
 Open access Journal Article DOI:10.1109/TSP.2014.2318132

Online Dictionary Learning for Kernel LMS — Source link

Wei Gao, Jie Chen, Cedric Richard, Jianguo Huang

Institutions: University of Nice Sophia Antipolis, Northwestern Polytechnical University

Published on: 01 Jun 2014 - IEEE Transactions on Signal Processing (IEEE)

Topics: Kernel principal component analysis, Kernel embedding of distributions, Variable kernel density estimation,
Kernel method and Kernel adaptive filter

Related papers:

 Online Prediction of Time Series Data With Kernels

 The kernel recursive least-squares algorithm

 Quantized Kernel Least Mean Square Algorithm

 The Kernel Least-Mean-Square Algorithm

 Multikernel Adaptive Filtering

Share this paper:

View more about this paper here: https://typeset.io/papers/online-dictionary-learning-for-kernel-lms-
391z3kp80k

https://typeset.io/
https://www.doi.org/10.1109/TSP.2014.2318132
https://typeset.io/papers/online-dictionary-learning-for-kernel-lms-391z3kp80k
https://typeset.io/authors/wei-gao-199230wnyr
https://typeset.io/authors/jie-chen-4q3u4a8ozl
https://typeset.io/authors/cedric-richard-wfbt3svwc0
https://typeset.io/authors/jianguo-huang-2mdhdv5st4
https://typeset.io/institutions/university-of-nice-sophia-antipolis-1vadneyw
https://typeset.io/institutions/northwestern-polytechnical-university-24e65k12
https://typeset.io/journals/ieee-transactions-on-signal-processing-ei2rx4on
https://typeset.io/topics/kernel-principal-component-analysis-28otrgtz
https://typeset.io/topics/kernel-embedding-of-distributions-11zv0wjv
https://typeset.io/topics/variable-kernel-density-estimation-33qlzq73
https://typeset.io/topics/kernel-method-hfgt9pqs
https://typeset.io/topics/kernel-adaptive-filter-27a5654t
https://typeset.io/papers/online-prediction-of-time-series-data-with-kernels-4gl1xax7k9
https://typeset.io/papers/the-kernel-recursive-least-squares-algorithm-1iwejih22c
https://typeset.io/papers/quantized-kernel-least-mean-square-algorithm-321ihysi9y
https://typeset.io/papers/the-kernel-least-mean-square-algorithm-292lg4p1wi
https://typeset.io/papers/multikernel-adaptive-filtering-yhq04km1xt
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/online-dictionary-learning-for-kernel-lms-391z3kp80k
https://twitter.com/intent/tweet?text=Online%20Dictionary%20Learning%20for%20Kernel%20LMS&url=https://typeset.io/papers/online-dictionary-learning-for-kernel-lms-391z3kp80k
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/online-dictionary-learning-for-kernel-lms-391z3kp80k
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/online-dictionary-learning-for-kernel-lms-391z3kp80k
https://typeset.io/papers/online-dictionary-learning-for-kernel-lms-391z3kp80k

1

Online Dictionary Learning for Kernel LMS

Wei Gao, Student Member, IEEE, Jie Chen, Member, IEEE

Cédric Richard, Senior Member, IEEE, Jianguo Huang, Senior Member, IEEE

Abstract

Adaptive filtering algorithms operating in reproducing kernel Hilbert spaces have demonstrated superiority over

their linear counterpart for nonlinear system identification. Unfortunately, an undesirable characteristic of these

methods is that the order of the filters grows linearly with the number of input data. This dramatically increases

the computational burden and memory requirement. A variety of strategies based on dictionary learning have been

proposed to overcome this severe drawback. In the literature, there is no theoretical work that strictly analyzes the

problem of updating the dictionary in a time-varying environment. In this paper, we present an analytical study of the

convergence behavior of the Gaussian least-mean-square algorithm in the case where the statistics of the dictionary

elements only partially match the statistics of the input data. This theoretical analysis highlights the need for updating

the dictionary in an online way, by discarding the obsolete elements and adding appropriate ones. We introduce a

kernel least-mean-square algorithm with ℓ1-norm regularization to automatically perform this task. The stability in the

mean of this method is analyzed, and the improvement of performance due to this dictionary adaptation is confirmed

by simulations.

Index Terms

Nonlinear adaptive filtering, reproducing kernel, sparsity, online forward-backward splitting

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must

be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was partially supported by the National Natural Science Foundation of China (61271415).

Wei Gao is with the Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, France and the College of Marine

Engineering, Northwestern Polytechnical University, China (email: gao wei@mail.nwpu.edu.cn)

Jie Chen and Cédric Richard are with the Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, France (email:

jie.chen@unice.fr; cedric.richard@unice.fr)

Jianguo Huang is with the College of Marine Engineering, Northwestern Polytechnical University, China (email: jghuang@nwpu.edu.cn)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

I. INTRODUCTION

Functional characterization of an unknown system usually begins by observing the response of that system to input

signals. Information obtained from such observations can then be used to derive a model. As illustrated by the block

diagram in Figure 1, the goal of system identification is to use pairs (un, dn) of inputs and noisy outputs to derive

a function that maps an arbitrary system input un into an appropriate output d̂n. Dynamic system identification has

played a crucial role in the development of techniques for stationary and non-stationary signal processing. Adaptive

algorithms use an error signal en to adjust the model coefficients αn, in an online way, in order to minimize a given

objective function. Most existing approaches focus on linear models due to their inherent simplicity from conceptual

and implementational points of view. However, there are many practical situations, e.g., in communications and

biomedical engineering, where the nonlinear processing of signals is needed. Unlike linear systems which can be

uniquely identified by their impulse response, nonlinear systems can be characterized by representations ranging

from higher-order statistics, e.g., [1], [2], to series expansion methods, e.g., [3], [4]. Polynomial filters, usually

called Volterra series based filters [5], and neural networks [6] have been extensively studied over the years.

Volterra filters are attractive because their output is expressed as a linear combination of nonlinear functions of

the input signal, which simplifies the design of gradient-based and recursive least squares adaptive algorithms.

Nevertheless, the considerable number of parameters to estimate, which goes up exponentially as the order of the

nonlinearity increases is a severe drawback. Neural networks are proven to be universal approximators under suitable

conditions [7]. It is, however, well known that algorithms used for neural network training suffer from problems

such as being trapped into local minima, slow convergence and great computational requirements.

Recently, adaptive filtering in reproducing kernel Hilbert spaces (RKHS) has become an appealing tool in many

practical fields, including biomedical engineering [8], remote sensing [9]–[12] and control [13], [14]. This framework

for nonlinear system identification consists of mapping the original input data un into a RKHS H, and applying a

linear adaptive filtering technique to the resulting functional data. The block diagram presented in Figure 1 presents

the basic principles of this strategy. The input space U is a compact of IRq , κ : U ×U → IR is a reproducing kernel,

and (H, 〈·,·〉H) is the induced RKHS with its inner product. Usual kernels involve, e.g., the radially Gaussian

and Laplacian kernels, and the q-th degree polynomial kernel. The additive noise zn is assumed to be white and

zero-mean, with variance σ2
z . Considering the least-squares approach, given N input vectors un and desired outputs

dn, the identification problem consists of determining the optimum function ψ∗(·) in H that solves the problem

ψ∗ = argmin
ψ∈H

{
J(ψ) =

N∑

i=1

(di − ψ(ui))
2 + ζ Ω(‖ψ‖)

}
(1)

with Ω(·) a real-valued monotonic regularizer on IR+ and ζ a positive regularization constant. By virtue of the

representer theorem [15], the function ψ(·) can be written as a kernel expansion in terms of available training data,

namely, ψ(·) = ∑N
j=1 αj κ(·,uj). The above optimization problem becomes

α∗ = argmin
α∈IRN



J(α) =

N∑

j=1

(dj −α⊤κj)
2 + ζ Ω(α)



 (2)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

where κj is the (N × 1) vector with i-th entry κ(ui,uj). Online processing of time series data raises the question

of how to process an increasing amount N of observations as new data is collected. Indeed, an undesirable

characteristic of problem (1)-(2) is that the order of the filters grows linearly with the number of input data.

This dramatically increases the computational burden and memory requirement of nonlinear system identification

methods. To overcome this drawback, several authors have focused on fixed-size models of the form

ψ(·) =
M∑

j=1

αj κ(·,uωj
). (3)

We call D = {κ(·,uωj
)}Mj=1 the dictionary, which has to be learnt from input data, and M the order of the kernel

expansion by analogy with linear transversal filters. The subscript ωj allows us to clearly distinguish dictionary

elements uωj
, . . . ,uωM

from input data un. Online identification of kernel-based models generally relies on a

two-step process at each iteration: a model order control step that updates the dictionary, and a parameter update

step. This two-step process is the essence of most adaptive filtering techniques with kernels [16].

