of recognition of 2760 characters – that come from 

writers who did not contribute to the training data set. The effect of layering on 
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recognition accuracy can be verified by testing smaller subsets of data (in lieu of the 

entire testable set of 2760 character samples). The intended effect is that the accuracy rate 

should be pretty close to the overall value, indicating a sense of homogeneity within the 

character sample spread. However, I should clarify that we have not resorted to such an 

extrapolation of accuracy tests, and have tested each of the 2760 character samples in the 

test set for hit and miss. 

The first neural network used for the system comprised 50 neurons in the hidden 

layer, and worked better (in terms of accuracy) than the preceding work – whose formal 

comparison shall be made shortly. 

 

Fig. 5.6: The basic, single neural network architecture 

I noticed that, though the neural network with 55 neurons in the hidden layer does 

not singly perform better than the one with 50 neurons in the hidden layer, a merger of 
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the topologies (by means of taking the average of the 46 outputs of each network) would 

pave way to better accuracy than the individual networks. 

 

Fig. 5.7: An architecture with 2 neural networks 

 

Next, we tried to extend the reasoning to include one more neural network 

topology with 45 neurons in the hidden layer, and the whole setup and performance are 

summarized in the figure below. 
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Fig. 5.8: An architecture with 3 neural networks 

 

We did not want to continue the growth of the total number of hidden layer 

neurons (between networks), and decided to experiment a bit with grouping neurons in 

the output layer. Instead of using 46 neurons to cater to an output vector space of 

identical cardinality, we decided to group output neurons in smaller numbers, so as to 

create as many combinations (assuming binary behaviour of neurons) as there are classes 

– 46, in our case. If the number of combinations exceeds 46 – which may be possible 

while grouping – the excess combinations indicate misclassification. 
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First, an architecture with 6 groups of 3 neurons each in the output layer was tested, then 

with 3 groups of 4 neurons each, and finally with just one group of 6 neurons. 

The former two architectures have only 2 excess combinations than needed, while 

the last architecture (labelled “Neural Network Architecture 6”) has 18 excess 

combinations. 

 

 

Fig. 5.9: An architecture with neuron grouping – 6 groups of 3 neurons each. 
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Fig. 5.10: An architecture with neuron grouping – 3 groups of 4 neurons each 

 

 

Fig. 5.11: An architecture with neuron grouping – 1 group of 6 neurons 

We can see that the best performing architecture is the third one, labelled “Neural 

Network Architecture 3”, with a whopping recognition rate of 97.28%. Next in line is the 
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neural network architecture with two neural networks, achieving over 96.2% accuracy. 

Though the neuron grouping experiment cuts down the number of neurons in the output 

layer, the performance takes a pretty severe hit. 

Here is a comparison of how the proposed method stacks up against other methods, 

which we reviewed as part of the literature survey. 

TABLE I: A comparison of published works and the proposed methods based on 

methodology, number of samples used per character for testing and accuracy rate. 

 
Author(s) Year Method(s) No. of 

samples/character 

Accuracy 

Rate 

Scott D. 

Connell, et al. 

[24] 

2000 Offline and 

online features; 

HMM and 

Nearest 

Neighbour 

classifiers. 

40 86.5 

Anoop M. 

Namboodiri, et 

al. [25] 

 

2004 

11 features; 6 

classifiers. 

NA (since testing is 

done on test pages) 

95.5% 

Niranjan Joshi, 

et al. [26] 

2007 Structural 

recognition; 

Subspace 

method. 

25.71 94.49% 

Abhimanyu 

Kumar, et al. 

[27] 

2010 Curvature 

feature vector; 

42 HMMs. 

10 NA 

Proposed 2011 DCT as feature 

extraction; 1 

Neural Network 

60 94.64% 

Proposed 2011 DCT; 2 Neural 

Networks 

60 96.27% 

Proposed 2011 DCT; 3 Neural 

Networks 

60 97.28% 

 

           It is to be noted that when neural networks of accuracy η are fused, an accuracy 

rate of 1− (1− 𝜂)!" is approached, where k is the number of such fused neural 
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networks, and s is the saturation index, which becomes more prominent as k grows 

bigger.                                                                                
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary of Contributions 

This thesis set out to implement a unique recognition system for handwritten 

Devanagari characters taking into account the geometrical variations in the script, the 

primary motive being the accomplishment of higher recognition rate than what were 

previously achieved. The method delineated in this thesis that helped in achieving our 

motive and the actual results can be summarized as follows 

• We captured the time stamped co-ordinates of the characters and build a 

unique database. The database consisted of 5520 character samples (2760 

training samples and 2760 testing samples) collected from 12 people. We 

wish to clarify that none of these 2760 characters used for testing purposes 

were part of the training set. 

• The feature set that consisted of DCT co-efficients of the time stamped co-

ordinates was then used to train and test the neural network – based on 

resilient backpropagation algorithm. 

• The first neural network we used for our recognition system comprised 50 

hidden layer neurons, and this by itself was more accurate than the 

preceding work. 

• We then fused 2 neural networks (with 50 and 55 hidden layer neurons), 

and lastly we fused 3 neural networks with 45, 50, and 55 hidden layer 

neurons. The fusing methodology is not a voting/ranking mechanism. It is 
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using the average of the corresponding output neurons in all the networks. 

This scheme has made our system more accurate. 

