
1

Online Discovery of Gathering Patterns over
Trajectories

Kai Zheng Member, IEEE, Yu Zheng Senior Member, IEEE, Nicholas Jing Yuan, Shuo Shang,
and Xiaofang Zhou, Senior Member, IEEE,

Abstract—The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for
almost any kind of moving objects. Discovering useful patterns from their movement behaviours can convey valuable knowledge to a
variety of critical applications. In this light, we propose a novel concept, called gathering, which is a trajectory pattern modelling various
group incidents such as celebrations, parades, protests, traffic jams and so on. A key observation is that these incidents typically
involve large congregations of individuals, which form durable and stable areas with high density. In this work, we first develop a set of
novel techniques to tackle the challenge of efficient discovery of gathering patterns on archived trajectory dataset. Afterwards, since
trajectory databases are inherently dynamic in many real-world scenarios such as traffic monitoring, fleet management and battlefield
surveillance, we further propose an online discovery solution by applying a series of optimization schemes, which can keep track
of gathering patterns while new trajectory data arrive. Finally, the effectiveness of the proposed concepts and the efficiency of the
approaches are validated by extensive experiments based on a real taxicab trajectory dataset.
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1 INTRODUCTION

The increasing availability of location-acquisition technologies
including telemetry attached on wildlife, GPS set on cars,
WLAN networks, and mobile phones carried by people have
enabled tracking almost any kind of moving objects, which
results in huge volumes of spatio-temporal data in the form of
trajectories. Such data provides the opportunity of discovering
usable knowledge about movement behaviour, which fosters
ranges of novel applications and services [1]. For this reason,
it has received great attention to perform data analysis on
trajectories. In this paper, we move towards this direction and
address one particular challenge to do with discovering the
so-called gathering patterns from trajectories in an efficient
manner.

Informally, a gathering represents a group event or incident
that involves congregation of objects (e.g., vehicles, people,
animals). Examples of gatherings may include celebrations,
parades, large-scale business promotions, protests, traffic jams
and other public gatherings. A gathering is expected to imply
something unusual or significant happening. As such, the
discovery of gatherings over trajectories can help in sensing,
monitoring and predicating non-trivial group incidents in ev-
eryday life.
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However, discovering the gatherings from trajectories is not
an easy task, where challenges are two-fold. First, how to
define the concept of gathering appropriately such that it intu-
itively captures the properties of the above mentioned events,
while being rigid from algorithmic aspect in the mean time.
Second, how to develop a solution that can discover gatherings
from large scale trajectories efficiently, and more importantly,
handle new data arrivals in an incremental manner. In the
sequel, we will elaborate the two challenges and brief our
contributions for addressing them respectively.

1.1 Challenge 1: Appropriate Model

To get some inspirations on how to choose the appropriate
model for gatherings, we first review some related concepts
in previous work. The problem of dense area detection or
density query [2][3] has been proposed with the objective of
identifying where and when there are regions of high density.
However the dense area cannot be adopted to model gatherings
due to their limitations in two aspects. First, previous work
typically identifies dense areas by overlaying a fixed grid on
the geographical space, which might not correspond to the real
shape of congregation in a gathering. Although this issue can
be tackled to some extent by using a grid with finer granularity,
the exponential increase in complexity makes this solution
computationally infeasible. Second, a more intrinsic problem
lies in that, the only criterion of a dense area is whether
its a congregation of individuals exceeds a given threshold,
regardless of whether the individuals within the area share
common behaviours. Consider Figure 1a in which there are
three groups of objects moving towards different directions.
At t = 2, group c1 and c2 encounter and form a dense area
A. After that, c2 departures with c1 and meets c3 at t = 3,
resulting in another dense area B. From this example, we can
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Fig. 1. Comparison of the related concepts

see that dense areas may be the places where individuals come
by each other coincidently (e.g. major road intersections),
since it does not take into account the common movements
of the objects inside this area.

On the other hand, there also exist some concepts with
the aim to discovering a group of objects that move together
for a certain time period, such as flock [4][5][6][7][8], con-
voy [9][10] and swarm [11]. These concepts, which we refer
to as group patterns, can be distinguished based on how the
“group” is defined and whether they require the time period to
be consecutive. Specifically, a flock is a group of objects that
travel together within a disc of some user-specified size for
at least k consecutive timestamps. A major drawback is that
a circular shape may not reflect the natural group in reality,
which may result in the so-called lossy-flock problem [9].
To avoid rigid restrictions on the sizes and shapes of the
group patterns, the convoy is proposed to capture generic
trajectory pattern of any shape and extent by employing the
density-based clustering. Instead of using a disc, a convoy
requires a group of objects to be density-connected to each
other during k consecutive time points. While both flock and
convoy have strict requirement on consecutive time period, Li
et al [11] propose a more general type of trajectory pattern,
called swarm, which is a cluster of objects lasting for at least
k (possibly non-consecutive) timestamps. Figure 1b illustrates
these concepts. Let k = 2, the group 〈o2, o3, o4〉 is a flock
from t1 to t3. Though o5 is an obvious company of the group,
it cannot be included due to the fixed size of disc employed by
the flock definition. On the other hand, a convoy can include o5
into the group since 〈o2, o3, o4, o5〉 is density-based connected
from t1 to t3. It is also easy to see that all the five objects
form a swarm during the non-consecutive time period {t1, t3}.

However, using the group patterns to model gatherings is
also problematic, since they all require the group to contain the
same set of individuals during its lifetime. This is often unre-
alistic since in a practical group incidents such as celebrations
or parades, members joining and leaving the event frequently
is inevitable. Therefore the group patterns can be used to
find the co-travellers but are not suitable for modelling those
incidents in which the membership may evolve gradually. This
observation motivates a more flexible concept to be developed.

Contributions. Based on the insights obtained from the
above analysis, we regard a gathering as a dense and continu-
ing group of individuals. Besides, the shape and location of the
group do not change too fast, since the mobility of individuals

in this group is low. Unlike the group patterns, there is no
requirement for coherent membership in the gathering, i.e.,
members can enter and leave this group any time. However, we
do desire some dedicated members who can commit a certain
time period, though may not be consecutive, to participate the
group event.

The above observations can be summarized with five key
attributes, which should be possessed by the appropriate model
of the gathering.

1) Scale. A gathering typically involves a relatively large
number of individuals.

2) Density. Those individuals form a dense group.
3) Durability. It should last for a certain time period

continuously.
4) Stationariness. The geometric properties (e.g., shape,

location) of the group is relatively stable.
5) Commitment. At any time of the gathering, there exist

several dedicated members who stick to the group for a
certain time (possibly non-consecutive).

In this paper we first propose a concept called crowd,
which captures the first four attributes. Specifically, a crowd
is a sequence of density-based clusters of objects’ locations
which lasts for at least kc timestamps. In order to restrict the
geometrical changes of the clusters at consecutive timestamps,
we adopt the widely-used Hausdorff distance [12] to measure
the distance between two clusters. Then we further define the
gathering pattern as a special kind of crowd that additionally
satisfies the fifth attribute. Formally, each cluster of a gathering
should contain at least mp so-called participators, which refer
to the objects appearing in at least kp clusters of this gathering.
These concepts can be illustrated with Figure 1c. Let kc = 3,
the two sequences of clusters 〈c1, c2, c4〉 and 〈c1, c3, c4〉 form
two crowds. 〈c1, c2, c5〉 (〈c1, c3, c5〉) is not a crowd since
c5 is too far away from c2(c3). Let kp = 2,mp = 3,
then only 〈c1, c2, c4〉 is a gathering since it contains three
participators all the time. We will re-visit this example with
more explanations in Section 3.

1.2 Challenge 2: Efficient Discovery Algorithm
Now another question is: can we simply apply or extend the
algorithms for group pattern mining to discover the gathering
patterns? Apparently the solutions for detecting flocks cannot
work since they can only find the group within a fixed disc.
The moving cluster algorithm [13] repeatedly appends a clus-
ter of the next timestamp as long as it shares enough common
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objects with the current cluster. The CuTS algorithm [9] firstly
clusters the simplified trajectories to obtain convoy candidates,
and then applies the moving cluster algorithm to get the correct
results. Both of them do not apply to our problem, since we
do not require any two consecutive clusters to share common
objects. Last, the ObjectGrowth algorithm [11] basically tries
to enumerate all subsets of the object set and checks if it
is a swarm. To keep the computation complexity tractable,
they propose apriori pruning, backward pruning and forward
closure checking to reduce the search space significantly.
Nevertheless we cannot borrow these techniques either, since
the gathering pattern does not have the downward closure
property, as will be demonstrated later in Section 4.