Based on this scheme, several state-of-the-art linear methods were reconsidered to derive powerful nonlinear

generalizations operating in high-dimensional RKHS [17], [18]. On the one hand, the kernel recursive least-squares

algorithm (KRLS) was introduced in [19]. It can be seen as a kernel-based counterpart of the RLS algorithm,

and it is characterized by a fast convergence speed at the expense of a quadratic computational complexity in M .

The sliding-window KRLS and extended KRLS algorithms were successively derived in [20], [21] to improve

to tracking ability of the KRLS algorithm. More recently, the KRLS tracker algorithm was introduced in [22],

with ability to forget past information using forgetting strategies. This allows the algorithm to track non-stationary

input signals based on the idea of the exponentially-weighted KRLS algorithm [16]. On the other hand, the kernel

affine projection algorithm (KAPA) and, as a particular case, the kernel normalized LMS algorithm (KNLMS),

were independently introduced in [23]–[26]. The kernel least-mean-square algorithm (KLMS) was presented in

[27], [28], and has attracted substantial research interest because of its linear computational complexity in M ,

superior tracking ability and robustness. It however converges more slowly than the KRLS algorithm. The KAPA

algorithm has intermediate characteristics between the KRLS and KLMS algorithms in terms of convergence speed,

computational complexity and tracking ability. A very detailed analysis of the stochastic behavior of the KLMS

algorithm with Gaussian kernel was provided in [29], and a closed-form condition for convergence was recently

introduced in [30]. The quantized KLMS algorithm (QKLMS) was proposed in [31], and the QKLMS algorithm

with ℓ1-norm regularization was introduced in [32]. Note that the latter uses ℓ1-norm in order to sparsify the

parameter vector α in the kernel expansion (3). A subgradient approach was considered to accomplish this task,

which contrasts with the more efficient forward-backward splitting algorithm recommended in [33], [34]. A recent

trend within the area of adaptive filtering with kernels consists of extending all the algorithms to give them the

ability to process complex input signals [35], [36]. The convergence analysis of the complex KLMS algorithm with

Gaussian kernel presented in [37] is a direct application of the derivations in [29]. Finally, the quaternion kernel

least-squares algorithm was recently introduced in [38].

All the above-mentioned methods use different learning strategies to decide, at each time instant n, whether κ(·,un)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

deserves to be inserted into the dictionary or not. One of the most informative criteria uses the so-called approximate

linear dependency (ALD) condition. To ensure the novelty of a candidate for becoming a new dictionary element,

this criterion checks that it cannot be well approximated as a linear combination of the samples κ(·,uωj
) that

are already in the dictionary [19]. Other well-known criteria include the novelty criterion [39], the coherence

criterion [24], the surprise criterion [40], and closed-ball sparsification criterion [41]. Without loss of generality,

we focus on the KLMS algorithm with coherence criterion due to its simplicity and effectiveness, and because its

performance are well described and understood by theoretical models [29], [30] that are exploited here. However,

the dictionary update procedure studied in this paper can be adapted to the above-mentioned filtering algorithms

and sparsification criteria without too much effort.

Except the above-mentioned works [32], [33], most of the existing strategies for dictionary update are only able

to incorporate new elements into the dictionary, and to possibly forget the old ones using a forgetting factor. This

means that they cannot automatically discard obsolete kernel functions, which may be a severe drawback within

the context of a time-varying environment. Recently, sparsity-promoting regularization was considered within the

context of linear adaptive filtering. All these works propose to use, either the ℓ1-norm of the vector of filter

coefficients as a regularization term, or some other related regularizers to limit the bias relative to the unconstrained

solution. The optimization procedures consist of subgradient descent [42], projection onto the ℓ1-ball [43], or online

forward-backward splitting [44]. Surprisingly, this idea was little used within the context of kernel-based adaptive

filtering. To the best of our knowledge, only [33] uses projection for least-squares minimization with weighted

block ℓ1-norm regularization, within the context of multi-kernel adaptive filtering. There is no theoretical work

that analyzes the necessity of updating the dictionary in a time-varying environment. In this paper, we present an

analytical study of the convergence behavior of the Gaussian least-mean-square algorithm in the case where the

statistics of the dictionary elements only partially match the statistics of the input data. This analysis highlights

the need for updating the dictionary in an online way, by discarding the obsolete elements and adding appropriate

ones. Thus, we introduce a KLMS algorithm with ℓ1-norm regularization in order to automatically perform this

task. The stability of this method is analyzed and, finally, it is tested with experiments.

II. BEHAVIOR ANALYSIS OF GAUSSIAN KLMS ALGORITHM WITH PARTIALLY MATCHING DICTIONARY

Signal reconstruction from a redundant dictionary has been extensively addressed during the last decade [45], both

theoretically and experimentally. In order to represent a signal with a minimum number of elements of a dictionary,

an efficient approach is to incorporate a sparsity-inducing regularization term such as an ℓ1-norm one in order to

select the most informative patterns. On the other hand, a classical result of adaptive filtering theory says that, as

the length of LMS adaptive filters increases, their mean-square estimation error increases and their convergence

speed decreases [18]. This suggests to discard obsolete dictionary elements of KLMS adaptive filters in order to

improve their performance in non-stationary environments. To check this property formally, we shall now analyze

the behavior of the KLMS algorithm with Gaussian kernel depicted in [29] in the case where a given proportion

of the dictionary elements has distinct stochastic properties from the input samples. No theoretical work has been

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

Nonlinear system

Adaptive algorithm

un

ψ(un)

αn

zn

en
U → H

dn

κω,n d̂n

+

+

+

−

Fig. 1. Kernel-based adaptive system identification.

carried out so far to address this issue. This model will allow us to formally justify the need for updating the

dictionary in an online way. It is interesting to note that the generalization presented hereafter was made possible

by radically reformulating, and finally simplifying, the mathematical derivation given in [29]. Both models are,

however, strictly equivalent in the stationary case. This simplification is one of the contributions of the paper. It

might allow us to analyze other variants of the Gaussian KLMS algorithm, including the multi-kernel case, in future

research works.

A. KLMS Algorithms

Several versions of the KLMS algorithm have been proposed in the literature. The two most significant versions

consist of considering the problem (1) and performing gradient descent on the function ψ(·) in H, or considering

the problem (2) and performing gradient descent on the parameter vector α, respectively. The former strategy is

considered in [28], [31] for instance, while the latter is applied in [24]. Both need the use of an extra mechanism

for controlling the order M of the kernel expansion (3) at each time instant n. We shall now introduce such a

model order selection stage, before briefly introducing the parameter update stage we recommend.

1) Dictionary Update: Coherence is a fundamental parameter that characterizes a dictionary in linear sparse

approximation problems. It was redefined in [24] within the context of adaptive filtering with kernels as follows:

µ = max
i 6=j

|κ(uωi
,uωj

)| (4)

where κ is a unit-norm kernel. The coherence criterion suggests inserting the candidate input κ(·,un) into the

dictionary provided that its coherence remains below a given threshold µ0

max
m=1,...,M

|κ(un,uωm
)| ≤ µ0, (5)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

where µ0 is a parameter in [0, 1[determining both the level of sparsity and the coherence of the dictionary. Note

that the quantization criterion introduced in [31] consists of comparing minm=1,...,M ‖un−uωm
‖2 with a threshold,

where ‖·‖2 denotes the ℓ2-norm. It is thus equivalent to the original coherence criterion in the case of radial kernels

such as the Gaussian one considered hereafter.1

2) Filter Parameter Update: At iteration n, upon the arrival of new data (un, dn), one of the following

alternatives holds. If κ(·,un) does not satisfy the coherence rule (5), the dictionary remains unaltered. On the other

hand, if condition (5) is met, the kernel function κ(·,un) is inserted into the dictionary where it is then denoted

by κ(·,uωM+1
). The least-mean-square algorithm applied to the parametric form (2) leads to the algorithm [24]

recalled hereafter. For simplicity, note that we have voluntarily omitted the regularization term in (2), that is, ζ = 0.

• Case 1: maxm=1,...,M |κ(un,uωm
)| > µ0

αn+1 = αn + η en κω,n (6)

• Case 2: maxm=1,...,M |κ(un,uωm
)| ≤ µ0

αn+1 =


 αn

0


+ η en κω,n (7)

where en = dn − κ⊤
ω,nαn is the estimation error with κω,n = [κ(un,uω1

), · · · , κ(un,uωM
)]⊤.

The coherence criterion guarantees that the dictionary dimension is finite for any input sequence {un}∞n=1 due

to the compactness of the input space U [24, proposition 2].