• Based on these experimental results, we can observe that the best 

recognition rate of 97.28% occurred when we fused 3 neural networks 

averaging 50 neurons per hidden layer. However, even when one single 

neural network is considered, the recognition rate is better than any 

previously published work 

 

 

6.2 Potential for Future Research 

The research undertaken as part of this master's program, as presented in this 

thesis, is a complete, uncompromised and an accurate solution to the problem originally 

defined at the beginning of the program. Due to the very nature of any master's program, 

the critical parameter which governs the quantity of work that can be 

done beyond solving the original work is time. While the quality has in no way been 

compromised, we fully understand that there can be a few additions in scope to the 

solution presented here in this thesis, and that the area of handwritten character 

recognition is far from being saturated. 

 

With the presence of a looser time bound, an interested researcher may consider 

implementing several useful add-ons to this work: 
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1. Handwritten word recognition: The easiest extension would be to recognize one 

whole word - a task which would need character segmentation. The add-on could be as 

simple as a word recognizer, or could go on to incorporate a simple word-level translator 

(with the aid of a look-up table). While the latter implementation is a contained solution 

in itself, one could make heightened sense of the idea if the ultimate aim is to go beyond 

the word-level, onto sentence- and manuscript-levels. 

 

2. Handwritten complete sentence recognition and translation: This extension 

would appear more complicated than the previous one. While it is partially true, the task 

is simplified when the script under consideration is Devanagari. Fortunately, Devanagari 

stipulates the use of a Vinculum (termed "Shirorekha" in Sanskrit) over the word. 

Therefore, the end of the Vinculum would signal the end of the word, making inter-word 

segmentation a rather simple procedure. 

However, the problem would go beyond recognition of each word. A series of 

recognized words, more often than not, make little sense. Since the main purpose of 

recognizing an entire Devanagari sentence could be assumed to be an eventual translation 

into a more widely used language (say English), the arrangement of the recognized words 

pose a bigger problem. This problem would arise mainly due to the differences in 

grammatical structuring between Devanagari and the terminal language. At this point, the 

ambitious researcher might make use of a dedicated algorithm to solve the grammatical 

mismatch problem. One such algorithm is presented in [32]. 
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3. Manuscript translator: If the previous problem is solved, building a full-fledged 

manuscript translator would not be a daunting task. The grammatical ordering is a feature 

that is bounded within each sentence, and it poses no problem across sentences. A 

manuscript, at its most rudimentary description, is a well-defined collection of sentences. 

Thence, it can be assumed without loss of generality that the lexical and semantic 

integrity of any prose-based manuscript is well preserved. 

 

These add-ons could be culturally or situationally influenced, and hence it is 

impossible to provide a complete list of such possibilities. However, the above listed 

extensions would have been the primary concern of the present work in a wider blanket 

of time and freedom. 
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APPENDIX 

 

Matlab code common to training and testing phase 

load output.txt; 
T = output(:,3);%extracting only time values  
maxT = max(T); 
r = maxT/20 ; 
T = T./r; 
  
[m,n]= size(output); 
%disp(m); 
%disp(output); 
X = output(:,1);%extracting x co-ordinates     
Y = output(:,2);%extracting y co-ordinates 
  
subplot(3,1,1) 
set(gca,'YDir','reverse');%to reverse y-axis 
hold on 
plot(X,Y,'.');%plotting the input data 
hold off 
  
windowSize = 9;                                 %smoothing(averaging) 
  
X1 = filter(ones(1,windowSize)/windowSize,1,X); %the x and y    
Y1 = filter(ones(1,windowSize)/windowSize,1,Y); %co-ordinates 
  
%[s,t] = size(X1); 
%disp(s); 
outlier_count = 0;       
  
%the following code is for deleting all outliers 
for i = 1:m-1 
    %if X1(i-1) == 0 
      % continue 
    %end 
    if sqrt((X1(i)-X1(i+1))*(X1(i)-X1(i+1)) +  (Y1(i)-Y1(i+1))*(Y1(i)-
Y1(i+1)) )  > 7 
        outlier_count = outlier_count + 1; 
        A(outlier_count) = i; 
    end 
end 
  
for j = 1:outlier_count 
    n = A(j) - j +1; 
    X1(n) = []; 
    Y1(n) = []; 
end 
  
%translation and size normalization 
MinX1 = min(X1); 
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MinY1 = min(Y1); 
  
  
X1 = X1 - MinX1; 
Y1 = Y1 - MinY1; 
MaxX1 = max(X1); 
MaxY1 = max(Y1); 
  
AR = MaxY1/MaxX1; 
  
r = MaxY1 / 50; 
Y1 = Y1./r; 
X1 = X1./r; 
%X1 = (X1.*50)./(AR*MaxX1); 
  
p=1; 
k = mod(m,500); 
k = m-k; 
step = k/500; 
 for l = 1:step:k 
     X2(p) = X1(l); 
     Y2(p) = Y1(l); 
     p = p+1; 
 end 
  
[c,d] = size(X2); 
disp(d); 
  
  
subplot(3,1,2) 
set(gca,'YDir','reverse');%to reverse y-axis 
hold on 
  
plot(X2,Y2,'.');%plotting the translated and normalised character 
hold off 
  
Xd2 = dct(X2); 
ndct = size(Xd2); 
Yd2 = dct(Y2); 
Xd2 = Xd2(2:11); 
Yd2 = Yd2(2:11); 
Xd = [Xd2 Yd2]; 
test = Xd'; 
ymax = max(Xd); 
subplot(3,1,3) 
set(gca,'xlim',[0 20], 'ylim',[-ymax ymax]); 
hold on 
plot(Xd);%plotting the dct 
hold off 
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