Naturally, the solution for discovering the gatherings from
trajectories can be divided into two phases: finding all the
crowds over the trajectory data and validate each crowd to see
if it is a gathering. Both of them can raise efficiency issues.

For the crowd detection phase, one challenge is how to
find all the pairs of clusters, the Hausdorff distances between
which do not exceed a given threshold, at consecutive time
points efficiently. Given the quadratic complexity of Hausdorff
distance computation and enormous clusters at each time
instant, testing all possible pairs in the brute-force manner will
render the discovery process prohibitively time consuming. In
addition, we also need to take care of the redundancy problem
since many crowds have containment relationship. In such
cases, should we output all of them or does it suffice to just
keep a subset of them?

As for the second phase, a major issue is what action should
be taken whenever a crowd fails to be a gathering. Obviously, it
is not wise to validate all the subsequences of the crowd due to
the exponential complexity. Therefore, a smarter algorithm that
examines only a few subsequences yet guarantees the correct
results is desired.

Our previous work [14] has demonstrated the effectiveness
and efficiency of the proposed techniques for discovering
gatherings on static trajectory dataset. However, in many real
applications trajectory data keep coming into the database or
server for immediate analysis. With the growth of the database
size, if we apply the whole process from scratch whenever new
trajectory data arrive, eventually the algorithm cannot catch up
with the speed of trajectory update. Therefore it is critical to
develop an online algorithm to monitor the gathering patterns.

Contributions. To speed up the crowd detection process,
we explore different spatial indexing techniques, namely R-
tree and grid index, to organize the clusters at each time point.
By this means, a large portion of cluster pairs can be safely
pruned and the left candidates can also be refined at lower
costs without knowing the exact Hausdorff distances. Besides,
with the observation of downward closure property of crowds,
we propose an efficient growth-style algorithm to produce the
closed crowds only, i.e., the ones with no super-crowds.

In the gathering discovery phase, we propose a test-and-
divide algorithm, which splits the whole crowds into sub-
sequences by removing the invalid clusters, i.e., the ones
with not enough participators, and tests each subsequence
recursively. Since repetitively counting the occurrences of a
large number of objects in a long crowd can still be lengthy,

we build bit vector signature for each object in the crowd
and apply the fast bit operations to count its occurrence.
More importantly, the bit vector signatures only need to be
constructed once and can be re-used by all the recursive
procedures.

Lastly to meet the online monitoring requirement in dy-
namic environment, we propose a series of optimization mech-
anisms for each phase of the discovery process, including
buddy-based clustering algorithm, fast online crowd detection
without index and incremental gathering update algorithm,
which collectively form an efficient online discovery solution
over streaming trajectories.

The remainder of this paper is organized as follows. We
firstly review the related work on several different research
topics in Section 2. Then we define the necessary concepts and
formulate the focal problem of this paper in Section 3. Efficient
solutions for discovering gatherings on archived trajectory data
are presented in Section 4, followed by the online monitoring
algorithms on dynamic trajectory data proposed in Section 5
Section 6 reports the experimental observations, and Section
7 concludes the paper.

2 RELATED WORK

Most of the related work on co-traveller pattern mining has
been discussed in Section 1. In this section, we mainly review
some other representative work that are also related to our
problem.

Trajectory clustering techniques aim to find groups of
moving object trajectories that are close to each other and have
similar geometric shapes. Gaffney et al. [15][16] propose tra-
jectory clustering methods based on probabilistic modelling of
a set of trajectories. As pointed out by Lee et al [17], distance
measure based on whole trajectories may miss interesting
common paths in sub-trajectories. Motivated by this, Lee
et al. [17] designed a partition-and-group framework, which
partitions trajectories into line segments and then build groups
for those close segments. More recently, Li et al. [18] further
study the efficient algorithms for maintaining and updating the
clusters when trajectories are received incrementally. Different
with the group pattern mining and our work, this category
of proposals does not consider the temporal aspects of the
trajectories. As such, moving objects whose trajectories are in
the same cluster may not actually stay together temporally.

There are also a bunch of work on mining frequent se-
quential pattern from moving object trajectories, which is a
sequence of locations whose support is not less than a support
threshold. Mamoulis et al [19] are the first to investigate min-
ing periodic movement patterns by representing trajectories
as sequence of fixed regions. Giannotti et al [20] study the
problem of mining T-pattern, which is a sequence of tem-
porally annotated points and propose the ROI based method
to approximate a trajectory as a sequence of symbols. Liu et
al [21] propose to extract frequent trajectory patterns using RF
tags arrays. In [22] and [23], existing sequential pattern mining
algorithms are adopted to discover frequent path segments
or sequences of points. In a more recent work [24], the
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authors utilize the historical trajectory data to find the frequent
travelling paths in-between any two consecutive locations
of a given query trajectory, and then use these patterns to
predicate the destination for the query trajectory. However,
mining frequent travelling pattern is quite different from our
problem since the moving objects that contribute the pattern
may travel at different time.

Recently, a number of trajectory outlier detection algo-
rithms have been developed, with the objective of identifying
suspicious moving objects automatically. Knorr et al. [25]
apply a distance-based algorithm, where the distance is defined
between the summary information of two whole trajectories
such as directions, starting (ending) points or velocities. The
methodology proposed by Li et al. [26] is based on classi-
fication. By transforming a set of common patterns, called
motifs, into a feature vector, the trajectories are labelled
with either “normal” or “abnormal” by a classifier. Later,
Lee et al. [27] design a partition-and-detection framework
for detecting trajectory outliers. In their approach, they first
partition the trajectories into small segments and then use
both distance and density to detect abnormal sub-trajectories.
Compared to [26], [27] does not require a training set, which
may be more applicable in real scenarios. Besides, the problem
of online abnormality monitoring over trajectory streams has
also been studied in [28]. The authors utilize the local conti-
nuity characteristics of trajectories to build local clusters upon
trajectory streams and monitor anomalies via efficient pruning
strategies. However, our goal is totally different from these
work. Trajectory outlier detection tries to find the trajectories
that behave quite differently from most of the others, while
our work attempt to discover groups of objects that may be
involved in unusual events.

Dense area detection was initially presented in the data
mining community as the identification of the set(s) of regions,
from spatio-temporal data, that satisfy a minimum density
threshold. The STING method [29] is a fixed-size grid-based
approach to generate hierarchical statistical information from
spatial data. Density query for moving objects is first proposed
in [2]. Its objective is to find regions with the density higher
than a given threshold at a time point or for a period of time
in the near future. They find the general density-based queries
difficult to answer efficiently and hence turn to simplified
queries. Specifically, they partition the data space into disjoint
cells, and the simplified density query reports cells, instead
of arbitrary regions, which satisfy the query conditions. Later,
Jensen et al. [3] defines a more delicate types of density query
with desirable properties to address the answer loss problem
in [2]. Some other solutions to detect dense areas are based
on the identification of local maxima by using the techniques
from computer vision [30][31]. Common to all the above
methods is that a fixed-size non-overlapping grid is employed
to aggregate the values over the spatial dimensions, which
might not correspond to the real shape of the underlying dense
area. On the contrary, the gathering pattern in our work can
capture the dense areas with arbitrary shapes.

3 PROBLEM DEFINITION
In this section, we will present the definitions of all necessary
concepts used throughout the paper, and formally state the
focal problem to be solved. The list of major symbols and
notations in this paper is summarized in the following table.

TABLE 1
Table of notations

Notation Definition
ODB moving object database
TDB time domain of the database
o the trajectory of a moving object
t a time point in TDB

o(t) the location of object o at time t
ci a snapshot cluster at time ti
Ci the set of snapshot clusters at time ti
Cr a crowd
Cr.τ the lifetime of a crowd
dH(P,Q) the Hausdorff distance between point sets P and Q
δ the variation threshold in the definition of crowd
kc the lifetime threshold of a crowd
mc the support threshold of a crowd
Par(Cr) the participator set of a crowd Cr
kp the lifetime threshold of a participator
mp the support threshold of a gathering
B(o) the bit vector signature of an object o

Let ODB = {o1, o2, ..., on} be the set of all moving objects
in the database and TDB = {t1, t2, ..., tm} be the time domain,
where each ti is a time point. The trajectory of a moving object
o is represented by a polyline that is given as a finite sequence
of timestamped locations during a closed time interval [t1, tn],
i.e., o = 〈(p1, t1), (p2, t2), ..., (pn, tn)〉, where pi ∈ <2 is the
geo-spatial position sampled at ti ∈ TDB . For simplicity, we
use o.τ to denote the lifespan of o and o(ti) to refer to the
location of o at time instant ti.