B. Mean Square Error Analysis

Consider the nonlinear system identification problem shown in Figure 1, and the finite-order model (3) based on

the Gaussian kernel

κ(ui,uj) = exp

(−‖ui − uj‖22
2ξ2

)
(8)

where ξ is the kernel bandwidth. The order M of the model (3) or, equivalently, the size M of the dictionary D,

is assumed known and fixed throughout the analysis. The nonlinear system input data un ∈ IRq×1 are supposed to

be zero-mean, independent, and identically distributed Gaussian vector. We consider that the entries of un can be

correlated, and we denote by Ruu = E{unu⊤
n } the autocorrelation matrix of the input data. It is assumed that the

input data un or the transformed inputs by kernel ψ(un) are locally or temporally stationary in the environment

needed to be analyzed. The estimated system output is given by

d̂n = α⊤
n κω,n (9)

with αn = [α1(n), . . . , αM (n)]⊤. The corresponding estimation error is defined as

en = dn − d̂n. (10)

1Radial kernels are defined as κ(ui,uj) = f(‖ui −uj‖22) with f ∈ C∞ a completely monotonic function on IR+, i.e., the k-th derivative

of f satisfies (−1)kf (k)(r) ≥ 0 for all r ∈ IR∗

+, k ≥ 0. See [46]. Decreasing of f on IR+ ensures the equivalence between the coherence

criterion and the quantization criterion.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Squaring both sides of (10) and taking the expected value leads to the mean square error (MSE)

Jms(n) = E{e2n} = E{d2n} − 2p⊤
κdαn +α⊤

n Rκκαn (11)

where Rκκ = E{κω,nκ⊤
ω,n} is the correlation matrix of the kernelized input κω,n, and pκd = E{dn κω,n} is the

cross-correlation vector between κω,n and dn. It has already been proved that Rκκ is positive definite [29] if the

input data u(n) are independent and identically distributed Gaussian vectors, and, as a consequence, the dictionary

elements u(ωi) and u(ωj) are statistically independent for i 6= j. Thus, the optimum weight vector is given by

αopt = R−1
κκ pκd (12)

and the corresponding minimum MSE is

Jmin = E{d2n} − p⊤
κdR

−1
κκ pκd. (13)

Note that expressions (12) and (13) are the well-known Wiener solution and minimum MSE, [17], [18], respectively,

where the input signal vector has been replaced by the kernelized input vector.

In order to determine αopt, we shall now calculate the correlation matrice Rκκ using the statistical properties of

the input un and the kernel definition. Let us introduce the following notations

‖un − uωi
‖22 + ‖un − uωj

‖22 = y⊤
3 Q3 y3 (14)

with

y3 =
(
u⊤
n u⊤

ωi
u⊤
ωj

)⊤
(15)

and

Q3 =




2I −I −I

−I I O

−I O I


 (16)

where I is the (q×q) identity matrix, and O is the (q×q) null matrix. From [47, p. 100], we know that the moment

generating function of a quadratic form z = y⊤Qy, where y is a zero-mean Gaussian vector with covariance Ry ,

is given by

ψz(s) = E{esz} = det{I − 2sQRy}−1/2. (17)

Making s = −1/(2ξ2) in equation (17), we find that the (i, j)-th element of Rκκ is given by

[Rκκ]ij =





rmd = det
{
I3 +Q3 R3(i, j)/ξ

2
}−1/2

, i = j

rod = det
{
I3 +Q3 R3(i, j)/ξ

2
}−1/2

, i 6= j
(18)

with 1 ≤ i, j ≤ M , and rmd and rod are the main-diagonal and off-diagonal entries of Rκκ, respectively. In

equation (18), Rp is the (pq × pq) correlation matrix of vector yp (see expression (19) for an illustration of this

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

notation with p = 3), Ip is the (pq× pq) identity matrix, and det{·} denotes the determinant of a matrix. The two

cases (i = j) and (i 6= j) correspond to different forms of the (3q × 3q) matrix R3(i, j), given by

R3(i, j) =




Ruu O O

O RD(i, i) RD(i, j)

O RD(i, j) RD(j, j)


 (19)

where RD(i, j) = E{uωi
u⊤
ωj
} is the intercorrelation matrix of the dictionary elements. Compared with [29], the

formulations (18)-(19), and other reformulations pointed out in the following, allow to address more general problems

by making the analyses tractable. In particular, in order to evaluate the effects of a mismatch between the input

data and the dictionary elements, we shall now consider the case where that they do not necessarily share the same

statistical properties. This situation will occur in a time-varying environment with most of the existing dictionary

update strategies. Indeed, they are only able to incorporate new elements into the dictionary, and cannot automatically

discard obsolete ones. To the best of our knowledge, only [32], [33] suggested to use a sparsity-promoting ℓ1-norm

regularization term to allow minor contributors in the kernel dictionary to be automatically discarded, both without

theoretical results. However, on the one hand, the algorithm [33] was proposed in the multi-kernel context. On the

other hand, the algorithm [32] uses a subgradient approach and has quadratic computational complexity in M .

We shall now suppose now that the first L dictionary elements {uωm
∈ IRq : 1 ≤ m ≤ L} have the same

autocorrelation matrix Ruu as the input un, whereas the other (M − L) elements {uωm
∈ IRq : L < m ≤ M}

have a distinct autocorrelation matrix denoted by R̃uu. In this case, RD(i, j) in equation (19) is given by

RD(i, j) =





Ruu, 1 ≤ i = j ≤ L

R̃uu, L < i = j ≤M

O, 1 ≤ i 6= j ≤M

(20)

which allows to calculate the correlation matrix Rκκ of the kernelized input via equation (18). Note that RD(i, j)

in equation (19) reduces to δij Ruu, with δij = 1 if (i = j), otherwise 0, in the case (L =M) considered in [29].

C. Transient Behavior Analysis

We shall now analyze the transient behavior of the algorithm. We shall successively focus on the convergence

of the weight vector in the mean sense, i.e., E{αn}, and of the mean square error Jms(n) defined in (11).

1) Mean Weight Behavior: The weight update equation of KLMS algorithm is given by

αn+1 = αn + η en κω,n (21)

where η is the step size. Defining the weight error vector vn = αn −αopt leads to the weight error vector update

equation

vn+1 = vn + η en κω,n. (22)

From (9) and (10), and the definition of vn, the error equation is given by

en = dn − κ⊤
ω,n vn − κ⊤

ω,nαopt (23)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

and the optimal estimation error is

eon = dn − κ⊤
ω,nαopt. (24)

Substituting (23) into (22) yields

vn+1 = vn + η dn κω,n − η κ⊤
ω,n vn κω,n − η κ⊤

ω,nαopt κω,n. (25)

Simplifying assumptions are required in order to make the study of the stochastic behavior of κω,n mathematically

feasible. The so-called modified independence assumption (MIA) suggests that κω,nκ
⊤
ω,n is statistically independent

of vn. It is justified in detail in [48], and shown to be less restrictive than the independence assumption [17]. We

also assume that the finite-order model provides a close enough approximation to the infinite-order model with

minimum MSE, so that E{eon} ≈ 0. Taking the expected value of both sides of equation (25) and using these two

assumptions yields

E{vn+1} = (I − ηRκκ)E{vn}. (26)

This expression corresponds to the LMS mean weight behavior for the kernelized input vector κω,n.

2) Mean Square Error Behavior: Using equation (23) and the MIA, the second-order moments of the weights

are related to the MSE through [17]

Jms(n) = Jmin + trace{RκκCv(n)} (27)

where Cv(n) = E{vnv⊤
n } is the autocorrelation matrix of the weight error vector vn, Jmin = E{eon2} denotes

the minimum MSE, and trace{RκκCv(n)} is the excess MSE (EMSE). The analysis of the MSE behavior (27)

requires a model for Cv(n), which is highly affected by the kernelization of the input signal un. An analytical

model for the behavior of Cv(n) was derived in [29]. Using simplifying assumptions derived from the MIA, it

reduces to the following recursion

Cv(n+ 1) ≈ Cv(n)− η (RκκCv(n) +Cv(n)Rκκ) + η2 T (n) + η2 RκκJmin (28a)

with

T (n) = E{κω,n κ⊤
ω,n vn v

⊤
n κω,n κ

⊤
ω,n}. (28b)