In our paper, we consider a practical trajectory database
model, which assumes each trajectory may have different
lengths and sampling rates (i.e., they are not synchronized in
temporal aspect). Therefore, some trajectories may not have
a sampled location for a given time instant ti. In this case,
we apply linear interpolation to create the virtual points pi for
those trajectories.

Now we adopt the notion of density-based clustering [32] to
define the snapshot cluster. Given a distance threshold ε and a
set of points S, the ε-neighborhood of a point p is defined as
Nε(p) = {q ∈ S|D(p, q) ≤ ε}, where D(·) is the Euclidean
distance between two points. A point p is directly density-
reachable from a point q w.r.t. a given distance threshold ε
and an integer m if p ∈ Nε(q) and |Nε(q)| ≥ m. A point
p is called density-reachable from q if there is a chain of
points p1, p2, ..., pn in S s.t. p1 = q, pn = p, and pi+1 is
directly density-reachable from pi. Then a point p is said to
be density-connected to a point q if there exists a point x ∈ S
s.t. both p and q are density-reachable from x.

Definition 1 (Snapshot Cluster): Given a trajectory set of
moving objects ODB , a distance threshold ε, and an integer
m, the snapshot cluster ct at timestamp t is a non-empty subset
of objects O ⊆ ODB satisfying the following conditions:

1) ∀op, pq ∈ O, op(t) is density-connected to oq(t) w.r.t. ε
and m.
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2) O is maximal, i.e., if oq ∈ O and op(t) is density-
reachable from oq(t) w.r.t. ε and m, then also op ∈ O.

A snapshot cluster is a group of objects with arbitrary
shape and size, which are density-connected to each other at
a given timestamp. Following the notion in DBSCAN [32],
such snapshot clusters are spatially maximal so that no two of
them with the same timestamp overlap in their objects. In the
sequel we will abbreviate the snapshot cluster to cluster and
omit the parameters m, ε when no ambiguity can be caused.

Definition 2 (Crowd): Given a trajectory set of moving
objects ODB , a support threshold mc, a variation threshold
δ, and a lifetime threshold kc, a crowd Cr is a sequence
of snapshot clusters at consecutive timestamps, i.e., Cr =
〈cta , cta+1

, ..., ctb〉, which satisfies the following requirements:
1) The lifetime of Cr, denoted by Cr.τ , is not less than

kc, i.e., Cr.τ = b− a+ 1 ≥ kc.
2) There should be at least mc objects at any time, i.e.,
∀a ≤ i ≤ b, |cti | ≥ mc.

3) The distance between any consecutive pair of snapshot
clusters is not greater than δ, i.e., Dist(cti , cti+1

) ≤
δ,∀a ≤ i ≤ b− 1.

Besides, a subsequence (supersequence) of a crowd Cr is
called a sub-(super-)crowd of Cr, if it is also a crowd. Cr is
said to be closed if it has no super-crowd.

Since a snapshot cluster is essentially a set of points, we
adopt the Hausdorff distance [12] to measure how far two
clusters are from each other. Hausdorff distance is a widely
used metric for point sets in the community of computer vision
and image processing. Given two sets of points P and Q, their
Hausdorff distance dH(P,Q) is defined as

dH(P,Q) = max{max
p∈P

min
q∈Q

d(p, q),max
q∈Q

min
p∈P

d(p, q)}

Informally, the Hausdorff distance is the longest distance
one can be forced to travel by an adversary who chooses a
point in one of the two sets, from where you must travel to
the other set. As such, two clusters are close in the Hausdorff
distance if their locations and shapes are similar with each
other, which is exactly what we expect for the stationariness
property as mentioned in Section 1.

Essentially, the concept of crowd captures all the properties
of a gathering except the last one, i.e., it has no restriction on
the membership. Before defining the gathering, we introduce
the notion of participator first.

Definition 3 (Participator): Given a crowd Cr, an object
o is called a participator of Cr iff it appears in at least kp
snapshot clusters of Cr. Let Cr(o) denote the set of snapshot
clusters in Cr that contains object o, i.e., Cr(o) = {ct | ct ∈
Cr, o(t) ∈ ct}. Then the participators of Cr are the object set
Par(Cr) = {o | |Cr(o)| ≥ kp}.

Note that a participator needs not to stay in the crowd for
continuous kp timestamps. As long as an object occurs in the
crowd for long enough time, it is regarded as a participator.
This kind of flexibility allows an individual to enter and leave
a crowd multiple times, which is an usual phenomenon.

Definition 4 (Gathering): A crowd Cr is called a gathering
iff there exists at least mp participators in each snapshot cluster
of Cr, i.e., ∀ct ∈ Cr, |{o | o(t) ∈ ct, o ∈ Par(Cr)}| ≥ mp.

A gathering is said to be closed if there is no super-crowd of
Cr that is also a gathering.

Example 1: Let’s consider Figure 1c again with kp =
2,mp = 3. To make our explanation clearer, we list the
occurrence of each object in both crowds in Table 2. The
participators are highlighted with bold symbols, and the bot-
tom row shows the number of participators in each cluster.
Then it is easy to see that 〈c1, c2, c4〉 satisfies the support
threshold at every time instant, while 〈c1, c3, c4〉 only has three
participators in c1.

TABLE 2
Occurrences of the objects in the crowds

object c1 c2 c4 # object c1 c3 c4 #
ooo1 – – 2 o1 – 1
ooo2 – – – 3 ooo2 – – 2
ooo3 – – 2 ooo3 – – – 3
ooo4 – – 2 o4 – 1
o5 – 1 ooo5 – – 2
o6 0 o6 – 1

# Par. 3 3 3 # Par. 3 2 2

Problem Statement. Given a trajectory set of moving
objects ODB , two support thresholds mc,mp, two lifetime
thresholds kc, kp, and a variation threshold δ, our goal is to
find all the closed gatherings from ODB .

4 DISCOVERING CLOSED GATHERING
In this section, we will present our framework for discovering
all closed gatherings from a trajectory database. Basically,
our framework consists of three phases: snapshot clustering,
crowd detection and gathering discovery. In the first phase, we
perform density-based clustering on the trajectories of objects
at each time point in TDB to find all the snapshot clusters.
To reduce the cost incurred by clustering, we can apply the
techniques in [9], which simplifies the original trajectories first
by the Douglas-Peucker algorithm and then perform clustering
on the line segments. Each cluster of line segments contains
the objects that are possible to form a snapshot cluster at
some time point. Finding snapshot clusters on such a set of
objects is much more efficient than on the whole object set
directly. The details of this phase are omitted due to space
limitation, and it finally outputs a database of snapshot clusters
CDB = {Ct1 , Ct2 , ..., Ctn}.

The second phase aims to find all the closed crowds from
CDB , while the third phase will validate each closed crowd to
see if it is or contains closed gathering(s). In the next two
subsections, we will elaborate our proposed techniques for
improving the performance of these two phases respectively.
The last subsection will discuss how to handle the new data
arrivals more efficiently.

4.1 Crowd Detection
It is easy to observe that the crowd satisfies the downward
closure property, which means any l-length subsequence of a
crowd (l ≥ kc) is also a crowd, making it redundant to output
all the sub-crowds. More importantly, gatherings detected from
a non-closed crowd is not guaranteed to be closed since there
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Algorithm 1: Discovering Closed Crowds
Input: CDB , mc, kc, δ

1 Vcc ← ∅; // set of closed crowds
2 V ← ∅; // set of current crowd candidates
3 for ti = t1 to tn do
4 R← ∅;
5 for each crowd candidate Cr ∈ V do
6 cti−1 ← the last snapshot cluster of Cr;
7 C′

ti
← RangeSearch(cti−1 , Cti , δ); // find the set of

snapshot clusters that are within δ distance to Cr
8 R← R ∪ C′

ti
;

9 if C′
ti

= ∅ then // Cr cannot be extended
10 if Cr.τ ≥ kc then
11 Vcc ← Vcc ∪ Cr; // Cr is a closed crowd

12 else
13 for each cti ∈ C′

ti
do

14 if |cti | ≥ mc then
15 Cr′ ← append cti to Cr;
16 V ← V ∪ Cr′;

17 Remove Cr from V;

18 Insert Cti \R into V; // the snapshot clusters than cannot be
appended to any current crowd candidate will become new crowd
candidates

19 return Vcc;

may exist longer gatherings in its super-crowds. Therefore,
instead of finding all the crowds, we only detect the closed
crowds in this phase. At first glance, this needs to check every
supersequence for a crowd in order to decide whether it is
closed. However, according to the following lemma, checking
the supersequence of a crowd by appending one more snapshot
cluster suffices.

Lemma 1: Given a crowd Cr = {cti , cti+1
, ..., ctj}, if

@ctj+1
∈ Ctj+1

, s.t. appending ctj+1
to Cr will generate a

new crowd, then Cr is a closed crowd. Otherwise, Cr is not
closed.

The proof of this lemma is omitted due to its straightfor-
wardness. Based on this lemma, we can detect the closed
crowds by incrementally appending the snapshot clusters at
the next time point to the current set of crowd candidates
(denoted as V). Algorithm 1 outlines this process. At each
timestamp, we check the last cluster of each crowd candidate
to see if it can be extended by appending one more cluster.
If so, the extended crowd candidates are inserted back to V
as new candidates. Otherwise, we can conclude it is either a
closed crowd (if the length is not smaller than kc) based on
Lemma 1, or not a crowd at all. Note that, at any timestamp
the clusters (denoted by R) that cannot be appended to any
existing crowd candidate should also be regarded as a new
candidate, since it is possible to grow into a crowd later.

It is easy to see that the most costly part in Algorithm
1 is the procedure RangeSearch(), which looks for the
clusters from the cluster set at current timestamp Ctc , whose
Hausdorff distance with ci is not greater than δ. A naive
implementation of this procedure is to calculate dH(ci, cj) for
each cj ∈ Ctc . Apparently, a single calculation of dH(ci, cj)
requires O(|ci||cj |) time, and it should be performed over all
pairs between current crowd candidates and the clusters at the
current time point. This will make the overall computation

prohibitively expensive for a large dataset. To address this
issue, we will explore spatial indexing techniques to organize
the clusters and speed up the search process.

4.1.1 Indexing Clusters with R-tree
Actually we do not need the exact Hausdorff distance between
two clusters. Instead, it suffices to just know whether their
distance is below or above δ. Let M(c) denote the minimum
bounding rectangle (MBR) of cluster c and dmin(, ) the
minimum distance between two rectangles. The following
lemma holds naturally.

Lemma 2: Given two clusters ci and cj ,
dmin(M(ci),M(cj)) ≤ dH(ci, cj)

The proof of this lemma is omitted due to its straightfor-
wardness. Based on this lemma, we firstly retrieve a candidate
set of clusters from Ctc whose minimum distance with ci is
not greater than δ and then refine the candidates to get the
final results. To support efficient candidate search, we index
the MBRs of the clusters in C by a R-tree, and then perform a
window query against the R-tree, in which the window is the
enlarged MBR of ci by δ. Obviously, clusters contained in the
nodes not overlapping with the window are not candidates.

However, dmin is rather a loose lower bound for the Haus-
dorff distance since the latter is the maximum of minimum
distance from one cluster to the other. The following lemma
provides a tighter lower bound for the Hausdorff distance.

Lemma 3: Let M.la denote the a-th side of a rectangle M
(a = 1, 2, 3, 4). Define the distance function dside to be

dside(M(ci),M(cj)) = max
a∈[1,4]

dmin(M(ci).la,M(cj))
1

Then we have dside(M(ci),M(cj)) ≤ dH(ci, cj).
Proof: Let pa be the point of the cluster ci that lies

on the side M(ci).la. Naturally, dmin(M(ci).la,M(cj)) ≤
dmin(pa,M(cj)). From the definition of Hausdorff distance,
dmin(pa,M(cj)) ≤ dH(ci, cj) since pa ∈ ci. As such,
dmin(M(ci).la,M(cj)) ≤ dH(ci, cj), ∀a ∈ [1, 4]. By taking
their maximum, dside still lower bounds dH .

To retrieve candidates in the R-tree by utilizing dside, we
need slight modifications to the aforementioned window query
process as follows. First we enlarge each side of M(ci) by δ
to obtain four rectangles, denoted by ra, a = 1, 2, 3, 4. During
the traversal of R-tree, a node needs to be further examined
only if it intersects with all the four rectangles.

4.1.2 Indexing Clusters with Grid
Indexing clusters with R-tree, though improving the detection
performance by ruling out many disqualifying clusters, still
suffers from three major drawbacks. First, an R-tree needs
to be constructed and maintained for each time point, which
may incur high cost. Second, since the density-based clusters
may have arbitrary shapes, rectangular bounding box cannot
always capture the distribution of points in a cluster, which
will affect its pruning effect. Third, the brute-force refinement
is still needed to evaluate the Hausdorff distances for those
candidate clusters. To address them, we propose a grid-based

1. dmin here is used to compute the minimum distance between a side and
a rectangle since the side can be regarded as a degenerated rectangle
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index for clusters. As we shall see shortly, the grid index is
easier to construct since the clusters at all timestamps can
share the same grid structure. More effective pruning can be
performed as the composition of grid cells can approximate
the shape of a cluster better. Besides, a smarter refinement
algorithm can be devised by utilizing the grid index, which
is able to validate a candidate without calculating the exact
Hausdorff distance.

To start, we partition the whole space by a grid, each cell of
which is a square with the side length equal to

√
2
2 δ. Then for

each time point t, we can build a grid index Gt with two kinds
of data structures by scanning the set of clusters once, namely
a cell list for each cluster c.cl that keeps the cells occupied by
the cluster, and an inverted list for each cell g.inv that stores
the clusters covering this cell. Before describing the algorithm,
we define the affect region for a cell.

Definition 5 (Affect region): Given a cell gab locating at the
a-th row and b-column of a grid G, its affect region is the set
of cells whose minimum distance with gab is not greater than
δ. More precisely, AR(gab) = {gij ∈ G | |i−a| ≤ 2, |j−b| ≤
2, and |i− a|+ |j − b| < 4}.

Intuitively, the affect region of a cell g may contain some
point whose distance with a point in g is not greater than δ.
Now given the query cluster ci, (i.e., the last cluster of some
crowd candidate) and grid index Gti+1 at the next timestamp,
the procedure RangeSearch() of Algorithm 1 works in the
pruning-refinement style, stated as follows.

In the pruning phase, we select each cell g from ci.cl and
find the clusters in Cti+1

whose cell list intersects with AR(g).
Easy to know that, only the clusters that overlap with the
affect region of every cell in ci.cl can be the candidates, since
otherwise there exists at least one point in the cluster that is
farther away from ci than δ.

In the refinement phase, we will validate each candidate
to determine the final results. For a candidate cj , we first
perform a set join on ci.cl and cj .cl to get their common
cells. The rational behind is that the distance between any
two points within the same cell cannot be greater than δ.
In other words, the Hausdorff distance between the subsets
of ci and cj that fall inside their common cells will not
exceed δ. In an extreme case, if ci.cl = cj .cl, we can
immediately conclude dH(ci, cj) ≤ δ. For this reason, we
just need to check the cells in their difference set, i.e.,
dif(ci.cl, cj .cl) = (ci.cl ∪ cj .cl) \ (ci.cl ∩ cj .cl). For each
point p within dif(ci.cl, cj .cl), assuming p ∈ ci without loss
of generality, we calculate its minimum distance with cj . Note
that we only need to calculate the distances between p and the
points falling inside the affect region, since all the other points
will definitely have distances with p greater than δ.