The evaluation of expectation (28b) is an important step in the analysis. It leads to extensive calculus if proceeding

as in [29] because, as κω,n is a nonlinear transformation of a quadratic function of the Gaussian input vector un,

it is neither zero-mean nor Gaussian. In this paper, we provide an equivalent approach that greatly simplifies the

calculation. This allows us to consider the general case where there is possibly a mismatch between the statistics

of the input data un and the dictionary elements. Using the MIA to determine the (i, j)-th element of T (n) in

equation (28b) yields

[T (n)]ij ≈
M∑

ℓ=1

M∑

p=1

E{κω,n(i)κω,n(j)κω,n(ℓ)κω,n(p)} [Cv(n)]ℓp. (29)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

where κω,n(i) = κ(un,uωi
). This expression can be written as

[T (n)]ij ≈ trace{K(i, j)Cv(n)} (30)

where the (ℓ, p)-th entry of K(i, j) is given by [K(i, j)]ℓ,p = E{esz}, with s = −1/(2ξ2) and

z = ‖un − uωi
‖22 + ‖un − uωj

‖22 + ‖un − uωℓ
‖22 + ‖un − uωp

‖22. (31)

Using expression (17) leads us to

[K(i, j)]ℓ,p = [det{I5 +Q5 R5(i, j, ℓ, p)/ξ
2}]−1/2 (32)

with

Q5 =




4I −I −I −I −I

−I I O O O

−I O I O O

−I O O I O

−I O O O I




, (33)

and

R5(i, j, ℓ, p) =




Ruu O O O O

O RD(i, i) RD(i, j) RD(i, ℓ) RD(i, p)

O RD(i, j) RD(j, j) RD(j, ℓ) RD(j, p)

O RD(i, ℓ) RD(j, ℓ) RD(ℓ, ℓ) RD(ℓ, p)

O RD(i, p) RD(j, p) RD(ℓ, p) RD(p, p)




, (34)

which uses the same block definition as in (20). Again, note that RD(i, j) in the above equation reduces to δij Ruu

in the regular case (L =M) considered in [29]. This expression concludes the calculation.

D. Steady-State Behavior

We shall now determine the steady-state of the recursion (28a). Observing that it only involves linear operations

on the entries of Cv(n), we can rewrite this equation in a vectorial form in order to simplify the derivations. Let

vec{·} denote the operator that stacks the columns of a matrix on top of each other. Vectorizing the matrices Cv(n)

and Rκκ by cv(n) = vec{Cv(n)} and rκκ = vec{Rκκ}, it can be verified that (28a) can be rewritten as

cv(n+ 1) = Gcv(n) + η2Jmin rκκ (35)

with

G = I − η(G1 +G2) + η2G3. (36)

Matrix G is found by the use of the following definitions

• I is the identity matrix of dimension M2 ×M2;

• G1 is involved in the product Cv(n)Rκκ. It is a block-diagonal matrix, with Rκκ on its diagonal. It can thus

be written as G1 = I ⊗Rκκ, where ⊗ denotes the Kronecker tensor product;

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

• G2 is involved in the product RκκCv(n), and can be written as Rκκ ⊗ I;

• G3 = vec{T (n)} with T (n) defined as in equation (30), namely,

[G3]i+(j−1)M,ℓ+(p−1)M = [K(i, j)]ℓ,p (37)

with 1 ≤ i, j, ℓ, p ≤M .

Note that G1 to G3 are symmetric matrices, which implies that G is also symmetric. Assuming convergence, the

closed-formed solution of the recursion (35) is given by

cv(n) = Gn
[
cv(0)− cv(∞)

]
+ cv(∞) (38)

where cv(∞) denotes the vector cv(n) in steady-state, which is given by

cv(∞) = η2 Jmin (I −G)−1 rκκ. (39)

From equation (27), the steady-state MSE is finally given by

Jms(∞) = Jmin + trace{RκκCv(∞)} (40)

where Jex(∞) = trace{RκκCv(∞)} is the steady-state EMSE.

III. SIMULATION RESULTS

In this section, we present simulation examples to illustrate the accuracy of the derived model, and to study the

properties of the algorithm in the case where the statistics of the dictionary elements partially match the statistics

of the input data. This first experiment provides the motivation for deriving the online dictionary learning algorithm

described subsequently, which can automatically discard the obsolete elements and add appropriate ones.

Two examples with abrupt variance changes in the input signal are presented hereafter. In each situation, the size

of the dictionary was fixed beforehand, and the entries of the dictionary elements were i.i.d. randomly generated

from a zero-mean Gaussian distribution. Each time series was divided into two subsequences. For the first one, the

variance of this distribution was set as equal to the variance of the input signal. For the second one, it was abruptly

set to a smaller or larger value in order to simulate a dictionary misadjustment. All the parameters were chosen

within reasonable ranges collected from the literature.

Notation: In Tables I and II, dictionary settings are compactly expressed as Di = {Mi@σi} ∪ {M ′
i@σ

′
i}. This

has to be interpreted as: Dictionary Di is composed of Mi vectors with entries i.i.d. randomly generated from a

zero-mean Gaussian distribution with standard deviation σi, and M ′
i vectors with entries i.i.d. randomly generated

from a zero-mean Gaussian distribution with standard deviation σ′
i.

1) Example 1: Consider the problem studied in [29], [49], [50], for which




y(n) =
y(n− 1)

1 + y2(n− 1)
+ u3(n− 1)

d(n) = y(n) + z(n)

(41)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

where the output signal y(n) was corrupted by a zero-mean i.i.d. Gaussian noise z(n) with variance σ2
z = 10−4.

The input sequence u(n) was i.i.d. randomly generated from a zero-mean Gaussian distribution with two possible

standard deviations, σu = 0.35 or 0.15, to simulate an abrupt change between two subsequences. The overall length

of the input sequence was 4× 104. Distinct dictionaries, denoted by D1 and D2, were used for each subsequence.

The Gaussian kernel bandwidth ξ was set to 0.02, and the KLMS step-size η was set to 0.01. Two situations were

investigated. For the first one, the standard deviation of the input signal was changed from 0.35 to 0.15 at time

instant n = 2× 104. Conversely, in the second one, it was changed from 0.15 to 0.35.

Table I presents the simulation conditions, and the experimental results based on 200 Monte Carlo runs. The

convergence iteration number nǫ was determined in order to satisfy

‖cv(∞)− cv(nǫ)‖2 ≤ 10−3. (42)

Note that Jmin, Jms(∞), Jex(∞) and nǫ concern convergence in the second subsequence, with the dictionary D2.

The learning curves are depicted in Figures 2 and 3.

TABLE I

SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 1.

ξ η σu D1 D2 Jmin Jms(∞) Jex(∞) nǫ

[dB] [dB] [dB]

{10@0.35} -22.04 -22.03 -49.33 32032

0.02 0.01 0.35 → 0.15 {10@0.35} {10@0.15} -22.50 -22.49 -47.25 26538

{10@0.15} ∪ {10@0.35} -21.90 -21.87 -44.71 30889

{10@0.15} -10.98 -10.97 -38.26 32509

0.02 0.01 0.15 → 0.35 {10@0.15} {10@0.35} -11.20 -11.19 -39.64 36061

{10@0.15} ∪ {10@0.35} -11.01 -10.99 -35.81 31614

2) Example 2: Consider the nonlinear dynamic system studied in [29], [51] where the input signal was a sequence

of statistically independent vectors

un = [u1(n) u2(n)]
⊤ (43)

with correlated samples satisfying u1(n) = 0.5u2(n) + vu(n). The second component of un, and vu(n), were

i.i.d. zero-mean Gaussian sequences with standard deviation both equal to
√
0.0656, or to

√
0.0156, during the two

subsequences of input data. We considered the linear system with memory defined by

y(n) = a⊤ un − 0.2 y(n− 1) + 0.35 y(n− 2) (44)

where a = [1 0.5]⊤ and a nonlinear Wiener function

ϕ(y(n)) =





y(n)

3[0.1 + 0.9 y2(n)]1/2
for y(n) ≥ 0

−y2(n)[1− exp(0.7y(n))]

3
for y(n) < 0,

(45)

d(n) = ϕ(y(n)) + z(n) (46)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Monte Carlo MSE

Minimum MSE (solid)

Steady-State
MSE (dash)

Theoret ical MSE

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Steady-State EMSE

EMSE

Theoret ical
MSE

Steady-State
MSE (dash)

Minimum
MSE (solid)

(a) D2 = {10@0.35}

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Minimum MSE (solid)

Steady-State
MSE (dash)

Theoret ical MSE

Steady-State
MSE (dash)

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

EMSE

Steady-State EMSE

Theoret ical MSE

Minimum
MSE (solid)

Steady-State
MSE (dash)

(b) D2 = {10@0.15}

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Monte Carlo MSE

Minimum MSE (solid)

Steady-State
MSE (dash)

Theoret ical MSE

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Theoret ical MSE

Minimum
MSE (solid)

Steady-State EMSE

EMSE
Steady-State
MSE (dash)

(c) D2 = {10@0.15} ∪ {10@0.35}

Fig. 2. Learning curves for Example 1 where σu : 0.35 → 0.15 and D1 = {10@0.35}. See the first row of Table I.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Theoret ical MSE

Minimum
MSE (solid)

Monte Carlo MSE

Steady-State
MSE (dash)

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Steady State
MSE (dash)

EMSE

Steady-State EMSE

Theoret ical MSE

Minimum
MSE (solid)

(a) D2 = {10@0.15}

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Theoret ical MSE

Minimum
MSE (solid)

Monte Carlo MSE

Steady-State
MSE (dash)

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

I te rat i ons

M
S
E

(
d
B
)

Theoret ical
MSE

Steady State
MSE (dash)

Steady-State EMSE

EMSE

Minimum
MSE (solid)

(b) D2 = {10@0.35}

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Monte Carlo MSE

Minimum
MSE (solid)

Theoret ical MSE

Steady-State
MSE (dash)

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Steady-State
MSE (dash)

EMSE

Minimum
MSE (solid)

Theoret ical MSE

Steady-State EMSE

(c) D2 = {10@0.15} ∪ {10@0.35}

Fig. 3. Learning curves for Example 1 where σu : 0.15 → 0.35 and D1 = {10@0.15}. See the second row of Table I.

where d(n) is the output signal. It was corrupted by a zero-mean i.i.d. Gaussian noise z(n) with variance σ2
z = 10−6.