4.2 Gathering Discovery

In this subsection, we will discuss the algorithm to discover
closed gatherings on each closed crowd obtained from the
last step. It seems that we can apply the similar methodology
with the crowd detection – incrementally extending a shorter
cluster sequence into a longer one until it fails to be a
gathering. However, the downward closure property does not

hold for gatherings. In other words, a non-gathering cannot
imply its super-sequences also not being gatherings. To see
this, consider a crowd with four clusters c1 = {o1, o2, o3},
c2 = {o1, o2, o4}, c3 = {o1, o3, o4}, c4 = {o2, o3, o4}, and
let kp = 3,mp = 2. Obviously, neither the crowd 〈c1, c2, c3〉
nor 〈c2, c3, c4〉 is a gathering as the number of participators
in c2(c3) is less than m (only 1). When we see their super-
crowd 〈c1, c2, c3, c4〉, it is a gathering indeed. As such, for a
gathering found so far, we have to check all the super-crowds
in order to know if it is closed. Undoubtedly, this will incur
high computation cost especially when the given crowd is a
long sequence.

4.2.1 Test-and-Divide Algorithm
In the sequel, we propose a test-and-divide (TAD) algorithm
that can detect all the closed gatherings in a given crowd
efficiently. As shown in Algorithm 2, it starts from the whole
closed crowd and tests if it is a gathering. If so, as we shall
prove shortly, it is a closed gathering and can be returned
immediately. Otherwise, we identifies the invalid clusters,
which does not have enough participators, and divide the
crowd into several subsequences by removing these clusters
(some subsequences may not be crowds as their lengths are
less than k). For each subsequence that is still a crowd, we
repeat the above steps again since some objects may become
non-participators now due to the deletion of invalid clusters.
This procedure is performed recursively until no crowd can be
found any more .

c1 c2 c3 c4 c5 c6 c7 c8
o1 o1 o1 o1

o2 o2 o2 o2 o2 o2
o3 o3 o3 o3 o3 o3
o4 o4 o4 o4 o4 o4 o4

o5 o5 o5
o6 o6

Fig. 2. Illustration of test-and-divide algorithm

Example 2: Consider a closed crowd illustrated in Figure
2, and let kc = kp = 3, mc = mp = 3. According
to the TAD algorithm, we first apply the Test() procedure
on the whole crowd. It is easy to see that, the objects
o1, o2, o3, o4, o5 are participators w.r.t. the whole crowd. So c5
is an invalid cluster as it only contains two participators (< 3).
By removing c5, we divide the original crowd into two sub-
crowds Cra = 〈c1, c2, c3, c4〉 and Crb = 〈c6, c7, c8〉. Again,
we perform Test() recursively on Cra and Crb respectively.
For Cra, though o1 changes to a non-participator, all the
clusters still have enough number of participators, so we output
Cra as a gathering. For Crb, both o1 and o2 become non-
participators, making all the three clusters invalid. Since we
cannot get any more sub-crowds from Crb, the TAD algorithm
will terminate.

Theorem 1: The gatherings output by TAD are closed.
Proof: We can prove it by contradiction. Suppose at some

stage of TAD, we get a sub-crowd Cr = 〈ci, ci+1, ..., cj〉 that
turns out to be a gathering. According to the work flow of
TAD, the reason we get Cr is that both ci−1 and cj+1 are
invalid clusters. On the other hand, if there exists any super-
crowd of Cr such that it is also a gathering, then at least one
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Algorithm 2: Test and Divide (TAD)
Input: Cr, kc, kp, mp

1 R← ∅; // the set of closed gatherings
2 if Test(Cr,kp,mp) is true then // test if Cr is a gathering
3 return Cr;

4 else
5 C ← find the invalid clusters;
6 Scr ← Divide(Cr, C); // divide Cr by removing clusters in C
7 for each Cr′ ∈ Scr do
8 if Cr′.τ ≥ kc then // if Cr′ is still a crowd
9 R← R∪ TAD(Cr′, kc, kp, mp);

10 return R;

of ci−1 and cj+1 should have enough participators, which is
contradictory to the previous claim. Therefore Cr is a closed
gathering.

4.2.2 Efficient Implementation with Bit Vector Signature
A straightforward implementation of TAD algorithm is to
count the occurrence for each object in the crowd to see if it is
a participator, and then check the number of participators for
each cluster in the crowd. Obviously this requires O(m ·Cr.τ)
time where m is the number of objects in Cr. Even worse, we
have to perform the above operations repeatedly from scratch
for each sub-crowd obtained.

For a more efficient implementation of TAD, we propose to
construct a bit vector signature (BVS) for each object of Cr,
and all the subsequent steps can be performed with fast bitwise
operations. Specifically, given a crowd Cr = 〈c1, c2, ..., cn〉,
the BVS for an object o ∈ Cr is an n-length bit vector with
each bit representing the existence of o in the corresponding
cluster. The BVSs of all the objects in Cr can be constructed
by a single scan of the crowd. More importantly, the BVSs
only need to be built once and can be used for all the
recursions of TAD. Next we elaborate how to implement
the two procedures Test() and Divide() in Algorithm 2 by
utilizing the BVS.

Test step. With the BVS of some object o, denoted by B(o),
the procedure Test() essentially turns out to be counting the 1
bits in B(o), which is also known as the Hamming weight [33]
of a bit vector. While a naive method is to iterate over all the
bits of B(o), more efficient implementations have been well
studied. One of the best solution known is based on adding
the counts in a binary tree pattern [33], in which we first get
the number of 1s in every 2-bit piece of B(o), and then in
every 4-bit piece,..., and so on so forth. The example below
shows how we can get the Hamming weight of B(o1) in just
3 steps. Let x = B(o1),

1) Let m1 = 01010101,
x = (x&m1) + ((x� 1)&m1) = 01011000

2) Let m2 = 00110011,
x = (x&m2) + ((x� 2)&m2) = 00100010

3) Let m4 = 00001111,
x = (x&m4) + ((x� 4)&m4) = 00000100

Now the decimal number of x is 4, which is exactly the
number of 1s in B(o1). In the above operations, m1,m2,m4
are called masks and can be defined properly once the length

of the bit vector is known. In general, for any bit vector with n
bits, its Hamming weight can always be obtained in dlog2(n)e
steps.

Divide step. In this step we will divide the crowd into a set
of subsequences if it fails to be a gathering. Essentially this
is to split the BVS of each object into a set of subvectors. It
is worth pointing out, there is no need to process the BVSs
of non-participators since a non-participator of a crowd must
remain a non-participator in any of its sub-crowds. We also do
not have to split the BVS physically, instead of which we can
just use a mask to extract the desired part from the original
BVS. The mask is also a bit vector having the same length
as the BVS. It sets to 1 in the bits corresponding the sub-
crowd, and 0 in all the other bits. By performing the AND
operation on the original BVS and the mask, we get a new
BVS where the bits of the desired sub-crowd are kept while
all other bits are zero. For example, in Figure 2 the mask to
extract the crowds Cra and Crb are 11110000 and 00000111
respectively. As such, the Divide() just needs to return a set of
masks, which is more compact compared to the subsequences
of a crowd, and pass it to the subsequent Test() procedure.
By this means, the Test() procedure can use each mask to
get the BVSs of the objects in the corresponding sub-crowd
directly, thus avoiding the re-construction of BVSs for each
sub-crowd.

5 MONITORING GATHERING PATTERNS

In the previous section, we have introduced the efficient
algorithms for discovering the closed gathering patterns from
a static trajectory archive, which has been collected and
stored in a database beforehand. In many applications, such as
traffic management and battlefield surveillance, trajectories of
moving objects (e.g., vehicles, military units) are continuously
received by sensors and immediately sent back to central
servers for further analysis. It is often critical and beneficial
for these applications to monitor the changes of patterns in
real-time so that favourable decisions can be made as early as
possible. However, the goal of efficient monitoring of gather-
ing patterns cannot be achieved by using the techniques we
have discussed before due to several reasons: 1) The simplify-
and-cluster method [9] adopted for clustering is based on the
assumption that all the trajectory data are available. In the
online monitoring scenario, future positions of moving objects
are not known a priori and thus the trajectory simplification
technique is not applicable. 2) The crowd detection algorithm
heavily depends on the index structure built for clusters in each
snapshot to find the nearby clusters for each crowd candidate.
When trajectory data arrive in streaming fashion, however, it is
not realistic to construct and maintain an index structure for
each new snapshot of locations. 3) The gathering discovery
algorithm adopts a divide-and-conquer paradigm. It means
when existing crowds get extended by new trajectory data,
the gathering patterns cannot be incrementally updated and
will be re-discovered from scratch.