The initial condition y(1) = 0 was considered. The bandwidth ξ of the Gaussian kernel was set to 0.05, and the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

step-size η of the KLMS was set to 0.05. The length of each input sequence was 4× 104. As in Example 1, two

changes were considered. For the first one, the standard deviation of u2(n) and vu(n) was changed from
√
0.0656

to
√
0.0156 at time instant n = 1×104. Conversely, for the second one, it was changed from

√
0.0156 to

√
0.0656.

Table II presents the results based on 200 Monte Carlo runs. Note that Jmin, Jms(∞), Jex(∞) and nǫ concern

convergence in the second subsequence, with dictionary D2. The learning curves are depicted in Figures 4 and 5.

TABLE II

SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 2.

ξ η σu2
, σvu D1 D2 Jmin Jms(∞) Jex(∞) nǫ

[dB] [dB] [dB]

{15@
√
0.0656} -20.28 -20.25 -42.04 15519

0.05 0.05
√
0.0656 →

√
0.0156 {15@

√
0.0656} {15@

√
0.0156} -20.27 -20.20 -37.96 12117

{15@
√
0.0156} ∪ {15@

√
0.0656} -20.47 -20.37 -36.68 14731

{15@
√
0.0156} -16.40 -16.37 -38.12 15858

0.05 0.05
√
0.0156 →

√
0.0656 {15@

√
0.0156} {15@

√
0.0656} -16.57 -16.55 -40.39 19269

{15@
√
0.0156} ∪ {15@

√
0.0656} -16.61 -16.57 -36.21 16123

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Theoret ical MSE

Minimum
MSE (solid)

Steady-State
MSE (dash)

Monte Carlo MSE

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(d
B
)

EMSE

Steady-State EMSE

Theoret ical MSE

Minimum
MSE (solid)

Steady-State
MSE (dash)

(a) D2 = {15@
√
0.0656}

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Steady-State
MSE (dash)

Theoret ical MSE

Minimum
MSE (solid)

Monte Carlo MSE

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(d
B
)

EMSE
Steady-State
MSE (dash)

Theoret ical
MSE

Minimum
MSE (solid)

Steady-State EMSE

(b) D2 = {15@
√
0.0156}

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Steady-State
MSE (dash)

Theoret ical MSE

Minimum
MSE (solid)

Monte Carlo MSE

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Steady-State EMSE

Theoret ical MSE

Minimum
MSE (solid)

EMSE
Steady-State
MSE (dash)

(c) D2 = {15@
√
0.0156} ∪ {15@

√
0.0656}

Fig. 4. Learning curves for Example 2 with σu2
, σvu :

√
0.0656 →

√
0.0156 and D1 = {15@

√
0.0656}. See the first row of Table II.

3) Discussion: We shall now discuss the simulation results. It is important to recognize the significance of the

mean-square estimation errors provided by the model, which perfectly match the averaged Monte Carlo simulation

results. The model separates the contribution of the minimum MSE and EMSE, and makes comparisons possible.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Theoret ical MSE

Minimum MSE (solid)

Steady-State
MSE (dash)

Monte Carlo MSE

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Minimum
MSE (solid)

EMSE

Steady-State
MSE (dash)

Steady-State EMSE

Theoret ical MSE

(a) D2 = {15@
√
0.0156}

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Steady-State
MSE (dash)

Minimum MSE (solid)

Monte Carlo MSE

Theoret ical MSE

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

EMSE

Minimum
MSE (solid)

Theoret ical MSE

Steady-State
MSE (dash)

Steady-State EMSE

(b) D2 = {15@
√
0.0656}

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Monte Carlo MSE

Steady-State
MSE (dash)

Minimum MSE (solid)

Theoret ical MSE

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(
d
B
)

Minimum
MSE (solid)

Steady-State
MSE (dash)

EMSE

Steady-State EMSE

Theoret ical MSE

(c) D2 = {15@
√
0.0156} ∪ {15@

√
0.0656}

Fig. 5. Learning curves for Example 2 with σu2
, σvu :

√
0.0156 →

√
0.0656 and D1 = {15@

√
0.0156}. See the second row of Table II.

The simulation results clearly show that adjusting the dictionary to the input signal has a positive effect on

the performance when a change in the statistics is detected. This can be done by adding new elements to the

existing dictionary, while at the same time possibly discarding the obsolete elements. Considering a completely

new dictionary led us to the lowest MSE Jms(∞) and minimum MSE Jmin in Example 1. Adding new elements

to the existing dictionary provided the lowest MSE Jms(∞) and minimum MSE Jmin in Example 2. This strategy

can however have a negative effect on the convergence behavior of the algorithm.

IV. KLMS ALGORITHM WITH FORWARD-BACKWARD SPLITTING

We shall now introduce a KLMS-type algorithm based on forward-backward splitting, which can automatically

update the dictionary in an online way by discarding the obsolete elements and adding appropriate ones.

A. Forward-Backward Splitting Method in a Nutshell

Consider first the following optimization problem [52]

α∗ = argmin
α∈IRN

{Q(α) = J(α) + λΩ(α)} (47)

where J(·) is a convex empirical loss function with Lipschitz continuous gradient and Lipschitz constant 1/η0.

Function Ω(·) is a convex, continuous, but not necessarily differentiable regularizer, and λ is a positive regularization

constant. This problem has been extensively studied in the literature, and can be solved with forward-backward

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16

splitting [53]. In a nutshell, this approach consists of minimizing the following quadratic approximation of Q(α)

at a given point αn, in an iterative way,

Qη(α,αn) = J(αn) +∇J(αn)⊤(α−αn) +
1

2η
‖α−αn‖22 + λΩ(α) (48)

since Q(α) ≤ Qη(α,αn) for any η ≤ η0. Simple algebra shows that the function Qη(α,αn) admits a unique

minimizer, denoted by αn+1, given by

αn+1 = argmin
α∈IRN

{
λΩ(α) +

1

2η
‖α− α̂n‖22

}
(49)

with α̂n = αn− η∇J(αn). It is interesting to note that α̂n can be interpreted as an intermediate gradient descent

step on the cost function J(·). Problem (49) is called the proximity operator for the regularizer Ω(·), and is denoted

by ProxληΩ(·)(·). While this method can be considered as a two-step optimization procedure, it is equivalent to

a subgradient descent with the advantage of promoting exact sparsity at each iteration. The convergence of the

optimization procedure (49) to a global minimum is ensured if 1/η is a Lipschitz constant of the gradient ∇J(α).

See [52]. In the case J(α) = 1
2‖d−Kα‖22 considered in (2), where K is a (N ×N) matrix, a well-established

condition ensuring the convergence of αn+1 to a minimizer of problem (47) is to require that [53]

0 < η < 2/eigmax{K⊤K} (50)

where eigmax{·} is the maximum eigenvalue. A companion bound will be derived hereafter for the stochastic

gradient descent algorithm.

Forward-backward splitting is an efficient method for minimizing convex cost functions with sparse regularization.

It was originally derived for offline learning but a generalization of this algorithm for stochastic optimization, the

so-called FOBOS, was proposed in [54]. It consists of using a stochastic approximation for ∇J at each iteration.

This online approach can be easily coupled with the KLMS algorithm but, for convenience of presentation, we

shall now describe the offline setup based on problem (2).

B. Application to KLMS Algorithm

In order to automatically discard the irrelevant elements from the dictionary D, let us consider the minimization

problem (2) with the sparsity-promoting convex regularization function Ω(·)

α∗ = argmin
α∈IRN

{
Q(α) = ‖d−Kα‖22 + λΩ(α)

}
(51)

where K is the (N ×N) Gram matrix with (i, j)-th entry κ(ui,uj). Problem (51) is of the form (47), and can be

solved with the forward-backward splitting method. Two regularization terms are considered.

Firstly, we suggest the use of the well-known ℓ1-norm function defined as Ω1(α) =
∑
m |α(m)|. This regular-

ization function is often used for sparse regression and its proximity operator is separable. Its m-th entry can be

expressed as [52]
(
Proxλη‖·‖1

(α)
)
(m) = sign{α(m)}max{|α(m)| − λη, 0}. (52)

It is called the soft thresholding operator. One major drawback is that it promotes biased prediction.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

17

Algorithm 1 FOBOS-KLMS.

1: Initialization

Select the step size η, and the parameters of the kernel;

Insert κ(·,u1) into the dictionary, α1 = 0.

2: for n = 1, 2, · · · , do

3: if maxm=1,...,M |κ(un,uωm
)| > µ0

Compute κω,n and α̂n using equation (6);

4: elseif maxm=1,...,M |κ(un,uωm
)| ≤ µ0

Incorporate κ(·,un) into the dictionary;

Compute κω,n and α̂n using equation (7);

5: end if

6: αn = ProxληΩ(·)(α̂n) using (52) or (53);

7: Remove κ(·,uωm
) from the dictionary if αn(m) = 0.

8: The solution is given as ψ(un) =
∑M
m=1 αmκ(un,uωm

).

9: end for

Secondly, we consider an adaptive ℓ1-norm function of the form Ωa(α) =
∑
m wm|α(m)| where the {wm}m is

a set of weights to be dynamically adjusted. The proximity operator for this regularization function is defined by

(
ProxληΩa(·)(α)

)
(m) = sign{α(m)}max{|α(m)| − λη wm, 0}. (53)

This regularization function has been proven to be more consistent than the usual ℓ1-norm [55], and tends to reduce

the bias induced by the latter. Weights are usually chosen as wm = 1/(|αopt(m)|+ǫα), where αopt is the least-square

solution of the problem (2), and ǫα a small constant to prevent the denominator from vanishing [56]. Since αopt

is not available in our online case, we chose wm = 1/(|αn−1(m)| + ǫα) at each iteration n. This technique, also

referred to as reweighted least-square, is performed at each iteration of the stochastic optimization process. Note

that a similar regularization term was used in [42] in order to approximate the ℓ0-norm.

The pseudocode for KLMS algorithm with sparsity-promoting regularization, called FOBOS-KLMS, is provided

in Algorithm 1. It can be noticed that the proximity operator is applied after the gradient descent step. The trivial

dictionary elements associated with null coefficients in vector αn are eliminated. On the one hand, this approach

reduces to the generic KLMS algorithm in the case λ = 0. On the other hand, FOBOS-KLMS appears to be

the mono-kernel counterpart of the dictionary-refinement technique proposed in [33] in the multi-kernel adaptive

filtering context. The stability of this method is analyzed in the next subsection, which is an additional contribution

of this paper.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

18

C. Stability in the Mean

We shall now discuss the stability in mean of the FOBOS-KLMS algorithm. We observe that the KLMS algorithm

with the sparsity inducing regularization can be written as

αn = αn−1 + η en κω,n − fn−1 (54)

with

fn−1(m) =





λη sign(α̂n−1(m)) if |α̂n−1(m)| ≥ λη

α̂n−1(m) otherwise

(55)

where α̂n = αn−1 + η en κω,n. The function sign(α) is defined by

sign(α) =





α/|α| α 6= 0

0 otherwise.

(56)

Up to a variable change in λ, the general form (54)-(55) remains the same with the regularization function (53).

Note that the sequence |fn−1(m)| is bounded, by λη for the operator (52), and by λη/ǫα for the operator (53).

Theorem 4.1: Assume MIA holds. For any initial condition α0, the KLMS algorithm with sparsity promoting

regularization (52) and (53) asymptotically converges in the mean sense if the step-size η is chosen to satisfy

0 < η < 2/eigmax{Rκκ} (57)

where Rκκ = E{κω,nκ⊤
ω,n} is the (M ×M) correlation matrix of the kernelized input κω,n, and eigmax{Rκκ} is

the maximum eigenvalue of Rκκ.

To prove this theorem, we observe that the recursion (22) for the weight error vector vn becomes

vn = vn−1 − η κω,n(κω,n vn−1 + eon)− fn−1. (58)

Taking the expected value of both sides, and using the same assumptions as for (26), leads to

E{vn} = (I − ηRκκ)
nE{v0}+

n−1∑

i=0

(I − ηRκκ)
iE{fn−i−1} (59)

with v0 the initial condition. To prove the convergence of E{vn}, we have to show that both terms on the r.h.s.

converge as n goes to infinity. The first term converges to zero if we can ensure that ν , ‖I − ηRκκ‖2 < 1,

where ‖·‖2 denotes the 2-norm (spectral norm). We can easily check that this condition is met for any step-size η

satisfying the condition (57) since

ν = max
m=1,...,M

|1− η eigm{Rκκ}| (60)

where eigm{Rκκ} is the m-th eigenvalue of Rκκ. Let us show now that condition (57) also implies that the second

term on the r.h.s. of equation (59) asymptotically converges to a finite value, thus leading to the overall convergence

of this recursion. First it has been noticed that the sequence |fn−1(m)| is bounded. Thus, each term of this series

is bounded because

‖(I − ηRκκ)
i E{fn−i−1}‖2 ≤ ‖(I − ηRκκ)

i‖2 E{‖fn−i−1‖2}

≤
√
M νi fmax

(61)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

19

where fmax = λη or λη/ǫα, depending if one uses the regularization function (52) or (53). Condition (57) implies

that ν < 1 and, as a consequence,

n−1∑

i=0

‖(I − ηRκκ)
i E{fn−i−1}‖2 ≤

√
M fmax

1− ν
. (62)

The second term on the r.h.s. of equation (59) is an absolutely convergent series. This implies that it is a convergent

series. Because the two terms of equation (59) are convergent series, we finally conclude that E{vn} converges to

a steady-state value if condition (57) is satisfied. Before concluding this section, it should be noticed that we have

shown in [29] that

eigmax{Rκκ} = rmd + (M − 1) rod. (63)

Parameters rmd and rod are given by expression (18) in the case of a possibly partially matching dictionary.

D. Simulation Results of Proposed Algorithm

We shall now illustrate the good performance of the FOBOS-KLMS algorithm with the two examples considered

in Section II. Experimental settings were unchanged, and the results were averaged over 200 Monte Carlo runs.

The coherence threshold µ0 in Algorithm 1 was set to 0.01.

One can observe in Figures 7 and 9 that the size of the dictionary designed by the KLMS with coherence criterion

dramatically increases when the variance of the input signal increases. In this case, this increased dynamic forces

the algorithm to pave the input space U with additional dictionary elements. In Figures 6 and 8, the algorithm

does not face this problem since the variance of the input signal abruptly decreases. The dictionary update with

new elements is suddenly stopped. Again, these two scenarios clearly show the need for dynamically updating

the dictionary by adding or discarding elements. Figures 6 to 9 clearly illustrate the merits of the FOBOS-KLMS

algorithm with the regularizations (52) and (53). Both principles efficiently control the structure of the dictionary

as a function of instantaneous characteristics of the input signal. They significantly reduce the order of the KLMS

filter without affecting its performance.

V. CONCLUSION

In this paper, we presented an analytical study of the convergence behavior of the Gaussian least-mean-square

algorithm in the case where the statistics of the dictionary elements only partially match the statistics of the input

data. This allowed us to emphasize the need for updating the dictionary in an online way, by discarding the

obsolete elements and adding appropriate ones. We introduced the so-called FOBOS-KLMS algorithm, based on

forward-backward splitting to deal with ℓ1-norm regularization, in order to automatically adapt the dictionary to

the instantaneous characteristics of the input signal. The stability in the mean of this method was analyzed, and a

condition on the step-size for convergence was derived. The merits of FOBOS-KLMS were illustrated by simulation

examples.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

20

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(d
B
)

KLMS-CS

FOBOS-KLMS-Ω1

FOBOS-KLMS-Ωa

2.95 2.955 2.96

x 10
4

−22.5

−22.4

−22.3

−22.2

−22.1

−22

(a) MSE

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

5

10

15

20

25

30

35

Iterat ions

D
ic
ti
o
n
a
ry

si
z
e
(M

)

KLMS-CS

FOBOS-KLMS-Ω1

FOBOS-KLMS-Ωa

(b) Evolution of the size of dictionary

Fig. 6. Learning curves for Example 1 where σu : 0.35 → 0.15.