Based on these observations, in this work we extend the
existing gathering discovery framework by designing an on-
line component for efficient monitoring of gathering patterns.
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The on-line component addresses the three major issues iden-
tified above by re-designing the three phases, namely snapshot
clustering, crowd detection and gathering discovery, to meet
the monitoring purpose. We will detail each phase in the
following subsections.

5.1 Travelling Buddy based Clustering

The time cost of density-based clustering without spatial index
is quadratic to the number of objects, and maintaining a spatial
index like R-tree in each snapshot is also very expensive.
Therefore, we have to speed up the clustering phase first in
order for the on-line component to keep up with the update
rate of trajectories. Despite the fact that moving objects keep
on moving and updating their positions, the changes of spatial
relationship among objects are gradual evolution rather than
fierce mutation. In most real world applications, there exist
some kinds of co-travellers who tend to stay close with each
other for a while. For examples, couples would like to stay
together on trips, military units operate in teams, families of
birds, deer and other animals often move together in species
migration. These moving objects form a smaller but more
flexible structure, in which the object relationships are possible
to be retained in a few snapshots. It is attractive to exploit this
property to speed up the clustering phase since many distance
calculation between individual pairs may be avoided. To this
end, we utilize the concept of travelling buddy proposed
in [34], which is defined as follows:

Definition 6 (Travelling Buddy): Given a radius threshold
r, a travelling buddy b at time t is defined as a set of
moving objects satisfying: (1) b ⊆ ODB ; (2) ∀oi ∈ b,
dist(oi(t), cen(b)) ≤ r, where cen(b) is the geometry centre
of b. The buddy’s radius γ is defined as the distance from
cen(b) to it’s farthest member.

The travelling buddies can be initialized by merging the
objects with their nearest neighbours until the buddy’s radius
is larger than γ. The initialization step takes O(n2) time for
n objects, but it only needs to be carried out once and the
travelling buddies can be incrementally maintained upon the
arrival of trajectory data. There are two kinds of operations to
maintain buddies, namely split and merge.

• Split. When the data of a new snapshot at tn+1 arrive,
the maintenance algorithm first updates the centre of
each buddy b by calculating the shift (∆xi,∆yi) of each
member between tn and tn+1: cenn+1(b) = cenn(b) +∑
oi∈b(∆xi,∆yi). Afterwards every object oi ∈ b checks

its distance to the buddy centre and will be split out as a
new buddy if the distance is greater than δ.

• Merge. This operation is to merge the buddies that are
close to each other. If two buddies bi and bj are close
enough to satisfy the equation:dist(cen(bi), cen(bj)) +
γi + γj ≤ 2r, they should be merged as a new buddy.
The centre of new buddy can be easily computed using
the old buddy’s centre and size.

The travelling buddies can help reduce the number of indi-
vidual objects that need to be accessed during the clustering
phase, based on the following lemmas.

Lemma 4: [34] Given a distance threshold ε and a density
threshold µ for the density-based clustering, if a buddy’s size
if larger than µ+1 and the buddy radius is less than ε/2, then
all the objects in b are directly density reachable from each
other. We call such kind of buddy a density-connected buddy.

Lemma 5: [34] Let bi and bj be two travelling buddies
with radius γi and γj , and ε be the distance threshold. If
dist(cen(bi), cen(bj)) − γi − γj > ε, then the objects in bi
and bj are not directly reachable.

Lemma 6: [34] Let bi and bj be two density-connected
buddies and ε be the distance threshold. If ∃oi ∈ bi, oj ∈ bj
such that dist(oi, oj) ≤ ε, then all the objects in bi, bj are
density connected.

Lemma 5 implies that when searching for directly density
reachable objects, if another buddy is too far away, we can
safely prune all its members without further computations.
On the other hand, based on Lemma 6 once we find a pair
of objects in two buddies are close to each other, the two
corresponding buddies must be density-connected.

The buddy-based clustering algorithm firstly updates the
buddy set in a new snapshot using the split and merge opera-
tions. Then it randomly picks a buddy and checks the density
connectivity with other buddies. In most cases, Lemma 5 and
Lemma 6 can quickly filter out majority far-away buddies and
include the close enough buddies directly during this process.
Finally, the algorithm outputs the clusters when all the buddies
have been processed.

5.2 On-line Closed Crowd Detection

The crowd detection algorithm proposed in the previous sec-
tion relies on some spatial index to find the clusters with
small Hausdorff distance efficiently. As we mentioned, con-
struction of spatial index is a costly procedure itself and thus
not practical for on-line scenarios where each new snapshot
must be processed in real-time. In this part, we propose an
on-line crowd detection algorithm, which can identify the
closed crowds fast without any facility of spatial index. More
specifically, it utilizes the technique of on-line spatial join
to prune most far-away clusters and exploits the travelling
buddies inside the clusters to speed up the distance evaluation
in refinement.

Pruning. Once the set of clusters Cn+1 in the new snapshot
is obtained, we firstly need to identify the candidates that are
likely to satisfy the distance condition with some cluster at
snapshot tn and potentially form a crowd. To do that, we
represent each cluster in Cn, Cn+1 by its minimum bounding
rectangle (MBR) and expand the MBRs of Cn by δ. Then if the
MBR of some cluster cin+1 overlaps with the expanded MBR
of some cluster cjn, cin+1 is regarded as a candidate of cjn. It is
easy to prove that, the Hausdorff distance between these two
clusters will not be less than δ if their MBRs do not overlap.
Now our problem becomes finding all pairs of MBRs in the
two cluster sets that overlap with each other, which is exactly
a spatial join operation. Despite this problem has been studied
for decades, generally there are only approaches that can be
used to process spatial join on-line without the availability of
index: the nested loop join [35] and the plane-sweep join [36].
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We adopt the latter approach for this task due its better
performance in practice. The algorithm starts with sorting the
MBRs in both cluster sets based on one dimension and then
a sweep line moves along this dimension from one end to
the other, during which course the MBRs passed through by
the sweep line are checked for overlap relationship. Since the
MBRs are unsorted in the other dimension, pairs of MBRs
that are far away from each other in that dimension still need
to be examined. As we will show in the experiments shortly,
it will not cause much performance overhead as the number
of MBRs overlapping with a sweep line is usually small.

Refinement. After the pruning step, each cluster cin in Cn
will be associated with a list of candidate clusters in Cn+1

that may satisfy the distance condition. The refinement step
is to evaluate the actual Hausdorff distance between cin and
each of its candidates. Without the help of spatial index,
a simple approach will have to use a nested loop to go
through all the point pairs of two clusters in order to derive
the exact Hausdorff distance. Recall that we utilize travelling
buddies to speed up the clustering phase, so in each cluster
all the buddy information are still available, which gives us
opportunity to optimize the refinement process. The overall
idea is to, instead of directly calculating the distance between
individuals, estimate the distance range between buddies using
their centres and radius and reduce unnecessary examination of
individual points based on this estimation. Before presenting
the detailed algorithm, we will introduce the following lemma
that states the relationship between the Hausdorff distance and
distance of buddies.

Lemma 7: Let dmin(b1, b2) and dmax(b1, b2) be the min-
imum and maximum distance between two buddies, which
can be calculated based on the distance between their centres
minus/plus their radius. Then given a buddy b and another
point set P consisting of n buddies {b′1, b′2, ..., b′n}, the min-
imum distance between any pair of points from b and P is
in the range of [minb′∈P dmin(b, b′),minb′∈P dmax(b, b′)]. We
denote these distance bounds as dmin(b, P ) and dmax(b, P )
respectively.

The buddy-based Hausdorff distance evaluation, as shown
in Algorithm 3, starts with calculating dmin and dmax between
all pairs of buddies in Cn and Cn+1, and then sorts all the
buddies b in Cn descendingly based on dmax(b, Cn+1) (Line
2). For each buddy b in this sorted list, we will evaluate its
actual minimum distance with Cn+1 and keep the current
greatest value in a global variable dh (Line 3-15). This
process can stop when the list is exhausted or it is found that
dmax(b, Cn+1) of the next-to-be visited buddy is less than dh
(Line 4-5), which means all the unvisited buddies will have
no effect on final Hausdorff distance. To further speed up the
process of deriving the minimum distance between each buddy
b and Cn+1, we examine and access the individual points of
each buddy b′ of Cn+1 in the order of dmin(b, b′) (Line 7-13),
and maintain the current minimum distance mb at the same
time. In this way, all the buddies in Cn+1 with dmin(b, b′)
greater than the current best result can be pruned safely (Line
9-10).