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−25

−20

−15

−10

−5

0

Iterat ions

M
S
E

(d
B
)

KLMS-CS

FOBOS-KLMS-Ω1

FOBOS-KLMS-Ωa

1.707 1.708 1.709 1.71

x 10
4

−22

−21.9

−21.8

−21.7

−21.6

(a) MSE

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

5

10

15

20

25

30

35

Iterat ions

D
ic
ti
o
n
a
ry

si
z
e
(M

)

KLMS-CS

FOBOS-KLMS-Ωa

FOBOS-KLMS-Ω1

(b) Evolution of the size of dictionary

Fig. 7. Learning curves for Example 1 where σu : 0.15 → 0.35.

REFERENCES

[1] S. W. Nam and E. J. Powers, “Application of higher order spectral analysis to cubically nonlinear system identification,” IEEE Signal

Processing Magazine, vol. 42, no. 7, pp. 2124–2135, 1994.

[2] C. L. Nikias and A. P. Petropulu, Higher-Order Spectra Analysis - a Nonlinear Signal Processing Framework. Englewood Cliffs, NJ:

Prentice Hall, 1993.

[3] M. Schetzen, The Volterra and Wiener Theory of the Nonlinear Systems. New York, NY: Wiley, 1980.

[4] N. Wiener, Nonlinear Problems in Random Theory. New York, NY: Wiley, 1958.

[5] V. J. Mathews and G. L. Sicuranze, Polynomial Signal Processing. New York, NY: John Wiley & Sons, 2000.

[6] S. Haykin, Neural Networks: A Comprehensive Foundation. Englewood Cliffs, NJ: Prentice Hall, 1999.

[7] A. N. Kolmogorov, “On the representation of continuous functions of many variables by superpositions of continuous functions of one

variable and addition,” Doklady Akademii Nauk USSR, vol. 114, pp. 953–956, 1957.

[8] G. Camps-Valls, J. L. Rojo-Alvarez, and M. Martinez-Ramon, Eds., Kernel Methods in Bioengineering, Signal and Image Processing.

IGI Global, 2007.

[9] G. Camps-Valls and L. Bruzzone, Eds., Kernel Methods for Remote Sensing Data Analysis. Wiley, 2009.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

21

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−25

−20

−15

−10

−5

Iterat ions

M
S
E

(d
B
)

FOBOS-KLMS-Ω1

FOBOS-KLMS-Ωa

1.7 1.701 1.702 1.703 1.704

x 10
4

−24

−23.9

−23.8

−23.7

−23.6

−23.5

KLMS-CS

(a) MSE

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

10

20

30

40

50

60

70

80

Iterat ions

D
ic
ti
o
n
a
ry

si
z
e
(M

)

KLMS-CS

FOBOS-KLMS-Ωa FOBOS-KLMS-Ω1

(b) Evolution of the size of dictionary

Fig. 8. Learning curves for Example 2 with σu2
, σvu :

√
0.0656 →

√
0.0156.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−25

−20

−15

−10

−5

Iterat ions

M
S
E

(d
B
)

FOBOS-KLMS-Ωa

FOBOS-KLMS-Ω1

KLMS-CS

1.9 1.902 1.904 1.906 1.908 1.91

x 10
4

−20

−19.9

−19.8

−19.7

−19.6

−19.5

(a) MSE

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

10

20

30

40

50

60

70

80

Iterat ions

D
ic
t
io
n
a
r
y
s
iz
e
(
M
)

KLMS-CS

FOBOS-KLMS-Ω1

FOBOS-KLMS-Ωa

(b) Evolution of the size of dictionary

Fig. 9. Learning curves for Example 2 with σu2
, σvu :

√
0.0156 →

√
0.0656

[10] J. Chen, C. Richard, and P. Honeine, “Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model,”

IEEE Transactions on Signal Processing, vol. 61, no. 2, pp. 480–492, 2013.

[11] ——, “Nonlinear estimation of material abundances in hyperspectral images with ℓ1-norm spatial regularization,” IEEE Transactions on

Geoscience and Remote Sensing, 2013 (to appear).

[12] N. Dobigeon, J.-Y. Tourneret, C. Richard, J.-C. M. Bermudez, S. McLaughlin, and A. O. Hero, “Nonlinear unmixing of hyperspectral

images: Models and algorithms,” IEEE Signal Processing Magazine, vol. 31, no. 1, pp. 82–94, 2014.

[13] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration for reinforcement learning,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 18, no. 4, pp. 973–992, 2007.

[14] D. Nguyen-Tuong and J. Peters, “Online kernel-based learning for task-space tracking robot control,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 23, no. 9, pp. 1417–1425, 2012.

[15] B. Schölkopf, R. Herbrich, and R. Williamson, “A generalized representer theorem,” NeuroCOLT, Royal Holloway College, University of

London, UK, Tech. Rep. NC2-TR-2000-81, 2000.

[16] W. Liu, J. C. Prı́ncipe, and S. Haykin, Kernel Adaptive Filtering. New Jersey: Wiley, 2010.

[17] A. H. Sayed, Fundamentals of Adaptive Filtering. New York: Wiley, 2003.

[18] S. Haykin, Adaptive Filter Theory, 2nd ed. New Jersey: Prentice-Hall, 1991.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

22

[19] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least squares,” IEEE Transactions on Signal Processing, vol. 52, no. 8, pp.

2275–2285, 2004.

[20] S. V. Vaerenbergh, J. Vı́a, and I. Santamarı́a, “A sliding-window kernel RLS algorithm and its application to nonlinear channel identification,”

in Proc. IEEE ICASSP, 2006, pp. 789–792.

[21] W. Liu, I. M. Park, Y. Wang, and J. Prı́ncipe, “Extended kernel recursive least squares algorithm,” IEEE Transactions on Signal Processing,

vol. 57, no. 10, pp. 3801–3814, 2009.

[22] S. V. Vaerenbergh, M. Lázaro-Gredilla, and I. Santamarı́a, “Kernel recursive least-squares tracker for time-varying regression,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 23, no. 8, pp. 1313–1326, 2012.

[23] P. Honeine, C. Richard, and J.-C. M. Bermudez, “On-line nonlinear sparse approximation of functions,” in Proc. IEEE ISIT, 2007, pp.

956–960.

[24] C. Richard, J.-C. M. Bermudez, and P. Honeine, “Online prediction of time series data with kernels,” IEEE Transactions on Signal

Processing, vol. 57, no. 3, pp. 1058–1067, 2009.

[25] K. Slavakis and S. Theodoridis, “Sliding window generalized kernel affine projection algorithm using projection mappings,” EURASIP

Journal on Advances in Signal Processing, vol. 2008, 2008.

[26] W. Liu and J. C. Prı́ncipe, “Kernel affine projection algorithms,” EURASIP Journal on Advances in Signal Processing, vol. 2008, 2008.

[27] C. Richard, “Filtrage adaptatif non-linéaire par méthodes de gradient stochastique court-terme à noyau,” in Actes du 20e Colloque GRETSI

sur le Traitement du Signal et des Images, 2005.

[28] W. Liu, P. P. Pokharel, and J. C. Prı́ncipe, “The kernel least-mean-square algorithm,” IEEE Transactions on Signal Processing, vol. 56,

no. 2, pp. 543–554, 2008.

[29] W. D. Parreira, J.-C. M. Bermudez, C. Richard, and J.-Y. Tourneret, “Stochastic behavior analysis of the Gaussian kernel-least-mean-square

algorithm,” IEEE Transactions on Signal Processing, vol. 60, no. 5, pp. 2208–2222, 2012.

[30] C. Richard and J.-C. M. Bermudez, “Closed-form conditions for convergence of the gaussian kernel-least-mean-square algorithm,” in Proc.

Asilomar, 2012, pp. 1797–1801.

[31] B. Chen, S. Zhao, P. Zhu, and J. C. Prı́ncipe, “Quantized kernel least-mean-square algorithm,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 23, no. 1, pp. 22–32, 2012.

[32] B. Chen, S. Zhao, S. Seth, and J. C. Prı́ncipe, “Online efficient learning with quantized KLMS and L1 regularization,” in Proc. IJCNN,

2012, pp. 1–6.

[33] M. Yukawa, “Multikernel adaptive filtering,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4672–4682, 2012.

[34] W. Gao, J. Chen, C. Richard, J. Huang, and R. Flamary, “Kernel LMS algorithm with forward-backward splitting for dictionary learning,”

in Proc. IEEE ICASSP, 2013, pp. 5735–5739.

[35] P. Bouboulis and S. Theodoridis, “Extension of Wirtinger’s calculus to reproducing kernel Hilbert spaces and the complex kernel LMS,”

IEEE Transactions on Signal Processing, vol. 59, no. 3, pp. 964–978, 2011.