Algorithm 3 still needs to go over all pairs of buddies in the
two clusters and may access the individual points of all buddies

in the worst case. In practice this algorithm can achieve better
efficiency than the nested loop method, since the number of
buddies is much less than points and lots of buddies can be
pruned based on the distance bound.

Algorithm 3: Buddy-based Hausdorff distance evaluation
Input: Cn, Cn+1

Output: dH(Cn, Cn+1)
1 dh(Cn, Cn+1)← −∞;
2 Ln ← sort buddies in Cn based on dmax(b, Cn+1) in descending

order;
3 for each buddy b ∈ Ln do
4 if dmax(b, Cn+1) ≤ dh(Cn, Cn+1) then
5 Break;

6 mb ← +∞;
7 Lb ← sort buddies b′ in Cn+1 based on dmin(b, b

′) in ascending
order;

8 for each buddy b′ ∈ Lb do
9 if dmin(b, b

′) ≥ dm then
10 Break;

11 dm ← the minimum distance between b and b′;
12 if dm ≤ mb then
13 mb ← dm;

14 if mb > dh(Cn, Cn+1) then
15 dh(Cn, Cn+1)← mb;

16 Evaluate dh(Cn+1, Cn) in analogous way;
17 return max{dh(Cn, Cn+1), dh(Cn+1, Cn))};

5.3 Incremental Gathering Update
Suppose in the previous phase a crowd Crold = {ci, ..., cn}
in ODB has been extended into a new closed crowd Crnew =
{ci, ..., cn, cn+1} in O′DB . Now our goal is to find new or
updated closed gatherings in Crnew. Straightforwardly, we
can perform the TAD algorithm on Crnew from scratch, but
this approach obviously cannot scale well as the crowds grow
longer. To address this problem, we propose an optimization
scheme to update the closed gathering patterns incrementally
by taking advantage of the gatherings that have already been
discovered in Crold. We will show that this optimization can
bring more benefits when Crold occupies a large portion of
Crnew.

As before, the first step is to build the BVS for each object
in Crnew. Instead of doing this from scratch, we can simply
append another bit indicating the existence of each object in
cn+1 to the BVS in Crold, thus saving the time to scan the
entire Crnew. Afterwards the Test() procedure is invoked to
detect the invalid clusters. The following lemma indicates that
some original invalid clusters in Crold may become valid in
Crnew.

Lemma 8: Denote the set of invalid clusters of a crowd Cr
as IC(Cr). Then we have IC(Crnew)∩Crold ⊆ IC(Crold).

This is natural since some non-participators in Crold may
turn to be participators because of the new clusters in Crnew.
In other words, the gatherings in Crold may expand or merge
with their neighboring gatherings in Crnew. However, if we
find some invalid cluster cj in Crnew which also belongs to
Crold, it is guaranteed that all the closed gatherings before
tj remain unchanged in Crnew. More precisely, we have the
following theorem,
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Theorem 2: Given an invalid cluster cj ∈ IC(Crnew) with
j ≤ n + 1, then any closed gathering Gr ⊂ 〈ci, ..., cj−1〉
remains closed in Crnew.

Proof: Since cj is an invalid cluster, we can only
find closed gathering from Cra = 〈ci, ..., cj−1〉 and Crb =
〈cj+1, ..., cm〉. a). If j = n + 1, Cra is actually Crold. So
they have the same set of closed gathering. b). If j < n + 1,
then cj ∈ IC(Crnew) ∩Crold. From lemma 8, we know that
cj ∈ Crold. This means in Crold, the closed gatherings locate
in Crc = 〈ci, ..., cj−1〉 and Crd = 〈cj+1, ..., cn〉. Cra = Crc,
hence their closed gatherings are also the same.

Motivated by Theorem 2, we can improve the original TAD
algorithm by utilizing the gatherings found in Crold. After
a set of invalid clusters IC has been obtained in the test
phase, we look for the “rightmost” invalid cluster before the
timestamp tn+1, i.e., cj ∈ IC(Crnew)(j ≤ n + 1), s.t.
@cj′ ∈ IC(Crnew) that j < j′ ≤ n+1. Theorem 2 guarantees
that the closed gatherings on 〈ci, ..., cj−1〉 remain the same as
before, which have already been discovered. Therefore only
the sub-crowds within 〈cj+1, ..., cm〉 need to be examined
further since they may contain new or updated gatherings.

Example 3: Continuing with Example 2, the closed crowd
in the old database has been extended to a new closed crowd
as shown in Figure 3. Easy to see that all the six objects
are participators in the new crowd (recall that o6 was a non-
participator in the old crowd). As a normal TAD algorithm,
we perform test on the whole crowd and find c9 to be an
invalid cluster. By Theorem 2, all the closed gatherings in the
crowd 〈c1, ..., c8〉 remain closed in the new crowd. So there
is no need to test 〈c1, ..., c8〉 again. All we need to do is test
the other sub-crowd 〈c10, c11, c12〉 and validate it as a closed
gathering finally.

c1 c2 c3 c4 c5 c6 c7 c8 c9c9c9 c10c10c10 c11c11c11 c12c12c12
o1 o1 o1 o1 o1 o1 o1

o2 o2 o2 o2 o2 o2 o2 o2
o3 o3 o3 o3 o3 o3 o3 o3
o4 o4 o4 o4 o4 o4 o4 o4 o4

o5 o5 o5 o5 o5 o5
o6 o6 o6 o6 o6 o6

Fig. 3. Illustration of gatherings update

6 EXPERIMENT

In this section, we conduct extensive experiments to evaluate
the effectiveness and efficiency of our proposed concepts and
algorithms based on a real trajectory dataset, which contains
about 120K trajectories generated by over 33,000 taxis of
Beijing in a period of 3 months (March, April and May
in 2009) [37][38][39]. These trajectories are all stored in a
database residing on disk. After discretizing the time domain
into the granularity of minute, we get 132,480 time points
(60× 24× 92) in TDB . Then as an offline preprocessing step,
we find the snapshot clusters for every minute by applying the
DBSCAN [32] with the settings m = 5, ε = 200(meters). All
the clusters are stored in file system. All the algorithms in the
following experiments are implemented in C# and run on a
computer with Intel Xeon Core 4 CPU (2.66GHz) and 8GB
memory.

6.1 Effectiveness

Although the gathering is capable of modelling various group
incidents as mentioned in Section 1, in this part we use the
traffic condition (e.g.,traffic jams) as a study case to evaluate
the effectiveness of our proposals. Intuitively, a traffic jam can
be captured by a gathering, since many vehicles with slow
speeds form a dense area, and usually most of the vehicles
stay within this area for a relatively long time. Essentially,
GPS-equipped taxicabs can be viewed as ubiquitous mobile
sensors of the city-wide traffic flows. For instance, Beijing
has approximately 67,000 licensed taxis generating over 1.2
million occupied trips per day. This figure is around 4.2% of
the total personal trips (35 million) within the Six Ring Road
of Beijing City (reported by Beijing transportation bureau in
July 2010), which is a significant sample reflecting the traffic
condition of the city.

In the first experiment, we divide a day into three time
periods, peak time (6am to 10am and 5pm – 8pm), work time
(10am to 5pm) and casual time (8pm to 5am). Then we find
all the closed crowds and gatherings from the trajectory set
and group them by the time period with the setting mc = 15,
δ = 300m, kc = 20, kp = 15 and mp = 10. As comparison,
we also search for the closed swarms and convoys from the
trajectories with the settings mino = 15,mint = 10 (i.e., a
group of 15 or more objects travelling together for a period of
at least 10 time units). In cases a pattern crosses multiple time
periods, we simply duplicate assign it to each of them. Figure
4a shows the average number of each pattern in a single day
w.r.t. the time period. It is easy to see that, we can find the
most gatherings during the peak time and much fewer for the
rest. This observation is consistent with the traffic condition of
Beijing, since it experiences severe traffic congestion during
the rush hours every day. Interestingly, though there also exist
many crowds in casual time, only a small portion turns out
to be gatherings. This is because, many crowds are located
around restaurants, shopping malls and other entertainment
places, where taxicabs usually drop the passengers and leave
quickly. As such, these crowds will not form gatherings since
there are not enough participators. On the other hand, we can
find more swarms and convoys in peak and casual time than
in work time. To explain this, many taxicabs have common
destination areas during peak (e.g., CBD, residential suburbs)
and casual time (e.g., entertainment places). On the contrary,
the destinations of most taxicabs are widely distributed during
work time, resulting in fewer swarms and convoys.

Next, we categorize the total 92 days into three groups
according to the weather condition, namely clear, rainy and
snowy. Then we compare the average number of each pattern
in a single day with different weather conditions. As shown in
Figure 4b, we can find the least number of gatherings in clear
days and the most in snowy days. The reason is that, as the
weather condition becomes worse for the traffic, vehicles tend
to move more slowly which makes it easier to cause traffic
jams. We also notice the great gap between the number of
crowds and gatherings in snowy days. This may be caused by
the large number of minor accidents on the roads, in which
most vehicles around the accident can bypass it in a short
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time. We also note that the number of swarms seems quite
insensitive to the weather, while there are fewer convoys in
snowy days. A possible explanation is that vehicles try not to
travel too closely to each other in snowy weather.
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Fig. 4. Effectiveness study

6.2 Efficiency
In this subsection, we study the efficiency of our proposed
algorithms. In particular, we will measure the run time of
the algorithms for detecting closed crowds, discovering closed
gatherings and handling the database update incrementally in
different parameter settings.

Performance of crowd detection algorithm. In the first
set of experiments, we compare the performances of three
pruning schemes in the crowd detection algorithm: a) SR,
simple R-tree based pruning with dmin; b) IR, improved R-
tree based pruning with dside; c) GRID, grid-based pruning.
The default parameters used in this set of experiments are:
|ODB | = 30, 000, mc = 15, δ = 300m, kc = 20. Besides,
for the R-tree based method, we set the fanout of R-tree to
50 and page size to 4K; for the grid-based method, we set the
side length of each cell to be

√
2
2 × δ. Below we show the

average runtime cost of searching for the closed crowds in a
single day, i.e., |TDB | = 1440. It is worth mentioning that,
since Algorithm 1 sequentially sweeps all the time points, the
parameter kc only affects the number of gatherings we can
find, but has no impact on the time cost of the algorithm. So
we omit the experiment studying kc in the sequel.

As we can see from Figure 5, IR significantly improves
the pruning effect of SR by using a tighter lower bound
of dH . GRID further enhances the performance of IR and
outperforms SR by at least one order of magnitude constantly.
Specifically, as shown in Figure 5a, the runtime costs of all
algorithms decrease when mc increases, since there are less
number of clusters satisfying this support threshold at each
time instant. As such, there are fewer candidates to consider
when we attempt to expand the current crowd candidates. On
the contrary, the performances of all methods deteriorate as δ
increases (Figure 5b), since the search space increases when
we look for the candidate clusters of the next timestamp.
Finally, in Figure 5c we study the impact of database size
by randomly choosing the subsets of the original dataset with
different sizes. As expected, all the schemes need more time
to complete on a larger database, since there tends to be
more clusters at each time point. Interestingly, however, the
grid-based pruning is relatively insensitive to the size of the
database. This is due to the fact that, as the affect region of

each cluster remains unchanged (since δ remains the same),
the refinement cost increases slowly (we only refine the grids
in the affect region) even though there may be more clusters
considered as candidates.

Performance of gathering discovery algorithm. We eval-
uate the performances of three algorithms for discovering
closed gatherings from a given crowd: a) Brute-force method
which will recursively test all the i-length sub-crowds (i =
n, n − 1, ...), until either it finds a gathering or no sub-
crowd can be found (i < kc); b) TAD algorithm; c) TAD*:
TAD algorithm implemented with the bit vector signature.
The default parameters used in this set of experiments are:
mp = 11 and kp = 14. For each experiment, we run the
algorithms on 1000 closed crowds that are randomly selected
and record the average time cost.

From Figure 6, it is easy to see that TAD outperforms the
brute-force method by one to two orders of magnitude, and
TAD* further improves TAD by about 30%. In Figure 6a,
we show the performances of all three algorithms with the
variation of mp, i.e., the least number of participators for a
cluster to be valid. As mp increases, a cluster is more likely to
be invalid. For this reason, the brute-force method has to check
the shorter sub-crowds with more recursions until it finds
a gathering. Although TAD and TAD* also have recursive
procedures, they do not enumerate all the subsequences of a
crowd. Interestingly, with the further increase of mp, the time
costs of TAD and TAD* turn to decrease. This is because
too many invalid clusters in the original crowd will result in
a large number of subsequences that are non-crowd, hence
making the recursion terminate more quickly. Figure 6b shows
the effect of the other parameter kp, which is the least time
period for a participator to stay within the crowd. As the
previous experiment, there will be less valid clusters with
greater kp since the number of participators decreases. We
omit the analysis for kp due to its similarity with mp.

We also investigate the runtime cost when the algorithms
are performed on the crowds with different lengths (Cr.τ ), the
results of which are shown in Figure 6c. As expected, the time
cost of the brute-force method increases almost exponentially
with Cr.τ , since the number of subsequences is exponential
to the length of a crowd. The performances of the other two
algorithms also deteriorate with the length of the crowd, but
the changes are more smooth. In addition, TAD* exhibits more
benefits on longer Cr.τ , since using the BVSs for a longer
sequence can save more computation time.

Performance of monitoring algorithms. Finally we anal-
yse the performance of the proposed monitoring algorithms
for handling streaming trajectories. To simulate the streaming
environment, we continuously append the trajectories in each
time instant to the existing dataset and try to update the
gathering patterns immediately. Figure 7 shows the time cost
of different algorithms for the three phases, namely snapshot
clustering, crowd detection and gathering discovery, respec-
tively. First, we examine how the threshold of buddy radius
affects the performance of the buddy-based clustering. As
shown in Figure 7a, when the radius threshold is very small
(20m), buddy-based clustering algorithm is even more costly
than DBSCAN. This is because a large number of buddies
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Fig. 7. Performance of gathering monitoring algorithms

needs to be modified at such a small threshold that incurs
high runtime overhead. As the radius threshold gradually
increases, the efficiency of buddy-based clustering algorithm
gets improved since many buddies remain the same over
consecutive time instants. According to this experiment, we set
the radius threshold to be 100m. It is worth to mention that, the
choice of radius threshold will not affect the clustering results.
It can only affect the size and number of buddies and hence the
performance of the clustering algorithm. Second, we compare
the efficiency of different on-line crowd detection approaches
and report the average time cost for detecting all the crowds
in a new time instant. From Figure 7b we can see that using
sweep line algorithm to find candidate clusters in the pruning
step is significantly more efficient than the nested loop join ap-
proach. Besides, the buddy-based refinement optimization can
further speed up the crowd detection process by using the inter-
buddy distance to reduce unnecessary distance computations.
We also notice that the performance benefit becomes more
significant when the threshold of Hausdorff distance increases.
Last, we test the performance of incremental gathering update
algorithm by comparing it against the re-computation method

(e.g., re-invoke the TAD* procedure whenever the crowd
gets updated). Figure 7c shows the average time cost of
discovering the gatherings on a single crowd with respect to
the duration of the crowd. Not surprisingly, the runtime of re-
computation approach increases quickly with the duration of
the crowd, therefore it is not suitable for the on-line monitoring
scenarios where the crowds keep growing. On the contrary, the
incremental update approach can scale much better with the
length of crowd as it leverages the old gatherings that was
previously discovered in the crowd to eliminate lots of re-
discovery.

7 CONCLUSION

In this paper, we study the problem of online discover-
ing gathering patterns over large-scale, dynamic trajectory
databases. Different from the earlier proposed concepts, such
as flock, convoy and swarm, which aim to identify groups of
moving objects travelling together for a certain time period,
the gatherings are able to model a variety of non-trivial group
events or incidents. Since the whole discovery process could be
very time consuming in a large trajectory dataset, we propose
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a set of techniques to improve the efficiency. Besides, we
also develop an efficient online monitoring solution that can
keep track of pattern updates while new trajectory data are
coming. Extensive experiments based on real taxicab trajectory
dataset have demonstrated that the proposed online discovery
algorithms can maintain the patterns for whole dataset within
a few seconds, which is efficient enough for many practical
applications.
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