[36] P. Bouboulis, S. Theodoridis, and M. Mavroforakis, “The augmented complex kernel LMS,” IEEE Transactions on Signal Processing,

vol. 60, no. 9, pp. 4962–4967, 2012.

[37] T. Paul and T. Ogunfunmi, “Analysis of the convergence behavior of the complex gaussian kernel LMS algorithm,” in Proc. IEEE ISCAS,

2012, pp. 2761–2764.

[38] F. A. Tobar and D. P. Mandic, “The quaternion kernel least squares,” in Proc. IEEE ICASSP, 2013, pp. 6128–6132.

[39] J. Platt, “A resource-allocating network for function interpolation,” Neural Computation, vol. 3, no. 2, pp. 213–225, 1991.

[40] W. Liu, I. Park, and J. C. Prı́ncipe, “An information theoretic approach of designing sparse kernel adaptive filters,” IEEE Transactions on

Neural Networks, vol. 20, no. 12, pp. 1950–1961, 2009.

[41] K. Slavakis, P. Bouboulis, and S. Theodoridis, “Online learning in reproducing kernel Hilbert spaces,” E-Reference, Signal Processing,

Elsevier, 2013.

[42] Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system identification,” in Proc. IEEE ICASSP, 2009, pp. 3125–3128.

[43] K. Slavakis, Y. Kopsinis, and S. Theodoridis, “Adaptive algorithm for sparse system identification using projections onto weighted ℓ1

balls,” in Proc. IEEE ICASSP, 2010, pp. 3742–3745.

[44] Y. Murakami, M. Yamagishi, M. Yukawa, and I. Yamada, “A sparse adaptive filtering using time-varying soft-thresholding techniques,” in

Proc. IEEE ICASSP, 2010, pp. 3734–3737.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

23

[45] E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, “Compressed sensing with coherent and redundant dictionaries,” Applied and

Computational Harmonic Analysis, vol. 31, no. 1, pp. 59–73, 2011.

[46] F. Cucker and S. Smale, “On the mathematical foundations of learning,” Bulletin of the American Mathematical Society, vol. 31, no. 1,

pp. 1–49, 2001.

[47] J. Omura and T. Kailath, “Some useful probability distributions,” Stanford Electronics Laboratories, Stanford University, Stanford,

California, USA, Tech. Rep. 7050-6, 1965.

[48] J. Minkoff, “Comment: On the unnecessary assumption of statistical independence between reference signal and filter weights in feedforward

adaptive systems,” IEEE Transactions on Signal Processing, vol. 49, no. 5, p. 1109, 2001.

[49] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Transactions on

Neural Networs, vol. 1, no. 1, pp. 3–27, 1990.

[50] D. P. Mandic, “A generalized normalized gradient descent algorithm,” IEEE Signal Processing Letters, vol. 2, pp. 115–118, 2004.

[51] J. Vörös, “Modeling and identification of Wiener systems with two-segment nonlinearities,” IEEE Transactions on Control Systems

Technology, vol. 11, no. 2, pp. 253–257, 2003.

[52] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, 2011.

[53] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM Journal on Imaging

Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[54] J. Duchi and Y. Singer, “Efficient online and batch learning using forward backward splitting,” Journal of Machine Learning Research,

vol. 10, pp. 2899–2934, 2009.

[55] H. Zou, “The adaptive lasso and its oracle properties,” Journal of the American Statistical Association, vol. 101, no. 476, pp. 1418–1429,

2006.

[56] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted ℓ1 minimization,” Journal of Fourier Analysis and

Applications, vol. 14, no. 5, pp. 877–905, 2008.

Wei Gao (S’11) received the M.S. degree in information and communication engineering from Northwestern Polytech-

nical University (NPU), in Xi’an, China, in 2010. He is currently pursuing his Ph.D. degree at NPU since 2010, and

simultaneously preparing a Ph.D. degree at University of Nice Sophia Antipolis (UNS), Nice, France, since 2012. His

current research interests include nonlinear adaptive filtering, adaptive noise cancellation and array signal processing.

Jie Chen (S’12–M’14) was born in Xi’an, China, in 1984. He received the B.S. degree in information and telecom-

munication engineering in 2006 from the Xi’an Jiaotong University, Xi’an, and the Dipl.-Ing. and the M.S. degrees

in information and telecommunication engineering in 2009 from the University of Technology of Troyes (UTT),

Troyes, France, and from the Xi’an Jiaotong University, respectively. In 2013, he received the Ph.D. degree in systems

optimization and security from the UTT.

From April 2013 to March 2014, he was a Postdoctoral Researcher at the Côte d’Azur Observatory, University of

Nice Sophia Antipolis, Nice, France. Since April 2014, he works as a Postdoctoral Researcher with the department of

Electrical Engineering and Computer Science of University of Michigan, Ann Arbor, USA.

His current research interests include adaptive signal processing, kernel methods, hyperspectral image analysis, distributed optimization, and

supervised and unsupervised learning. He is a reviewer for several journals, including IEEE Transactions on Image processing, IEEE Transactions

on Geoscience and Remote Sensing and ELSEVIER Signal Processing.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

24

Cédric Richard (S’98–M’01–SM’07) was born January 24, 1970 in Sarrebourg, France. He received the Dipl.-Ing.

and the M.S. degrees in 1994 and the Ph.D. degree in 1998 from the University of Technology of Compiègne, France,

all in electrical and computer engineering. From 1999 to 2003, he was an Associate Professor at the University of

Technology of Troyes (UTT), France. From 2003 to 2009, he was a Full Professor at UTT. Since september 2009,

he is a Full Professor in the Lagrange Laboratory (University of Nice Sophia Antipolis, CNRS, Observatoire de la

Côte d’Azur). In winter 2009 and 2014, and autumns 2010, 2011 and 2013, he was a Visiting Researcher with the

Department of Electrical Engineering, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil. He is a

junior member of the Institut Universitaire de France since October 2010.

His current research interests include statistical signal processing and machine learning.

Cédric Richard is the author of over 220 papers. He was the General Chair of the XXIth francophone conference GRETSI on Signal and

Image Processing that was held in Troyes, France, in 2007, and of the IEEE Statistical Signal Processing Workshop (IEEE SSP’11) that was

held in Nice, France, in 2011. He will be the Technical Chair of EUSIPCO 2015. Since 2005, he is a member of GRETSI association board

and of the EURASIP society, and Senior Member of the IEEE. In 2006-2010, he served as an associate editor of the IEEE Transactions on

Signal Processing. Actually, he serves as an Associate Editor of Signal Processing Elsevier, and of the IEEE Signal Processing Letters. He is

an Eurasip liaison local officer. He is a member of the Signal Processing Theory and Methods (SPTM TC) Technical Committee, and of the

Machine Learning for Signal Processing (MLSP TC) Technical Committee, of the IEEE Signal Processing Society.

Paul Honeine and and Cédric Richard won the Best Paper Award for “Solving the preimage problem in kernel machines: a direct method”

at the 2009 IEEE International Workshop on Machine Learning for Signal Processing.

Jianguo Huang (SM’94) received the B.E. degree in acoustics and electronic engineering from Northwestern Poly-

technical University (NPU), China, in 1967. He conducted his Master study for signal processing in Peking University,

from 1979 to 1980. From 1985 to 1988, he was a Visiting Researcher for modern spectral estimation in University

of Rhode Island, USA. In 1998, as a Visiting Professor he conducted the joint research on high resolution parameter

estimation in State University of New York, Stony Brook, USA.

He is currently a Professor of signal processing and wireless communication, Director of the Institute of Oceanic

Science and Information Processing in NPU, adjunct professor of Shanghai Jiaotong University, the Fellow of Chinese

Society of Acoustics. He was also the former Dean of the College of Marine Engineering and Director of State Key Laboratory of Underwater

Information Processing and Control in NPU. He is the author of more than 520 papers and five books. His general research interests include

modern signal processing, array signal processing, and wireless and underwater acoustic communication theory and application.

Mr. Huang has been in charge of more than 40 projects of national and ministries science foundation. For the achievements of research in

theory and applications, he obtained 20 awards from nation, ministries and province. He was recognized as the “2008 Chinese Scientist of the

Year”. Prof. Huang was invited by the universities and companies to deliver the lectures in USA, UK, Canada, Australia, Singapore, Japan and

Hong Kong. He is the Chairman of IEEE Xi’an Section of China, honorary Chair of ChinaSIP2013, and one of the founders and a member

of the Steering Committee of IEEE ChinaSIP. He also served as General or TPC Chair/Co-Chair in many international conferences, including

IEEE ICSPCC, IEEE TENCON2013, IEEE ICCSN2011, IEEE ICIEA2009 and so on.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2318132

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

